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Abstract: Forecasting public debt is essential for effective policymaking and eco-
nomic stability, yet traditional approaches face challenges due to data scarcity. While
machine learning (ML) has demonstrated success in financial forecasting, its applica-
tion to macroeconomic forecasting remains underexplored, hindered by short historical
time series and low-frequency (e.g., quarterly/annual) data availability. This study pro-
poses a novel hybrid framework integrating Dynamic Stochastic General Equilibrium
(DSGE) modeling with ML techniques to address these limitations, focusing on the
evolution of France’s public debt. We first generate a large synthetic macroeconomic
dataset using an estimated DSGE model for France, which allows for efficient training
of ML algorithms. These trained models are then applied to actual historical data for
directional debt forecasting. The results show that the best machine learning model
is an XGBoost achieving 90% accuracy. Our results highlight the viability of combin-
ing structural economic models with data-driven techniques to improve macroeconomic
forecasting.
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1 Introduction

The crises that have impacted developed economies since the Great Recession of 2008
- including the COVID-19 pandemic, the Russia-Ukraine war, and escalating climate
disasters - have required significant government interventions. These measures, aimed
at stabilizing economies and mitigating social hardships, have led to considerable in-
creases in public debt. In the Economic and Monetary Union (EMU), the situation of
public finance remains a burning issue, especially due to the increasing heterogeneity
of fiscal positions across Member States. The European fiscal rule, introduced when
the Eurozone was created in 1999, was suspended from 2020 to 2023 due to the escape
clause. This fiscal rule, introduced by the Stability and Growth Pact (SGP, 1996), must
combine the sound management of national public finance on the one hand, but also
leave Member States sufficiently margin to achieve their fiscal policy on the other. This
dual objective, particularly tricky to achieve, was reaffirmed by the reform adopted in
2024 and which came into force on April 30, 2024. In the reformed fiscal rule, a partic-
ular focus is paid to the sustainability of public debt in the medium term. The national
medium-term fiscal-structural plans and the medium-term net primary expenditure path
are now the new public finance monitoring tools anchored on public debt sustainability.

Although many European countries are showing an increasing trend towards public
debt, the situation is even more alarming in France. France ranks third, after Greece
and Spain, among the countries in the Eurozone with the highest level of public debt.
In addition, the French political context has been extremely uncertain since the legisla-
tive elections of June 2024. For these reasons, the case study proposed in this article
focuses on France. Existing research on public debt determinants emphasizes that
socio-economic factors do not solely determine public debt dynamics; political and in-
stitutional factors also play a crucial role, as demonstrated in studies by Di Bartolomeo
et al. (2018) and Barbier-Gauchard & Sofianos (2024). According to Estefania-Flores
et al. (2023), there is a significant positive forecast error in the projections of the debt-
to-GDP ratio in both advanced economies and emerging and developing economies.
This error in public debt forecasts, which tends to increase during periods of election,
can have serious repercussions. This may be the result of governments choosing to
follow different regimes that do not pursue fiscal consolidation during election periods.
High and unpredicted levels of public debt often lead to high interest rates on govern-
ment bonds, increasing the cost of borrowing for governments, which increases the debt
burden and, consequently, further increases the level of public debt. This in turn can
limit their ability to finance future projects. It can also lead to low investor confidence,
as investors become increasingly concerned about the government’s ability to repay its
debt, which can lead to reduced foreign investment and economic instability. All these
factors can have a considerable influence on the way that the financial markets assess a
country’s exposure to the default risk of default, and the rating agencies that rate that
risk.

