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Abstract

This paper explores the drivers of individual preferences under uncertainty. We

propose a characterization of the situations of model uncertainty such as the ones

introduced by Ellsberg (1961) by building on the more ambiguous relations of Jewitt

and Mukerji (2017) and Izhakian (2020) and on two newmore complex relations. Re-

considering existing data sets from the recent literature and combining them with

new experimental evidence, we show that uncertainty preferences can be driven

by considerations regarding both the degree of complexity and ambiguity that a

situation entails.
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F-59000 Lille, France; and iRisk Research Center on Risk and Uncertainty, France (i.aydogan@ieseg.fr).

‡CNRS, Univ. Lille, IESEG School of Management, UMR 9221 - LEM - Lille Économie Management,
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§Université de Lorraine, Université de Strasbourg, CNRS, BETA, 54000, Nancy, France
(vincent.theroude@univ-lorraine.fr).

1



1 Introduction

More often than not, the ex-ante information that a decision-maker (DM) has at

her disposal is insufficient to single out a unique probability model (or distribution)

quantifying the uncertainty over the relevant states of the world. Consequently,

most decisions are made under Knightian uncertainty (i.e., situations where proba-

bilities are unknown, see Knight 1921). In such situations, it is often convenient to

decompose uncertainty into distinct layers of analysis, among which risk and model

ambiguity (Hansen, 2014; Marinacci, 2015; Hansen and Marinacci, 2016). The layer

of risk characterizes the uncertainty within a given probability model induced by

a specific data-generating mechanism. As such, it features an aleatory type of un-

certainty typically represented by an objective probability measure. In contrast,

the layer of model ambiguity characterizes the uncertainty across different potential

probability models. It thus features an epistemic type of uncertainty, which can

only be quantified by subjective probabilities.

Ellsberg’s (1961) classical thought experiments are useful to illustrate the dis-

tinction between the layers of risk and model ambiguity. In the two-color problem,

a DM bets on a draw from one of two following urns: (a) a known urn containing 50

red and 50 black balls; and (b) an unknown urn containing 100 balls, each of which

is either red or black. In this setup, each single urn composition gives rise to a spe-

cific probability distribution. Accordingly, the known urn is an instance featuring

only the layer of risk. In contrast, the unknown Ellsberg urn features both the lay-

ers of model ambiguity and risk. Specifically, when the unknown urn contains 100

balls, the DM faces uncertainty both across the 101 possible urn compositions and

within each of those compositions. The widespread finding of ambiguity aversion

highlighted in the Ellsberg paradox indicates behavioural differences towards the

layers of model ambiguity and risk (Aydogan et al., 2023).1

Ellsberg’s examples have been widely used to motivate the development of vari-

ous ambiguity theories (e.g., Segal, 1987; Gilboa and Schmeidler, 1989; Schmeidler,

1989; Tversky and Kahneman, 1992; Ghirardato et al., 2004; Klibanoff et al., 2005;

Maccheroni et al., 2006; Seo, 2009, see also Gilboa and Marinacci, 2013 and Machina

and Siniscalchi, 2014 for recent surveys). Ellsberg urns of different size have also

been used to empirically study ambiguity preferences and calibrate ambiguity atti-

tudes (e.g., Cubitt et al., 2018; Berger and Bosetti, 2020; see Trautmann and Van

De Kuilen, 2015 for a survey). Yet the characteristics of Ellsberg urns of different

1In the two-color Ellsberg experiment, the typical finding in the domain of gain is a preference for
betting on the known urn over the unknown one (i.e., ambiguity aversion). Remark however that this
may not be the case for events with small likelihoods or in the loss domain, where ambiguity-seeking
behaviours are also common (see Trautmann and Van De Kuilen, 2015; Baillon and Bleichrodt, 2014;
Kocher et al., 2018).
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sizes (i.e., with different total number of balls) and their implications in terms of

decisions have largely been overlooked. A notable exception of the recent study of

Filiz-Ozbay et al. (2021). Because the size of an ambiguous urn implicitly spec-

ifies the set of probability models to consider, which, in turn, characterizes the

degrees of ambiguity and complexity of the uncertain situation, it may be critical

in determining the DM’s preferences.

In this paper, we characterize situations of model ambiguity, as in Ellsberg urns,

using two types of relations. (a) The first relation is the more ambiguous relation,

whose alternative definitions have recently been proposed by Jewitt and Mukerji

(2017) and Izhakian (2020). Jewitt and Mukerji’s (2017) definition relies on spe-

cific classes of ambiguity preferences. Accordingly, we here consider two distinct

classes: the α-maxmin expected utility and the smooth ambiguity preferences. For

these families, the degree of ambiguity depends, respectively, on the range and

spread of expected utilities induced by different probability models. Alternatively,

the more ambiguous definition of Izhakian (2020) relies on a measure of expected

volatility, derived from the expected utility with uncertain probabilities framework

of Izhakian (2017). (b) The second type of relation we consider is the more complex

relation. We propose two characterizations that enable us to rank different situ-

ations of model ambiguity according to their degrees of complexity. Whereas our

first characterization associates the degree of complexity with the cardinality of the

set of potential models to consider, our second characterization relies on a partial

ordering of these sets based on their coarseness.

The more ambiguous and more complex relations may be used to derive be-

havioural predictions and analyze preferences over various uncertain situations. To

illustrate their empirical relevance, we examine different data sets in the light of

our characterizations. We start by re-considering the experimental data collected

by Filiz-Ozbay et al. (2021) to study preferences for the size of an ambiguous urn.

To complement this data, we also present the results of a new Ellsberg-type ex-

periment. Overall, the results from these two experiments indicate that: (1) the

preference for risk over Ellsberg ambiguity depends on the underlying set of proba-

bility models considered; (2) there exists a tendency to prefer larger-sized Ellsberg

ambiguous urns over smaller ones, except when the urn is extremely small and con-

tains only one ball; and (3) the heterogeneity observed in size preferences can be

explained by a combination of both attitudes towards the degree of ambiguity and

complexity of the uncertain situation. We then re-analyze the rich data of Chew

et al. (2017) and show that our characterization is not limited to the situations

falling under the classical Ellsberg paradigm but can be used to analyze a wide

range of uncertain situations, in which the DM can postulate a set of distributions
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to quantify the uncertainty she is facing. Our analysis further demonstrates the

important and distinct roles of complexity and ambiguity in explaining preferences

under uncertainty.

Our paper contributes to a recent line of research that has studied the role of

complexity in decision-making under risk (Puri, 2018; Oprea, 2022) and ambiguity

(Armantier and Treich, 2016; Kovář́ık et al., 2016; Aydogan et al., 2023). These

latter studies, for example, argue that ambiguity aversion may not be the only un-

derlying factor behind the patterns typically observed in Ellsberg-type experiments

and that a separate notion of complexity aversion could play an important and

separate role. However, to the best of our knowledge, no formal way to measure

complexity under ambiguous situations has so far been proposed.2 In consequence,

the relative role of complexity and ambiguity in determining preferences under un-

certainty have remained largely unexplored. This paper attempts to fill this gap

in the literature by proposing two tractable notions of complexity and by provid-

ing experimental evidence highlighting the distinct treatment of complexity and

ambiguity.

The remainder of the paper is organized as follows. Section 2 presents the

theoretical framework to analyze uncertain situations using the more ambiguous

and more complex relations, and presents testable predictions. Section 3 reports the

results of several experiments and link them to the behavioural patterns highlighted.

We first focus on experimental data under the classical Ellsberg paradigm before

extending the analysis to situations of partial ambiguity. We further discuss the

implications of our characterization of model ambiguity and conclude in Section 4.

2 Theoretical framework

In this section, we present different approaches that can be used to characterize

uncertain situations. These approaches are either based on the degree of ambiguity

or complexity of the situations. We then derive behavioural predictions, which will

be later tested using different experimental data sets (see Section 3).

2.1 Setup

Let S denote a finite set of states and C a set of consequences. In what follows,

we focus on monetary consequences, so that C is assumed to be an interval of

the real line. An act is a function f : S → C mapping states into consequences.

The collection of all acts is denoted by F . For the sake of exposition, we focus

on a subset of acts that are called bets. Formally, a bet on an event A ⊆S is a

2Under risk, an attempt is made by Puri (2018).
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binary act such that f(s) = x for s ∈ A and f(s) = y for s ̸∈ A, with x > y.

