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Abstract

This paper contributes to the literature around the Kaldor-Verdoorn’s law and analyses

the impact of robotisation on the channel through which the law shapes labour-productivity

growth. We start with a simple evolutionary interpretation of the law that combines Kaldo-

rian and Post-Keynesian arguments with the neo-Schumpeterian theory of innovation and

technological change. Then we apply a GMM estimator to a panel of 17 industries in 25

OECD capitalist economies for the period 1990-2018. After elaborating on the general ev-

idence of the Kaldor-Verdoorn’s law in the sample, we investigate the effect of increasing

robotisation. The estimates suggest that for industries with a higher-than-average robot

density, the increasing adoption of robots weakens, at least, the meso-economic channel

that relates productivity growth to mechanisation. Yet, the higher degree of robotisation

strengthens the mechanism that links labour productivity growth at the industrial level to

the macro-level dynamic increasing returns to scale that emerge from a general expansion

of economic activities through the many interactions between sectors. Such results are in

agreement with the empirical literature that suggests different impacts from robotisation on

the basis of the level of economic activity considered.
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1 Introduction

The Kaldor-Verdoorn’s law is a cornerstone of Post-Keynesian economics (Lavoie 2022). In-

troduced by Verdoorn (1949) and re-evoked by Kaldor (1966), this law considers a dynamic

relationship between the growth rate of output and improvements in labour-productivity

growth, with a direction of causality from the former to the latter, without excluding pos-

sible feedback mechanisms. Ever since Kaldor’s reappraisal, this relationship has been

investigated by several generations of economists from both a theoretical and empirical

perspective (McCombie, Pugno and Soro 2002). Regardless of the many ways scholars have

specified it, the law can be thought of as a stylized fact generally confirmed for developed as

well as developing countries, with respect to some stage of their development at least. Yet,

the structural change from a manufacturing to service economy led scholars to reconsider

its overall validity. The lack of economies of scale and the different division of labour in the

service sector are believed as key mechanisms behind the detachment between increases

of demand and gains in productivity experienced since the Eighties (Boyer and Petit 1981,

1988, Petit 1988, 1999, Petit and Soete 2001).

At the same time, economies have experienced a new wave of innovations that radically

changed production methods since the Nineties. The pool of technologies around the

Fourth Industrial Revolution have a major impact on businesses. From a supply-side per-

spective, new technologies disrupt global value chains and lead to a profound revision

of the organization of production and the means to satisfy consumer needs. Moreover,

the very process of innovative search benefits from world-wide digital platforms and this

feature may increase the speed with which value is created and new products enter the

market. By the same token, new digital technologies affect the customers on the demand

side, through their engagement, their needs for transparency or simply by enhancing the

range of needs to be met (Schwab 2016). Nevertheless, last developments in robotics and

AI-based technologies made people worried about future prospects of widespread techno-

logical unemployment, since the extent and the ways digital technologies in general, and

robots and AI in particular, could impact are broader than previous waves of innovations

(Domini, Grazzi, Moschella and Treibich 2021).1 The empirical evidence on this latter issue

is rather inconclusive because we are still in the initial phase of implementation of such

potentially breakthrough technologies (Acemoglu, Autor, Hazell and Restrepo 2020, Ace-

moglu, Lelarge and Restrepo 2020, Domini et al. 2021, Graetz and Michaels 2018, Klenert,

Fernandez-Macias and Antón 2020).

In this paper we want to investigate if, and in which way, the increasing robotisation ex-

1For details, see the European Commission Special Eurobarometer 460 at https://digital-strategy.ec.

europa.eu/en/news/attitudes-towards-impact-digitisation-and-automation-daily-life.

https://digital-strategy.ec.europa.eu/en/news/attitudes-towards-impact-digitisation-and-automation-daily-life
https://digital-strategy.ec.europa.eu/en/news/attitudes-towards-impact-digitisation-and-automation-daily-life
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perienced by many industries (Fig. 1) has an impact on the supposed channels through

which the Kaldor-Verdoorn’s law shapes the dynamics of labour-productivity growth. We

first offer a simple and evolutionary view of the law inspired by Llerena and Lorentz

(2004), Lorentz and Llerena (2004) that combines both the traditional Kaldorian and Post-

Keynesian arguments with the evolutionary literature on innovation and technical change

à la Nelson and Winter (1982). We then collect data on labour productivity, capital-labour

ratio, GDP, and robot adoption for a panel of 17 industries in 25 OECD countries for the

period 1990-2018. After checking for the presence of mechanisms à la Kaldor-Verdoorn in

the dynamics of productivity, we analyse through a GMM approach in which way the in-

creasing robotisation affects the channels behind the Kaldor-Verdoorn’s law. The results are

contrasting and somewhat puzzling. Industries whose robot density is lower than cross-

country sector average still benefit from a cumulative-causation process in their productiv-

ity dynamics. By contrast, industries with a robot density higher than the corresponding

cross-country sector average suffer from a weakening of the meso-economic channel that

links productivity achievements to the growth in mechanisation (i.e., the capital-to-labour

ratio). At the same time, their higher robot density sustains the macro-level channel that

associates changes in labour productivity with GDP growth. The evidence of technological

unemployment depends on the specification of the underlying econometric model. This

overall evidence is in agreement with the empirical literature that finds a positive relation-

ship between robots adoption and employment at firm and industry level (Domini et al.

2021, Graetz and Michaels 2018, Klenert et al. 2020) but with a macroeconomic impact of un-

certain magnitude and direction (Acemoglu, Autor, Hazell and Restrepo 2020, Acemoglu,

Lelarge and Restrepo 2020, Bordot 2022).

The paper is organised as follows: Section II recalls the Kaldorian thought and relates our

work to the literature; Section III offers an evolutionary interpretation of Kaldorian insights

and presents econometric estimates; Section IV concludes.

2 Relation with the literature

2.1 Theoretical premises

The dissatisfaction raised by the explanation of the growth process in terms of a neoclassi-

cal aggregate production function (Solow 1956, 1957, Swan 1956) prompted Kaldor to enter

the debate with an alternative approach based on three pillars: firstly, economic growth is a

historical process with some regularities; secondly, technical and structural changes in pro-
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duction should be thought of as endogenous processes; thirdly, growth is demand driven2.

In a first series of papers, Kaldor formalized these ideas by means of a technical progress func-

tion (Kaldor 1957, 1961, Kaldor and Mirrlees 1962). Stated in its simplest form, the technical

progress function is a dynamic relationship that relates the growth in productivity, ¤𝑎𝑡 , to

the growth of the capital-labour ratio, ¤𝑘𝑡 :

¤𝑎𝑡 = 𝑓
( ¤𝑘𝑡 ) 𝑓 ′𝑘 > 0; 𝑓 ′′𝑘 < 0 (1)

in which 𝑓 ′
𝑘

and 𝑓 ′′
𝑘

are first and second derivative with respect to 𝑘 . In the steady state,

the growth of labour productivity coincides with the growth in the capital-labour ratio, im-

plying a constant capital-output ratio. The model helps consider the capitalist economies as

a two-stage growth process, in which the first is characterised by the stagnant growth path

of early capitalism whereas the second envisages the self-sustained growth pattern of ma-

ture economies. Yet, this representation of endogenous productivity gains relies on another

black-box to be open, overlooking the very mechanisms through which mechanisation gen-

erates productivity gains.

Well aware of this issue, Kaldor tried to fine-tune his ideas in a paper with Mirrlees

(Kaldor and Mirrlees 1962). They propose a framework in which labour-productivity growth

is determined by the productivity embodied in the newly installed equipment and so by the

growth rate of gross investments:

¤𝑎𝑡 = 𝑓
(¤𝑖𝑡 ) (2)

in which ¤𝑖𝑡 is the ratio between investments in the new capital vintage and labour. How-

ever, neither this formulation was reliable since the steady-state constancy of the investment

share in output leads back to the previous version of the technical progress function.

Unsatisfied by these outcomes, Kaldor undertook a revision of his approach to economic

growth that led to the content of the Inaugural Lecture at Cambridge in 1966 on the causes

of UK slowdown in growth (Kaldor 1966). This Lecture represents a crucial step in his anal-

ysis since Kaldor expounded three laws of capitalist development based on four key con-

cepts: dynamics increasing returns to scale in manufacturing, demand-led growth, inter-

sectoral structural linkages, and import-export determinants of economic growth. Among

the three laws, we are interested in the Kaldorian interpretation of Verdoorn’s law, accord-

ing to which ”a faster growth in output increases productivity growth as a result of increas-

ing returns, broadly defined to also include induced technical progress” (McCombie and

Spreafico 2015, p. 1122):

2See Lorentz (2016) for a discussion on the evolution of Kaldor’s writings on technological change and economic
growth.
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¤𝑎𝑡 = 𝜆0𝑡 + 𝜆1 · ¤𝑦𝑡 (3)

in which 𝜆0𝑡 is the exogenous technical progress, ¤𝑦𝑡 is output growth and 𝜆1 the Ver-

doorn’s coefficient. When re-interpreting this law, Kaldor was heavily inspired by ? and

Young (1928), and considered the macro-level relationship between output and productiv-

ity as dynamic rather than static, ”primarily because technological progress enters to it, and

is not just a reflection of the economies of large scale production” (Kaldor 1966). The struc-

ture of production and aggregate demand are viewed as in symbiosis in which efficiency

gains from increasing returns to scale affect and respond to the increase of production in

terms of consumption, investments, and intermediate demand for inputs fuelled by income

growth. All these elements represent the core of his cumulative causation mechanisms, ac-

cording to which ”economic growth is a self-reinforcing phenomenon generating the neces-

sary resources to self-sustain in the long run” (Lorentz, Ciarli, Savona and Valente 2022, p.

7). Then, increasing returns act and manifest as a general expansion of economic activities

through the interactions between sectors (Thirlwall 2015). An increased demand stimulates

firms investments and production, engendering productivity growth. It is important to no-

tice, nonetheless, that such cumulative causation mechanism does not imply that economic

growth perpetuates itself, for on the growth path there exist strong inter-dependencies be-

tween the ways productivity gains are achieved and the ways they are used (Petit 1999).

2.2 Empirical estimates

Kaldor’s arguments have risen an amount of empirical research that counts dozens of

works, from the preliminary inspections by Verdoorn (1949), Kaldor (1966) and Vaciago

(1975) to current specifications, e.g., Antenucci, Deleidi and Paternesi Meloni (2020), Deleidi,

Fontanari and Gahn (2022), Deleidi, Paternesi Meloni, Salvati and Tosi (2021).3 More pre-

cisely, economists concerned with development issues focused their empirical investiga-

tions on the influence of structural change in determining aggregate productivity and out-

put growth in both developing and mature countries (Bah 2011), whether Kaldorian prin-

ciples can be detected in countries at different stages of development (Dasgupta and Singh

2005, Felipe, Leon-Ledesma, Lanzafame and Estrada 2007, McMillan and Rodrik 2011, Page

2012, Wells and Thirlwall 2003), or which one between manufacturing and services triggers

productivity growth the most (Di Meglio et al. 2018, Felipe and Mehta 2016, Tregenna 2011).

In addition to this, recent works can be distinguished according to the several economet-

ric methodologies applied. Bianchi (2002), Castiglione (2011), Deleidi and Paternesi Meloni

3Empirical estimations of the Kaldor-Verdoorn’s law and the technical progress function became quite sophisti-
cated as time went by. For an overall survey on both the theoretical foundations and empirical findings, we
suggest Llerena and Lorentz (2004), McCombie et al. (2002), and Di Meglio, Gallego, Maroto and Savona (2018).
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(2019), Deleidi, Paternesi Meloni and Stirati (2020), Harris and Lau (1998), Millemaci and

Ofria (2014), Ofria (2009) implement time-series econometrics often based on the cointe-

gration approach. Panel-data econometrics is instead crucial in the analysis of Angeriz,

McCombie and Roberts (2008), Knell (2004), León-Ledesma (1999, 2000), Magacho and Mc-

Combie (2017, 2018), Tridico and Pariboni (2018). Conversely, Antenucci et al. (2020), Deleidi

et al. (2022, 2021) implement panel vector autoregressions techniques to estimate both the

Kaldorian technical progress function and the Verdoorn’s law at country and regional level.

Albeit the great heterogeneity in the approaches, most works show that Kaldorian laws

generally hold for manufacturing and business service sectors, confirming Verdoorn’s law

as a stylised fact for most countries along their development stages, with some notable ex-

ception pointing to inherent instabilities behind the law (Boyer and Petit 1981).4

3 Any effect from robotisation and AI?

3.1 An evolutionary intepretation of the law

The cumulative-causation framework in which Kaldor-Verdoorn’s law is usually integrated

presents a circular vision of the growth process that relies on quite a schematic representa-

tion of the mechanisms that drive technical change. The latter indeed seems to occur in a

deterministic and automatic way without a proper conception of the process behind (Ller-

ena and Lorentz 2004). This gap can be filled by the evolutionary literature on technical

change à la Nelson and Winter (1982), in which the emphasis is on the emergence and dif-

fusion of technologies within the economic systems.5 The intriguing union between Kaldo-

rian theories and evolutionary economics of innovation and technical change is far more

evident, though sometimes tacit, when we turn to modelling such thought. For instance,

the way with which technical change occurs in evolutionary models through firms R&D ac-

tivities resembles a stochastic version of Kaldor’s technical progress function. Additionally,

analysing the cumulative-causation process in which growth is exports-led and exports are

driven by competitiveness and increasing returns reveals a mechanism very much alike the

selection process based on a replicator dynamics.6 Such rationales suggest a dynamic inter-

pretation of the Kaldor-Verdoorn’s law in which the growth in labour productivity at firm

4A typical value for the Verdoorn’s coefficient is around 0.5 but well below unity, meaning that an increase in the
growth rate of production manages to raise both productivity growth and employment rates.

