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Abstract 

This paper aims at providing further empirical evidence on the long-run relationship between 

technology and productivity by using a cliometric approach based on Granger’s causality. We 

test, for the first time, the sign and direction of causality between technological novelty, which 

is an important driver of radical technological innovations, and productivity, for the whole 20th 

century. Technological novelty is here proxied by the degree of component recombination of 

inventions. We find that the flow and stock of Technologically Novel Inventions (TNI) have an 

important, but temporary, positive impact on productivity, and that these inventions are 

originated by a handful of leading technological fields, mainly concentrated in the sectors of 

specialized suppliers of capital equipment and in science based sectors. Our results also show 

that, at the aggregate level, there is no causal relationship running from productivity to TNI, 

which suggests that radical technologies are exogenous, i.e., independent of productivity 

variations. Yet, at technological field level, we find that productivity may have a positive or 

negative impact on TNI. This instead suggests that some radical technologies are endogenous 

and, depending on the field, can rise during periods of growing productivity, when demand is 

higher, or during periods of decreasing productivity, when the opportunity profits of previous 

radical technologies are exhausted and demand is lower. However, among endogenous 

technologies, only those that rise during periods of decreasing productivity have a positive 

impact on productivity. We conclude by discussing implications on the productivity stagnation 

since the 1970s and the current productivity slowdown.  

Keywords: Technological novelty; Productivity; Radical technologies; Component 

recombination; Cliometrics; Granger’s causality 

JEL classification: O33; O40; C32; N12 
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1. Introduction 

The productivity stagnation experienced by advanced economies since the 1970s and 

the further productivity slowdown since the early 2000s (before the 2008 crisis) have raised 

interest in better understanding the sources of productivity growth. On the one hand, low 

productivity growth rates have led to low rates of economic growth and higher unemployment 

levels, which, in turn, have contributed to the stagnation of wages and demand, as well as to 

rising inequality. On the other hand, the intensification of the ecological crisis creates 

increasing pressure on sustained economic growth. Even within a perspective that shifts 

beyond economic growth as a goal (e.g., Jackson, 2019), productivity growth along selected 

environmental technologies is of critical importance to enable ecological transition. 

This paper aims at providing further empirical evidence on the long-run relationship 

between technology and productivity. Considering technological change as the primary source 

of productivity growth, several empirical contributions have analyzed the relationship 

between technology, usually proxied by R&D or patents, and productivity1. However, to our 

knowledge, none of these studies focuses on the concept of technological novelty. Yet 

technological novelty is an important driver of radical technological innovations (Verhoeven 

et al., 2016) and scholars from different approaches, often using different terminologies, have 

highlighted the role played by radically new technologies in originating long-run productivity 

growth and economic development (Crafts, 1995; Freeman and Perez, 1988; Helpman and 

Trajtenberg, 1994; Kuznets, 1930; Mensch, 1979; Mokyr, 1993; Perez, 2010; Schot and Kanger, 

2018; Schumpeter, 1939) 

In addition, empirical analyses of the relationship between technology and 

productivity mainly consist of cross-country, cross-industry or cross-firm studies, while we 

found scarce quantitative evidence adopting a long-run approach. In this work, we try to 

reduce this gap by using a cliometric approach, which combines economic theory and 

quantitative methods to the study of historical facts. Cliometrics is, more precisely, the use of 

causal explanations embedded in economic models in order to screen the relative importance 

of various factors believed to have been operative in a given historical situation (Diebolt, 

                                                           
1 Without pretending to be exhaustive, see for example Añón Higón, 2007; Antonelli et al., 2010; Castellacci, 
2010; Coad et al., 2016; Crespi and Pianta, 2008; Griliches, 1984; Hall and Mairesse, 1995; Hasan and Tucci, 
2010; Verspagen, 1995; Baumann and Kritikos, 2016; Bogliacino and Pianta, 2011; Morris, 2018. 
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2016). The debate on the determinants of economic growth has always been central among 

cliometricians (Conrad and Meyer, 1958; Fogel, 1964) and has recently known an important 

expansion (Diebolt and Hagemann, 2019). Here, we intend to contribute to this debate by 

analyzing the relationship between technological novelty, a concept developed by innovation 

scholars, and productivity. 

We firstly use patent data to build a number of variables capturing the degree of 

technological novelty of inventions. Following Verhoeven et al. (2016), technological novelty 

is measured by the degree of component recombination of inventions, so that an invention is 

considered to be technologically novel if it combines in an original way existing technological 

components. Secondly, we test the sign and direction of causality between Technologically 

Novel Inventions (TNI) and productivity over the whole 20th century, at the aggregate and 

technological field level, through Granger’s analysis. The study is conducted on the USA, the 

economic and technological leader over the considered time period.  

Based on the assumption that radical technologies typically emerge from inventions 

that introduce a novel technological approach (Arthur, 2007; Verhoeven et al., 2016), our 

results should provide empirical evidence on the sign and direction of causality between 

radical technologies and productivity. TNI are an imperfect indicator of radical technologies 

since not all TNI result in radical innovations. To overcome, at least partly, this limitation, we 

use a measure of technological novelty validated by previous studies as potentially capable of 

driving a radical technological change (Verhoeven et al., 2016). 