In words, a bet yields the best consequence x if A obtains and y otherwise. In

this paper, we focus on bets on the color of a ball drawn from an urn. All the

situations we consider entail a standard two-color Ellsberg (1961) setting, in which

the color of the balls in the urn can be either red or black. Let R denote a situation

of risk represented by Ellsberg’s original known urn and Ei denote a situation of

model ambiguity represented by Ellsberg’s unknown urn containing a finite number

i ∈ N>0 of balls, each of which can be either red or black. Each bet ak that

we consider results in a binary consequence c ∈ {x, y} with x > y depending on

which state of the world sk ∈ {red, black} is realized in situation k ∈ {R,Ei} for

some i. We consider a DM who has a (reflexive, transitive, complete, monotone,

continuous, and non-trivial) preference relation ≿ over acts. As usual, ∼ denotes

indifference and ≻ strict preference. In consequence, a ≿ b means that the DM

either strictly prefers act a to act b or is indifferent between the two. In line with

Wald (1950), such an Ellsberg-type setting implicitly assumes that the DM knows

that states are generated by a probability model that is presumed to belong to a

(finite) collection M , which is taken as a datum of the decision problem. We use

the following symmetry assumption to ease the derivation of our predictions.

Symmetry: For each act ak, the DM is indifferent to the color on which to bet.

Such a symmetry assumption has been extensively used in the theoretical ambiguity

literature. It has also been widely supported empirically (see e.g., Abdellaoui et al.,

2011; Chew et al., 2017; Epstein and Halevy, 2019; Aydogan et al., 2023).

2.2 Decomposing uncertainty into layers

Following Hansen (2014); Marinacci (2015), and Hansen and Marinacci (2016),

we decompose the uncertainty featured in Ellsberg-type settings into the layers of

risk and model ambiguity.3 A risk is described by a unique, objective probability

measure characterizing the intrinsic randomness that states feature. For example,

it corresponds to a bet on the known two-color urn, which may be expressed as the

binary lottery xpy, yielding x with an objective probability p and y otherwise.

Ambiguous Ellsberg urns, on the contrary, are characterized by a multiplicity

of possible probability distributions. In principle, it is possible to posit a set M of

potential models mp describing the likelihood of the different states. While each

3Note that, in more general situations, a third layer of uncertainty, known as model misspecification
(uncertainty about whether or not the correct model lies among the set of models considered) is also
present (see Aydogan et al., 2023). However, because all the situations in the standard Ellsberg (1961)
setting can be analyzed in terms of risk and model ambiguity only, model misspecification plays no role
in this paper so that it can be ignored.
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model is itself a risk that may be characterized by mp ≡ xpy, the uncertainty about

the correct probability model to consider among the collection M = {mp} can no

longer be quantified objectively, and is therefore said to have an epistemic nature.

For example, if one forms a probability measure over the possible urn compositions,

such a measure would be subjective, reflecting the degree of belief that one has in

each possible model.

In what follows, we present two types of relation that can be used to characterize

the ambiguous bets under this two-layer decomposition. These relations, in turn,

are used to highlight potential patterns of preferences over Ellsberg urns of different

sizes.

2.3 The more ambiguous relation

Two approaches have recently been proposed in the literature to order different

ambiguous situations by their degree of ambiguity. The first approach is proposed

by Jewitt and Mukerji (2017) and the second by Izhakian (2020).

2.3.1 Jewitt and Mukerji (2017)

Jewitt and Mukerji (2017) propose a notion of more ambiguous that allows for

establishing a partial ordering among ambiguous situations within a given class of

preferences. Because their more ambiguous relation (which they call more ambigu-

ous I) is based on the notion of more ambiguity averse than an ambiguity neutral

preference, it is first necessary to adopt a normalization for ambiguity neutrality.

Ambiguity neutrality Following Ghirardato and Marinacci (2002) and Gilboa

and Marinacci (2013), we consider subjective expected utility (SEU) as a benchmark

for ambiguity neutrality. Under SEU, it is assumed that the DM has a subjective

prior probability measure µ : 2M → [0, 1] quantifying the epistemic uncertainty in

the layer of model uncertainty. The symmetry condition implies that the subjective

probability distribution µ over the set of probability models is symmetric. The

two-layer version of SEU that has been axiomatized by Cerreia-Vioglio et al. (2013)

takes the form:

VSEU(ak) =
∑

mp∈M

(∑
s∈S

u (ak(s)) mp(s)
)
µ(mp). (1)

In this expression, u is a von Neumann-Morgernstern utility function, translating

economic consequences (measured in monetary terms) into utility levels. This func-

tion captures risk attitudes. Model ambiguity is addressed using the subjective

prior probability distribution µ that quantifies the DM’s belief about the correct
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urn composition (and thus about p). Under this framework, the layers of risk and

model ambiguity are implicitly treated in the same way (Marinacci, 2015).

In order to compare bets on different urns, we furthermore assume that the DM’s

beliefs are fixed and belong to a single family. As argued in Jewitt and Mukerji

(2017), fixing beliefs is natural and necessary in such a framework.4. On the other

hand, imposing beliefs to belong to the same family ensures internal consistency

in the treatment of urns of different sizes. For example, irrespective of the size of

the urn, the family of uniform prior distributions ensures the same treatment for

all physically possible compositions of a given urn.5 All the bets taking place in

an Ellsberg-type setting are evaluated in the same way under SEU. For instance,

assuming a uniform family of prior µ, we have, after normalizing u(x) = 1 and

u(y) = 0:

VSEU(ak) =
∑
p

p µ(p) =
1

2
∀k ∈ {R,Ei} . (2)

In other words, SEU predicts the following indifference pattern.

Pattern 1 (SEU)

R ∼ Ei ∀i (3)

Following Ghirardato and Marinacci (2002, p. 254), a “more ambiguity averse

than” relation can then be established on the following intuition.

More (less) ambiguity averse than If a DM prefers an unambiguous (resp. am-

biguous) act to an ambiguous (resp. unambiguous) one, a more (resp. less) ambi-

guity averse one will do the same.

Based on this intuition, an ambiguity averse preference can be defined in relation

to ambiguity neutrality as follows.

Definition 1: Ambiguity aversion An ambiguity averse preference is defined as

any preference relation ≿B for which there is a SEU preference ≿A “less ambiguity

averse than ≿B”.

4Remark that, under different beliefs, the same act would induce correspondingly different lotteries
over outcomes under expected utility, potentially leading an act to be more risky under one belief and less
risky under another.

5A uniform prior is consistent with the principle of insufficient reason (Bernoulli, 1713; Laplace, 1814),
the idea of the simplest non-informative prior in Bayesian probability (Bayes, 1763), and the principle
of maximum entropy (Jaynes, 1957). Alternatively, one can assume the family of binomial distributions,
which results from associating the same subjective belief to each individual ball being red or black.
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Next, we consider two families of preferences P relating each ≿ ∈ P to an am-

biguity neutral element of P . These families are the smooth ambiguity family of

Klibanoff, Marinacci, and Mukerji (2005) and the α-maxmin expected utility family

of Ghirardato et al. (2004).

Smooth ambiguity family Under the smooth model proposed by Klibanoff, Mari-

nacci, and Mukerji (2005), model ambiguity is quantified using a single probability

measure. However, contrary to the SEU, this approach allows for a distinct treat-

ment of the layers of risk and model ambiguity. In particular, by letting v and u

represent the DM’s attitudes towards model ambiguity and risk respectively, the

smooth ambiguity criterion emerges as a natural generalization of the SEU criterion

as follows

Vsmooth(ak) =
∑

mp∈M

ϕ
(∑

s∈S

u (ak(s)) mp(s)
)
µ(mp), (4)

where ϕ ≡ v ◦ u−1. Under this framework, ambiguity aversion is characterized

by a concave function ϕ, reflecting a more averse attitude towards the layer of

model ambiguity than that of risk. Ambiguity aversion is thus characterized by an

aversion to mean-preserving spreads in the distribution of expected utilities induced

by different urn compositions.6

Maxmin models The second family of preference we analyze originates in the

work of Gilboa and Schmeidler (1989). Their multiple priors approach relaxes the

assumption of model ambiguity being quantified by a single probability measure µ

and instead allows for the possibility of multiple priors belonging to a set C.7 Under

the α-maxmin expected utility criterion of Ghirardato et al. (2004), both the least

favorable among all the (classical) subjective expected utilities determined by each

prior µ in C and the most favorable one appear respectively with weights α and

1−α. The multiple priors maxmin model of Gilboa and Schmeidler (1989) naturally

emerges as a special case when α = 1, while the classical SEU criterion is recovered

when the set C is singleton. When C consists of all possible prior probability

measures, we recover the criterion due to Hurwicz’ (1951) when α ∈ (0, 1) and to

Wald (1950) when α = 1. In what follows, we focus on Hurwicz (1951) version.