5By the way, most contributions in this neo-Schumpeterian literature consider the macro-dynamics as a simple
aggregation process of dynamics at the microeconomic level. The absence of macro-constraints on the micro-
dynamics is exactly where the Kaldorian approach might complete the evolutionary modelling of economic
growth. Recent attempts are Lorentz (2005, 2018) and Lorentz et al. (2022), among the others.

6These, and further, points of convergence between the two approaches must not move divergences to the back-
ground. Kaldorians consider economic dynamics as a top-down process in which the macro directly determines
the micro via Verdoorn’s law. Conversely, the evolutionary approach adopts a bottom-up framework with micro
dynamics and behaviours shaping the aggregate dimension. Further details in Llerena and Lorentz (2004).
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or sector level respond positively to micro and macro stimuli:

¤𝑎𝑖𝑡 = 𝑓
( ¤𝑘𝑖𝑡 , . . . , ¤𝑘𝑖𝑡−𝑧 ; ¤𝑌𝑡 , . . . , ¤𝑌𝑡−𝑧

)
(4)

in which ¤𝑌𝑡 is the GDP growth rate and 𝑧 an unspecified time lag.

Microeconomic stimuli in Eq. (4) are summarized by the growth in the capital-labour ratio,

¤𝑘𝑖𝑡 . The related technical progress function implies that the resources generated are invested

in production capacities with a scale of production both larger and more efficient due to the

accumulation of new generations of capital goods. On the other hand, the GDP growth

rate summarizes the arguments à la Young (1928) that refer to the macro-level extension of

the idea of division of labour already found in the Classicals. By the way, this macro-level

division of labour engenders a self-sustaining growth process which constitutes the main

engine for productivity achievements.7

Taking for granted this theoretical framework, we find interesting to join it with the em-

pirical literature on the innovation-employment nexus. Most empirical studies suggest a

positive relationship between innovation and employment growth at the firm level, in par-

ticular when attention is paid to high-growth and high-tech enterprises (Calvino and Vir-

gillito 2018). Moreover, if benefits in terms of employment rates out of product innovations

tend to be confirmed at sector level too, the analyses focusing on the job-displacement ef-

fects of process innovations provide mixed results.8

Yet, few of these empirical works deal with the influence of robots and recent automation

technologies on productivity gains and employment. Results are generally mixed and pro-

vide unambiguous interpretations in no way. To be precise, previous studies fall into two

camps. Works in the first group usually find no effects of robots on total employment or

negative effects with reference to low-skilled workers (Acemoglu, Lelarge and Restrepo

2020, Graetz and Michaels 2018, Kromann, Malchow-Møller, Skaksen and Sørensen 2020).

The second camp instead finds positive or neutral effects from robots adoption on total em-

ployment (Acemoglu, Autor, Hazell and Restrepo 2020, Domini et al. 2021, Klenert et al.

2020). However, as argued also by Bordot (2022), this bulk of research lacks a proper theo-

retical and practical framework for answering the question of the net effect of technological

progress on employment at the aggregate level. Furthermore, no work focuses on the evo-

7In this respect, the micro and macro aspects here envisaged represent the phenotypes of dynamic increasing
returns to scale. In addition to this, GDP is a proxy for aggregate demand, the factor that in Kaldor’s view links
the increase of production capacities with income growth. Then, demand induces a chain reaction along the
economy in which ”the increase in demand for any commodities [. . . ] reflects the increasing in supply of other
commodities, and vice versa” (Kaldor 1966, p. 19).

8Calvino and Virgillito (2018) and Vivarelli (2014) offer comprehensive literature reviews on the innovation-
employment nexus, distinguishing firm-level and industry-level empirical studies, and providing some stylized
facts.
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lutionary Kaldorian channels that might exist between demand and productivity gains. The

following analysis is a first step in tackling this issue.

3.2 Data, descriptive statistics and methodology

We collect time series data about 17 industries in 25 OECD countries from 1990 to 2018.

The main sources of data are the World Robotics - Industrial Robotics (WRIR) database of

the International Federation of Robotics (IFR) and the OECD STAN database. The WRIR

database presents statistics about production, imports, exports and domestic installations

of industrial robots since 1990, defined as ”an automatically controlled, reprogrammable,

multipurpose manipulator programmable in three or more axes, which can be either fixed

in place or mobile for use in industrial automation applications” (World Robotics, ch. 1, p.

29).9 This source provides us with data on the operational stock of robots, that measures the

number of robots currently employed at industry level. IFR statistical departments assume

an average service life of about twelve years with immediate withdrawal afterwards.10

The STAN database provides indicators on industrial performance at quite a detailed level

of activity from 1970 onward, from which we took data on labour productivity, capital stock

and employment. More precisely, labour productivity (𝑎) is defined in terms of value added

over hours worked by total engaged. The (net) capital stock is the value of all vintages of

assets to owners where valuation reflects market prices for new and used assets, thus con-

sidering some form of depreciation. Employment is expressed in total hours worked by

person engaged. Data on expenditure-side real GDP are from the Penn World Table 10.0.

This set of variables allows for the computation of the capital-labour ratio (𝑘), defined as net

capital stock in total hours worked, and the share of operational robots in net capital. The

variable we are most interested in is a measure of robot density (𝑑), that tells us how much

the sector 𝑖 in country 𝑗 is robotised if compared to the yearly cross-country sectoral average.

This variable takes value 1 if the ratio between the stock of robots and net capital is above

the average and 0 otherwise.11 We present descriptive statistics on our variables of interest

in Fig. 1 to Fig. 3 and in Tab. 1 to Tab. 6. For what concerns to robots, we consider three

different measures that provide insights on the widespread adoption of this automation

9For a clarification of all the adjectives in this definition, we remind to the documentation at https://ifr.org/
industrial-robots.

10We should keep two important caveats in mind. On the one hand, considering the impact of the quantity of
industrial robots as a stock variable may conceal the evidence that robots became more and more integrated over
time such that a single robot today could perform tasks carried out by several robots yesterday (Kromann et al.
2020). In this case, the stock of robots underestimates the degree of automation in sectors where investments
have been relatively high as it overestimates the automation in sectors with low investment rates. On the other
hand, industrial robots can be a rough approximate variable when it comes to analysing the effect of such new
technologies on the economy as a whole. (Klenert et al. 2020). These caveats apply to our analyses as well as to
the abovementioned empirical studies.

11IFR computes an indicator of robot density as the number of operational industrial robots relative to the number
of employees. We consider this measure in the robustness check.

https://ifr.org/industrial-robots
https://ifr.org/industrial-robots
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technology. The first measure is the operational stock of robots. Top graphs in Fig. 1 and

Tab. 1 clearly point to a great increase in the adoption of robots common to all industries,

averaged across countries. Obviously, this increase presents sector-specific magnitude and

dynamics. As expected, the automotive industry (D29) employs the largest stock of robots.

Starting with an average of 1700 units in the early Nineties, the operational stock increases

by a factor of seven, peaking to an average of 12 thousand units after 2013. Other industries

that have widely adopted robots since data are available are the producers of fabricated

metals (D25), electrical and electronic devises (D26T27), and rubber and plastics products

(D22), with an average stock around 2000 units in the period 2013-2018. In particular, the in-

dustry producing plastics products began to adopt robots in early 2000s only and exhibited

a rapid increase in the years after the 2007 financial crisis.

However, focusing on the operational stock of robots only can be misleading if not

framed into the industry-specific technological structure. Therefore, we compute the robots-

to-capital ratio and the robots-to-hours worked ratio. Data on the former are in the central

plots of Fig. 1 and in Tab. 2. It is important to note that this ratio does not express robots

share of capital, but just the number of robots employed with a given capital stock. Results

do not change significantly from the above. The automotive sector and those producing

plastics products and fabricated metals present the largest increases of this ratio through-

out the period, reaching an average value of about 34%, 20% and 13%, respectively. All the

other industries never display a ratio above 4% on average, though it rises through time.

The outcomes are roughly confirmed by the robots-to-hours ratio in Tab. 3 and bottom

graphs in Fig. 1. The predominance of the automotive industry is clear when we observe

that a ratio of about 10 in the years between 2007 and 2013 is larger than the average value

assumed by all the other industries in the next six years, with the sole exception of the plas-

tics industry.

To sum up, these simple statistics point to the widespread diffusion of robots throughout

the economies. The average adoption pattern proceeded slowly for most sectors until the

early 2000s and then has rapidly increased since 2003-2004. The automotive industry is

leader in the ranking and displays a rather exponential increase in the pattern of adoption.

As a second step, we calculate growth statistics for labour productivity (top panels in

Fig. 2 and Tab. 4), the capital-labour ratio (bottom panels in Fig. 2 and Tab. 5) and GDP

(Fig. 3 and Tab. 6). About productivity growth, data envisage a stylized fact shared by each

sector. In other terms, though sectors follow their own productivity trajectory, their growth

rates in labour productivity could be described by a hump-shaped pattern. For instance, if

we considered the electronic industry, we would observe an average growth of about 7.5%

in the early 1990s that peaks to 8% the following decade. Yet, this average growth rate
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Figure 1. Statistics on robots by industry, 1990-2018

Note: Industry codes are from STAN ISIC rev. 4: Food products (D10), Textiles, wearing apparel, leather and related
products (D13T15), Wood and products of wood and cork, except furniture (D16), Paper, printing and reproduction
of recorded media (D17T18), Coke and refined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic mineral products (D23), Basic metals (D24),
Fabricated metal products, except machinery and equipment (D25), Electrical, electronic and optical equipment
(D26T27), Machinery and equipment (D28), Automotive (D29), Other transport equipment (D30), Water supply;
sewerage, waste management and remediation activities (E), Construction (F), Education (P). Source: Authors’ own
computations based on OECD STAN and IFR data.
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Industry 1990-96 1996-01 2001-07 2007-13 2013-18

D10 78.570 139.293 284.860 834.206 1500.713
(14.475) (36.380) (127.782) (223.490) 264.521

D13T15 39.150 46.133 43.177 35.114 40.447
(3.517) (2.817) (4.510) (1.831) (5.207)

D16 111.100 166.353 199.371 157.457 134.860
(5.184) (38.226) (2.403) (36.056) (11.519)

D17T18 18.350 26.560 41.291 59.366 84.353
(0.289) (6.122) (5.800) (5.769) (14.089)

D19 0.000 0.000 0.000 2.971 18.007
(0.000) (0.000) (0.000) (3.350) (7.041)

D20T21 0.000 0.000 35.326 206.126 458.360
(0.000) (0.000) (40.496) (79.949) (99.770)

D22 0.000 0.000 287.091 1336.383 2252.467
(0.000) (0.000) (341.634) (341.617) (253.927)

D23 60.223 106.153 163.817 222.314 242.787
(13.578) (19.816) (27.891) (6.260) (13.790)

D24 152.070 176.567 181.206 224.486 534.687
(11.813) (11.265) (8.504) (59.480) (140.146)

D25 469.050 567.240 790.600 1449.754 1958.553
(28.940) (44.377) (200.041) (167.282) (223.319)

D26T27 321.760 420.460 628.600 1241.971 2200.807
(28.298) (50.184) (170.597) (268.623) (425.610)

D28 374.480 455.040 319.040 526.560 1007.633
(42.456) (36.614) (182.628) (198.396) (152.713)

D29 1706.590 2961.273 5805.783 8778.480 12098.353
(315.462) (713.581) (1414.294) (958.360) (1357.265)

D30 130.818 171.613 149.789 93.086 120.453
(38.712) (5.048) (17.022) (9.837) (17.296)

E 0.000 0.360 2.097 5.531 11.033
(0.000) (0.311) (0.775) (1.705) (3.142)

F 0.390 5.027 14.634 33.509 53.080
(0.384) (2.874) (5.454) (7.514) (6.897)

P 8.250 62.313 117.931 130.669 175.360
(6.251) (27.967) (16.601) (10.100) (29.236)

Note: Industry codes are from STAN ISIC rev. 4: Food products (D10), Tex-
tiles, wearing apparel, leather and related products (D13T15), Wood and prod-
ucts of wood and cork, except furniture (D16), Paper, printing and reproduction
of recorded media (D17T18), Coke and refined petroleum products (D19), Chem-
ical and pharmaceutical products (D20T21), Rubber and plastic products (D22),
Other non-metallic mineral products (D23), Basic metals (D24), Fabricated metal
products, except machinery and equipment (D25), Electrical, electronic and optical
equipment (D26T27), Machinery and equipment (D28), Automotive (D29), Other
transport equipment (D30), Water supply; sewerage, waste management and re-
mediation activities (E), Construction (F), Education (P). Source: Authors’ own
computations based on IFR data.