With respect to causality running from radical technologies to productivity, scholars 

seem to agree that radical technologies cause a temporary acceleration of productivity (Crafts, 

1995; Freeman and Perez, 1988; Helpman and Trajtenberg, 1994; Kuznets, 1930; Mensch, 

1979; Mokyr, 1993; Perez, 2010; Schumpeter, 1939; Schot and Kanger, 2018). There seems to 

be agreement also on the causal mechanism behind this relationship: radical technologies 

generate a stream of investments in more incremental innovations, which originate new, 

more productive, leading sectors and have a vast impact on user sectors. Though there is a 

sufficient theoretical consensus on this issue, only a few quantitative studies have tested it 

adopting a long-run approach. 
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With respect to causality running from productivity to radical technologies, theoretical 

consensus is less solid. While most of the authors agree that incremental innovations are 

endogenous, positions diverge with regard to radical innovations. In some works, radical 

innovations are random or exogenous (Clark et al., 1981; Crafts, 1995; Helpman and 

Trajtenberg, 1994; Kuznets, 1930; Mokyr, 1993; Schumpeter, 1939; Silverberg and Lehnert, 

1993; Aghion et al., 1998; Caiani et al., 2014), that is, there is no causal relationship running 

from productivity growth to radical innovations. In other studies, radical innovations are, at 

least partly, endogenous (Mensch, 1979; Saviotti and Pyka, 2013, 2004; Carlaw and Lipsey, 

2006; Perez, 2002; Schot and Kanger, 2018; Schaefer et al., 2014), and, according to many of 

these works, are more likely to rise during periods of slow productivity growth, when the 

opportunity profits of former radical technologies are exhausted, market are saturated, and 

demand for existing products is low. On the other hand, even if they refer to technical change 

in general (without distinguishing between radical and incremental changes), a number of 

evolutionary agent-based models (e.g., Dosi et al., 2010; Lorentz et al., 2016) and empirical 

studies (see Crespi and Pianta, 2008) have highlighted the importance of demand in 

motivating innovative investments and fostering productivity. Here, radical technologies could 

also rise during periods of high productivity growth, when demand is higher and risk lower. To 

provide some empirical evidence on this complex issue, we test whether there is a causal 

relationship running from productivity to TNI and what is its sign. 

In most of the above-mentioned literature, sectoral dynamics plays a central role in 

determining the relationship between radical technologies and productivity. Therefore, we 

compute our indicator of technological novelty at the level of technological field (WIPO 

classification), and test the sign and direction of causality between TNI in each technological 

field and productivity. This analysis informs us on 1) whether TNI that cause productivity 

acceleration are concentrated in a restricted number of leading technologies; 2) whether TNI 

may be endogenous at the level of technological field, that is, whether productivity causes, 

positively or negatively, TNI in some specific field. Finally, by using a concordance matrix, we 

link technological fields to their main industrial sectors (NACE 2-digits), and, by relying on the 

revised Pavitt (1984) taxonomy (Bogliacino and Pianta 2011, 2016), we try to shed light on the 

mechanisms through which technological novelty in these sectors affects productivity. 
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Our results indicate that the flow and stock of TNI have an important, but temporary, 

positive impact on productivity, and that these inventions are originated by a handful of 

leading technological fields, mainly concentrated in the sectors of specialized suppliers of 

capital equipment and in science based sectors. Our study also shows that, at the aggregate 

level, there is no causal relationship running from productivity to TNI, which suggests that 

radical technologies are exogenous, i.e., independent of productivity variations. Yet, at 

technological field level, we find that productivity may have a positive or negative impact on 

TNI. This instead suggests that some radical technologies are endogenous and can rise during 

periods of growing or decreasing productivity, depending on the field. The rest of the paper is 

organized as follows. Section 2 reviews the relevant literature and formulate the hypotheses. 

Section 3 details the data, the indicator of technological novelty, and the methodology. 

Section 4 illustrates the results of the empirical analysis, and section 5 concludes. 

 

 

2. Literature review and hypotheses 

The idea that radical technologies are at the origin of long-run economic growth and 

structural change dates back to Kuznets. In his Secular Movements in Production and Prices 

(1930), Kuznets sees revolutionary inventions or discoveries as fundamental changes that 

mark the beginning of “a new era”: “When such a change occurs, the industry grows very 

rapidly. The innovation is rarely perfect at the start, and further improvements take place 

continually after the main invention or discovery. The use of the continually improving and 

cheapening commodity spreads to larger areas, overcoming obstacles which may have limited 

demand in the past. ... But with all this, after a time the vigorous expansion slackens and 

further development is not so rapid” (Kuznets 1930, p. 9-10).  

According to Kuznets, fundamental innovations are randomly distributed in time. 