In these conditions, being able to accurately forecast public debt seems to be a chal-
lenge. An accurate methodology could help policymakers and international stakeholders
assess fiscal health and take proactive measures to address potential vulnerabilities in
public debt. The IMF is the leading authority for global public debt forecasting (IMF
(2024)). In the EU, the European Commission also proposes its own public debt fore-
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casts (European Commission (2024)). Unfortunately, forecasting errors continue to
exist, we are far from having accurate public debt forecasting. Bachleitner & Pram-
mer (2024) underline that the error in the public debt forecast is more pronounced for
high-debt countries than for low-debt countries. On the other hand, the use of machine
learning to provide forecasts is growing more and more. Machine learning is gaining
more and more attention in economics. Recent applications include forecasting macroe-
conomic variables, creation of early warning systems for financial crises, recessions, or
risk of default. Historically, large data sets were necessary to efficiently train machine
learning models (Gogas & Papadimitriou (2021)). The availability of high-frequency
data facilitated the application of machine learning techniques in finance. However,
during the past few years, machine learning techniques have been used successfully
with shorter macroeconomic datasets, providing results that outperform other econo-
metric techniques (Sermpinis et al. (2014) for inflation and unemployment, Gogas et al.
(2021) for output gaps, Gogas et al. (2022) for unemployment, Lekhal (2024) for pub-
lic external debt, Silva et al. (2024) for international trade, or Belly et al. (2023) for
sovereign risks.

Machine learning models are particularly well suited for early warning predictions
in economics, including financial crises, recessions, and default risks. These models
excel in handling complex high-dimensional datasets, often outperforming traditional
econometric techniques in such tasks. By automating model building, machine learning
algorithms can learn from historical data, identify patterns, and make decisions with
minimal human intervention. Unlike traditional approaches, ML-based methodolo-
gies are data-driven and largely atheoretical, extracting insights directly from the data
without relying on predefined theoretical frameworks. Furthermore, machine learning’s
ability to model non-linear relationships and adapt to evolving patterns makes it an
invaluable tool in economics, where predictive accuracy, flexibility, and adaptability are
crucial for addressing complex and dynamic challenges.

The small size of the macroeconomic databases remains a major drawback to over-
come. DSGE models seem to be the ideal methodological tool to address this difficulty,
as they provide a simulation of the functioning of the real economy and, thus, can gener-
ate large amounts of data. To our knowledge, the combination of the DSGE framework
and machine learning has not yet been widely used. Hinterlang & Hollmayr (2022) is
the first paper that applies machine learning techniques to classify an unobserved eco-
nomic state using DSGE generated data. The authors identify US monetary and fiscal
dominance regimes using machine learning techniques. The algorithms are trained and
verified using simulated data from Markov-switching DSGE models, before they are
used to classify regimes from 1968–2017 on actual US data. All machine learning meth-
ods outperformed the standard logistic regression with respect to the simulated data.
Stempel & Zahner (2023) couples a new-Keynesian model with a neural network to
assess whether the European Central Bank (ECB) conducted monetary policy between
2002 and 2022 according to the weighted average of inflation rates within the EMU or
reacted more strongly to developments in inflation rates in certain countries.

This paper stands at the crossroads of three fields of literature: the empirical liter-
ature on public debt forecasting, the theoretical literature that integrates government
public debt into DSGE models (Corsetti et al. (2012) for instance), and the literature
that applies machine learning techniques in macroeconomics. The aim of this paper
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is to propose a ML public debt forecasting model for France trained on artificial data
produced by the DGSE model as illustrated by Figure (1).

Figure 1: Combination of the DSGE model and Machine Learning

The rest of the paper is organized as follows. Section (2) presents the DSGE model,
its estimation, and the synthetic data to train the machine learning models. Section
(3) describes the use of machine learning techniques and main results, and section (4)
concludes.

2 The DSGE model and simulations

This section presents the baseline DSGE model, the estimation of key parameters for
France used in the calibration to simulate the model and the results of simulations
which provide synthetic data to train the machine learning models, in order to provide
better knowledge of the evolution of future public debt.