Table 1. Operational stock of robots by industry: average and standard deviation
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Industry 1990-96 1996-01 2001-07 2007-13 2013-18

D10 0.005 0.014 0.033 0.065 0.104
(0.002) (0.005) (0.011) (0.013) (0.014)

D13T15 0.005 0.006 0.009 0.011 0.013
(0.000) (0.001) (0.001) (0.001) (0.000)

D16 0.027 0.042 0.052 0.046 0.035
(0.009) (0.006) (0.003) (0.007) (0.004)

D17T18 0.001 0.001 0.003 0.005 0.006
(0.000) (0.000) (0.001) (0.000) (0.001)

D19 0.000 0.000 0.000 0.001 0.003
(0.000) (0.000) (0.000) (0.001) (0.001)

D20T21 0.000 0.000 0.001 0.003 0.008
(0.000) (0.000) (0.001) (0.001) (0.002)

D22 0.000 0.000 0.024 0.118 0.208
(0.000) (0.000) (0.029) (0.032) (0.026)

D23 0.005 0.007 0.012 0.020 0.025
(0.000) (0.002) (0.003) (0.002) (0.003)

D24 0.010 0.013 0.016 0.022 0.033
(0.001) (0.002) (0.002) (0.003) (0.004)

D25 0.076 0.070 0.083 0.110 0.130
(0.007) (0.002) (0.012) (0.004) (0.013)

D26T27 0.017 0.015 0.016 0.025 0.036
(0.002) (0.001) (0.002) (0.004) (0.004)

D28 0.031 0.025 0.015 0.030 0.058
(0.004) (0.002) (0.008) (0.010) (0.011)

D29 0.053 0.074 0.121 0.219 0.343
(0.007) (0.009) (0.033) (0.040) (0.054)

D30 0.004 0.005 0.006 0.015 0.025
(0.000) (0.000) (0.002) (0.004) (0.003)

E 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

F 0.000 0.000 0.000 0.001 0.002
(0.000) (0.000) (0.000) (0.001) (0.000)

P 0.000 0.001 0.001 0.001 0.002
(0.000) (0.000) (0.000) (0.000) (0.000)

Note: Industry codes are from STAN ISIC rev. 4: Food products
(D10), Textiles, wearing apparel, leather and related products (D13T15),
Wood and products of wood and cork, except furniture (D16), Paper,
printing and reproduction of recorded media (D17T18), Coke and re-
fined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic
mineral products (D23), Basic metals (D24), Fabricated metal products,
except machinery and equipment (D25), Electrical, electronic and op-
tical equipment (D26T27), Machinery and equipment (D28), Automo-
tive (D29), Other transport equipment (D30), Water supply; sewerage,
waste management and remediation activities (E), Construction (F), Ed-
ucation (P). Source: Authors’ own computations based on OECD STAN
and IFR data.

Table 2. Robots-to-capital ratio by industry: average and standard deviation
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Industry 1990-96 1996-01 2001-07 2007-13 2013-18

D10 0.221 0.430 1.255 3.096 4.058
(0.044) (0.181) (0.677) (0.395) (0.540)

D13T15 0.144 0.190 0.396 0.637 0.853
(0.040) (0.062) (0.084) (0.103) (0.050)

D16 0.307 0.443 1.214 2.078 2.215
(0.085) (0.205) (0.311) (0.284) (0.170)

D17T18 0.069 0.107 0.204 0.399 0.637
(0.015) (0.018) (0.055) (0.087) (0.100)

D19 0.000 0.000 0.000 0.379 1.912
(0.000) (0.000) (0.000) (0.391) (0.844)

D20T21 0.000 0.000 0.111 0.749 1.656
(0.000) (0.000) (0.134) (0.290) (0.374)

D22 0.000 0.000 1.504 7.811 13.923
(0.000) (0.000) (1.846) (2.211) (1.797)

D23 0.254 0.251 0.465 1.067 1.556
(0.063) (0.037) (0.128) (0.231) (0.125)

D24 0.314 0.452 1.037 2.118 4.314
(0.081) (0.122) (0.328) (0.579) (0.789)

D25 2.668 1.983 2.893 4.489 5.582
(1.051) (0.214) (0.475) (0.443) (0.639)

D26T27 1.053 0.848 1.485 2.470 3.565
(0.359) (0.101) (0.368) (0.418) (0.382)

D28 1.325 0.933 0.694 1.678 3.374
(0.416) (0.021) (0.302) (0.621) (0.611)

D29 3.090 4.505 9.585 19.638 33.131
(0.240) (1.112) (2.503) (4.641) (5.867)

D30 0.845 1.432 1.266 1.289 2.203
(0.542) (0.016) (0.203) (0.431) (0.253)

E 0.000 0.003 0.012 0.024 0.059
(0.000) (0.003) (0.002) (0.008) (0.022)

F 0.000 0.004 0.009 0.030 0.053
(0.001) (0.002) (0.004) (0.012) (0.005)

P 0.012 0.040 0.073 0.094 0.127
(0.003) (0.017) (0.010) (0.013) (0.011)

Note: Industry codes are from STAN ISIC rev. 4: Food products
(D10), Textiles, wearing apparel, leather and related products (D13T15),
Wood and products of wood and cork, except furniture (D16), Paper,
printing and reproduction of recorded media (D17T18), Coke and re-
fined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic
mineral products (D23), Basic metals (D24), Fabricated metal products,
except machinery and equipment (D25), Electrical, electronic and op-
tical equipment (D26T27), Machinery and equipment (D28), Automo-
tive (D29), Other transport equipment (D30), Water supply; sewerage,
waste management and remediation activities (E), Construction (F), Ed-
ucation (P). Source: Authors’ own computations based on OECD STAN
and IFR data.

Table 3. Robots-to-hours worked ratio by industry: average and standard deviation



3.2 Data, descriptive statistics and methodology 15

Figure 2. Statistics on labour productivity and capital-labour ratio by industry, 1990-2018

Note: Industry codes are from STAN ISIC rev. 4: Food products (D10), Textiles, wearing apparel, leather and related
products (D13T15), Wood and products of wood and cork, except furniture (D16), Paper, printing and reproduction
of recorded media (D17T18), Coke and refined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic mineral products (D23), Basic metals (D24),
Fabricated metal products, except machinery and equipment (D25), Electrical, electronic and optical equipment
(D26T27), Machinery and equipment (D28), Automotive (D29), Other transport equipment (D30), Water supply;
sewerage, waste management and remediation activities (E), Construction (F), Education (P). Source: Authors’ own
computations based on OECD STAN data.

halves in the years between 2007 and 2013 (4.1%) and then reduces to an average 3% since

2013.

A similar trend is envisaged by the growth performance in the capital-labour ratio.

Nonetheless, the decline in growth is stronger than productivity’s and there is the evidence

of a null, when not negative, growth path after 2007 and most after 2013. For example, the

automotive industry goes from an average growth of about 3% in the capital-labour ratio in

the period 2007-2013 to a third of it subsequently.

Finally, the last set of descriptive statistics in Fig. 3 and Tab. 6 is about average GDP

growth. Here again, the growth performance can be very heterogeneous across countries,

but as a general remark we point to the overall decrease in average growth post-2007 and

post-2013 since in very few cases the related performance could match the pre-crisis one.

This assertion holds especially for most advanced economies.

From what said so far, we identify a relationship that ties labour-productivity dynamics
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Industry 1990-96 1996-01 2001-07 2007-13 2013-18

D10 0.034 0.029 0.037 0.010 0.021
(0.044) (0.030) (0.031) (0.040) (0.011)

D13T15 0.039 0.029 0.042 0.027 0.018
(0.020) (0.038) (0.013) (0.034) (0.014)

D16 0.006 0.042 0.043 0.005 0.021
(0.035) (0.026) (0.030) (0.033) (0.033)

D17T18 0.024 0.024 0.043 0.015 -0.003
(0.043) (0.044) (0.046) (0.075) (0.037)

D19 0.023 0.022 0.023 -0.060 0.011
(0.073) (0.087) (0.106) (0.141) (0.247)

D20T21 0.040 0.034 0.043 0.025 0.016
(0.032) (0.019) (0.019) (0.033) (0.018)

D22 0.020 0.033 0.032 0.005 0.018
(0.032) (0.026) (0.023) (0.018) (0.036)

D23 0.010 0.029 0.039 -0.002 0.029
(0.028) (0.027) (0.020) (0.050) (0.022)

D24 0.014 0.037 0.046 -0.005 0.034
(0.072) (0.050) (0.048) (0.127) (0.042)

D25 0.024 0.016 0.037 0.010 0.013
(0.023) (0.029) (0.022) (0.045) (0.015)

D26T27 0.075 0.079 0.081 0.041 0.030
(0.028) (0.041) (0.040) (0.059) (0.019)

D28 0.022 0.039 0.069 0.018 0.003
(0.045) (0.032) (0.021) (0.080) (0.046)

D29 0.011 0.068 0.058 0.029 0.039
(0.055) (0.065) (0.036) (0.139) (0.017)

D30 0.007 0.032 0.047 0.017 0.006
(0.036) (0.042) (0.049) (0.078) (0.071)

E -0.014 -0.003 -0.007 -0.016 -0.006
(0.023) (0.023) (0.032) (0.018) (0.014)

F 0.009 0.006 0.009 0.001 0.009
(0.017) (0.021) (0.018) (0.015) (0.009)

P 0.003 0.013 0.005 0.002 -0.001
(0.010) (0.012) (0.011) (0.004) (0.007)

Note: Industry codes are from STAN ISIC rev. 4: Food products
(D10), Textiles, wearing apparel, leather and related products (D13T15),
Wood and products of wood and cork, except furniture (D16), Paper,
printing and reproduction of recorded media (D17T18), Coke and re-
fined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic
mineral products (D23), Basic metals (D24), Fabricated metal products,
except machinery and equipment (D25), Electrical, electronic and op-
tical equipment (D26T27), Machinery and equipment (D28), Automo-
tive (D29), Other transport equipment (D30), Water supply; sewerage,
waste management and remediation activities (E), Construction (F), Ed-
ucation (P). Source: Authors’ own computations based on OECD STAN
data.

Table 4. Productivity growth rates by industry: average and standard deviation
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Industry 1990-96 1996-01 2001-07 2007-13 2013-18

D10 0.037 0.008 -0.004 0.000 0.007
(0.036) (0.025) (0.019) (0.022) (0.014)

D13T15 0.039 0.035 0.042 0.023 -0.006
(0.023) (0.016) (0.012) (0.040) (0.007)

D16 0.025 0.045 0.023 0.040 -0.002
(0.048) (0.006) (0.033) (0.050) (0.021)

D17T18 0.026 0.027 0.025 0.016 0.000
(0.027) (0.018) (0.023) (0.024) (0.012)

D19 0.034 0.032 0.032 0.051 0.011
(0.011) (0.009) (0.041) (0.041) (0.035)

D20T21 0.031 0.040 0.026 0.023 0.002
(0.010) (0.009) (0.004) (0.024) (0.009)

D22 0.016 0.038 0.011 0.016 0.003
(0.030) (0.020) (0.013) (0.052) (0.013)

D23 0.005 0.010 0.023 0.024 -0.002
(0.051) (0.017) (0.014) (0.051) (0.018)

D24 0.010 0.041 0.025 0.027 -0.011
(0.033) (0.005) (0.026) (0.066) (0.019)

D25 0.010 0.012 0.011 0.020 0.005
(0.043) (0.009) (0.022) (0.057) (0.010)

D26T27 0.034 0.047 0.037 0.011 0.002
(0.028) (0.016) (0.035) (0.031) (0.014)

D28 0.021 0.021 0.021 0.027 0.012
(0.037 (0.013 (0.024 (0.056 (0.007)

D29 0.011 0.027 0.023 0.030 0.003
(0.077) (0.016) (0.037) (0.086) (0.029)

D30 0.018 0.023 0.032 0.027 -0.002
(0.038) (0.021) (0.018) (0.051) (0.027)

E 0.011 0.002 0.008 0.012 -0.001
(0.025) (0.018) (0.020) (0.016) (0.011)

F 0.044 0.018 0.006 0.052 0.000
(0.040) (0.006) (0.025) (0.035) (0.016)

P 0.007 0.009 0.012 0.015 -0.002
(0.007) (0.011) (0.008) (0.005) (0.008)

Note: Industry codes are from STAN ISIC rev. 4: Food products
(D10), Textiles, wearing apparel, leather and related products (D13T15),
Wood and products of wood and cork, except furniture (D16), Paper,
printing and reproduction of recorded media (D17T18), Coke and re-
fined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic
mineral products (D23), Basic metals (D24), Fabricated metal products,
except machinery and equipment (D25), Electrical, electronic and op-
tical equipment (D26T27), Machinery and equipment (D28), Automo-
tive (D29), Other transport equipment (D30), Water supply; sewerage,
waste management and remediation activities (E), Construction (F), Ed-
ucation (P). Source: Authors’ own computations based on OECD STAN
data.

Table 5. Capital-to-labour ratio growth rates by industry: average and standard deviation
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Figure 3. Statistics on GDP by country, 1990-2018

Note: Industry codes are from STAN ISIC rev. 4: Food products (D10), Textiles, wearing apparel, leather and related
products (D13T15), Wood and products of wood and cork, except furniture (D16), Paper, printing and reproduction
of recorded media (D17T18), Coke and refined petroleum products (D19), Chemical and pharmaceutical prod-
ucts (D20T21), Rubber and plastic products (D22), Other non-metallic mineral products (D23), Basic metals (D24),
Fabricated metal products, except machinery and equipment (D25), Electrical, electronic and optical equipment
(D26T27), Machinery and equipment (D28), Automotive (D29), Other transport equipment (D30), Water supply;
sewerage, waste management and remediation activities (E), Construction (F), Education (P). Source: Authors’ own
computations based on Penn World Table 10.0 data.