Schumpeter (1939), instead, advanced the hypothesis that radical innovations tend to come 

about in clusters because of the existence of technical interdependencies among 

technologies. Such clusters create new fast growing leading sectors and are the main 

determinants of Kondratieff (1935) long-waves i.e., regular upswings and downswings of 

economic activity of about 40-60 years. In Schumpeter's view, radical innovations are 
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essentially exogenous: they are introduced by extraordinary individual entrepreneurs that 

create “new combinations” by using exogenously generated inventions. Although radical 

innovations also have a disruptive impact on existing technologies and sectors, the “creative 

impact” eventually prevails, leading to increased investments in innovation and to upswings 

of economic activity. Nevertheless, after some time, imitators erode the monopoly profits 

created by radical innovations and new markets saturate, thus the economy enters in the 

downswing phase of long-waves.  

The idea that major inventions are at the origin of industrial revolutions is present in 

the economic history literature as well. Mokyr (1993) argues that "macro-inventions" were 

crucial to productivity and economic growth during the First Industrial Revolution. He suggests 

that "technological definition of the Industrial Revolution is a clustering of macro-inventions 

leading to an acceleration in micro-inventions”, where "macro-inventions are those in which 

a radical new idea, without clear precedent, emerges more or less ab nihilo” (Mokyr 1993). 

So, macro-inventions are exogenous, while micro-inventions depend on economic factors and 

are the main source of productivity accelerations. Nevertheless, micro-inventions are subject 

to diminishing returns and, in the absence of periodic macro-inventions, productivity growth 

would ultimately be zero: “Our expectation would be that the technological changes 

associated with the Industrial Revolution would tend to promote a period of steadily 

increasing output and productivity growth as learning and diffusion took place followed by 

decreasing output and productivity growth as micro-inventions ran into diminishing returns” 

(Crafts, 1995).  

Radical innovations assume an even more important role in historical analyses of Neo-

Schumpeterian scholars (Freeman and Louca, 2001; Freeman and Perez, 1988; Perez, 2010). 

In this context, clusters of interrelated radical technologies are at the origin of technological 

revolutions, structural changes, major increases of productivity, and long-term economic 

growth. Radical innovations also give rise to new “Techno-Economic Paradigms” (TEP), i.e., a 

new “shared common sense for decision making” (Perez, 2010) that transforms the entire 

institutional framework of the economy and shapes a new phase of economic development. 

Similarly, but with a specific focus on sustainable transition, in the Multi-Level Perspective 

(MLP) framework (Markard et al., 2012; Rip and Kemp, 1998) radical technologies developed 

at “niche level” play a central role in explaining long-term shifts from one “socio-technical 
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system” to another, and are therefore considered of critical importance in order to enable 

transition towards a sustainable system of production and consumption. 

Bresnahan and Trajtenberg (1995) have used the concept of “General-Purpose 

Technology (GPTs)” to capture the relationship between major technological changes and 

productivity growth: “In any given “era” there typically exist a handful of technologies that 

play a far-reaching role in fostering technical change in a wide range of user sectors, thereby 

bringing about sustained and pervasive productivity gains” (Helpman and Trajtenberg, 1994, 

p. 1). Here, periods of slow productivity growth are mainly associated with introduction of 

some GPTs, which start producing high productivity gains only after an installation period that 

may be relatively long (David, 1990). 

In sum, scholars seem to agree on both the idea that radical technologies (or clusters 

of radical technologies) are at the origin of long-run productivity growth and the basic causal 

mechanism behind this relationship: radical technologies generate a stream of investment in 

more incremental innovations, which create new, more productive, leading sectors and have 

a vast impact on user sectors, thus determining an acceleration of productivity. There seems 

to be agreement also on the fact that 1) there exist a lag between the emergence of radical 

technologies and their impact on productivity; 2) the impact of radical technologies on 

productivity has limited time length, that is, after some time, it tends to decrease due to 

diminishing returns. Although there is a sufficient theoretical consensus on these issues, 

quantitative evidence adopting a long-run approach remains scarce. In order to contribute to 

fill this gap, and based on the assumption that TNI are a proxy of radical technological 

innovations (see section 1 and 3), we test the following hypothesis: 

HP1: Technologically novel inventions cause a temporary acceleration of productivity  

In all the above-surveyed studies, incremental innovations are endogenous, that is, 

they depend on economic factors. On the contrary, radical innovations are often considered 

as exogenous (Crafts, 1995; Kuznets, 1930; Mokyr, 1993; Schumpeter, 1939), that is, 

independent of economic factors: causality runs from radical innovations to productivity 

growth, but there is no causal relationship running from productivity growth to radical 

innovations. According to Mensch (1979) instead, radical innovations are endogenous, and, 

more specifically, dependent on periods of economic depression. In Mensch’s view, firms 
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resort to the highly risky strategy of investing in radical innovations only during depression 

periods, when the opportunity profits of former radical technologies are exhausted, markets 

are saturated, and demand for existing products is low. Here, causality also runs from 

economic variables (depression) to innovation (radical innovations). 