The utility of the bet ak, in that case, is

6Note that Nau (2006) and Ergin and Gul (2009) characterize representations that, at least in special
cases, can take the same representation as (4) and share the same interpretation.

7This set of possible priors C incorporates both the attitude towards ambiguity and an information
component: a smaller set C reflecting, for example, both better information and/or less ambiguity aversion.
Note moreover that in this case, the symmetry condition translates to a symmetric set of priors C. These
priors can, however, be non-symmetric or have non-symmetric support.
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Vα−mxm(ak) = αmin
mp

(∑
s∈S

u (ak(s)) mp(s)
)

+ (1− α)max
mp

(∑
s∈S

u (ak(s)) mp(s)
)
.

(5)

In this expression, α may be interpreted as an index of ambiguity attitude. For

example, α = 0 corresponds to a situation in which the DM is extremely optimistic

and considers only the best possible composition of the urn, while α = 1 corre-

sponds to a DM being extremely pessimistic, considering only the worst possible

composition.

The Jewitt and Mukerji’s (2017) definition of the more ambiguous relation is as

follows.

Definition 2: More ambiguous [Jewitt and Mukerji, 2017]

Let P be a class of preferences over a set A. Assume that a binary relation “more

ambiguity averse” is given, and that each ≿∈ P is related to an ambiguity neutral

element of P . Given two acts f, g ∈ A, f is a more ambiguous act than g if the

following conditions are satisfied:

(i) if ≿ ∈ P is ambiguity neutral, then g ∼ f ;

(ii) for all ≿A, ≿B ∈ P such that ≿A is an ambiguity neutral preference and ≿B is

more (less) ambiguity averse than ≿A, we have g ≿B (≾B) f .

In words, an act f is more ambiguous than an act g if an ambiguity-averse DM

prefers g to f , but an ambiguity-neutral DM is indifferent between the acts.

As made explicit, the more ambiguous relation arises on the back of a specific

more ambiguity averse relation on preferences. Focusing on the two families of

preferences presented above, we now use the more ambiguous definition to highlight

different patterns of preferences when comparing Ellsberg-type urns of different

sizes.

Under the smooth ambiguity family, bets on Ellsberg-type situations can be

strictly ordered in terms of how much they are affected by ambiguity. For example,

under a uniform prior µ, a bet on an Ellsberg urn with i balls in it is always more

ambiguous than on an urn with j balls, as long as i ≤ j (see Berger, 2022). The

implied pattern under ambiguity aversion is summarized as follows:
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Pattern 2 (smooth ambiguity aversion)

Ej ≻ Ei ⇐⇒ R ≻ Ej ∀i, j ∈ N>0 such that i < j. (6)

Unsurprisingly, smooth ambiguity seeking corresponds to the reversed pattern.

Alternatively, under the maxmin family, bets on Ellsberg-type ambiguous urns

are all more ambiguous than R, but cannot be (strictly) ordered according to the

more ambiguous relation, as they share the same worst (p = 0) and best (p = 1)

possible models. Thus, irrespective of the degree of ambiguity aversion α, we have,

under the maxmin models:

Pattern 3 (α-maxmin)

Ei ∼ Ej ∀i, j ∈ N>0 and ∀α ∈ [0, 1] . (7)

2.3.2 Izhakian (2020)

An alternative approach for ordering acts according to their degree of ambiguity

has been recently proposed by Izhakian (2020). Under this approach, the degree of

ambiguity of a bet ak may be quantified by its expected volatility of probabilities

℧2 [ak] ≡
∑
s∈S

Eµ

[
mak

p (s)
]
Varµ

[
mak

p (s)
]
, (8)

where mak
p (s) is the probability of being in state s under model m, and Eµ [.] and

Varµ [.] are the expectation and variance operators, respectively, taken using the

prior probability measure µ. The measure ℧2 is argued to be independent of at-

titudes towards risk and ambiguity, and has the advantage of being easily com-

putable. The underlying decision-making model of this measure is the expected

utility with uncertain probabilities (EUUP) of Izhakian (2017), in which prefer-

ences for ambiguity apply exclusively to probabilities of events and are therefore

outcome independent. Under this framework, a more ambiguous relation is defined

as follows.

Definition 3: More ambiguous [Izhakian, 2020] Given two acts f, g ∈ A under

which the expected probabilities of each consequence c ∈ C are identical, f is a

more ambiguous act than g if and only if

℧2 [f ] ≥ ℧2 [g] .
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In words, an act g whose associated probabilities are on average less volatile than

an act f is deemed less ambiguous. In a framework where ambiguity aversion

takes the form of aversion to mean-preserving spreads in the space of second-order

distributions, such an act is moreover preferred by any ambiguity averse individual.

In an Ellsberg-type setting, it should be clear that the symmetry condition en-

sures that the expected probabilities of the consequences are identical: Eµ

[
mak

p (s)
]
=[∑

mp
mak

p (s)µ
(
mak

p

)]
= 0.5 for all k ∈ {R,Ei} and all s ∈ {red,black}. It is then

easy to show that ℧2, is decreasing in the number of balls present in the urn.

The more ambiguous relation based on Izhakian (2020) thus predicts the following

pattern under ambiguity aversion:

Pattern 4 (ambiguity aversion à la Izhakian, 2020)

Ej ≻ Ei ⇐⇒ R ≻ Ej ∀i, j ∈ N>0 such that i < j. (9)

Interestingly, remark that this pattern coincides with the smooth model pattern

(Pattern 2 above).

2.4 The more complex relation

Alternatively, as it has previously been argued, complexity that an ambiguous

situation entails might play an important role in Ellsberg-type behaviours. In what

follows, we use set theory to characterize a situation by its degree of complexity.

The DM’s information about the likelihood of the different states is a priori modeled

by the set M = {mp such that p ∈ I}, where p is the probability of winning and

I ⊆ [0, 1] is a set-theoretic modeling of information characterizing the chances to

make a correct bet. Assuming that the DM has information about M , her acts

needs to be measurable with respect to M without being allowed to condition the

choices on models that do not belong to M .

In analogy to what is done in the risk literature, where complexity is typically

defined according to the “number of different outcomes of a lottery” (Sonsino et al.,

2002; Moffatt et al., 2015), our first characterization of complexity relates to the

number of different potential models, measured by the cardinality of M .

Definition 4: More complex [cardinality] Given two binary acts f, g ∈ A, f is

a more complex act than g if |Mf | ≥ |Mg|.

Under such an intuitive definition, the degree of complexity of a situation depends

exclusively on the number of different potential models that the DM has to evalu-
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ate.8 Using this relation, we can easily order the different Ellsberg-type situations

according to their degree of complexity. Specifically, the situation R is always the

least complex one as the set M is singleton when the urn is not ambiguous. More-

over, we can observe that there exists a monotonic relationship between the number

of balls in Ei and its associated number of potential models, i.e., |MEi| = i + 1.

Thus, if individuals dislike complexity, i.e., exhibit a preference for simpler situa-

tions over more complex ones, we will observe:

Pattern 5 (complexity aversion 1)

R ≻ Ei ≻ Ej ∀i, j ∈ N>0 such that i < j. (10)

This order is obviously reversed for someone who likes complexity.

The second definition of more complex is based on a partial ordering of the sets

M according to the “coarser than” relation.

Definition 5: More complex [coarser] Assume that a binary relation “coarser

than” is given as follows: M is coarser than M ′ (and M ′ is finer than M) if I ′ ⊆ I.