Country 1990-96 1996-01 2001-07 2007-13 2013-18

Austria 0.045 (0.014) 0.041 (0.013) 0.025 (0.023) 0.029 (0.021) 0.015 (0.015)

Belgium 0.025 (0.014) 0.040 (0.021) 0.027 (0.021) 0.027 (0.024) 0.016 (0.016)

Canada 0.022 (0.031) 0.044 (0.014) 0.027 (0.022) 0.013 (0.037) 0.024 (0.024)

Czech Republic -0.023 (0.091) 0.009 (0.028) 0.035 (0.022) 0.030 (0.035) 0.025 (0.020)

Denmark 0.022 (0.025) 0.045 (0.017) 0.027 (0.032) 0.028 (0.036) 0.025 (0.024)

Estonia -0.035 (0.134) 0.050 (0.040) 0.084 (0.027) 0.052 (0.080) 0.019 (0.018)

Finland 0.002 (0.075) 0.066 (0.034) 0.025 (0.025) 0.025 (0.046) 0.025 (0.023)

France 0.012 (0.013) 0.044 (0.021) 0.025 (0.029) 0.023 (0.023) 0.015 (0.015)

Germany 0.036 (0.020) 0.029 (0.016) 0.012 (0.016) 0.024 (0.034) 0.018 (0.018)

Greece 0.042 (0.021) 0.047 (0.024) 0.042 (0.030) -0.017 (0.069) 0.023 (0.013)

Hungary 0.010 (0.069) 0.026 (0.016) 0.045 (0.020) 0.027 (0.024) 0.020 (0.015)

Ireland 0.058 (0.041) 0.102 (0.022) 0.065 (0.025) 0.026 (0.066) 0.119 (0.118)

Italy 0.025 (0.022) 0.035 (0.016) 0.012 (0.020) 0.014 (0.029) 0.030 (0.027)

Latvia -0.139 (0.117) 0.019 (0.041) 0.064 (0.024) 0.039 (0.095) 0.014 (0.016)

Lithuania -0.096 (0.092) 0.047 (0.019) 0.067 (0.018) 0.047 (0.086) 0.018 (0.015)

Netherlands 0.030 (0.012) 0.063 (0.017) 0.025 (0.033) 0.022 (0.038) 0.031 (0.031)

Norway 0.033 (0.015) 0.073 (0.041) 0.061 (0.066) 0.043 (0.059) 0.043 (0.040)

Poland 0.054 (0.060) 0.057 (0.026) 0.031 (0.018) 0.060 (0.022) 0.022 (0.022)

Portugal 0.045 (0.023) 0.054 (0.018) 0.026 (0.019) 0.011 (0.031) 0.024 (0.020)

Slovakia -0.037 (0.117) 0.018 (0.029) 0.051 (0.025) 0.056 (0.053) 0.028 (0.028)

Slovenia -0.001 (0.091) 0.032 (0.016) 0.035 (0.017) 0.018 (0.049) 0.028 (0.022)

Spain 0.035 (0.022) 0.055 (0.017) 0.051 (0.025) 0.017 (0.049) 0.031 (0.027)

Sweden 0.016 (0.045) 0.050 (0.016) 0.022 (0.034) 0.036 (0.046) 0.020 (0.019)

United Kingdom 0.025 (0.044) 0.058 (0.019) 0.030 (0.014) 0.016 (0.033) 0.012 (0.013)

United States 0.027 (0.017) 0.042 (0.009) 0.027 (0.011) 0.011 (0.020) 0.006 (0.006)

Source: Authors’ own computations based on Penn World Table 10.0 data.

Table 6. Real GDP growth rates by country: average and standard deviation
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to a set of variables that includes the capital-labour ratio, GDP and the interaction terms

between the latter and the dummy for robot density. Eq. (5) presents the econometric spec-

ification of the evolutionary Kaldor-Verdoorn’s law:

¤𝑎𝑖 𝑗𝑡 = 𝑐0 +
4∑︁

𝑧=0

𝛼𝑧 · ¤𝑎𝑖 𝑗𝑡−𝑧 +
4∑︁

𝑧=0

𝛽𝑧 · ¤𝑘𝑖 𝑗𝑡−𝑧 +
4∑︁

𝑧=0

𝛿𝑧 · ¤𝑌 𝑗𝑡−𝑧

+
4∑︁

𝑧=0

𝜀𝑧 · 𝑑𝑖 𝑗𝑡−𝑧 · ¤𝑘𝑖 𝑗𝑡−𝑧 +
4∑︁

𝑧=0

𝜗𝑧 · 𝑑𝑖 𝑗𝑡−𝑧 · ¤𝑌 𝑗𝑡−𝑧 + 𝑦𝑟∗𝑡 + 𝑢𝑖 𝑗𝑡

(5)

in which 𝛼s, 𝛽s, 𝛿s, 𝜀s and 𝜗s are the coefficients of interest, 𝑐0 is the constant term, 𝑦𝑟∗

the time effects and 𝑢 the disturbance.

Some clarification is necessary. Firstly, the theoretical framework in Subsection 3.1 entails

a dynamic relationship between variables in growth terms.12 Secondly, since the unit of

analysis is the industry 𝑖 in country 𝑗 , we account for robotisation with a dummy variable,

𝑑𝑖 𝑗𝑡 , that takes value 1 whenever the ratio between stock of robots and net capital at time 𝑡

is above the cross-country industry average, and zero otherwise. This simple dummy is a

way to control for the impact of increasing robot density across time and space. Moreover, it

appears in Eq. (5) as term of interaction with the key components of the Kaldor-Verdoorn’s

law, i.e., ¤𝑘 and ¤𝑌 . Thirdly, the lack of suitable lag choice criteria for a dynamic panel time-

series constrains our choice to be based on a rule of thumb. The stationarity properties of

the covariates, the yearly time unit, and the need to keep the model as parsimonious as

possible suggest considering at most four lags in the dynamic process of adjustment to the

long-run average steady state. Furthermore, the choice of a parsimonious model allows

to contain problems of collinearity that emerge with the inclusion of many lags. Fourthly,

the cumulative-causation framework implies the inherent endogeneity of the three main

regressors, ¤𝑘 , ¤𝑌 and 𝑑. We account for this issue with the GMM estimator as developed

by Arellano and Bond (1991) and Blundell, Bond and Windmeijer (2001).13 Estimates are

carried out with both the difference and the system GMM estimation procedures.14

3.3 Main empirical evidence

We begin our empirical exercise with the estimates reported in Tab. 7 and Tab. 8. These

results constitute preliminary evidence on the general validity of the evolutionary Kaldor-

12The growth rates follow a stationary process according to Fisher-type panel unit root tests; details available upon
request.

13The literature on the properties of GMM estimators is abundant. We suggest Bond (2002), Bontempi and Golinelli
(2005), Judson and Owen (1999), Roodman (2009a), Wooldridge (2010).

14Although we present both onestep and twostep estimates, it is important to notice that onestep GMM estimates,
even if robust, assume a pattern of homoskedasticity in the computation of the estimator. The twostep procedure,
in contrast, takes heteroskedasticity patterns in strong consideration with important gains in terms of efficiency.
We therefore believe that all the following twostep estimates are more reliable.
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Verdoorn’s law, without considering the impact of robots. Focusing on Tab. 7, the reported

estimates refer to a parsimonious specification of Eq. (4) in which either one or two lags are

considered for both regressors and dependent variable. We single out a threefold evidence.

Firstly, the impact of a change in the capital-labour ratio is always positive when statistically

significant and lower than one. Precisely, the coefficient of the contemporaneous regressor

ranges between 0.27 and 0.49. In addition to this, the positive association between current

growth in labour productivity and in the capital-labour ratio extends to the first and to the

second lag of the latter, though the magnitude is smaller. Secondly, the macro-level argu-

ments summarized by the growth in GDP find a weak significance. The coefficient of the

contemporaneous relation is positive, statistically significant and with the expected magni-

tude in two specifications only and the term ranges between 0.18 and 0.44. Previous lags

in GDP growth do not seem to be significantly associated with current changes in labour

productivity. Thirdly, the influence of past changes in current productivity growth is nega-

tive and statistically significant. This finding is in agreement with a stationary variable that

undertakes an adjustment process toward the long-run average value.

Such preliminary results look more complex and richer when switching to less parsimo-

nious specifications as in Tab. 8. If, on the one hand, the inner adjustment dynamics of

productivity growth is as previously observed and as expected, on the other hand, the im-

pact of the growth in the capital-labour ratio is different. In other words, results point to

a cyclical dynamics with both positive and negative correlations. The relationship between

the growth rates of productivity and capital-labour ratio is positive at time 𝑡, 𝑡 − 2 and 𝑡 − 4,

while it is negative in correspondence of the first and third lag. In any case, the coefficient is

always lower than one in absolute value. Conversely, the impact of GDP growth in terms of

increasing returns to scale tends to be confirmed and the coefficient is positive and between

zero and one when statistically significant. Nevertheless, most GMM estimates reveal a

contemporaneous association between industrial productivity growth and changes in GDP.

The correlation with GDP lags is envisaged by twostep system-GMM only.

To summarize, the preliminary evidence broadly suggest the existence of a Kaldor-Verdoorn’s

mechanism in the dynamics of labour productivity growth, despite results can change and

become richer as we switch from a parsimonious to a complex functional form.

Then, what is the impact of robots on the Kaldor-Verdoorn’s law, if any? We present

the results out of Eq. (5) in Tab. 9 through Tab. 12. As a first step, we shall begin with

asking what is the impact of robotisation for industries with a robot density lower than

cross-country sectoral average. This is tantamount of assuming the dummy is equal to zero

and there are no interaction terms. In this case, a lower robot density than average does

not invalidate the Kaldor-Verdoorn’s law. For the sake of simplicity, we first check Tab. 9.



3.3 Main empirical evidence 21

Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 -0.101 -0.145 −0.099∗∗∗ −0.242∗∗∗ 0.397 −0.311∗ 0.388∗∗∗ −0.189∗∗∗

(0.106) (0.15) (0.008) (0.007) (0.484) (0.169) (0.025) (0.006)

¤𝑎𝑖 𝑗𝑡−2 -0.076 −0.188∗∗∗ -0.159 −0.141∗∗∗

(0.171) (0.010) (0.137) (0.010)

¤𝑘𝑖 𝑗𝑡 0.492∗ 0.302 0.382∗∗∗ 0.269∗∗∗ 0.484 0.166 0.404∗∗∗ 0.348∗∗∗

(0.292) (0.421) (0.073) (0.064) (0.344) (0.461) (0.067) (0.056)

¤𝑘𝑖 𝑗𝑡−1 -0.014 -0.247 0.016 0.058∗∗ -0.253 -0.338 -0.098 0.059∗∗∗

(0.081) (0.605) (0.025) (0.025) (0.361) (0.503) (0.064) (0.022)

¤𝑘𝑖 𝑗𝑡−2 0.324 0.099∗∗∗ 0.443∗ 0.093∗∗∗

(0.274) (0.0235) (0.254) (0.018)

¤𝑌 𝑗𝑡 0.077 0.375 0.015 0.071 0.503 0.437∗ 0.184∗∗ 0.055
(0.227) (0.254) (0.088) (0.085) (0.418) (0.259) (0.092) (0.090)

¤𝑌 𝑗𝑡−1 0.183 0.049 0.072 0.053 -0.207 0.062 -0.062 0.058
(0.192) (0.486) (0.063) (0.051) (0.431) (0.490) (0.071) (0.050)

¤𝑌 𝑗𝑡−2 0.425 -0.006 0.395 -0.026
(0.454) (0.047) (0.301) (0.044)

Constant -0.049 -0.016 −0.059∗∗∗ 0.011∗∗

(0.045) (0.023) (0.010) (0.005)

Observations 4851 4617 4851 4617 5087 4851 5087 4851

Instruments 107 100 107 106 108 104 108 110

AB (1) −2.607∗∗∗ −2.432∗∗ −3.203∗∗∗ −3.17∗∗∗ -1.479 −2.07∗∗ −3.227∗∗∗ −3.186∗∗∗

AB (2) -1.270 -0.425 -0.822 -0.132 0.937 -0.593 0.383 -0.247

Hansen 70.740 63.790 70.740 71.640 71.860 73.790 71.860 83.060

Note: standard errors in brackets. Star significance: * p-value< 0.10, ** p-value< 0.05, *** p-value< 0.01.

Table 7. Preliminary empirical evidence (1)

The relationship between changes in labour productivity and in the capital-labour ratio is

positive and statistically significant in most specifications. Moreover, this linkage extends

in time, at least until the second lag of ¤𝑘 . Precisely, its contemporaneous coefficient ranges

from a minimum value 0.55 to a maximum 0.95. Conversely, the magnitude gradually re-

duces to about 0.6 when we consider previous lags. The macro-level channel of the law is in

place too, at least when we consider the contemporaneous correlation. We observe indeed

that a unit increase in the growth of aggregate output is associated with a change in labour

productivity growth in between 0.26 and 0.87. Yet, the impact of precedent output growth

is not clear: most of the time it is not significantly different from zero, whereas when it is, it

could be either positive or negative.