Although many studies have dealt with the task of empirically testing the Mensch’s 

hypothesis (e.g., Kleinknecht, 1990; Korotayev et al., 2011; Silverberg and Lehnert, 1993; 

Silverberg and Verspagen, 2003; Solomou, 1986), they have obtained conflicting conclusions. 

Moreover, the hypothesis has been highly criticized on the theoretical side as well. For 

example, Clark et al. (1981) argued that the emergence of radical innovations is mainly due to 

relatively exogenous factors, including scientific and technological breakthroughs, and periods 

of very strong demand, such as booms and wars, when investing in radical innovation is less 

risky.  

Within the TEP framework, the exhaustion of technological opportunities of a 

paradigm represents an important endogenous mechanism explaining paradigm shifts, but 

exogenous factors, in particular government policies, also play a decisive role (Perez, 2002). 

The MLP acknowledges the same endogenous mechanism of Perez (2002), but emphasizes 

the importance of exogenous factors in determining the transition to a new socio-technical 

system, which comes about through “a specific combination and sequence of endogenous and 

exogenous sources of change” (Schot and Kangera, 2018). Exogenous factors, i.e., the 

“landscape”, include macro-trends such as globalization, urbanization, and climate change, as 

well as events like wars, natural disasters, and economic crises. As landscape pressures 

destabilize established regimes, new opportunities are created for niche technologies 

containing the promise of new regimes, eventually resulting in regime-shifts (Schot and 

Kangera 2018). 

In evolutionary models of technological change and long-run development, the 

emergence of radical innovations can be either exogenous (Caiani et al., 2014; Silverberg and 

Lehnert, 1993) or endogenous (Saviotti and Pyka, 2013, 2004). In the latter case, the declining 

profits opportunities, caused by market saturation and low demand, provide incentives to 

invest in radically new sectors and technologies. On the other hand, a number of evolutionary 

agent-based models (Dosi et al., 2010; Lorentz et al., 2016) and empirical studies (see Crespi 

and Pianta, 2008 for a discussion and references) have highlighted the importance of demand 
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in motivating innovative investment and in fostering productivity, although these works refer 

to technical change in general, without distinguishing between radical and incremental 

changes. In this perspective, radical technologies could also emerge in periods of high 

economic growth, when demand is higher and risk lower. 

Finally, within the GPTs framework, in the first works the arrival of GPTs is modelled as 

exogenous: these arrive at predetermined intervals (Helpman and Trajtenberg, 1994) or with 

a certain probability (Aghion and Howitt, 1998). However, in more recent articles, economic 

growth is driven by a succession of endogenously generated GPTs. For example, in Carlaw and 

Lipsey (2006), GPTs arrive at randomly determined times but with a productivity that is 

determined by the amount of fundamental research endogenously generated since the last 

GPT (and a random component), while in Schaefer et al. (2014) GPTs arise stochastically 

depending on the stock of applied knowledge. 

In short, in some works radical innovations are random or exogenous, while in others, 

they are, at least partly, endogenous. In addition, according to some scholars, firms are more 

likely to invest in radical innovations during periods of slow economic growth, when the 

opportunity profits of former radical technologies are exhausted, market are saturated, and 

demand for existing products is low, while for others, radical innovations may also rise during 

periods of high economic growth, when demand is higher and risk is lower. In both cases, 

demand seems to play a key role. In order to provide some preliminary empirical evidence on 

this complex issue, we test the following hypothesis: 

HP2: Technologically novel inventions are exogenous, that is, independent of productivity 

variations 

This issue is important because if radical innovations are exogenous, then 

technological revolutions, structural changes, and accelerations of economic growth would be 

the result of random or historically unique events that will not necessarily repeat in the future, 

e.g., the Second World War (Epicoco, 2020). On the contrary, if radical innovations are, at least 

partly, endogenous, then the economic system would tend to generate endogenously, and 

therefore recurrently, technological revolutions, structural change, and accelerations of 

economic growth (Epicoco, 2020).  
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Finally, all the above-surveyed literature assigns to sectoral dynamics a central role in 

determining the relationship between radical technologies and productivity growth: radical 

technologies are expected to create new, more productive, leading sectors, which drive 

productivity accelerations. To provide some evidence on such sectoral dynamics, we compute 

our indicator of technological novelty at the level of technological field (WIPO classification), 

and test the following hypothesis:  

HP3: Technologically novel inventions that cause productivity acceleration are concentrated 

in a restricted number of leading technological fields  

With respect to causality running in the opposite direction, from productivity to radical 

technologies, we test whether the emergence of radical technologies in some specific 

technological fields depends on productivity variations. Even if, at the aggregate level, radical 

innovations may result exogenous, they may be endogenous at the level of technological field, 

that is, productivity variations may cause (positively or negatively) radical innovations in some 

specific field. Hence, our last hypothesis to test is the following: 

HP4: Technologically novel inventions may be endogenous at the level of technological field, 

that is, dependent of productivity variations 

 

 