Then, given two binary acts f, g ∈ A, we say that f is more complex than g if Mf

is coarser than Mg.

In words, this definition means that more complex information regarding the struc-

ture of ambiguity may be naturally modeled by an enlargement of the set of potential

models. Such a more complex relation can, for example, be used to order Ellsberg-

type ambiguous situations Ei and Ej when j is a multiple of i, as IEi ⊂ IEj in

that case, or to compare R and Ei when i is even. Note however that this more

complex relation is not complete and remains, for example, silent when comparing

E2 and E3.9 Under this characterization, a complexity averse DM will exhibit the

following pattern of preferences:

8This notion of complexity coincides with what Einhorn and Hogarth (1985) referred to as the amount
of ambiguity. They write “Moreover, the amount of ambiguity is an increasing function of the number of
distributions that are not ruled out (or made implausible) by one’s knowledge of the situation” (Einhorn
and Hogarth, 1985, p. 435).

9Intuitively, the complexity of a situation may also depend on the probability models contained in M .
In particular, obtaining a clear ranking may not be as straightforward as suggested by the cardinality of
the set M in more general situations (e.g., when considering non-binary acts). The coarseness definition
captures this intuition by remaining silent unless the comparison is straightforward as in enlargement of
set M .
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Pattern 6 (complexity aversion 2){
Ei ≻ Ej ∀i, j ∈ N>0 such that i | j
R ≻ Ei ∀i such that i = 2q where q ∈ N>0.

(11)

3 Experimental evidence

We now use different data sets to test the patterns highlighted in Section 2.

We start by exploring individual choice data from experiments using a standard

Ellsberg-type setting. This includes the data of Filiz-Ozbay et al. (2021) and an

original data set that we collected. We then consider the data of Chew et al. (2017),

whose ‘partial ambiguity’ setting goes beyond the standard Ellsberg framework.

3.1 Experiments using an Ellsberg-type setting

3.1.1 Designs

Filiz-Ozbay et al. (2021, hereafter FGMO) recently present the results of a

study investigating preferences over the size of ambiguous Ellsberg urns in relation

to ambiguity theories and the role of the ratio bias. The experiment considers risky

and ambiguous Ellsberg urns with 2, 10, and 1000 balls. Following our notation,

the ambiguous situations are labelled E2, E10 and E1000, whereas R is used to

denote the risky urns containing 50% black and red balls.10

Subjects made binary choices between bets on different urns presented two by

two. To elicit strict preferences, the same binary choice problem was presented in

two versions. In each version, a correct bet on one of the urns paid $30 whereas the

one on the other urn paid $30.25. Subjects were considered as strictly preferring

one of the two urns if they chose the same bet in the two versions of the problem.

The experiment entails seven binary comparisons in total, including risk vs. risk

(to test for the ratio bias), risk vs. ambiguity (to test for ambiguity attitudes using

urns with different sizes), and ambiguity vs. ambiguity (to test for size preferences

under ambiguity). In what follows, we focus on the choices R vs. E2, R vs. E10

and R vs. E1000, and on the comparisons E2 vs. E10 and E10 vs. E1000 to test

our different patterns.

Our experiment To complement the experiment of FGMO, we present supple-

mentary data involving choices over Ellsberg urns of different sizes. Our design

compares Ellsberg’s original ambiguous urn E100 with two extreme cases. The

10Note that the probability model that the risky urns with 2, 10, and 1000 balls represent is identical
(i.e., m0.5). In consequence, we do not distinguish these urns here and denote them all by R. Note however
that, in FGMO, the comparisons between risky and ambiguous urns are made for urns of equal size.
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first, denoted E1, is the minimum-sized ambiguous urn, which contains only one

ball. This urn entails only two possible compositions: the probability of drawing a

red (or black) ball is either 0% or 100%, with no intermediate probabilities within

these bounds. The second case is E1000. It presents an extremely large number of

potential compositions. Risk, denoted R, is represented by a standard known urn

containing 50 red and 50 black balls. Ambiguity preferences in the context of large

urns is measured by comparing directly R and E100. Testing ambiguity attitudes

with an urn like E1 is however non trivial.11 For this reason, we include an addi-

tional urn, denoted E1∗, which presents the same number of potential models as

E1 but is constructed with 100 balls. Specifically, the 100 balls in E1∗ are either

all black or red. Figure 1 illustrates the different urns used in our experiment.

R E1 E100 E1000 E1*

Figure 1: Urns representing the different situations in our experiment

We used binary comparisons to elicit preferences. Specifically, subjects were

presented the same choice problem between bets on two urns twice. The first choice

aimed at eliciting weak preferences. In that case, a correct bet on one of the urns

paid e15. The same question was then repeated with a slightly increased amount

(e15.10) for a correct bet on the urn that was not selected at the first stage. One urn

was considered as strictly preferred over the other if it was chosen in the two versions

of the problem. In the same vein, we assume indifference when preferences were

reversed in favor of the bet proposing the highest prize.12 Our experiment entails

nine binary comparisons in total. Among these, we focus on two risk vs. ambiguous

comparisons (R vs. E1∗ and R vs. E100) to test for ambiguity preferences and

three comparisons between ambiguous urns (E1 vs. E100, E100 vs. E1000, and

E1 vs. E1000) for size preferences.13 Further details on our experimental stimuli

11Indeed, constructing the corresponding risky urn with only one ball is technically impossible.
12In principle, indifference between two subsequent bets implies that any small ε > 0 prize difference

will lead to a preference for the bet with the highest prize. In the two experiments described, the prize
differences between bets, i.e.; e0.10 in our study and $0.25 in FGMO, is considered as sufficiently small
to distinguish indifference from strict preferences.

13For completeness, the experiment also include the comparison R vs. E1 and R vs. E1000. However,
as the number of balls in the risky and ambiguous urns are different and may lead to a potential confound
of ratio bias (as demonstrated in FGMO), we do not use these comparisons in our main analysis. We
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and procedure are presented in Online Appendix S1. Table 1 summarizes the main

characteristics of the urns used in the two experiments.

Table 1: Characteristics of the uncertain situations in Ellsberg experiments

Uncertain Experiment Set of models Number of models Volatility of probabilitiesa

situation (M) (|M |) (℧2)

R FGMO, ABT
{

50
100

}
1 0.000

E1 ABT
{
0
1 ,

1
1

}
2 0.250

E2 FGMO
{
0
2 ,

1
2 ,

2
2

}
3 0.167

E10 FGMO
{

0
10 ,

1
10 , ...,

9
10 ,

10
10

}
11 0.100

E100 ABT
{

0
100 ,

1
100 , ...,

99
100 ,

100
100

}
101 0.085

E1000 FGMO, ABT
{

0
1000 ,

1
1000 , ...,

999
1000 ,

1000
1000

}
1001 0.084

Notes: In an abuse of notations, we let each model mp ≡ xpy belonging to M be fully characterized by its probability p.
a Assuming a uniform prior probability measure µ. FGMO refers to the experiment of Filiz-Ozbay et al. (2021), ABT
refers to the new experiment we run.

3.1.2 Results

Ambiguity preferences We first test whether ambiguity preferences (i.e., prefer-

ences between risk and ambiguity) depend on the size of the Ellsberg urn considered.

Table 2 presents the comparisons between the risky urn (R) and different Ellsberg

ambiguous urns in the two experiments. As can be observed, the most common

pattern is a preference for risk over ambiguity, although the proportions vary when

using different-sized urns. Specifically, we observe that the preference for risk over

ambiguity under the large-sized urns E1000 and E100 is comparable across the two

studies (two-sample test of proportions, p=0.54). However, whereas FGMO found

an increasing trend in the preference for risk over ambiguity when smaller urns

are considered (McNemar’s Chi2, p=0.02 and p=0.03 for the comparisons between

E1000 and E2, E10, respectively), we find the opposite pattern when the extreme

urn E1∗ is considered (McNemar’s Chi2, p=0.096 for comparison between E1∗ and

E100). Interestingly, the preference for risk when using E1∗ in our experiment is

also significantly lower than that with the slightly larger E2 in FGMO (p<0.001),

which suggests that E1∗ may be perceived differently than the other small-sized

Ellsberg urns. We summarize these observations as follows.