The outcomes are strongly confirmed when we extend the regressions to the third and

fourth lag of the covariates (Tab. 10). The positive industry-level route envisaged by the

technical progress function is generally stronger in magnitude and extends back into the

past, at least until the third year before. Moreover, most of the negative relations between

productivity and past GDP turn to be positive and significantly different from zero, with

some exception notwithstanding, e.g., D-GMM twostep Model (IV).15

The second step in the analysis consists of understanding what is, if any, the impact of

15The adjustment process of productivity growth toward a long-period average finds another evidence. It is inter-
esting to notice that the adjustment takes about three years, since the correlation between contemporaneous and
fourth lag is positive.
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 -0.246 -0.162 −0.150∗∗∗ −0.151∗∗∗ -0.092 -0.196 −0.224∗∗∗ −0.185∗∗∗

(0.185) (0.307) (0.037) (0.043) (0.206) (0.317) (0.037) (0.045)

¤𝑎𝑖 𝑗𝑡−2 -0.112 -0.136 0.094∗∗∗ −0.082∗ -0.009 -0.181 0.010 −0.187∗∗∗

(0.113) (0.193) (0.033) (0.045) (0.182) (0.146) (0.030) (0.046)

¤𝑎𝑖 𝑗𝑡−3 -0.139 -0.105 −0.058∗ −0.126∗∗∗ 0.068 0.040 −0.134∗∗∗ 0.019
(0.155) (0.285) (0.031) (0.049) (0.070) (0.356) (0.026) (0.041)

¤𝑎𝑖 𝑗𝑡−4 0.004 −0.068∗ 0.050 0.052
(0.158) (0.036) (0.292) (0.033)

¤𝑘𝑖 𝑗𝑡 0.518 0.533 0.537∗∗∗ 0.649∗∗∗ 0.266 0.637∗ 0.493∗∗∗ 0.730∗∗∗

(0.470) (0.335) (0.099) (0.108) (0.391) (0.381) (0.103) (0.095)

¤𝑘𝑖 𝑗𝑡−1 -0.420 -0.411 −0.174∗∗ −0.322∗∗∗ -0.137 -0.226 −0.183∗∗ −0.282∗∗∗

(0.696) (0.512) (0.089) (0.097) (0.582) (0.448) (0.083) (0.091)

¤𝑘𝑖 𝑗𝑡−2 0.391 0.277 0.208∗∗∗ 0.216∗∗ 0.412 0.186 0.292∗∗∗ 0.223∗∗∗

(0.407) (0.495) (0.080) (0.090) (0.382) (0.339) (0.077) (0.080)

¤𝑘𝑖 𝑗𝑡−3 -0.322 -0.362 −0.203∗∗∗ −0.264∗∗∗ -0.100 -0.488 0.053 −0.437∗∗∗

(0.283) (0.401) (0.077) (0.080) (0.091) (0.421) (0.069) (0.082)

¤𝑘𝑖 𝑗𝑡−4 0.275∗∗ 0.165∗ -0.011 0.081
(0.128) (0.091) (0.280) (0.078)

¤𝑌 𝑗𝑡 0.430 0.396 0.075 0.028 0.534∗ 0.639∗ 0.204∗ 0.112
(0.275) (0.338) (0.110) (0.109) (0.321) (0.341) (0.109) (0.114)

¤𝑌 𝑗𝑡−1 0.047 -0.037 0.031 0.015 0.046 0.243 0.074 0.024
(0.466) (0.581) (0.102) (0.123) (0.543) (0.733) (0.108) (0.120)

¤𝑌 𝑗𝑡−2 0.369 0.497 0.031 0.133 0.390 0.660 0.171∗ 0.286∗∗

(0.326) (0.369) (0.102) (0.114) (0.370) (0.414) (0.103) (0.117)

¤𝑌 𝑗𝑡−3 0.081 0.067 0.025 -0.143 -0.084 0.188 0.115 0.015
(0.285) (0.331) (0.109) (0.112) (0.134) (0.340) (0.100) (0.116)

¤𝑌 𝑗𝑡−4 -0.138 -0.063 -0.344 -0.129
(0.202) (0.116) (0.417) (0.105)

Constant -0.013 -0.036 0.001 -0.011
(0.028) (0.031) (0.010) (0.010)

Observations 4383 4150 4383 4150 4617 4383 4617 4383

Instruments 93 95 96 92 103 96 100 96

AB (1) −2.471∗∗ −1.995∗∗ −3.191∗∗∗ −3.237∗∗∗ −2.327∗∗ −1.771∗ −3.211∗∗∗ −3.411∗∗∗

AB (2) -0.726 -0.177 -1.222 -0.619 -0.494 0.337 -1.182 0.570

Hansen 54.280 61.860 60.120 58.970 70.790 57.800 66.030 57.800

Note: standard errors in brackets. Star significance: * p-value< 0.10, ** p-value< 0.05, *** p-value< 0.01.

Table 8. Preliminary empirical evidence (2)
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a higher-than-average robot density. Inspecting the coefficients of the several interaction

terms in Tab. 9 and Tab. 10 is not sufficient to grasp the overall effect. This belief is rein-

forced also by the fact that the coefficients of the interaction terms can be either positive or

negative, significant or not significant. To overcome this limitation, we compute the com-

bined effects as reported in Tab. 11 and Tab. 12.16 In particular, we define 𝜂𝑧 and 𝛾𝑧 as

follows:

𝜂𝑧 = 𝛽𝑧 + 𝜀𝑧

𝛾𝑧 = 𝛿𝑧 + 𝜗𝑧

in which 𝜂𝑧 is the combined effect of robotisation on the relationship between the growth

in productivity and changes in the capital-labour ratio, while 𝛾 is about the impact of the in-

creasing returns to scale component on the growth in productivity. The empirical evidence

is contrasting and somewhat puzzling. Let us focus first on difference-GMM estimates as

in Tab. 11. When analysing onestep results, we grasp that 𝜂𝑧 is mostly never statistically

significant, with the exception of the third lag, while 𝛾𝑧 is generally significantly positive

when we refer to the contemporaneous correlation. On the one hand, the overall non-

significance of 𝜂𝑧 means that a higher-than-average robot density removes and cancels the

positive channel between ¤𝑘 and ¤𝑎, which is at work when dealing with less-than-average

robotised industries. On the other hand, the higher-than-average robot density strength-

ens the contemporaneous association between changes in sectoral productivity and GDP

growth. With an average coefficient greater than one, the impact of higher robot density on

the macro-level relationship that links GDP to industry productivity growth entails a form

of technological unemployment, since a unit increase in the GDP growth is associated with

more that a unit change in sectoral productivity, with no benefits in terms of employment.

In contrast, the results differ when we switch to the twostep difference-GMM, that account

for heteroskedasticity in the computation of the coefficients. Firstly, the robot density does

not nullify the mechanisms underlying the technical progress function but keeps them at

work. The coefficients of both the contemporaneous and lagged ¤𝑘 are positive, statistically

significant, and between 0.1 and 0.3, somehow smaller than for lower-than-average robo-

tised industries. This implies that an increased robotisation weakens but does not remove

the positive relationship between ¤𝑎 and ¤𝑘 through time. The mechanisms behind the tech-

nical progress component of the Kaldor-Verdoorn’s law seem less powerful. Though the

impact on the macro-level channel is similar as above, we nonetheless point to the uncer-

tain and negative impact of previous lags in GDP growth that emerges in the three-lags

twostep specification. These contrasting results are generally matched by system-GMM es-

16Tab. 11 and Tab. 12 are organised by GMM estimator.
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timates in Tab. 12.

This puzzling picture agrees with the empirical literature. A weakened relationship be-

tween labour productivity growth and changes in the capital-labour ratio entails an increase

in the employment growth at the micro and meso-economic level. Empirical studies reveal

indeed a positive correlation between employment and increased robotisation at firm and

industry level (Domini et al. 2021, Graetz and Michaels 2018, Klenert et al. 2020). Yet, indus-

tries with a higher-than-average degree of robotisation experience a reinforcing effect that

operates through the macro-level extension of the idea of division of labour as argued long

ago by Young (1928), among the others. In this case, the average magnitude of the effect

is above unity, and it denotes a form of technological unemployment. The contrasting and

puzzling dynamics at work at different levels of the economic activity is in agreement with

Acemoglu, Autor, Hazell and Restrepo (2020) and Bordot (2022), among the others.

We further elaborate on the robustness of these results in the following subsection.17

3.4 Robustness check

We carry out a battery of robustness checks by modifying the definition of some variables of

interest. Precisely, the main empirical findings above were based on a measure of net capital

stock, the ratio between operational stock of robots and net capital, and a computation of

GDP from the expenditure side. We now operate a substitution of gross capital for net capi-

tal stock and of output-side GDP for the expenditure-side computation. For what concerns

to the measure of robotisation, the dummy variable is now based on the ratio between the

operational stock of robots and employment levels by total engaged in ten thousand units,

to comply with other works in the literature (Graetz and Michaels 2018, Klenert et al. 2020)

and with IFR definition of robot density.

Tab. 13 and Tab. 14 are about preliminary empirical evidence of the Kaldor-Verdoorn’s

law as previously showed in Tab. 7 and Tab. 8. The existence of mechanisms à la Kaldor-

Verdoorn is confirmed and a little strengthened in Tab. 13. The channel linking the growth

in the capital-labour ratio to productivity improvements is at work and, if the magnitude of

the coefficients is very similar to what reported in Tab. 7, the same magnitude looks a little

larger when observing the effect of the first and second lag in ¤𝑘 on ¤𝑎. Moreover, the sig-

nificant and positive influence of the macro-level dynamics on labour productivity growth

17Regressions in Tab. 9 and Tab. 10 are equipped with Arellano and Bond (1991) autocorrelation tests (𝐴𝐵(1) and
𝐴𝐵(2)) and the Hansen test for over-identifying restrictions. The overall reliability of our estimates is witnessed
by the fact that there is no serial correlation of second order and the pool of instruments is exogenous. These asser-
tions come out from the non-rejection of the null hypothesis of both the 𝐴𝐵(2) and the Hansen tests. Furthermore,
we have reported the instrument count, whose value is always well below the number of cross-sectional units.
We use this rule of thumb to deal with the well-known problem of ”too many instruments” in GMM estimations
(Roodman 2009a,b).
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 −0.273∗∗∗ -0.0515 −0.264∗∗∗ −0.120∗∗∗ −0.166∗∗ -0.0879 −0.156∗∗∗ −0.0629∗∗∗

(0.0791) (0.113) (0.00402) (0.00626) (0.0684) (0.0915) (0.0126) (0.00488)

¤𝑎𝑖 𝑗𝑡−2 -0.0649 −0.0919∗∗∗ −0.100∗ −0.0556∗∗∗

(0.0559) (0.00693) (0.0523) (0.00395)

¤𝑘𝑖 𝑗𝑡 0.954∗∗ 0.833∗∗ 0.810∗∗∗ 0.783∗∗∗ -0.227 0.546∗ -0.134 0.539∗∗∗

(0.386) (0.341) (0.0661) (0.0643) (0.788) (0.305) (0.103) (0.0665)

¤𝑘𝑖 𝑗𝑡−1 -0.028 0.178 -0.0143 0.0227 0.584∗∗ -0.0984 0.590∗∗∗ 0.0134
(0.118) (0.279) (0.0298) (0.0332) (0.27) (0.306) (0.0653) (0.0232)

¤𝑘𝑖 𝑗𝑡−2 0.28 0.186∗∗∗ 0.649∗∗ 0.134∗∗∗

(0.232) (0.0309) (0.294) (0.027)

¤𝑌 𝑗𝑡 0.871∗∗ 0.351 0.796∗∗∗ 0.262∗∗∗ -0.0607 0.559∗ -0.0233 0.452∗∗∗

(0.416) (0.323) (0.0699) (0.0778) (0.573) (0.294) (0.0965) (0.0893)

¤𝑌 𝑗𝑡−1 -0.0614 0.627 −0.126∗∗∗ 0.031 0.461∗ 0.255 0.286∗∗∗ −0.141∗∗∗

(0.16) (0.385) (0.0475) (0.0498) (0.236) (0.35) (0.0782) (0.0495)

¤𝑌 𝑗𝑡−2 -0.0487 0.0487 0.097 0.0565
(0.318) (0.038) (0.238) (0.0363)

𝑑𝑖 𝑗𝑡 · ¤𝑘𝑖 𝑗𝑡 -0.562 -0.573 −0.516∗∗∗ −0.578∗∗∗ 0.654 -0.354 0.493∗∗∗ −0.309∗∗∗

(0.342) (0.367) (0.0714) (0.0818) (0.869) (0.374) (0.113) (0.0888)

𝑑𝑖 𝑗𝑡−1 · ¤𝑘𝑖 𝑗𝑡−1 0.098 -0.263 0.122∗∗∗ 0.139∗∗∗ −0.612∗ 0.0788 −0.630∗∗∗ 0.0978∗∗∗

(0.146) (0.462) (0.0359) (0.039) (0.37) (0.479) (0.0788) (0.0311)

𝑑𝑖 𝑗𝑡−2 · ¤𝑘𝑖 𝑗𝑡−2 -0.239 −0.179∗∗∗ −0.600∗∗ −0.139∗∗∗

(0.26) (0.0316) (0.282) (0.031)

𝑑𝑖 𝑗𝑡 · ¤𝑌 𝑗𝑡 0.45 1.006 0.287∗∗ 0.785∗∗∗ 1.975 0.699 1.669∗∗∗ 0.465∗∗∗

(0.623) (0.871) (0.117) (0.125) (1.219) (0.768) (0.131) (0.123)

𝑑𝑖 𝑗𝑡−1 · ¤𝑌 𝑗𝑡−1 -0.0215 -1.098 0.0334 0.045 −1.179∗∗ -0.395 −1.034∗∗∗ 0.0331
(0.255) (0.713) (0.0732) (0.0916) (0.599) (0.688) (0.124) (0.0734)

𝑑𝑖 𝑗𝑡−2 · ¤𝑌 𝑗𝑡−2 0.478 0.0388 0.118 −0.0917∗

(0.521) (0.0527) (0.446) (0.0502)

Constant -0.00843 -0.0146 -0.00156 0.00208
(0.0183) (0.0161) (0.0037) (0.00289)

Observations 2828 2610 2828 2610 3048 2828 3048 2828

Instruments 153 142 153 152 154 148 154 158

AB (1) −1.891∗ −2.63∗∗∗ −3.217∗∗∗ −4.009∗∗∗ −4.215∗∗∗ −2.721∗∗∗ −4.103∗∗∗ −3.94∗∗∗

AB (2) −2.276∗∗ 0.784 −3.512∗∗∗ 1.284 -1.132 0.887 -1.3 0.99

Hansen 131.2 107.7 131.2 115.7 127.7 113.6 127.7 111.8

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 9. Empirical findings (1)
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 −0.354∗∗∗ −0.295∗∗ −0.329∗∗∗ −0.210∗∗∗ −0.327∗∗∗ -0.202 −0.317∗∗∗ −0.263∗∗∗

(0.121) (0.14) (0.0175) (0.0523) (0.11) (0.191) (0.0238) (0.0584)