3. Data, indicator of technological novelty, and methodology 

3.1. Data 

To test the above-mentioned hypotheses, we have used data on Total Factor 

Productivity and patent data from 1900 to 2000. The analysis focuses on the USA, the 

economic and technological leader over the considered time period. Total Factor Productivity 

measures the growth of total output not caused by traditionally measured inputs of labor and 

capital, and it is calculated as a residual. It is a measure of the impact on economic growth of 

all unmeasured factors and, among these, of technological change. Therefore, Total Factor 

Productivity is a better proxy, compared to labor productivity, of that part of economic growth 

generated by technological change. For this work, we have used data on total factor 

productivity per hours worked (TFPHW) provided by Bergeaud et al. (2016). 
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Patent data have well-known limitations as a proxy of innovative activity because not 

all innovations are patented and not all patented inventions reach the market. Moreover, the 

propensity to patent is not constant over time and may be affected by a variety of factors 

(strategic behavior of firms, changes in IP legislation, wars, etc.). And yet, patent data remain 

the best proxy of innovative activity available for long time periods and are widely used in 

innovation studies. In this paper, we have used data on US patents granted by the USPTO by 

priority year. Data have been extracted from the CRIOS dataset  (Coffano and Tarasconi, 2014). 

 

3.2. Indicator of technological novelty  

In order to test our hypotheses, we need to identify TNI. According to many innovation 

scholars, technological novelty is the result of a recombinant search process, that is, a process 

of continuous recombination of new and existing knowledge and technologies (e.g., Arthur, 

2007; Nelson and Winter, 1982; Schumpeter, 1939). The concept of technology brokering 

(Hargadon and Sutton, 1997) refers, more specifically, to the process of creation of 

innovations by combining in an original way existing technological components. Therefore, 

the empirical literature has widely used the degree of component recombination to identify 

breakthrough inventions and to analyze different aspects of the recombinant process (Arts 

and Veugelers, 2015; Fleming, 2001; Keijl et al., 2016; Strumsky and Lobo, 2015; Verhoeven 

et al., 2016). 

In this paper, following Verhoeven et al. (2016), an invention is considered to be 

technologically novel if the applied combination of components is different from those applied 

in previous inventions. Verhoeven et al. (2016) have tested the validity of this indicator and 

have shown that the creation of new combinations of components leads to a significantly 

higher likelihood of breakthroughs. Like in Verhoeven et al. (2016), we have operationalized 

the above-mentioned indicator by using the IPC-codes (International Patent Classification 

codes) to which patents are assigned, so that the number of IPC-codes assigned to a patent is 

a proxy of the components used to develop the invention, while recombination is proxied by 

the number of new (previously unconnected) pairs of IPC-codes. The number of new pairs of 

IPC-codes also depends on the number of IPC-codes to which a patent is assigned. This, in 

turn, depends on the number of existing IPC-codes, which typically grows over time. 
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Therefore, we have normalized our measure of technological novelty by dividing the number 

of new IPC pairs contained in a patent by the number of possible IPC pairs contained in that 

patent2. Our indicator of Recombinant Novelty (RN) is the following: 

 

RN =
Number of previously unconnected pairs of IPC-codes 

Number of possible pairs of IPC-codes 
 

 

On the basis of this indicator, we have built a number of variables, at the aggregate 

and technological field level, capturing flows and stocks of TNI. We have then tested the 

relationship among these variables and productivity (TFPHW) by using Granger’s causality. The 

most important variable is the annual flow of top 1% patents with the highest level of RN 

(T1rec_flow), which is expected to approximate the annual flow of TNI. T1rec_flow is a subset 

of a second variable: the annual flow of patents with positive RN (Rec_flow). Rec_flow 

contains all T1rec_flow patents, but it also includes patents with a lower (even if positive) 

degree of RN. Besides flows, we have tested the same variables in stocks3: the annual stock of 

top 1% patents with the highest level of RN (T1rec_stock) and the annual stock of patents with 

positive RN (Rec_stock). Both flows and stocks have been tested in absolute value and as a 

percentage of annual flows and stocks of patents.  

In addition, we have tested causality between TFPHW and 1) the annual flow and stock 

of patents (Pat_flow and Pat_stock); 2) the annual flow of patents that introduced a new IPC-

code (New_ipc). The number of patents may be indicative of the number of inventions, while 

patent stock should approximate the stock of inventions. New_ipc is a variable that does not 

directly rely on our indicator of RN since it does not imply any recombination among 

                                                           
2 As an example, consider Patent US 4234565 with priority year 1977. The patent is assigned to three IPC codes 
(A23K001; C08F220; A61K009) from which three combinations can be identified: (A23K001; C08F220), 
(A23K001; A61K009) and (A61K009; C08F220). Since only the first combination is new (it has never been used 
by patents with priority year before 1977), the recombinant novelty index is 1/3 = .33, that is, 1/3 of the 
combinations is new.  
3 The stock has been computed following the perpetual inventory method 𝐾௧ = (1 − 𝛿)𝐾௧ିଵ + 𝑅௧, where K is 
the stock of top 1% patents with the highest level of RN at time t, R denotes the flow of top 1% patents with the 
highest level of RN at time t, and 𝛿 is a depreciation rate. For the initial stock, the value is computed based on a 
depreciation and growth rate as 𝐾௧ୀ଴ ≅

ோబ

ఋା௚
. We applied the depreciation rate (15%) usually used for computing 

knowledge stocks  (Hall et al., 2010). 
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components. However, since components are approximated by IPC-codes, patents that 

introduced a new IPC-code should capture inventions that introduced a new component. 