2.1 The log-linear model

We use a standard DSGE model close to the canonical model developed in Smets &
Wouters (2007). Since we aim to forecast government debt, we introduce the dynamic
of the public debt and a risk premium on the interest rate of the government bond.
In this section, we describe the set of log-linear equations used to simulate the model.
All variables are log-linearized around their steady-state balanced growth path. Star
variables denote steady-state values. We first describe the aggregate demand side of
the model (consumption, investment, public spending), then turn to the aggregate sup-
ply and the economic policies (fiscal and monetary). The canonical model of Smets &
Wouters (2007) has demonstrated strong forecasting performance. While it would be
possible to develop a more sophisticated model - for instance, by incorporating a more
developed financial sector (see, e.g., Gertler & Karadi (2011)) - it is not clear that such
an extension would necessarily improve predictive accuracy (see Kolasa & Rubaszek
(2014) for a discussion). Similarly, we could consider an open-economy framework, but
we opt here for a tractable and easily estimable model. For more details about the
microfoundations of such a standard DSGE model, see Smets & Wouters (2007).
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Households in this economy maximize utility over consumption and labor supply,
subject to an intertemporal budget constraint. They also provide capital to firms
through lending. Equation (1) represents the Euler equation which describes the dy-
namic of households consumption as:

ct = c1 ct−1 − (1− c1)Etct+1 − c2 (lt − Etlt+1)− c3(rt − Etπt+1 + ξbt ), (1)

with

c1 =
λ

1 + λ
, c2 =

(σc − 1)(W ∗L∗/C∗)

σc(1 + λ)
, c3 =

1− λ

(1 + λ)σc
.

Thus, the level of consumption ct depends on the expected level of consumption, but we
also introduce a habit formation mechanism, which implies that current consumption
also depends on its past value. lt are worked hours, rt the nominal (riskless) interest
rate, πt the consumer price index inflation rate. c1 and c2 contains: λ measures the
degree of habit formation and σc the elasticity of intertemporal substitution. W ∗,
L∗ and C∗, are the values of, respectively, wages, hours worked and consumption at
the steady-state. Finally, ξbt is an exogenous process that affects the wedge between
the interest rate controlled by the central bank and the return on riskless assets held
by households. The exogenous shock to household consumption ξbt follows an AR(1)
process such as:

ξbt = ρbξbt−1 + ϵbt (2)

with ρb ∈ (0, 1) which capture the duration of the shock and ϵbt an i.i.d exogenous dis-
turbance.

Thus, equation (3) defines the dynamic of private investment it:

it = i1 it−1 + (1− i1)Etit+1 + i2 qt + ξit, (3)

where

i1 =
1

1 + β
, i2 =

1

1 + βψ
.

with β is the standard discount factor applied by households, ψ is the steady-state elas-
ticity of the capital adjustment cost function, qt is the Tobin Q and ξit is a disturbance
to the investment-specific technology process, such as:

ξit = ρiξit−1 + ϵit (4)

with ρi ∈ (0, 1) which capture the duration of the shock and ϵit an i.i.d exogenous dis-
turbance.

The Tobin’s Q, representing the evolution of the value of the capital, is defined as:

qt = q1 Etqt+1 + (1− q1)Etr
k
t−1 − (rt − Etπt+1 + ξbt ), (5)

with
q1 = β(1− δ)

rkt is the real rental rate on capital. Then, the value of the capital depends on the differ-
ence between the real rental rate on capital and the riskless real interest rate. The shock
ξbt given by equation (2), which impacts the return on assets held by households, will
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also influence the investment decision. The parameter δ represents capital depreciation.

The third component of the aggregate demand, government expenditure, is simply
introduced as an AR(1) process such as:

gt = ρggt−1 + ϵgt (6)

with ρg ∈ (0, 1) which capture the duration of the shock and ϵgt an i.i.d exogenous
disturbance.

Supply side

The production function of firms is given by a traditional Cobb-Douglas function com-
bining labor lt and capital services used in production ks,t , such as:

yt = αks,t + (1− α)lt + ξat , (7)

with α is the productivity parameter, ξat a total productivity shock which impacts the
marginal productivity of inputs defined as:

ξat = ρaξat−1 + ϵat (8)

with ρa ∈ (0, 1) which capture the duration of the shock and ϵat an i.i.d exogenous
disturbance.

Current capital services used in production are a function of capital installed in the
previous period kt−1 and the degree of capital utilization zt, such as:

ks,t = kt−1 zt (9)

The degree of capital utilization, is function of the real rental rate of capital rkt as :

zt =
1− ψ

ψ
rkt (10)

with ψ is a parameter in the function which describes the adjustment cost related to
the changes in the degree of capital utilization.