Result 1: The preference for risk over ambiguity depends on the size of the Ellsberg

urn considered. Except in the case of E1∗, the preference for risk over ambiguity

tends to decrease with the size of the ambiguous urn.

used the comparisons E1∗ vs. E1 and E1∗ vs. E100 to test potential framing effects. The results of these
comparisons are reported in Appendix A.
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Table 2: Ambiguity preferences

Part I: The experiment of FGMO (N = 116)

R vs. E2 R vs. E10 R vs. E1000
Prefer risk 86 (74.1%) 85 (73.3%) 74 (63.8%)

Indifferent 18 (15.5%) 19 (16.4%) 28 (24.1%)

Prefer ambiguity 12 (10.3%) 12 (10.3%) 14 (12.1%)

Part II: Our experiment (N = 84)

R vs. E1∗ R vs. E100
Prefer risk 40 (47.6%) 50 (59.5%)

Indifferent 34 (40.5%) 26 (31%)

Prefer ambiguity 10 (11.9%) 8 (9.5%)

Size preferences We now focus on the direct comparisons between different Ells-

berg urns to test size preferences. We use a majority rule to characterize preference

for large- or small-sized urns: a subject is said to exhibit a preference for small-

sized (large-sized) urns if she strictly prefers a smaller (larger) urn in at least two

out of the three possible pairwise comparisons. Analogously, a subject is said to

be indifferent if she exhibits indifference in at least two out of the three pairwise

comparisons.14 Subjects whose preferences do not exhibit any dominant pattern

remain unclassified.

Table 3 summarizes the results in both studies.15 We observe that the majority

of the subjects in FGMO exhibit a preference for larger over smaller-sized ambiguous

urns. In our experiment, preference for larger urns is also the most common pattern,

although a clear majority does not emerge. The proportion of subjects exhibiting

this pattern is also significantly lower than that observed in FGMO (p<0.001).

Finally, in contrast with FGMO, we observe that a non-negligible proportion of

subjects (25%) exhibit a preference for smaller ambiguous urns (this proportion is

higher than that observed in FGMO p<0.001). We summarize this second set of

observations as follows.

Result 2: Larger urns tend to be preferred to smaller ones, but this tendency is

weaker when E1 is contrasted with large-sized urns.

14Note that FGMO studied only two comparisons: E2 vs. E10 and E10 vs. E1000. We thus assume
transitivity to infer the preference between E2 vs. E1000. Note that inferring size preferences based on
our majority rule coincides with looking at weak preferences in FGMO. For example, a preference for
smaller urns is exhibited if E2 ⪰ E10 and E10 ⪰ E1000, with at least one strict preference relation.

15An additional analysis with a restricted sample of subjects exhibiting transitive choices is reported in
Appendix A. Our conclusions do not change in that case.
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Table 3: Size Preferences under Ambiguity

Part I: The experiment of FGMO (N = 116)

E1000 ⪰ E10 ⪰ E2 E1000 ∼ E10 ∼ E2 E1000 ⪯ E10 ⪯ E2 other
73 (62.9%) 23 (19.8%) 5 (4.3%) 15 (12.9%)

Part II: Our experiment (N = 84)

E1000 ⪰ E100 ⪰ E1 E1000 ∼ E100 ∼ E1 E1000 ⪯ E100 ⪯ E1 other
38 (45.2%) 23 (27.4%) 21 (25%) 2 (2.4%)

Explaining preferences over Ellsberg urns We then explore the interaction be-

tween ambiguity and size preferences using the theoretical patterns highlighted in

Section 2.16 We use the more ambiguous and more complex relations to classify

subjects as follows:

1. Preferences for large-sized Ellsberg urns over small-sized urns are related either

to (1.a) smooth ambiguity aversion (or ambiguity aversion à la Izhakian, 2017)

if the subject also exhibits a preference for risk over ambiguity, or to (1.b)

complexity seeking if the subject also prefers ambiguity to risk.

2. Preference for small-sized Ellsberg urns over large-sized urns are related either

to (2.a) complexity aversion if the subject also prefers risk to ambiguity, or to

(2.b) smooth ambiguity seeking if the subject also prefers ambiguity to risk.

3. Indifference towards the size of Ellsberg urns are related either to (3.a) SEU

if subject is also indifferent between risk and ambiguity, or to (3.2) maxmin

preferences, irrespective of the subject’s ambiguity preferences.

Table 4 reports the results of the classification. In FGMO, the majority of sub-

jects are classified as smooth ambiguity averse, while only few subjects behave in

accordance with either SEU or exhibit maxmin ambiguity or complexity attitudes.

In contrast, we observe more heterogeneity in individual types in our experiment.

Specifically, we find that 50% of the subjects behave in accordance with either

smooth or maxmin ambiguity aversion, whereas 33% of the subjects are mainly

driven by complexity attitudes (23.1% complexity aversion and 10.3% complexity

seeking). This proportion of complexity-driven preferences is significantly higher

than that observed in FGMO (p<0.001). We summarize these findings as follows.

16We here focus on overall ambiguity preferences, determined by the two comparisons between risk and
ambiguity. To make the two studies comparable, we infer that a subject exhibits an overall preference for
risk over ambiguity if we observe R ⪰ E1∗ and R ⪰ E100 in our study, and R ⪰ E10 and R ⪰ E1000
in FGMO, with at least one strict preference relation and vice-versa. Additional analyses testing the
robustness of our findings with different combinations are presented in Appendix A.
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Table 4: Classification of Subjects Based on Ambiguity and Size Preferences

Part I: The experiment of FGMO

Ambiguity preferences
Size preferences

Prefer risk Indifferent Prefer ambiguity Total

Prefer larger urns 57 (62%) 4 (4.3%) 5 (5.4%) 66
[Smooth AA] [Complexity Seeking]

Indifferent 10 (10.9%) 10 (10.9%) 1 (1.1%) 21
[Maxmin AA] [SEU] [Maxmin AS]

Prefer smaller urns 4 (4.3%) 0 (0%) 1 (1.1%) 5
[Complexity Averse] [Smooth AS]

Total 71 14 7 92
Notes: Ambiguity preferences are based on E10 and E1000. The relative share of participants is indicated
in brackets.

Part II: Our experiment

Ambiguity preferences
Size preferences

Prefer risk Indifferent Prefer ambiguity Total

Prefer larger urns 23 (29.5%) 3 (3.8%) 8 (10.3%) 34
[Smooth AA] [Complexity Seeking]

Indifferent 16 (20.5%) 5 (6.4%) 2 (2.6%) 23
[Maxmin AA] [SEU] [Maxmin AS]

Prefer smaller urns 18 (23.1%) 2 (2.6%) 1 (1.3%) 21
[Complexity Averse] [Smooth AS]

Total 57 10 11 78
Notes: Ambiguity preferences are based on E1∗ and E100. The relative share of participants is indicated
in brackets.

Result 3: The heterogeneity of preferences measured with Ellsberg urns can be

explained by subject’s attitudes towards both ambiguity and complexity that the sit-

uation entails. Whereas the degree of ambiguity plays a major role in general, the

role of complexity is also found non-negligible when E1 is contrasted with large-sized

urns.

3.1.3 Discussion

Increasing the number of balls in an unknown Ellsberg urn (say from E1 to

E10, E100, and E1000) can simultaneously decrease the degree of ambiguity of the

situation (e.g., under the smooth ambiguity model) and increase its degree of com-

plexity (e.g., based on the notion of more complex [cardinality]). In what precedes,

we demonstrated that these characteristics of Ellsberg urns can be considered as

distinct factors driving preferences over ambiguous urns. Reconsidering the data of

FGMO, we observed that the degree of ambiguity that an Ellsberg-type situation

entails is the main driver of observed choices in that study. In contrast, complexity

emerges as an additional important driver in our experiment. We argue that the

discrepancy between these results may stem from the presence of E1 in our exper-

iment. Such an urn entails, at the same time, the minimum degree of complexity
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and the maximum degree of ambiguity among the urns considered. Whereas sub-

jects tend to be averse to the increasing level of ambiguity when comparing other

Ellsberg urns, they seem to be more affected by the simplicity of E1∗ when it is

contrasted with other urns. The particularity of E1∗ is also present in the data set

of Chew et al. (2017), which we discuss next.