Therefore, we have tested whether the annual flow of these inventions has a causal 

relationship with productivity. Tab. 1 contains the list of our variables and their description. 

Finally, we have calculated our main variable of interest, T1rec_flow, at technological field 

level by using the IPC8 Technology Concordance Table provided by WIPO, which attributes 

patents to the 35 technological fields (IPC_35) on the basis of their IPC-codes (Schmoch, 2008). 

Tab. 1 in the Appendix shows the list of these fields. From CRIOS dataset we have extracted 

information on the WIPO technological fields to which T1rec_flow patents have been 

assigned4, so that to obtain a variable that proxies the annual flow of top 1% patents with the 

highest level of RN for each technological field. 

 

Tab. 1. List of variables 

TFPHW Annual TFP per Hours Worked 

Flows  

Pat_flow Annual flow of patents granted by the USPTO by priority year 

Rec_flow Annual flow of patents with positive RN 

Rec_flow% Annual flow of patents with positive RN, % of annual patent flow 

T1rec_flow Annual flow of top 1% patents with the highest level of RN 

T1rec_flow% Annual flow of top 1% patents with the highest level of RN, % of annual patent flow 

New_ipc Annual flow of patents that introduced a new IPC-code 

Stocks  

Pat_stock Annual stock of patents granted by the USPTO by priority year 

Rec_stock Annual stock of patents with positive RN 

Rec_stock% Annual stock of patents with positive RN, % of annual patent stock 

T1rec_stock Annual stock of top 1% patents with the highest level of RN 

T1rec_stock% Annual stock of top 1% patents with the highest level of RN, % of annual patent stock 

 

 

                                                           
4 We have applied fractional count to patents assigned to more than one technological field. 
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3.3. Methodology 

Granger’s causality requires that we work within the framework of the non-structural 

VAR introduced into the historical research by (Eckstein et al., 1984)5. Non-structural VAR 

models present the advantage to take into account the intrinsic structure of the series and the 

dynamical effects between variables offering more reliable analyses at the dynamical level 

than traditional models.6 They also offer the possibility of considering all causal relationships 

between variables without a priori on their potential endogeneity. In a VAR model variables 

are both exogenous and endogenous.7 Despite their historical opposition, there is a link 

between non-structural and structural model and it’s easy to move from one to another 

(Hendry and Mizon, 1993; Monfort and Rabemananjara, 1990). In such models each equation 

describes the evolution of a variable in function of its own lagged values and of the lagged 

values of other variables of the system.  

The use of this type of model requires beforehand to test for various assumptions. First 

of all it is necessary to work with stationary variables8. Therefore, we use the unit root test of 

Elliott et al. (1996), which is considered more efficient (Salanié, 1999) than the classic test of 

Dickey and Fuller (1979). Once variables are stationary we select the optimal number of lags 

which needs to be sufficiently large for residuals to become white noises. Several criteria 

contribute to determine optimal lags. All of them are based on the maximization of the log-

likelihood function. Next, presence of cointegration relationship(s)9 has to be tested (Engle 

and Granger, 1991, 1987) and, if necessary, corrected (Vector Error Correction Model) in order 

to avoid any problem of fallacious regressions (Newbold and Granger, 1974).  We use the 

                                                           
5 “The methodology of vector autoregression appears useful for studying historical series on climatic, economic 
and demographic variables where we do not yet have a sufficient theoretical foundation for specifying and 
estimating structural models”, p. 295. 
6 The intrinsic structure of the series is related to its identification in the ARIMA classification (Box and Jenkins, 
1976; Newbold and Granger, 1974). 
7 Non-structural VAR models are sometimes criticized for requiring to include in the model a number of variables 
matching the degree of freedom in order to avoid estimation problems (Johnston and Dinardo, 1999), and for 
the lack of theory on which they rely. 
8 A 𝑋௧ process is known as stationary if all its moments are invariants for any change of the origin of time. There 
are two types of non-stationary processes: the TS processes (Trend Stationary Processes) which present non-
stationarity of the deterministic type and the DS processes (Difference Stationary Processes) for which non-
stationarity is due to a random type. These processes are respectively stationarized by a deviation from the 
deterministic trend and with a differences filter. In this last case, the number of filters indicates the order of 
integration of the variable. A variable is integrated of order "𝐷" if it is necessary to differentiate it "D" times to 
make it stationary. 
9 Variables are said to be cointegrated if they exhibit long-run stable relationship(s), namely if they share common 
trends. 
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Johansen test (1988). It is then possible to consider the dynamic analysis and the causality 

analysis (short term relationship)10. There are two approaches to causality (Granger, 1969; 

Sims, 1980), which are generally equivalent (Bruneau and C., 1996). We choose here a Granger 

test (1969). 