¤𝑎𝑖 𝑗𝑡−2 −0.309∗∗ -0.00641 −0.337∗∗∗ -0.0208 -0.137 0.118 −0.171∗∗∗ 0.0693
(0.146) (0.124) (0.0229) (0.0459) (0.163) (0.145) (0.0224) (0.0536)

¤𝑎𝑖 𝑗𝑡−3 -0.151 −0.301∗∗∗ −0.170∗∗∗ −0.130∗∗∗ -0.0409 0.132 −0.0488∗∗ 0.148∗∗∗

(0.122) (0.111) (0.0167) (0.0379) (0.153) (0.118) (0.019) (0.0526)

¤𝑎𝑖 𝑗𝑡−4 0.0405 0.286∗∗∗ 0.322∗ 0.275∗∗∗

(0.0798) (0.0393) (0.177) (0.0483)

¤𝑘𝑖 𝑗𝑡 0.915∗∗ 0.396 0.799∗∗∗ 0.729∗∗∗ 1.003∗∗ 1.103∗∗ 0.813∗∗∗ 1.257∗∗∗

(0.426) (0.41) (0.10) (0.138) (0.51) (0.54) (0.095) (0.202)

¤𝑘𝑖 𝑗𝑡−1 0.3 0.316 0.220∗∗∗ 0.529∗∗∗ 0.16 0.803∗ 0.147∗∗ 0.769∗∗∗

(0.32) (0.358) (0.0695) (0.147) (0.241) (0.473) (0.061) (0.199)

¤𝑘𝑖 𝑗𝑡−2 0.396 0.241 0.287∗∗∗ 0.576∗∗∗ 0.415 0.168 0.380∗∗∗ 0.607∗∗∗

(0.329) (0.267) (0.101) (0.115) (0.352) (0.295) (0.0884) (0.201)

¤𝑘𝑖 𝑗𝑡−3 0.0756 0.127 0.162∗∗ 0.238∗∗ -0.0195 0.128 0.00887 0.187
(0.103) (0.25) (0.0781) (0.119) (0.379) (0.33) (0.0964) (0.174)

¤𝑘𝑖 𝑗𝑡−4 -0.0319 −0.247∗ -0.747 -0.126
(0.125) (0.14) (0.569) (0.207)

¤𝑌 𝑗𝑡 0.528 -0.31 0.597∗∗∗ −0.600∗∗∗ 0.518∗ -0.172 0.468∗∗∗ 0.515∗∗

(0.338) (0.463) (0.125) (0.172) (0.272) (0.497) (0.0909) (0.234)

¤𝑌 𝑗𝑡−1 0.505 -0.191 0.286∗∗∗ -0.251 0.444 0.741∗ 0.221∗∗ 0.591∗∗∗

(0.373) (0.513) (0.105) (0.17) (0.361) (0.417) (0.102) (0.193)

¤𝑌 𝑗𝑡−2 0.15 0.141 0.167∗ -0.172 0.22 0.0689 0.303∗∗∗ -0.0208
(0.264) (0.31) (0.0908) (0.138) (0.302) (0.373) (0.0883) (0.185)

¤𝑌 𝑗𝑡−3 -0.168 -0.488 -0.112 −0.553∗∗∗ -0.102 -0.275 -0.0135 0.323∗

(0.192) (0.507) (0.094) (0.139) (0.294) (0.418) (0.0954) (0.192)

¤𝑌 𝑗𝑡−4 0.0393 −0.461∗∗∗ −0.694∗ 0.289
(0.176) (0.136) (0.368) (0.293)

𝑑𝑖 𝑗𝑡 · ¤𝑘𝑖 𝑗𝑡 −0.887∗∗ -0.528 −0.814∗∗∗ −1.073∗∗∗ -0.772 −1.144∗∗ −0.626∗∗∗ −1.122∗∗∗

(0.419) (0.437) (0.131) (0.182) (0.481) (0.577) (0.129) (0.247)

𝑑𝑖 𝑗𝑡−1 · ¤𝑘𝑖 𝑗𝑡−1 -0.498 -0.0602 −0.309∗∗∗ −0.494∗∗∗ -0.00564 -0.423 0.0631 -0.261
(0.417) (0.417) (0.0819) (0.156) (0.30) (0.482) (0.0755) (0.263)

𝑑𝑖 𝑗𝑡−2 · ¤𝑘𝑖 𝑗𝑡−2 -0.496 -0.30 −0.407∗∗∗ −0.600∗∗∗ -0.386 -0.24 −0.315∗∗∗ -0.394
(0.333) (0.3) (0.0906) (0.135) (0.371) (0.435) (0.0907) (0.249)

𝑑𝑖 𝑗𝑡−3 · ¤𝑘𝑖 𝑗𝑡−3 0.147 0.412 0.0864 0.091 0.179 0.129 0.145 0.0108
(0.126) (0.53) (0.082) (0.154) (0.381) (0.495) (0.0998) (0.236)

𝑑𝑖 𝑗𝑡−4 · ¤𝑘𝑖 𝑗𝑡−4 0.194 0.542∗∗∗ 0.714 0.156
(0.166) (0.149) (0.543) (0.213)

𝑑𝑖 𝑗𝑡 · ¤𝑌 𝑗𝑡 0.388 1.071 0.058 1.396∗∗∗ 0.865 1.660∗ 0.782∗∗∗ 1.064∗∗∗

(0.645) (0.782) (0.192) (0.29) (0.618) (0.946) (0.136) (0.352)

𝑑𝑖 𝑗𝑡−1 · ¤𝑌 𝑗𝑡−1 -0.698 -0.0341 −0.505∗∗∗ 0.123 -0.376 -0.761 -0.0876 -0.101
(0.553) (0.657) (0.156) (0.244) (0.634) (0.616) (0.172) (0.336)

𝑑𝑖 𝑗𝑡−2 · ¤𝑌 𝑗𝑡−2 -0.0035 -0.676 0.0235 0.17 0.0369 -0.0994 0.158 1.085∗∗∗

(0.478) (0.546) (0.127) (0.194) (0.496) (0.506) (0.14) (0.244)

𝑑𝑖 𝑗𝑡−3 · ¤𝑌 𝑗𝑡−3 0.383∗ 0.701 0.116 0.718∗∗∗ 0.0733 0.212 -0.0343 -0.357
(0.211) (0.95) (0.103) (0.196) (0.45) (0.69) (0.118) (0.24)

𝑑𝑖 𝑗𝑡−4 · ¤𝑌 𝑗𝑡−4 -0.0763 0.520∗∗∗ 0.573 -0.174
(0.315) (0.162) (0.488) (0.303)

Constant -0.0209 -0.00906 −0.0223∗∗∗ −0.0533∗∗∗

(0.0169) (0.0211) (0.00587) (0.0131)

Observations 2394 2182 2394 2182 2610 2394 2610 2394

Instruments 141 135 136 130 142 136 142 116

AB (1) −3.956∗∗∗ −2.433∗∗ −3.998∗∗∗ −3.619∗∗∗ −3.815∗∗∗ −2.37∗∗ −3.927∗∗∗ −3.093∗∗∗

AB (2) 0.419 -1.473 1.64 -1.333 -0.253 -0.538 0.0664 -0.441

Hansen 96.77 93.54 94.84 83.47 113.20 88.29 113.20 53.42

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 10. Empirical findings (2)
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM

onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

𝜂𝑡 0.392 0.260 0.028 -0.132 0.293∗∗∗ 0.205∗∗∗ -0.014 −0.343∗∗∗

(0.252) (0.289) (0.022) (0.232) (0.036) (0.036) (0.075) (0.010)

𝜂𝑡−1 0.070 -0.085 -0.198 0.256 0.107∗∗∗ 0.162∗∗∗ -0.089 0.035
(0.098) (0.301) (0.219) (0.344) (0.022) (0.022) (0.055) (0.080)

𝜂𝑡−2 0.041 -0.100 -0.059 0.007 −0.121∗∗ -0.024
(0.223) (0.244) (0.270) (0.021) (0.056) (0.074)

𝜂𝑡−3 0.222∗∗ 0.539 0.248∗∗∗ 0.329∗∗∗

(0.105) (0.422) (0.039) (0.077)

𝜂𝑡−4 0.162 0.295∗∗∗

(0.127) (0.065)

𝛾𝑡 1.320∗∗ 1.350∗ 0.915∗ 0.760 1.082∗∗∗ 1.047∗∗∗ 0.655∗∗∗ 0.796∗∗∗

(0.624) (0.724) (0.489) (0.542) (0.085) (0.085) (0.121) (0.193)

𝛾𝑡−1 -0.083 -0.470 -0.193 -0.225 -0.093 0.076 −0.219∗∗ −0.128
(0.206) (0.425) (0.349) (0.348) (0.057) (0.064) (0.103) (0.156)

𝛾𝑡−2 0.429 0.147 -0.534 0.087∗ 0.191 -0.001
(0.433) (0.431) (0.418) (0.049) (0.121) (0.145)

𝛾𝑡−3 0.215 0.214 0.004 0.164
(0.216) (0.548) (0.077) (0.125)

𝛾𝑡−4 -0.037 0.059
(0.271) (0.112)

Note: 𝜂𝑧 = 𝛽𝑧 + 𝜀𝑧 ; 𝛾𝑧 = 𝛿𝑧 + 𝜗𝑧 . Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05;
∗∗∗ p-value < 0.01.

Table 11. Combined effects from difference-GMM estimates

Dep. Var. : ¤𝑎𝑖 𝑗𝑡 S-GMM

onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

𝜂𝑡 0.427∗ 0.192 0.231 -0.041 0.360∗∗∗ 0.230∗∗∗ 0.187∗∗ 0.136
(0.236) (0.264) (0.219) (0.274) (0.051) (0.043) (0.078) (0.124)

𝜂𝑡−1 -0.029 -0.020 0.154 0.380 -0.040 0.111∗∗∗ 0.210∗∗∗ 0.508∗∗∗

(0.204) (0.313) (0.234) (0.406) (0.044) (0.021) (0.063) (0.151)

𝜂𝑡−2 0.049 0.029 -0.072 -0.005 0.065 0.213
(0.193) (0.256) (0.319) (0.021) (0.062) (0.158)

𝜂𝑡−3 0.160 0.258 0.154∗∗∗ 0.197
(0.158) (0.325) (0.052) (0.132)

𝜂𝑡−4 -0.033 0.030
(0.301) (0.106)

𝛾𝑡 1.914∗∗ 1.258∗ 1.383∗∗∗ 1.488∗∗∗ 1.645∗∗∗ 0.917∗∗∗ 1.250∗∗∗ 1.589∗∗∗

(0.859) ( 0.647) (0.482) (0.608) (0.095) (0.077) (0.106) (0.244)

𝛾𝑡−1 -0.717 -0.140 0.068 -0.020 −0.748∗∗∗ −0.108∗∗ 0.134 0.490∗∗

(0.446) (0.404) (0.374) (0.357) (0.090) (0.051) (0.121) (0.246)

𝛾𝑡−2 0.215 0.257 -0.030 -0.035 0.461∗∗∗ 1.065∗∗∗

(0.370) (0.426) (0.364) (0.044) (0.103) (0.190)

𝛾𝑡−3 -0.029 -0.064 -0.048 -0.035
(0.305) (0.408) (0.076) (0.179)

𝛾𝑡−4 -0.121 0.115
(0.412) (0.158)

Note: 𝜂𝑧 = 𝛽𝑧 + 𝜀𝑧 ; 𝛾𝑧 = 𝛿𝑧 + 𝜗𝑧 . Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗

p-value < 0.01.

Table 12. Combined effects from system-GMM estimates
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 -0.095 -0.134 −0.099∗∗∗ −0.142∗∗∗ −0.172∗∗∗ −0.304∗∗ −0.359∗∗∗ −0.307∗∗∗

(0.116) (0.131) (0.006) (0.014) (0.063) (0.153) (0.014) (0.014)

¤𝑎𝑖 𝑗𝑡−2 −0.228∗∗ −0.231∗∗∗ -0.18 −0.218∗∗∗

(0.093) (0.008) (0.123) (0.008)

¤𝑘𝑖 𝑗𝑡 0.395∗ 0.259 0.432∗∗∗ 0.264∗∗∗ 0.749∗∗ 0.093 0.356∗∗∗ 0.179∗∗∗

(0.215) (0.281) (0.041) (0.039) (0.333) (0.365) (0.034) (0.038)

¤𝑘𝑖 𝑗𝑡−1 0.034 -0.034 0.010 -0.060 -0.060 -0.182 0.130∗∗∗ -0.044
(0.081) (0.345) (0.022) (0.043) (0.089) (0.353) (0.048) (0.043)

¤𝑘𝑖 𝑗𝑡−2 0.068 0.056∗∗ 0.308 0.110∗∗∗

(0.081) (0.025) (0.226) (0.018)

¤𝑌 𝑗𝑡 0.199 0.414 0.169∗∗ 0.206∗∗ 0.451 0.307 0.381∗∗∗ 0.033
(0.527) (0.407) (0.073) (0.081) (0.447) (0.412) (0.081) (0.072)

¤𝑌 𝑗𝑡−1 -0.040 -0.566 -0.023 −0.276∗∗∗ 0.039 -0.39 0.116 −0.163∗∗

(0.158) (0.382) (0.046) (0.083) (0.147) (0.387) (0.072) (0.073)

¤𝑌 𝑗𝑡−2 0.315∗ 0.159∗∗∗ 0.711∗∗ 0.103∗∗∗

(0.166) (0.046) (0.354) (0.040)

Constant -0.001 -0.035 -0.006 0.005
(0.039) (0.040) (0.009) (0.009)

Observations 3609 3430 3609 3430 3790 3609 3790 3609

Instruments 107 103 107 103 111 104 105 107

AB (1) −2.319∗∗ −2.291∗∗ −2.777∗∗∗ −2.719∗∗∗ −2.835∗∗∗ −2.104∗∗ −2.638∗∗∗ −2.605∗∗∗

AB (2) -1.208 1.144 -0.81 0.56 -1.159 -0.592 -1.375 -0.314

Hansen 83.05 80.75 83.05 80.75 87.53 82.32 88.7 85.9

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 13. Preliminary empirical evidence: robustness check (1)

now is not limited to contemporaneous lag of ¤𝑌 , but involves also its second lag. However,

the association between productivity growth and the first lag in ¤𝑌 is negative when statisti-

cally significant. Therefore, the relationship displays a cyclical pattern.