3.2 Beyond the Ellsberg’s paradigm

The implications of our characterization of model ambiguity have so far been

discussed in the context of the standard Ellsberg’s paradigm only. This setup

presents a specific structure of model ambiguity from which the results might be

difficult to extrapolate. In what follows, we investigate the relative role of attitudes

towards ambiguity and complexity in a more general ambiguous setting by analyzing

the rich data of Chew et al. (2017).

3.2.1 Chew et al.’s (2017) design

Chew et al. (2017, henceforth CMZ) proposed an elegant design in a framework

going beyond the standard Ellsberg paradigm. Specifically, they consider three

different (symmetric) forms of partial ambiguity using urns containing 100 red or

black balls, but with constraints on their possible compositions. Specifically, by

letting n ∈ {0, 1, ..., 50}, partial ambiguity may take the form of:

• Interval ambiguity, when the proportion of red (or black) balls is in the set

In = [50−n
100

; 50+n
100

];

• Disjoint ambiguity, when the proportion of red (or black) balls is in the set

Dn = [ 0
100

; n
100

] ∪ [100−n
100

; 100
100

]; and

• Two-point ambiguity, when the proportion of red (or black) balls is in the set

Tn =
{

50−n
100

, 50+n
100

}
.

These situations span the space of possible urn compositions between the risky urn

R, and the standard Ellsberg ambiguous urn E100. For the purpose of our study,

we concentrate on the data from the first supplementary experiment of CMZ, which

considers the cases n ∈ {0, 10, 20, 30, 40, 50}. This experiment offers a rich domain

of model ambiguity situations, with varying degrees of ambiguity and complexity.

A summary of the situations considered and their main characteristics is presented

in Table 5. As can be observed, the degrees of complexity and ambiguity (as

summarized by the number of potential models |M | and the volatility index ℧2,

respectively) are, in turn, positively correlated under In (r = 0.93, p = 0.006),
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negatively correlated under Dn (r = −0.99, p < 0.001), and uncorrelated under Tn

(r = 0.46, p = 0.36).

Table 5: Characteristics of the uncertain situations in Chew et al. (2017)

Uncertain Set of models Number of models Volatility of probabilitiesa

situation (M) (|M |) (℧2)

I0
{

50
100

}
1 0.000

I10
{

40
100 ,

41
100 , ...,

59
100 ,

60
100

}
21 0.004

I20
{

30
100 ,

31
100 , ...,

69
100 ,

70
100

}
41 0.014

I30
{

20
100 ,

21
100 , ...,

79
100 ,

80
100

}
61 0.031

I40
{

10
100 ,

11
100 , ...,

89
100 ,

90
100

}
81 0.055

I50
{

0
100 ,

1
100 , ...,

99
100 ,

100
100

}
101 0.085

D0

{
0

100 ,
100
100

}
2 0.250

D10

{
0

100 , ...,
10
100

}
∪
{

90
100 , ...,

100
100

}
22 0.204

D20

{
0

100 , ...,
20
100

}
∪
{

80
100 , ...,

100
100

}
42 0.164

D30

{
0

100 , ...,
30
100

}
∪
{

70
100 , ...,

100
100

}
62 0.131

D40

{
0

100 , ...,
40
100

}
∪
{

60
100 , ...,

100
100

}
82 0.104

D50

{
0

100 ,
1

100 , ...,
99
100 ,

100
100

}
101 0.085

T0

{
50
100

}
1 0.000

T10

{
40
100 ,

60
100

}
2 0.010

T20

{
30
100 ,

70
100

}
2 0.040

T30

{
20
100 ,

80
100

}
2 0.090

T40

{
10
100 ,

90
100

}
2 0.160

T50

{
0

100 ,
100
100

}
2 0.250

Notes: In an abuse of notations, we let each model mp ≡ xpy belonging to M be fully characterized by its
probability p. a Assuming a uniform prior probability measure µ.

In total, the experiment entails 15 bets on different urns, each of which pays 40

Singapore Dollars (correspond to about USD30). The certainty equivalent (CE) for

each bet is elicited using a choice list containing 10 decision problems. In line with

the analysis in CMZ, we use the switching point of each list as a proxy for the CE

(see Appendices D and E in CMZ for further details).

3.2.2 Original observations of CMZ

The original analysis provided by CMZ (see their Appendix D) highlights three

interesting behavioural patterns in relation to our conjectures. (1) The first pattern

is a decreasing trend in the CEs of Tn when n increases, except a reversal at T50.

This pattern corroborates some of the observations previously made in the context

of standard Ellsberg urns. In particular, because the situations Tn all present only

two potential models, the decreasing trend in the CEs suggests an aversion to
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higher degrees of ambiguity in those situations. In addition, the reversal at T50

demonstrates further the special status of this situation, which presents the same

properties as the situation E1∗ our experiment.17 (2) The second pattern observed

is a decreasing trend in the CEs of Dn when n increases. As an increase in n is

associated with both a higher degree of complexity (|M |) and a lower degree of

ambiguity (℧2), this pattern suggests a dominating effect of complexity aversion

over ambiguity aversion. (3) Finally, the third pattern is a decreasing trend in the

CEs of In as n increases, which can be due to an aversion to both more complex

and/or more ambiguous situations.

3.2.3 Further analysis and results

Building on the original observations of Chew et al. (2017), we further test the

effects of the degrees of ambiguity and complexity that different partial ambiguity

situations entail. Our analysis focuses on explaining the heterogeneity in preferences

that may depend on the two effects. Out of 106 subjects, 16 (15.1%) exhibit the

same CEs in all situations in accordance with SEU. These subjects are neither

affected by the ambiguity nor the complexity of the situation. For the rest of the

subjects, we run a finite mixture regression with two latent class models as follows:

Latent class model 1 (Complexity):

CEi = β0 + β1 ln (|Mi|) + εi, (12)

where |Mi| is the cardinality of the set of models in situation i.

Latent class model 2 (Ambiguity):

CEi = α0 + α1 ln
(
℧2

i

)
+ εi, (13)

where ℧2
i is the volatility index in situation i.

We use natural logarithm of the indexes |Mi| and ℧2
i to account for potential

nonlinearities in the impact of those indexes.18 Negative (positive) coefficients of

those indexes indicate decreasing (increasing) CEs with respect to the degree of

complexity and ambiguity, and thus aversion (seeking) towards ambiguity and/or

complexity.

Table 6 presents the results of the regression. We find that the majority of

non-SEU preferences (69%) is captured by the first latent class model, indicating

17Remark that T50 and E1∗ present exactly the same sets of potential models. These situations may be
seen as presenting a minimal degree of complexity because their set M consists of degenerate distributions
only. Note that, in general, situations Tn are ranked as being equally complex when using our definition
of more complex [cardinality], but cannot be ordered by our definition of more complex [coarser].

18Note that this specification outperforms the specification without log-transformation based on both
AIC and BIC scores.
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Table 6: Finite mixture regression of switching points in Chew et al. 2017

Class 1 Class 2
(Complexity) (Ambiguity)

Degree of complexity (ln(℧2)) -0.245∗∗∗

Degree of ambiguity (ln(|M |)) -0.155∗

Constant 5.831∗∗∗ 1.012∗∗∗

Class prevalence 69% 31%
Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

a prevailing role of complexity aversion. Turning to the second latent class model,

we also find an aversion to increasing the degree of ambiguity. Overall, the main

driver of preferences in the experiment of Chew et al. (2017) is thus an aversion

towards the degree of complexity, whose affect is found to be more frequent and

more pronounced than aversion towards the degree of ambiguity.

4 Concluding remarks

This paper proposes a characterization of ambiguous situations in terms of their

degrees of ambiguity and complexity. To do so, we combine the notions of “more

ambiguous” proposed, respectively, by Jewitt and Mukerji (2017) and Izhakian

(2020) with two new definitions of “more complex”. We argue that such a char-

acterization can usefully uncover the observed heterogeneity in preferences under

ambiguity. We derived testable predictions, which we confronted to different ex-

perimental data sets. We showed that the experiment of Filiz-Ozbay et al. (2021)

using Ellsberg urns of different sizes suggests a predominant role of the degree of

ambiguity. On the contrary, we found more evidence for the effect of complexity in

our new experiment and a dominating role played by complexity in the experiment

of Chew et al. (2017).