The main difference between correlation and causality is the temporality. Granger-

Sims causality relies on the fundamental axiom that ‘the past and present may cause the 

future but the future cannot cause the past’ (Granger, 1980, p. 330). It’s the temporal ordering 

that allows interpreting dependence as a causal relationship (Kuersteiner, 2010). It can be 

explained by the fact that correlation is a symmetric concept without information about the 

way of influence, whereas causal way is possible through “the arrow of time” (Granger 1980 

p. 349). In order to study the direction and sign of causality, we investigate how our variable 

of interest reacts when a change occurs on the second variable. Consider a two-variable model 

as follows:  

 ൤
𝑋௧

𝑌௧
൨ = ൤

𝐴ଵ 𝐵ଵ

𝐶ଵ 𝐷ଵ
൨ ൤

𝑋௧ିଵ

𝑌௧ିଵ
൨ + ൤

𝐴ଶ 𝐵ଶ

𝐶ଶ 𝐷ଶ
൨ ൤

𝑋௧ିଶ

𝑌௧ିଶ
൨ + ⋯ + ൤

𝐴௣ 𝐵௣

𝐶௣ 𝐷௣
൨ ൤

𝑋௧ି௣

𝑌௧ି௣
൨ + [𝜀௧]  

Then, for a causal relationship going from variable 𝑋 to variable 𝑌, the sign of this relationship 

is determined by the sign of the following ratio:  

  𝜎௑→௒ =
∑ ஼೔

೛
೔సభ

ଵି∑ ஽೔
೛
೔సభ

   

These developments are studied in depth by the dynamic analysis, which considers the 

effects of exogenous variables on endogenous variables. Although VAR models consider all 

the variables exogenous and/or endogenous, the dynamic analysis requires that innovations 

are considered as exogenous variables. The simulation of shocks on innovations for each 

variable helps us to understand how (impulse response function) and to what 

extent/proportion (variance decomposition) others variables are affected. In other words, we 

observe how a simulated shock on the innovation of variable X affects the variable Y. To study 

the direction and sign of causality we investigate how our variable of interest reacts when a 

change occurs on the second variable. 

                                                           
10 The definition of causality is given by Granger (1969): the variable 𝑋 causes the variable 𝑌 if the prediction of 
𝑌 is improved when one incorporates information concerning 𝑋 and its past into the analysis. 
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4. Results 

4.1. Descriptive statistics 

Fig. 1 contains observed and smoothed values of the US annual growth rate of total 

factor productivity (TFPHW) and labor productivity (LPHW) per hours worked from 1890 to 

201211. We observe that the two variables are highly synchronized (i.e., they have the same 

troughs and peaks) and that both have considerably fluctuated over time, showing periods of 

accelerated and decelerated growth. This suggests that fluctuations of labor productivity 

growth, which is the main determinant of output growth, are largely driven by fluctuations of 

productivity gains originated by technological change.  

 

 

Fig. 1. US Annual growth rate of labor productivity per hours worked (LPHW GR) and total 
factor productivity per hours worked (TFPHW GR): observed and smoothed values (%) 

 

The wave that accelerates during the 1980s and the 1990s, with a peak in 1998, is 

commonly associated to the ICTs (Information and Communication Technologies) revolution, 

while the big wave expanding from the end of the 19th century to the 1970s is usually associate 

to the second industrial revolution, based on innovations like electricity, internal combustion 

engine, and chemistry (Bergeaud et al. 2016). As we can see, since the 1970s productivity 

                                                           
11 Data have been provided by Bergeaud et al. (2016). Following this work, data have been smoothed by using 
the HP filter (lambda = 500). 
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growth has been substantially lower than the previous decades and it has slowed down further 

since the early 2000s, before the 2008 financial crisis. Tab. 2 shows that the average growth 

rate of LPHW and TFPHW since the 1970s has been lower than any other time period since 

1891, even when we consider only the period 1970-2000, well before the 2008 crisis. 

 

Tab. 2. Average annual growth rate of labor productivity per hours worked (LPHW GR) and 
total factor productivity per hours worked (TFPHW GR), USA (%) 

 TFPHW GR LPHW GR 
1891-2012 1.68 2.26 
1891-1929 1.45 2.14 
1930-1969 2.74 3.23 
1970-2012 0.89 1.48 
1970-2000 0.99 1.50 

 

 

Fig. 2. Annual flow of patents granted by the USPTO by priority year (Pat_flow) and annual 
flow of the top 1% patents with the highest level of RN (T1rec_flow) 

 

Fig. 2 shows our main variable, T1rec_flow, which should approximate the annual flow 

of TNI, and Pat_flow, which is indicative of the annual flow of total inventions. T1rec_flow 

represents only 2.02% of total patents granted between 1900 and 2000. We can see from fig. 