When switching to less parsimonious specifications as in Tab. 14, again we find results

very close to Tab. 8. For what regards the technical progress component of the Kaldor-

Verdoorn’s law, we observe that a unit increase in the contemporaneous growth rate of the

capital-labour ratio is associated with a rise of about 0.33 to 0.73 in the growth rate of labour

productivity, when the coefficient is statistically significant. Nevertheless, the extension to

the third and fourth lag in ¤𝑘 in the regression raises concerns on the cyclicality of such rela-

tionship. A similar issue seems at work when we deal with the impact of GDP growth. The

relation is generally positive and significant, also when accounting for subsequent lags, but

we point to the negative and statistically significant coefficients corresponding the first and

third lag. Overall, the Verdoorn’s law is confirmed by this robustness check with yet some

care about the interpretation of the results.

Let us turn to the impact of robotisation. With respect to less-than-average robotised

industries, the evidence of Kaldor-Verdoorn’s mechanisms is somehow stronger than in

previous scenarios. Most GMM specifications in Tab. 15 tend to identify a significant and

positive relationship between ¤𝑎 and ¤𝑘 that extends to the second lag. It is important to

remember that in Tab. 9 we sometimes found a negative impact of past GDP growth upon
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 -0.263 −0.290∗ −0.251∗∗∗ −0.285∗∗∗ -0.283 −0.354∗ −0.183∗∗∗ −0.256∗∗∗

(0.160) (0.174) (0.022) (0.033) (0.200) (0.203) (0.007) (0.023)

¤𝑎𝑖 𝑗𝑡−2 -0.025 −0.210∗ −0.053∗∗∗ −0.241∗∗∗ −0.162∗ −0.256∗∗ −0.192∗∗∗ −0.209∗∗∗

(0.122) (0.112) (0.020) (0.033) (0.096) (0.102) (0.006) (0.013)

¤𝑎𝑖 𝑗𝑡−3 0.002 −0.280∗∗ -0.007 −0.282∗∗∗ 0.029 −0.266∗ 0.018∗∗∗ −0.021∗∗∗

(0.079) (0.131) (0.010) (0.038) (0.278) (0.139) (0.006) (0.008)

¤𝑎𝑖 𝑗𝑡−4 −0.176∗∗ −0.188∗∗∗ −0.200∗∗ −0.042∗∗∗

(0.088) (0.026) (0.088) (0.008)

¤𝑘𝑖 𝑗𝑡 0.325 0.52 0.328∗∗∗ 0.585∗∗∗ 0.491 0.727∗ 0.120∗∗∗ 0.627∗∗∗

(0.501) (0.421) (0.054) (0.069) (0.585) (0.441) (0.042) (0.044)

¤𝑘𝑖 𝑗𝑡−1 -0.264 -0.108 −0.201∗∗∗ −0.129∗ -0.045 -0.211 0.089∗∗∗ −0.200∗∗∗

(0.596) (0.645) (0.057) (0.072) (0.496) (0.549) (0.020) (0.046)

¤𝑘𝑖 𝑗𝑡−2 0.257 -0.082 0.212∗∗∗ −0.138∗ -0.122 -0.304 0.085∗∗∗ 0.109∗∗∗

(0.297) (0.331) (0.057) (0.077) (0.292) (0.320) (0.019) (0.022)

¤𝑘𝑖 𝑗𝑡−3 -0.137 0.081 −0.109∗∗∗ 0.107 -0.258 -0.199 -0.019 -0.022
(0.135) (0.234) (0.030) (0.067) (0.248) (0.282) (0.018) (0.021)

¤𝑘𝑖 𝑗𝑡−4 -0.143 -0.084 -0.352 0.092∗∗∗

(0.240) (0.067) (0.328) (0.024)

¤𝑌 𝑗𝑡 0.738 0.601 0.424∗∗∗ 0.387∗∗∗ 0.57 0.877∗∗ 0.317∗∗∗ 0.436∗∗∗

(0.528) (0.375) (0.113) (0.133) (0.374) (0.426) (0.086) (0.093)

¤𝑌 𝑗𝑡−1 -0.406 -0.191 −0.173∗∗ -0.002 -0.165 -0.255 0.055 -0.081
(0.551) (0.557) (0.083) (0.100) (0.467) (0.582) (0.042) (0.087)

¤𝑌 𝑗𝑡−2 0.176 0.258 0.045 0.224∗∗ 0.429 0.461∗ 0.046 0.162∗∗∗

(0.318) (0.269) (0.078) (0.092) (0.375) (0.242) (0.043) (0.048)

¤𝑌 𝑗𝑡−3 0.241 0.473 0.139∗∗ 0.121 0.476 0.492 0.051 0.092∗∗

(0.159) (0.455) (0.060) (0.120) (0.308) (0.421) (0.044) (0.041)

¤𝑌 𝑗𝑡−4 -0.248 -0.134 0.003 −0.092∗∗

(0.272) (0.103) (0.298) (0.042)

Constant 0.042 0.0003 0.051∗∗∗ −0.025∗∗∗

(0.061) (0.037) (0.010) (0.005)

Observations 3251 3073 3251 3073 3430 3251 3430 3251

Instruments 99 86 99 86 97 93 109 105

AB (1) −2.086∗∗ −2.074∗∗ −2.745∗∗∗ −2.693∗∗∗ −1.777∗ −2.114∗∗ −2.846∗∗∗ −2.738∗∗∗

AB (2) -1.525 -0.801 -0.897 -0.742 -0.429 -0.755 0.215 -0.052

Hansen 78.86 61.54 78.86 61.54 69.82 66.68 82.24 82.42

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 14. Preliminary empirical evidence: robustness check (2)
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 −0.306∗∗∗ -0.0257 −0.301∗∗∗ −0.0220∗∗∗ −0.458∗∗∗ -0.0656 −0.461∗∗∗ 0.0482∗∗∗

(0.0915) (0.110) (0.00172) (0.00637) (0.0924) (0.0615) (0.00646) (0.00583)

¤𝑎𝑖 𝑗𝑡−2 −0.0768∗∗ −0.0747∗∗∗ -0.121 −0.0313∗∗∗

(0.033) (0.00309) (0.0904) (0.00278)

¤𝑘𝑖 𝑗𝑡 0.821∗∗∗ 0.931∗∗∗ 0.809∗∗∗ 0.884∗∗∗ 0.342 0.662∗∗ 0.375∗∗∗ 0.785∗∗∗

(0.309) (0.337) (0.0306) (0.0335) (0.501) (0.323) (0.0478) (0.0386)

¤𝑘𝑖 𝑗𝑡−1 -0.0368 0.146 0.00777 0.104∗∗∗ 0.178 0.0961 0.143∗∗ -0.0631
(0.112) (0.411) (0.0278) (0.0386) (0.587) (0.446) (0.059) (0.0488)

¤𝑘𝑖 𝑗𝑡−2 0.13 0.167∗∗∗ 0.0505 0.0847∗∗∗

(0.115) (0.0388) (0.306) (0.0255)

¤𝑌 𝑗𝑡 0.857∗∗ 0.573∗ 0.856∗∗∗ 0.381∗∗∗ 0.239 0.568∗ 0.238∗∗∗ 0.384∗∗∗

(0.359) (0.346) (0.0373) (0.0723) (0.444) (0.327) (0.0656) (0.0606)

¤𝑌 𝑗𝑡−1 0.25 0.319 0.262∗∗∗ 0.180∗∗∗ 1.234 0.356 1.070∗∗∗ 0.0142
(0.21) (0.253) (0.0309) (0.0566) (0.782) (0.24) (0.0635) (0.0525)

¤𝑌 𝑗𝑡−2 0.129 0.133∗∗∗ 0.285 0.025
(0.138) (0.0444) (0.238) (0.0365)

𝑑𝑖 𝑗𝑡 · ¤𝑘𝑖 𝑗𝑡 -0.222 -0.353 −0.200∗∗∗ −0.318∗∗∗ 0.349 -0.0108 0.312∗∗∗ −0.229∗∗∗

(0.325) (0.451) (0.0354) (0.0335) (0.574) (0.586) (0.0542) (0.0379)

𝑑𝑖 𝑗𝑡−1 · ¤𝑘𝑖 𝑗𝑡−1 0.0419 -0.058 0.00379 -0.0123 0.081 0.197 0.11 0.226∗∗∗

(0.187) (0.595) (0.0291) (0.0352) (0.658) (0.489) (0.0691) (0.0556)

𝑑𝑖 𝑗𝑡−2 · ¤𝑘𝑖 𝑗𝑡−2 -0.0364 −0.0707∗∗ 0.231 -0.0242
(0.142) (0.0347) (0.251) (0.0241)

𝑑𝑖 𝑗𝑡 · ¤𝑌 𝑗𝑡 -0.029 0.356 -0.0395 0.494∗∗∗ 0.808 0.371 0.801∗∗∗ 0.329∗∗∗

(0.512) (0.729) (0.0386) (0.0767) (0.813) (0.568) (0.063) (0.0731)

𝑑𝑖 𝑗𝑡−1 · ¤𝑌 𝑗𝑡−1 -0.0928 -0.13 −0.120∗∗∗ -0.0118 -0.656 -0.033 −0.519∗∗∗ 0.215∗∗∗

(0.179) (0.432) (0.0394) (0.0629) (0.472) (0.375) (0.0655) (0.0703)

𝑑𝑖 𝑗𝑡−2 · ¤𝑌 𝑗𝑡−2 0.246 0.214∗∗∗ 0.219 0.182∗∗∗

(0.171) (0.0377) (0.371) (0.0385)

Constant -0.0111 -0.0064 −0.0125∗∗∗ -0.00094
(0.0261) (0.0188) (0.00241) (0.00208)

Observations 2027 1866 2027 1866 2190 2027 2190 2027

Instruments 153 147 153 147 149 148 149 153

AB (1) -0.972 −2.335∗∗ −2.046∗∗ −3.559∗∗∗ -1.27 −2.193∗∗ −2.621∗∗∗ −3.615∗∗∗

AB (2) −2.35∗∗ 0.742 −3.049∗∗∗ 0.898 −2.581∗∗∗ 0.433 −2.551∗∗ 0.42

Hansen 133.4 118.2 133.4 118.2 129.9 114.1 129.9 112.3

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 15. Robustness check (1)

current productivity changes. The results in the robustness check present no evidence of

that. Conversely, the coefficient is usually positive and different from zero.18 The inclusion

of further lags in the functional form tends to corroborate what previously showed (Tab. 16).

Albeit Verdoorn’s mechanisms keep on affecting the attainments in productivity, a form of

ciclicality in the overall relationship is again a possibility not to discard and consider for

further research.

Finally, Tab. 17 and Tab. 18 show the incidence of a robotisation higher than sector av-

erage. The outcomes are here somewhat different from the analysis of the previous subsec-

tion. On the one hand, we find once more the evidence that increasing robotisation weakens

the technical progress channel with a positive effect in terms of employment growth. In this

way, investments in new capital stock have greater benefits in terms of employment than

productivity if compared to less-robotised industries. On the other hand, however, even if

it is true that the macro-level route is strengthened, the results do not lead to arguments

18Though the magnitude is generally between zero and one, the twostep GMM specification in Tab. 15 point to a
unitary coefficient with respect to ¤𝑌 𝑗𝑡−1. This value envisages an effect that leads to technological unemployment.
It is then important to compare it to what reported for highly-robotised industries.
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM S-GMM

onestep twostep onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

¤𝑎𝑖 𝑗𝑡−1 −0.344∗∗ −0.332∗∗ −0.342∗∗∗ −0.241∗∗∗ −0.345∗∗ −0.286∗∗∗ −0.0474∗∗∗ −0.115∗∗∗

(0.172) (0.147) (0.0122) (0.0144) (0.152) (0.108) (0.00677) (0.0127)

¤𝑎𝑖 𝑗𝑡−2 −0.357∗∗∗ −0.235∗ −0.366∗∗∗ −0.189∗∗∗ -0.104 -0.10 −0.0798∗∗∗ −0.0257∗∗∗

(0.127) (0.129) (0.0103) (0.016) (0.15) (0.114) (0.00481) (0.00606)

¤𝑎𝑖 𝑗𝑡−3 -0.179 −0.434∗∗∗ −0.170∗∗∗ −0.0604∗∗∗ -0.0409 -0.0611 −0.0440∗∗∗ 0.0278∗∗∗

(0.119) (0.0917) (0.00632) (0.00811) (0.144) (0.161) (0.00471) (0.00583)

¤𝑎𝑖 𝑗𝑡−4 0.0129 0.0679∗∗∗ 0.0609 0.134∗∗∗

(0.10) (0.00806) (0.0929) (0.00656)

¤𝑘𝑖 𝑗𝑡 1.094∗∗∗ 0.393 1.072∗∗∗ 0.239∗∗∗ 1.294∗∗∗ 0.779∗∗ 1.156∗∗∗ 0.551∗∗∗

(0.387) (0.365) (0.0691) (0.0799) (0.501) (0.381) (0.0466) (0.0604)