The law of mention of the capital stock is:

kt = (1− δ)kt−1 + δit + δ(1 + β)ψξit (11)

with ξit the disturbance to the investment-specific technology process given by equa-
tion (4). Cost minimization by firms will also imply that the rental rate of capital is
negatively related to the capital-labor ratio and positively to the real wage (both with
unitary elasticity). Thus, the optimal input choice follows:

rkt = −(kt − lt) + wt (12)
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Price setting

Firms evolve in a monopolistic competitive goods market. They are price-setters but
face a degree of nominal rigidity à la Calvo (1983). Following the optimization by firms
and aggreggation, the law of motion of prices is given by:

πt = π1 πt−1 + π2 Etπt+1 − π3 µ
p
t + ξpt (13)

with

π1 =
θ

1 + βθ
, π2 =

β

1 + βθ
, π3 =

1

1 + βθ

(1− βκ)(1− κ)

κ
.

Inflation, denoted by πt, is defined as the change in the consumer price index, that is,
πt = pt − pt−1, where pt is the (log) consumer price index. θ is the degree of indexation
to past inflation and κ the degree of price rigidity (in the price-setting à la Calvo (1983).

with coefficients π1, π2, and π3 determined by the degree of price rigidity and in-
dexation and ξpt is a cost-push shock, defined as a standard AR(1) process, such as:

ξpt = ρpξpt−1 + ϵpt (14)

with ρp ∈ (0, 1) which capture the duration of the shock and ϵpt an i.i.d exogenous
disturbance. In addition, µp

t defines the price mark-up given by the difference between
the marginal product of labor and the real wage such as:

µp
t = α(ks,t − lt)− wt + ξat (15)

with ξat , the total productivity shock which impacts the marginal productivity of
inputs defined by equation (8).

Wage setting

On the labor market, workers are also in a monopolistic competition environment then
wage-setters. Similarly to firms, workers face a degree of nominal wage rigidity intro-
duced à la Calvo (1983). The resulting wage dynamic is given by:

wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2πt + w3πt−1 − w4µ
w
t + ξwt (16)

with

w1 =
1

1 + β
, w2 =

1 + βθw

1 + β
, w3 =

θw

1 + β
, w4 =

1

1 + β

(1− βκw)(1− κw)

κw
.

Similarly to the setting of prices, θw is the degree of indexation to past inflation and
κw the degree of wage rigidity. Analogously to price-setting, µw

t is the wage mark-
up, defines as the real wage and the marginal rate of substitution between work and
consumption, such as:

µw
t = wt −

(
σllt +

1

1− λ
(ct − λct−1)

)
(17)

with σl the elasticity of labor supply with respect to the real wage. Finally, ξwt is an
exogenous disturbance on wages, defined such as:

ξwt = ρwξwt−1 + ϵwt (18)

with ρw ∈ (0, 1) which capture the duration of the shock and ϵwt an i.i.d exogenous
disturbance.
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Monetary policy

The central bank sets the nominal interest rate in the economy, following a standard
Taylor rule given by equation (19) :

rt = γr rt−1 + γπ (πt − π∗) + γy (yt − y∗) + ξrt , (19)

where rt is the nominal interest rate, γr measures the persistence of the nominal interest
rate, γπ and γy measures the sensibility of the central bank for the stabilization of,
respectively, inflation and the output gap. ξrt is a monetary policy shock defined as an
AR(1) process such as:

ξrt = ρrξrt−1 + ϵrt (20)

with ρr ∈ (0, 1) which capture the duration of the shock and ϵrt an i.i.d exogenous
disturbance.

Fiscal policy

The government finances public spending defined by equation (6) through public debt.
The dynamic of public debt is given by :

bt = rbt−1 +

(
1

β

)[
bt−1 − πt−1 +

(
G∗

Y ∗

)
gt

]
(21)

The public debt bt is given by the lagged public debt and the current level of public
spending, β represents the discount factor. rbt denotes the return on government secu-
rities which depends on the nominal interest rate sets by the central bank, but also on
a risk premium that endogenously increases with the stock of public debt, such as:

rbt = rt +∆(bt − pt − yt) (22)

where ∆ measures the sensibility of the risk premium on government bonds to the evo-
lution of public debt.