The results presented in this paper may have important implications for both

descriptive and prescriptive research on ambiguity. First, although the mainstream

descriptive research on ambiguity has clarified that ambiguity attitudes are es-

sentially source dependent (Abdellaoui et al., 2011, see also Wakker, 2010 for a

review), the contextual factors that determine source-dependent preferences have

so far been understudied. Our characterization of ambiguous situations could thus

enable tractable analyses of source preferences, which can ultimately help to bet-

ter understand and predict them in different contexts. Second, understanding the

underlying factors that determine ambiguity preferences is also crucial for the nor-

mative validity of ambiguity theories, which has been a debate in the literature

(Gilboa et al., 2008, 2009, 2012). Whereas the families of ambiguity preferences
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that we consider in this paper (i.e., the smooth and maxim families) have mainly

normative underpinnings, preferences due to complexity may potentially relate to

cognitive limitations of decision-makers, and therefore leave little room for norma-

tive interpretations. Future studies on complexity and ambiguity with subject pools

possessing different levels of cognitive abilities can clarify to what extend ambiguity

aversion prevails as an inability to deal with complexity or is more in line with a

specific treatment of probabilities that are not objectively given.
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Appendix

A Further results

A.1 Ambiguity and size preferences in the new experiment

Ambiguity preferences Table A.1 presents the results of the comparisons R vs.

E1 and R vs. E1000 in our experiment. As can be observed the preference for

risk when measured using E1 is slightly lower than what was found using E1∗

(p=0.07), thus reinforcing Result 1. Interestingly, remark that the preference for

risk measured with E1000 is less pronounced in our experiment than in FGMO

(p=0.051). This difference can be due to a ratio bias, which may have increased

the attractiveness of E1000 compared to R (which was constructed with 100 balls

in our experiment).

Table A.1: Ambiguity preferences using E1 and E1000 in the new experiment
(N = 84)

R vs. E1 R vs. E1000
Prefer risk 32 (38.1%) 42 (50%)

Indifferent 42 (50%) 26 (31%)

Prefer ambiguity 10 (11.9%) 16 (19%)

Size preferences Table A.2 presents the three pairwise comparisons between E1,

E100, and E1000 in our experiment. We observe that, for each of the comparisons,

the majority of subjects is not indifferent to the size of the urns considered. Focusing

on strict preferences, a preference for larger urns is more common than for smaller

urns in the comparisons E1 vs. E1000 and E100 vs. E1000 (one-sample test of

proportion, p=0.02 and p=0.04 respectively). The preference for the small urn in

the comparison E1 vs. E100, although more common than the preference for the

large urn, is not significant (one-sample test of proportion, p=0.385).

Table A.2: Size preferences in the new experiment (N = 84)

E1 vs. E100 E100 vs. E1000 E1 vs. E1000
Prefer larger urn 29 (34.5%) 30 (35.7%) 39 (46.4%)

Indifferent 19 (22.6%) 38 (45.2%) 26 (31%)

Prefer smaller urn 36 (42.9%) 16 (19%) 19 (22.6%)

Table A.3 presents the results of the comparisons of E1∗ with E1 and E100, re-
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spectively. Recall that E1∗ has the same set of potential models as E1, but contains

a different number of balls (i.e., 100 balls in E1∗ and 1 ball in E1). On the contrary,

E1∗ has the same number of balls as E100, but is characterized by a different set of

potential models. We observe that a large majority of subjects (70%) is indifferent

between E1∗ and E1. In contrast, a majority of subjects exhibits a strict preference

in the comparison E1∗ vs. E100. Nevertheless, as in the comparison E1 vs. E100,

there is no significant preference for the large-sized urn (p=0.90).

Table A.3: Preferences for E1∗ in the new experiment (N = 84)

E1∗ vs. E1 E1∗ vs. E100
Prefer E1∗ 10 (11.9%) 34 (40.5%)

Indifferent 59 (70.2%) 17 (20.2%)

Prefer standard Ellsberg urn 15 (17.9%) 33 (39.3%)

A.2 Robustness results

Table A.4 replicates the classification analysis provided in the body of the paper

using different measures of ambiguity preferences. We use the urns E2 and E10 in

FGMO and E1 and E100 in our experiment. The results are similar to the ones

presented in our main analysis. Specifically, smooth ambiguity aversion is the most

common pattern in both experiments although its proportion is significantly lower

in our experiment (p<0.001). The proportion of complexity-driven preferences is

also more prevalent in our experiment than in FGMO (p<0.001).
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Table A.4: Alternative classification of Subjects Based on Ambiguity and
Size Preferences

Part I: The experiment of FGMO, based on E2 and E10

Ambiguity preferences
Size preferences

Prefer risk Indifferent Prefer ambiguity Total

Prefer larger urns 63 (66.3%) 1 (1.1%) 6 (6.3%) 70
[Smooth AA] [Complexity Seeking]

Indifferent 9 (9.5%) 10 (10.5%) 2 (2.1%) 21
[Maxmin AA] [SEU] [Maxmin AS]

Prefer smaller urns 3 (3.2%) 0 (0%) 1 (1.1%) 4
[Complexity Averse] [Smooth AS]

Total 75 11 9 95
Notes: Ambiguity preferences are based on E2 and E10. Classification categories reported in square
brackets.

Part II: New experiment, based on E1 and E100

Ambiguity preferences
Size preferences

Prefer risk Indifferent Prefer ambiguity Total

Prefer larger urns 21 (28.4%) 5 (6.8%) 7 (9.5%) 33
[Smooth AA] [Complexity Seeking]

Indifferent 17 (23%) 5 (6.8%) 0 (0%) 22
[Maxmin AA] [SEU] [Maxmin AS]

Prefer smaller urns 17 (23%) 2 (2.7%) 0 (0%) 19
[Complexity Averse] [Smooth AS]

Total 55 12 7 74
Notes: Ambiguity preferences are based on E1 and E100. Classification categories reported in square
brackets.
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A.3 Analysis with transitive subjects

We here focus on transitive preferences among the three Ellsberg urns E1, E100,

E1000 in our experiment. Table A.5 reports the results on size preferences for this

restricted sample of subjects. A preference for larger urns remains the most common

pattern. The proportion of preferences for small-sized urns is now 24%.

Table A.5: Size Preferences, New Experiment (restricted sample of transi-
tive preferences, N = 62)

E1000 ⪰ E100 ⪰ E1 E1000 ∼ E100 ∼ E1 E1000 ⪯ E100 ⪯ E1 other
28 (45.2%) 8 (12.9%) 15 (24.2%) 11 (17.7%)

Table A.6 reports the results of the interaction between ambiguity and size

preferences with the restricted sample of transitive subjects. We find that 40% of

the subjects are classified as smooth ambiguity averse (which is closer but still less

than what is observed in FGMO, p<0.01). Complexity-driven preferences amounts

to a substantial 36%.

Table A.6: Classification of Subjects Based on Ambiguity and Size Prefer-
ences (restricted sample of transitive preferences)

Ambiguity preferences
Size preferences

Prefer risk Indifferent Prefer ambiguity Total

Prefer larger urns 20 (40%) 2 (4%) 5 (10%) 27
[Smooth AA] [Complexity Seeking]

Indifferent 4 (8%) 3 (6%) 1 (2%) 8
[Maxmin AA] [SEU] [Maxmin AS]

Prefer smaller urns 13 (26%) 2 (4%) 0 (0%) 15
[Complexity Averse] [Smooth AS]

Total 37 7 6 50
Notes: Ambiguity preferences are based on E1∗ and E100. Classification categories reported in square
brackets.
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Online Appendix

S1 Experimental Design

We use a within-subject design to study individual choices under risk and Ells-

berg ambiguity. The experiment entails betting on the color of a ball drawn from

an urn in different situations. All situations entail a standard two-color Ellsberg

(1961) setting. The experiment uses real monetary incentives.

S1.1 The choice situations

Subjects in our experiment are confronted with five different uncertain situa-

tions. These situations are represented by urns containing balls that can be either

red or black. They are characterised as follows:

1. Risk (denoted R): the urn contains 50 red and 50 black balls;

2. Ellsberg’s ambiguity with 1 ball (denoted E1): the urn contains 1 ball, which

can be either red or black;

3. Ellsberg’s ambiguity with 100 balls (denoted E100): the urn contains 100

balls, each of which can either be red or black;

4. Ellsberg’s ambiguity with 1000 balls (denoted E1000): the urn contains 1000

balls, each of which can be either red or black.