¤𝑘𝑖 𝑗𝑡−1 -0.062 -0.166 -0.0043 0.223∗∗∗ 0.192 0.25 −0.117∗∗∗ 0.00989
(0.384) (0.473) (0.0557) (0.0766) (0.347) (0.376) (0.0402) (0.0675)

¤𝑘𝑖 𝑗𝑡−2 -0.127 0.0465 −0.125∗∗ 0.174∗∗∗ 0.00712 0.265 0.0681∗∗ 0.0273
(0.365) (0.384) (0.0546) (0.0592) (0.452) (0.451) (0.0271) (0.0279)

¤𝑘𝑖 𝑗𝑡−3 0.0734 0.705∗ 0.0612∗ 0.119∗∗∗ -0.171 0.51 −0.0531∗ −0.110∗∗∗

(0.116) (0.366) (0.0358) (0.0278) (0.406) (0.384) (0.0273) (0.0284)

¤𝑘𝑖 𝑗𝑡−4 -0.0504 0.146∗∗∗ -0.146 −0.0782∗∗

(0.125) (0.0384) (0.158) (0.0307)

¤𝑌 𝑗𝑡 0.715∗ 0.0174 0.692∗∗∗ -0.0477 0.619∗ 0.262 0.321∗∗∗ 0.0694
(0.428) (0.430) (0.0708) (0.103) (0.324) (0.362) (0.0618) (0.0903)

¤𝑌 𝑗𝑡−1 0.726∗ 0.0372 0.621∗∗∗ −0.423∗∗∗ 0.453 -0.0579 0.128∗∗ −0.249∗∗∗

(0.399) (0.553) (0.0979) (0.0868) (0.344) (0.533) (0.0505) (0.0687)

¤𝑌 𝑗𝑡−2 0.422 0.115 0.323∗∗∗ 0.0386 0.339 0.103 0.0225 0.0712∗∗

(0.383) (0.307) (0.066) (0.0606) (0.41) (0.273) (0.0298) (0.0359)

¤𝑌 𝑗𝑡−3 0.0181 0.397 -0.0513 -0.00809 -0.0643 0.193 −0.118∗∗∗ −0.174∗∗∗

(0.188) (0.30) (0.0599) (0.0602) (0.272) (0.341) (0.0382) (0.0468)

¤𝑌 𝑗𝑡−4 0.166 0.280∗∗∗ 0.321∗∗ 0.201∗∗∗

(0.158) (0.0467) (0.149) (0.045)

𝑑𝑖 𝑗𝑡 · ¤𝑘𝑖 𝑗𝑡 −0.685∗ -0.258 −0.689∗∗∗ −0.138∗ −0.800∗∗ -0.118 −0.646∗∗∗ −0.104∗

(0.365) (0.444) (0.0726) (0.0795) (0.387) (0.485) (0.0522) (0.0618)

𝑑𝑖 𝑗𝑡−1 · ¤𝑘𝑖 𝑗𝑡−1 0.188 0.929 0.134∗∗ 0.618∗∗∗ 0.0796 0.708 0.108∗∗ 0.661∗∗∗

(0.369) (0.594) (0.0541) (0.0704) (0.379) (0.618) (0.0425) (0.0701)

𝑑𝑖 𝑗𝑡−2 · ¤𝑘𝑖 𝑗𝑡−2 0.407 0.238 0.407∗∗∗ -0.0333 0.113 0.202 -0.0107 0.0331
(0.351) (0.399) (0.0576) (0.0622) (0.382) (0.373) (0.0332) (0.0312)

𝑑𝑖 𝑗𝑡−3 · ¤𝑘𝑖 𝑗𝑡−3 0.0874 -0.15 0.122∗∗∗ 0.164∗∗∗ 0.321 -0.0814 0.168∗∗∗ 0.305∗∗∗

(0.141) (0.310) (0.0355) (0.0335) (0.429) (0.248) (0.0289) (0.0365)

𝑑𝑖 𝑗𝑡−4 · ¤𝑘𝑖 𝑗𝑡−4 0.0579 −0.188∗∗∗ 0.0595 0.0158
(0.144) (0.0389) (0.171) (0.0316)

𝑑𝑖 𝑗𝑡 · ¤𝑌 𝑗𝑡 -0.0639 0.115 -0.0437 0.273∗∗∗ 0.255 0.706 0.347∗∗∗ 0.619∗∗∗

(0.463) (0.565) (0.0611) (0.103) (0.592) (0.655) (0.0584) (0.088)

𝑑𝑖 𝑗𝑡−1 · ¤𝑌 𝑗𝑡−1 -0.229 0.326 −0.178∗ 0.774∗∗∗ 0.0428 0.704 −0.107∗∗ 0.810∗∗∗

(0.447) (0.562) (0.0964) (0.107) (0.635) (0.857) (0.0506) (0.0827)

𝑑𝑖 𝑗𝑡−2 · ¤𝑌 𝑗𝑡−2 0.162 0.439 0.271∗∗∗ 0.465∗∗∗ 0.0698 0.396 0.0497 0.202∗∗∗

(0.324) (0.358) (0.0617) (0.0527) (0.354) (0.413) (0.0341) (0.0378)

𝑑𝑖 𝑗𝑡−3 · ¤𝑌 𝑗𝑡−3 0.223 -0.289 0.231∗∗∗ 0.054 0.680∗ 0.115 0.196∗∗∗ 0.132∗∗

(0.182) (0.46) (0.0536) (0.0574) (0.378) (0.466) (0.034) (0.0551)

𝑑𝑖 𝑗𝑡−4 · ¤𝑌 𝑗𝑡−4 -0.146 −0.254∗∗∗ −0.377∗ −0.296∗∗∗

(0.198) (0.051) (0.213) (0.0535)

Constant 0.00746 -0.00818 0.00332 -0.00021
(0.0111) (0.0166) (0.00223) (0.003)

Observations 1706 1549 1706 1549 1866 1706 1866 1706

Instruments 141 135 141 140 142 141 157 151

AB (1) −2.936∗∗∗ −2.18∗∗ −3.896∗∗∗ −5.065∗∗∗ −2.734∗∗∗ −2.022∗∗ −3.587∗∗∗ −4.563∗∗∗

AB (2) 0.0464 -0.712 0.44 0.745 -1.338 -0.585 -0.387 -0.776

Hansen 106.5 87.24 106.5 97.31 117.9 104.9 131.2 117.2

Note: Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.01.

Table 16. Robustness check (2)
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 D-GMM

onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

𝜂𝑡 0.590∗ 0.578 0.409 0.135 0.609∗∗∗ 0.566∗∗∗ 0.393∗∗∗ 0.101∗∗∗

(0.347) (0.489) (0.271) (0.270) (0.013) (0.011) (0.018) (0.024)

𝜂𝑡−1 0.005 0.088 0.126 0.763∗∗ 0.012 0.092∗∗∗ 0.130∗∗∗ 0.841∗∗∗

(0.146) (0.275) (0.202) (0.367) (0.012) (0.017) (0.020) (0.021)

𝜂𝑡−2 0.094 0.279 0.284 0.097∗∗∗ 0.281∗∗∗ 0.141∗∗∗

(0.096) (0.224) (0.217) (0.014) (0.017) (0.019)

𝜂𝑡−3 0.161 0.554∗ 0.183∗∗∗ 0.283∗∗∗

(0.115) (0.321) (0.015) (0.014)

𝜂𝑡−4 0.008 −0.043∗∗∗

(0.111) (0.015)

𝛾𝑡 0.828 0.929 0.651 0.132 0.816∗∗∗ 0.875∗∗∗ 0.649∗∗∗ 0.225∗∗∗

(0.700) (0.690) (0.421) (0.382) (0.037) (0.056) (0.056) (0.047)

𝛾𝑡−1 0.157 0.189 0.496 0.364 0.142∗∗∗ 0.168∗∗∗ 0.443∗∗∗ 0.351∗∗∗

(0.134) (0.362) (0.385) (0.328) (0.023) (0.045) (0.051) (0.056)

𝛾𝑡−2 0.375∗∗ 0.583 0.554∗ 0.347∗∗∗ 0.594∗∗∗ 0.504∗∗∗

(0.176) (0.441) (0.327) (0.032) (0.038) (0.042)

𝛾𝑡−3 0.241 0.108 0.180∗∗∗ 0.046
(0.196) (0.362) (0.039) 0.037)

𝛾𝑡−4 0.020 0.027
(0.214) (0.045)

Note: 𝜂𝑧 = 𝛽𝑧 + 𝜀𝑧 ; 𝛾𝑧 = 𝛿𝑧 + 𝜗𝑧 . Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05;
∗∗∗ p-value < 0.01.

Table 17. Combined effects from difference-GMM estimates: robustness check

about technological unemployment. Despite a single exception, the coefficient is always in

the range [0;1].

To summarize, the battery of robustness checks do confirm the previous results, in which

highly-robotised industries experience a weakening, at least, of the linkage between capital-

labour ratio and productivity. In contrast, we claim that, even if robotisation enhances the

macro-level channel through GDP growth, the effect is not sufficient to engender a techno-

logical unemployment dynamics as noticed prior. The somewhat puzzling results are in a

way coherent with the empirical literature on the effects of robotisation on productivity and

employment.

4 Conclusion

Even since Kaldor (1966), the Kaldor-Verdoorn’s law has fuelled an intense debate among

scholars interested in economic growth, catching-up and development issues, productivity

growth and the role exerted by aggregate demand in shaping productivity dynamics. If this

law has become widely accepted and embodied in most Post-Keynesian growth models,

the relentless structural changes undergone by major developed and developing capitalist

economies have always prompted researchers to detect empirical evidence of the mecha-

nisms behind the law. Its validity, despite the many alternative and sometimes contrasting
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Dep. Var. : ¤𝑎𝑖 𝑗𝑡 S-GMM

onestep twostep

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

𝜂𝑡 0.690∗ 0.652 0.494 0.661∗ 0.686∗∗∗ 0.556∗∗∗ 0.510∗∗∗ 0.447∗∗∗

(0.368) (0.413) (0.339) (0.351) (0.021) (0.013) (0.022) (0.021)

𝜂𝑡−1 0.259 0.293 0.271 0.959∗ 0.253∗∗∗ 0.163∗∗∗ -0.010 0.671∗∗∗

(0.201) (0.120) (0.395) (0.568) (0.029) (0.019) (0.015) (0.027)

𝜂𝑡−2 0.282 0.120 0.467 0.061∗∗∗ 0.057∗∗∗ 0.060∗∗∗

(0.249) (0.230) (0.302) (0.011) (0.012) (0.015)

𝜂𝑡−3 0.150 0.428 0.115∗∗∗ 0.194∗∗∗

(0.162) (0.329) (0.010) (0.014)

𝛾𝑡 1.047 0.938 0.874∗ 0.968∗∗ 1.039∗∗∗ 0.712∗∗∗ 0.668∗∗∗ 0.688∗∗∗

(0.699) (0.677) (0.484) (0.490) (0.043) (0.050) (0.039) (0.039)

𝛾𝑡−1 0.578 0.323 0.496 0.646 0.553∗∗∗ 0.229∗∗∗ 0.021 0.561∗∗∗

(0.571) (0.322) (0.407) (0.425) (0.046) (0.053) (0.026) (0.047)

𝛾𝑡−2 0.504 0.409 0.499 0.207∗∗∗ 0.072∗∗∗ 0.274∗∗∗

(0.346) (0.283) (0.342) (0.029) (0.025) (0.032)

𝛾𝑡 − 3 0.616∗∗ 0.308 0.078∗∗∗ -0.043
(0.272) (0.283) (0.025) (0.037)

𝛾𝑡−4 -0.056 −0.095∗∗

(0.207) (0.038)

Note: 𝜂𝑧 = 𝛽𝑧 + 𝜀𝑧 ; 𝛾𝑧 = 𝛿𝑧 + 𝜗𝑧 . Standard errors in brackets. Star significance: ∗ p-value < 0.1; ∗∗ p-value < 0.05;
∗∗∗ p-value < 0.01.

Table 18. Combined effects from system-GMM estimates: robustness check

specifications, has generally been confirmed as a stylized fact by the majority of the litera-

ture (McCombie et al. 2002, McCombie and Spreafico 2015). However, the research on the

topic overlooks to a large extent the arrival of new breakthrough technologies that belong

to the Fourth Industrial Revolution (Schwab 2016). The rising robotisation experienced by

many industries in most countries led us to wonder in which way this process affects the

route with which the Kaldor-Verdoorn’s law shapes labour-productivity dynamics, if any.

To fill this gap in the literature, we applied the GMM estimator to a panel of 17 industries

in 25 OECD countries from 1990 to 2018. The outcomes suggest that the industries with a

high and increasing robotisation are impacted differently according to the level of economic

activity we consider. On the one hand, the channel often labelled as ”technical-progress

function” (Kaldor 1957, 1961) seems weakened, if not removed, by the rising robotisation.

This result envisages benefits in terms of employment growth that are in agreement with

the empirical literature on the topic. On the other hand, a higher-than-average degree of

robotisation strengthens the macroeconomic route that relates productivity growth at the

industry-level to the increasing returns to scale that manifest as a general expansion of eco-

nomic activities through the many interactions between sectors.

Conversely, the cumulative-causation mechanisms are not invalidated and are still at work

for those industries with a level of robotisation lower than the corresponding average. Yet,

it is important to notice that, although our results are ”robust” from an econometric point of

view, the outcomes are sometimes of difficult interpretation and may depend on the specific
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econometric structure underlying the model. Moreover, we based our analysis on industry-

level data that do not allow us to properly disentangle the dynamics at firm level. We will

deal with these and further issues in future research.
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Pasteur (Strasbourg)(1971-2008).

Lorentz, A.: 2016, Nicholas Kaldor-Faits stylisés, progrès technique et croissance cumulative,
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