Aggregate variables and market clearing conditions

The aggregate resource constraint (market clearing condition) is given by:

yt =
C∗

Y ∗ ct +
I∗

Y ∗ it + zyzt +

(
1− C∗

Y ∗ − I∗

Y ∗

)
gt, (23)

where output yt equals aggreggate demande denided as the sum of consumption (ct),
investment (it), capital-utilization costs (a function of zt), and public spending (gt).
C∗

Y ∗ is the steady-state share of consumption in output, I∗

Y ∗ the investment-output ratio
and G∗

Y ∗ the government expenditure-output ratio. Through calculation, we can define
zy = R∗

k
K∗

Y ∗ , with R
∗
k the steady-state rental rate of capital and K∗

Y ∗ the capital-output
ration at the steady-state (see Smets & Wouters (2007)).
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2.2 Estimation procedure

We estimate the model using quarterly data for the French economy from 2000Q1 to
2023Q2. The Bayesian estimation method follows standard practice in the literature
(see for instance An & Schorfheide (2007)). The model is estimated using eight macroe-
conomic time series: GDP, household consumption, investment, hours worked, inflation,
the nominal (riskless) interest rate, and public debt. Table (1) displays the source of
the original data. All variables are expressed in logarithms. Nominal series for GDP,
household consumption, investment, public debt, and compensation to employees are
deflated using the GDP deflator. With the exception of the nominal interest rate, we
apply the Hamilton filter to extract the cyclical component of each series (see Hamilton
(2017) for a description of the filter). Inflation is the quarterly growth rate of the GDP
deflator. Finally, real wages are constructed by deflating compensation to employees
and dividing by the total labor force.

Variable Description Source

y Nominal GDP, Seas. and cal. ad-
justed)

Eurostat database

rb 10 years, annual rate, French rate OECD database

b Central government consolidated
gross debt, in real terms (GDP de-
flator)

Eurostat

c Final consumption by households
(GDP deflator, millions euros,
Seas. And cal. adj.)

Eurostat, ESA 2010

π GDP deflator Eurostat

r ECB policy rate ECB database

l Total hours worked ECB database

i Gross fixed capital formation
(GDP deflator, millions euros,
Seas. and cal. adjusted)

Eurostat, ESA 2010

w Own calculations OECD database

Table 1: Source of the dataset

We use prior means close to the original estimation in Smets & Wouters (2007).
All model parameters are estimated, with the exception of δ, the capital depreciation
rate, which is calibrated at 0.025, and ∆ = 0.3 in order to match empirical moments
of government yields. Furthermore, we calibrate the steady-state ratios C∗

Y ∗ = 0.52 and
I∗

Y ∗ = 0.23 based on the average values computed from the empirical series employed in
the model estimation. Henceforth, G∗

Y ∗ = 1− C∗

Y ∗ − I∗

Y ∗ = 0.25.

Tables (2) and (3) display the prior and posterior distributions for, respectively, the
estimated parameters and the shock processes. In Table (3), [σa, σb, σg, σI , σr, σp, σw]
are the estimated standard deviations of the different exogenous shocks.
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Table 2: Prior and Posterior Distribution of Structural Parameters

Prior Distribution Posterior Distribution

Parameter Mean Std. Dev. Mode Mean 5% 95%

ψ 4.00 1.50 6.3103 6.3456 6.2894 6.4149
σc 1.50 0.37 1.0469 1.0460 1.0059 1.0644
λ 0.50 0.10 0.8710 0.6755 0.6667 0.6789
σl 2.00 0.75 3.3895 3.3860 3.3598 3.4066
θw 0.50 0.10 0.3894 0.3873 0.3830 0.3897
θ 0.50 0.10 0.3473 0.3428 0.3248 0.3643
κw 0.50 0.15 0.7209 0.8744 0.8680 0.8814
κ 0.50 0.15 0.7209 0.7207 0.7132 0.7292
γπ 1.50 0.25 2.0120 2.04 1.74 2.33
γr 0.75 0.10 0.7713 0.81 0.77 0.85
γy 0.125 0.05 0.2636 0.08 0.05 0.12
100(β−1 − 1) (discount) 0.25 0.10 0.5635 0.16 0.07 0.26
α 0.24 0.01 0.2220 0.2228 0.2161 0.2308