5. Degenerate ambiguity (denoted E1∗): the urn contains 100 balls, but they are

either all red or all black.

Urns R and E100 are the same as the ones described by Ellsberg (1961) in his

original two-color problem. Urns E1 and E1000 are similar, in spirit, to E100

but contain, respectively, less and more balls in them. Finally, E1∗ is technically

identical to E1 (i.e., they share the same set of potential probability models) but

contain a different total number of balls.19

Subjects were asked to choose between bets on the color of a ball drawn from

these urns. For each of the five uncertain situations, subjects were given the choice

of the color on which to bet and were offered e15 for a correct bet and e0 otherwise.

We elicited direct (strict) preferences between betting on one urn or the other using

a random lottery pairs (RLP) design (see Harrison and Rutström, 2008).20

19In E1 and E1∗, the layer of risk is degenerate as the probabilities in each model are either 0 or 1.
In spirit, E1∗ also corresponds to one of the situations used in Chew et al. (2017) to study the notion of
partial ambiguity, which implicitly relies on the partial information available to pin down the potential
probability models describing the phenomenon of interest (see also Berger, 2022). Specifically, in E1∗, the
information available is that all the balls have the same color.

20In the context of another study, we also elicited the certainty equivalents (CEs) of each bet using
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S1.2 Procedure

The experiment was run on computers at the Bocconi Experimental Laboratory

for Social Sciences. In total, 84 university students participated to the experiment.

Four sessions were organized with 19 to 24 subjects per session. Subjects were

paid in cash at the end of the experiment. Average earnings were approximately

e14.5, including a e5 participation fee. Each session lasted approximately one

hour, including instructions and payment. The experiment started with the experi-

mental instructions, examples of the stimuli, and related comprehension questions.

Complete instructions are available in online Appendix S2.

Stimuli During the experiment, subjects faced five different uncertain situations,

represented by the urns described in Section S1.1. All the urns were constructed

before each session by an assistant, who was not present in the lab during the

experiment. Thus, no one in the room (including the experimenters) had more

information about the content of the urns than that described in the experimental

instructions. The subjects were told that they would have the opportunity to look at

the urns at the end of the experiment to verify the truthfulness of the instructions.

We presented the different uncertain situations two-by-two in a randomized se-

quence and asked subjects on which urn they prefer to bet . After the selection of

one of the two urns, the same question was asked once more, but this time with a

slightly increased amount (e15.10) for a correct bet on the urn that was not selected

at the first stage. Subjects were then considered as strictly preferring one of the two

urns if they chose it in both stages and as indifferent if they reversed their choice

in the second stage.21 In total, nine of the ten possible binary choices over the five

urns were presented to the subjects, resulting in eighteen choice questions.22 At the

end of the experiment (and before the payment stage), subjects answered a short

survey with a few socio-economic questions.

Payment and incentives Each subject received a e5 flat payment for taking part

to the experiment. In addition, they were paid depending on one of the decisions

they made in the experiment. A prior random incentive system was implemented to

determine the choice question that was actually used for determining the subjects’

a price-list design. The order of the RLP and CE elicitations was randomized and no order effect was
detected. For details, see Online Appendix S4.

21Note that if a subject was indeed indifferent between the two bets in the first place, any ε > 0 prize
increase would lead to a reversal in the second stage. Although we cannot rule out the possibility of a
strict, but low, preference for the urn initially chosen, which is then reversed by the additional prize in the
second stage, we believe that the additional e0.10 prize is sufficiently small to distinguish strict preference
from indifference.

22The binary choice between E1∗ and E1000 was not presented.

2



payment.23 After all subjects answered all the questions, a ball was randomly

drawn from the urn corresponding to the relevant choice question and each subject’s

decision in that question was implemented. Each subject was then paid the amount

corresponding to her decision. See online Appendix S2 for more details.

S2 Experimental Instructions

Welcome page and examples

23Under this random incentive system, the randomization is performed before subjects begin answering
questions (Johnson et al., 2020). Such a prior incentive system aims to enhance isolation to minimize
potential biases, thereby preventing subjects from hedging over the randomization between problems (see
Baillon et al., 2022; for a demonstration of its incentive compatibility in Ellsberg-type experiments, and
Epstein and Halevy, 2019; for a recent application).
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Before starting the incentivized part of the experiment, we clarify how subjects

were going to be paid.
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Every subject made decisions in 14 different scenarios in total (9 scenarios tak-

ing the form of random lottery pairs and 5 scenarios taking the form of certainty

equivalents). The order in which the type of scenarios appears is randomized.

Random lottery pairs

Each of the 9 scenarios presents two choice questions, presented in a sequence.

The order in which the scenario appear is randomized.

Question 1
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Question 2 If Urn A is chosen first:

Question 2 If Urn B is chosen first:
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Certainty equivalents

Each of the 5 certainty equivalent scenarios is presented on two pages. Subjects

first choose their winning color and then indicate their decisions in the choice list.

The order in which the scenarios appear is randomized.

Page 1

21



Page 2
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S3 Order Effects

In Table S3.1, we report the results of the Fisher exact tests comparing the

choices made when the CE elicitation part appeared first and when the binary

choices appeared first. None of the tests is significant at 5%, suggesting that choices

made are not associated with the order of the task appearance.

Table S3.1: Attitudes measured with Certainty Equivalents

Pairwise
R R R R E1 E1 E100 E1 E100

comparisons
vs. vs. vs. vs. vs. vs. vs. vs. vs.
E1 E100 E1000 E1∗ E100 E1000 E1000 E1∗ E1∗

p-value 0.413 0.152 0.461 0.296 0.443 0.070 0.109 0.942 0.276
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S4 Certainty Equivalents data

A second set of questions enables us to elicit the certainty equivalents (CEs) of

the five uncertain situations. We used the following price-list design: for each un-

certain situation, subjects made 16 binary choices between the prospect of receiving

e15 if their bet was correct and receiving a sure amount of money ranging from

e15 to e0 (with a decrease of e1 between each choice). Subjects were expected to

choose the sure amount when it was higher than the CE of the uncertain situation

and to switch to preferring the bet as the sure amount decreased to the point that

is lower than the CE for the situation. We then use the switch point to compute the

CE: it corresponds to the midpoint of the indifference interval implied by the switch

point in that situation. Switching in the middle of the list implies a CE equal to

the expected payoff (e7.5). The order of the uncertain situations R, D100, E100,

E1, and E1000 was randomized.

Table ?? presents ambiguity attitudes measured with the CEs. Comparing the

results with those obtained in Table ?? , we note that the share of ambiguity neu-

tral in Part I (two sample proportion tests, ambiguity attitudes: measured with

$E1$, $p$=0.391; measured with $E100$, $p$=0.015; measured with $E1000$,
$p$=0.044) and indifferent in Part II is higher (two sample proportion tests, size

preferences: between $E1$ and $E100$, $p$<0.001; between $E1$ and $E1000$,
$p$=0.030; between $E100$ and $E1000$, $p$=0.015). It can be explained by the

lack of precision of CE (that goes in step of e1) and does not allow to detect weak

preferences.

Table S4.1: Ambiguity Attitudes measured with Certainty Equivalents

Size of the ambiguous urn

E1 E100 E1000
(N = 83) (N = 83) (N = 83)

Ambiguity Aversion
26 35 33

(31.3%) (42.2%) (41.25%)

Ambiguity Neutrality
47 41 37

(56.6%) (49.4%) (46.25%)

Ambiguity Seeking
10 7 10

(12.1%) (8.4%) (12.5%)
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Table S4.2: Size Preferences with Certainty Equivalents

Size of the urns

E1 vs. E100 E1 vs. E1000 E100 vs. E1000
(N = 83) (N = 80) (N = 81)

Prefer Larger Urn
19 21 18

(22.9%) (26.5%) (22.2%)

Indifferent
41 38 52

(49.4%) (47.5%) (64.2%)

Prefer Smaller Urn
23 21 11

(27.7%) (26.5%) (13.6%)
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