Table 3: Prior and Posterior Distribution of exogenous shocks

Distribution Prior Posterior

Type Mean Std. Dev. Mode Mean 5% 95%

σa InvGamma 0.001 1.00 0.0124 0.0124 0.0108 0.0133
σb InvGamma 0.001 1.00 0.0135 0.0137 0.0126 0.0144
σg InvGamma 0.001 1.00 0.0124 0.0078 0.0048 0.0115
σI InvGamma 0.001 1.00 0.0062 0.0061 0.0059 0.0068
σr InvGamma 0.001 1.00 0.0055 0.0055 0.0050 0.0061
σp InvGamma 0.001 1.00 0.0070 0.0071 0.0064 0.0076
σw InvGamma 0.001 1.00 0.0458 0.0452 0.0418 0.0513
ρa Beta 0.50 0.20 0.97 0.9687 0.9626 0.9739
ρb Beta 0.50 0.20 0.259 0.2547 0.2391 0.263
ρg Beta 0.50 0.20 0.7139 0.7165 0.7082 0.7299
ρI Beta 0.50 0.20 0.6072 0.6047 0.5922 0.6138
ρr Beta 0.50 0.20 0.6646 0.0678 0.645 0.0734
ρp Beta 0.50 0.20 0.8788 0.8786 0.8756 0.8845
ρw Beta 0.50 0.20 0.6365 0.6423 0.6068 0.6739
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2.3 Simulation of the data

To generate the synthetic dataset used for training the Machine Learning models, we
simulate the estimated DSGE model over 11,000 periods, discarding the initial 1,000
observations to eliminate the influence of initial conditions. The model is subjected to
a sequence of stochastic shocks across all dimensions specified within its structure. For
illustrative purposes, Figure (2) presents the simulated trajectory of public debt over
the first 5,000 periods.

Figure 2: Simulated data for the public debt over 5000 periods

3 Machine Learning

3.1 Methodology

Machine learning, a strain of theoretical framework and methodological tools that first
appeared in the 1950s, was designed to enhance the ability of artificial intelligence (AI)
systems to learn autonomously. The essence of machine learning lies in its ability to au-
tomatically construct models, enabling computers to learn from historical data, identify
complex and non-linear patterns, and make decisions with minimal human intervention
using AI Gogas & Papadimitriou (2021). These models are flexible and capable of
performing both classification and regression tasks, making them invaluable in a wide
range of applications. In our research, we employ four machine learning algorithms
for their comparative advantages while considering their documented limitations, as
described below.

The Support Vector Machines (SVM) family of algorithms is highly effective for both
classification and regression problems. The core idea of the SVM algorithm is to iden-
tify the optimal linear separator that divides data points into two distinct classes. To
overcome modeling problems that arise from very complex data, possible outliers, noise,
or non-linear patterns, SVMs employ the so-called ”kernel trick”, a technique that maps
data from its original data space to higher-dimensional feature spaces, where accurate
classification is possible Cortes & Vapnik (1995). Key advantages of SVMs include
robustness to extreme values, high prediction accuracy, and strong generalization abili-
ties with limited hyperparameter tuning. However, SVMs can perform poorly when the
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number of features (in the feature space) greatly exceeds the number of observations
used for training Mouchtaris et al. (2021).

We also use the CART (Classification and Regression Trees) algorithm, often re-
ferred to as decision trees (Breiman et al. (1984)). This model uses the Gini impurity
index -a measure of the probability that a randomly selected observation is misclassified-
to create optimal splits and build decision trees. Although decision trees are easy to
train, understand, and they perform very well in-sample, nonetheless, they are prone
to overfitting, resulting in very poor performance in new data. Overfitting is a common
manifestation of the well-known trade-off between bias (in-sample error) and variance
(difference between in-sample and out-of-sample performance).

To address the limitations of decision trees, Breiman (2001) introduced the Random
Forest algorithm. Random forests combine the concept of decision trees with the bag-
ging technique (Breiman (1996)). During training, the algorithm constructs multiple
decision trees, each based on a bootstrapped sample of the original dataset and a ran-
dom subset of variables. This approach reduces overfitting and improves generalization.
Random forests also provide insight into the relevant forecasting importance of the in-
dependent variables through its built-in Variable Importance Measure (VIM). Potential
drawbacks include the computational resources required to train multiple trees and the
complexity of interpreting the ensemble model.

XGBoost (eXtreme Gradient Boosting, Chen & Guestrin (2016)) is another pow-
erful ensemble learning algorithm. Unlike Random Forests, it builds decision trees
sequentially, with each new tree designed to correct errors made by the previous trees
through a process known as boosting. XGBoost minimizes a specific objective function,
typically combining a loss function with a regularization term, which improves both the
in-sample accuracy and the generalization ability out-of-sample. While XGBoost offers
significant advantages, including ease of implementation and bias reduction, its disad-
vantages include complex hyperparameter tuning and high computational requirements.
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3.2 The Dataset

Our dataset is compiled of 9 variables, namely, GDP, government bond yields, govern-
ment debt, aggregate consumption, inflation, ECB interest rate, employment, aggregate
investment and wages. For each of these variables, we use up to 12 lags to address tem-
poral dependencies, resulting in a 108-dimensional input vector. The target variable is
the cyclical component of the state of the government debt, derived from the Hamilton
filter. If this is above trend (positive) at t+1 , it is labeled as 1, and if it is below trend
(negative), it is labeled as 0. According to this setting, our goal is to forecast whether
the government debt will be above or below its long-run trend in the next period. In
this manner, we are able to forecast unexpected short-run deviations of public debt and
align economic policy accordingly.

From the 10,000 observations of artificial data obtained from the DSGE model, 80%
are used as the training set (in-sample) for model training, while the remaining 20% are
used as the validation set (out-of-sample) to evaluate the models’ ability to generalize
on new and unknown data (figure 3). This 80-20 split is a widely adopted practice in
machine learning and is effective for both classification and regression tasks. The real
data, spanning the period from 2003Q1 to 2023Q2, are used as a second out-of-sample
set.

Figure 3: Use of data obtained from DSGE simulations

To further mitigate overfitting and ensure robust model selection, we use a 5-fold
cross-validation technique in the training part of the DSGE dataset. By using cross-
validation, the in-sample data are divided into 5 equally sized folds (subsets). For each
configuration set of the hyperparameters, model training and testing are repeated 5
times. In each iteration, one fold is used for testing and the remaining four folds are
used for training. The overall performance of each hyperparameter configuration is
then calculated as the average performance across all five test folds.

This rigorous training and validation strategy helps to accurately optimize the hy-
perparameters while reducing the risk of overfitting, ensuring that the models perform
efficiently when applied to new, unseen data.

To address the challenge of identifying the most relevant features for the prediction
model, we applied the Sequential Feature Selection (SFS) technique, a robust technique
designed to streamline the feature set for models that do not inherently perform feature
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selection. SFS is a greedy algorithm that starts with a single feature and sequentially
adds the most important features, one at a time, to improve the performance of the
model. The feature added at each iteration is selected based on the cross-validation
score. Finally, the set of features with the highest cross-validation score is selected.

In our study, SFS was applied only to support vector machine (SVM) models, which
have no built-in feature selection mechanisms. For tree-based models, explicit feature
selection is not necessary, as these algorithms rank and order variables based on their
importance during the training process, employing metrics such as the Gini significance.

3.3 Results

A 5-fold cross-validation approach was used to optimize the hyperparameters of each
model. The SVM models were coupled with three kernels: the linear kernel, the Radial
Basis Function (RBF) kernel and the polynomial kernel.

Table 4: Variables selected with SFS for every SVM kernel

# Linear kernel RBF kernel Polynomial kernel

1 GDP lag 1 Government yields lag 1 Government yields lag 1
2 Government yields lag 1 Government debt lag 1 Government debt lag 1
3 Government debt lag 1 Inflation lag 1 Inflation lag 1
4 Inflation lag 1 GDP lag 7 ECB rate lag 1
5 ECB rate lag 1 Government yields lag 6 Investment lag 1
6 GDP lag 8 Government yields lag 7 Wages lag 1
7 GDP lag 9 Consumption lag 8 Government debt lag 3
8 Government yields lag 2 Inflation lag 12 Consumption lag 3
9 Government yields lag 3 ECB rate lag 9 Inflation lag 2
10 Government debt lag 2 ECB rate lag 10 Inflation lag 3
11 Consumption lag 3 Inflation lag 4
12 Inflation lag 7 Inflation lag 6
13 Inflation lag 9 Inflation lag 10
14 Inflation lag 12 Inflation lag 11
15 ECB rate lag 2 ECB rate lag 2
16 ECB rate lag 8 ECB rate lag 3
17 ECB rate lag 10 ECB rate lag 4
18 ECB rate lag 12 ECB rate lag 5
19 Employment lag 2 ECB rate lag 7
20 Employment lag 10 ECB rate lag 8
21 Investment lag 4 Wages lag 6
22 Investment lag 9 Wages lag 7
23 Wages lag 4 Wages lag 8
24 Wages lag 5 Wages lag 10
25 Wages lag 6
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As a first step, we performed the SFS technique on the SVM models, separately,
for every kernel tested, using accuracy to select the optimal number of variables. The
selected variables are presented in (4).

Table 5: Results for In-sample, out-of-sample (OOS) and real data (real) results.

Metric DT RF XGBoost Linear RBF Poly

In-sample Acc 98.14% 98.47% 98.67% 99.06% 98.57% 97.13%
OOS Acc 98.05% 98.20% 98.25% 98.55% 98.00% 96.55%
OOS F1 97.09% 97.32% 97.39% 97.83% 97.03% 94.78%
Real Acc 88.57% 85.71% 90.00% 81.43% 85.71% 75.71%
Real F1 88.24% 84.85% 89.55% 80.00% 86.11% 75.36%

As mentioned in the methodology, tree-based methods rank and prioritize variables
based on their importance during the training process; thus, they implicitly perform
feature selection.

The metrics used for the evaluation of the models are the accuracy and the F1 score.
The results are presented in Table (5).

Table 6: Confusion matrices for the real dataset for the best models from each algorithm.

Model Predicted Class 0 Predicted Class 1

SVM Linear

True Class 0 31 5

True Class 1 8 26

SVM RBF

True Class 0 29 7

True Class 1 3 31

SVM Polynomial

True Class 0 27 9

True Class 1 8 26

Decision Tree (DT)

True Class 0 32 4

True Class 1 4 30

Random Forest (RF)

True Class 0 32 4

True Class 1 6 28

XGBoost

True Class 0 33 3

True Class 1 4 30
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XGBoost emerges as the strongest performer in real-world data, achieving the high-
est accuracy (90.00%) and F1-score (89.55%). However, in out-of-sample (OOS) evalu-
ations, SVM linear model exhibits marginally better performance, achieving the highest
OOS accuracy (98.55%) and F1-score (97.83%). These results suggest that XGBoost ex-
cels in handling real-world complexity. This is also evident from the confusion matrices
presented in Table (6) showing that the XGBoost model outperforms the competition
in terms of accuracy for both classes.

In summary, XGBoost demonstrates a clear advantage in real-world classification
settings.

4 Conclusion

This paper has demonstrated that combining DSGE models with machine learning
techniques offers a promising approach to overcoming the challenges of public debt
forecasting, especially in data-constrained contexts. By generating artificial data from
an estimated DSGE model, we successfully trained four machine learning algorithms
that achieved high accuracy and reliability. The results highlight the potential of this
hybrid approach for enhancing macroeconomic forecasting. The results highlight the
potential of this hybrid approach to improve economic forecasting, offering policymakers
novel robust tools to evaluate public debt sustainability and forecast macroeconomic
risks.

Importantly, this study represents a substantial step towards the sequential use of
DSGEmodels and machine learning, setting the stage for future research to explore their
complementary strengths. Future work could extend this framework to more complex
macroeconomic environments, incorporate real-time data, or refine the machine learning
techniques to improve both interpretability and robustness.
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