2 that the annual flow of TNI increases rapidly in the late 1910s, and, after a 15-year 

stagnation, it rises again from the mid-1930s to the early 1970s. We then observe a strong 

decline until the mid-1980s, followed by an exponential increase. The annual flow of total 
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patents, instead, fluctuates slowly until the 1940s, grows during the 1950s and 1960s, and, 

after a short decline in the 1970s, starts exponentially increasing in the mid-1980s. The 

literature mainly ascribes that growth to the increase of firms’ propensity to patent for 

strategic reasons (Hall and Ziedonis, 2001). Thus, the increase in the flow of TNI since the mid-

1980s may be largely due a more general increase in the flow of strategic patents.  

Fig. 3. compares T1rec_flow with the annual flow of patents with positive RN 

(Rec_flow) and the annual flow of patents that introduced a new IPC-code (New_ipc). 

Rec_flow and New_ipc represents the 6.14% and the 0.12% of total patents granted between 

1900 and 2000, respectively. So, almost 94% of patents have RN=0, that is, have not combined 

any new IPC-pair. We can see from the figure that Rec_flow and T1rec_flow start importantly 

diverging since the 1950s. This suggests that since the second half of the 20th century, the 

number of patents with the highest level of RN (T1rec_flow) has grown much slower than the 

number of patents with a lower level of RN (Rec_flow). Patents that introduced a new IPC-

code, instead, are highly concentrated in one decade, the 1910s. This suggests that during the 

1910s have been invented those main components - possibly the core technologies of the 

second revolution - that in the subsequent years have been recombined. New_ipc rises, to a 

much smaller extent, also during the 1960s and 1970s, probably because of the emergence of 

ICTs.   

 

Fig. 3. Annual flow of the top 1% patents with the highest level of RN (T1rec_flow), annual 
flow of patents with positive RN (Rec_flow), and annual flow of patents that introduced a new 
IPC-code (New_ipc) 
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Fig. 4. shows our variables in stock: the annual stock of total patents (Pat_stock), the 

annual stock of patents with positive RN (Rec_stock), and the annual stock of the top 1% 

patents with the highest level of RN (T1rec_stock), which should approximate the annual stock 

of TNI. We see that, coherently with the evolution of variables in flow, all these variables reach 

a peak in the early 1970s, then decline or stagnate up to mid-1980s, and finally start growing 

very rapidly.  

 

 

Fig. 4. Annual stock of patents granted by the USPTO by priority year (Pat_stock), annual stock 
of patents with positive RN (Rec_stock), annual stock of top 1% patents with the highest level 
of RN (T1rec_stock). 

 

Finally, fig. 5 shows the distribution among technological fields (WIPO IPC_35) of both 

total patents and the top 1% of patents with the highest degree of RN (T1rec_flow) from 1920 

to 200012. We observe that technological fields considerably diverge in terms of both size (as 

proxied by Pat_flow) and degree of technological novelty (as proxied by T1rec_flow). The 

largest technological fields are: Electrical machinery, apparatus, energy (IPC_35 1), Transport 

(IPC_35 32), Other special machines (IPC_35 29), Measurement (IPC_35 10). The technological 

fields with the highest degree of technological novelty are: Mechanical elements (IPC_35 31), 

                                                           
12 The information on technological fields to which patents belong is only available since 1920. 
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Machine tools (IPC_35 26), Transport (IPC_35 32), Electrical machinery, apparatus, energy 

(IPC_35 1). 

 

 

Fig. 5. Distribution among technological fields (IPC_35) of total patents (Pat_flow) and of 
patents with the highest degree of technological novelty (T1rec_flow), 1920-2000. 

 

 

4.2. Aggregate analysis 

In order to test HP1 and HP2, we have detected the direction and sign of causality 

between TFPHW and the variables listed in Tab. 1, by using Granger’s test. We find that only 

three variables have a causal relationship with TFPHW. These are Rec_flow, T1rec_flow, and 

T1rec_stock (all with significance: p < 5%). In all three cases, the sign of the causal relationship 

is positive and the direction of causality only goes from technological variables (Rec_flow, 

T1rec_flow, and T1rec_stock) to economic variables (TFPHW). Hence, both the flow and stock 

of TNI, as measured by our indicator of RN, have a positive impact on productivity, but 

productivity has no impact on the flow and stock of TNI. This result seems to provide support 

for our HP2: Technologically novel inventions are exogenous, that is, independent of 

productivity variations. In order to further prove this hypothesis, we have performed an 
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exogeneity test, which confirmed that the flow of TNI does not depend on productivity: only 

5% of T1rec_flow variations depend on productivity variations. 

All three significant variables are not cointegrated with TFPHW, meaning that the flow 

and stock of TNI do not share a common stable long-run trend with productivity levels. For all 

three variables, the optimal lag equals 5, so that the impact of technological variables on 

productivity occurs after 5 years, with a peak on the sixth year. Fig. 6 shows the impulse 

response function of TFPHW when we simulate a positive shock on our three technological 

variables. The overall duration of the impact on productivity appears to be similar for all 

variables, and it is about 15 years. Instead, the amplitude of the impact of both T1rec_flow 

and T1rec_stock is much higher than the impact of Rec_flow. We can also see that, before 

reaching a peak on the sixth year, TFPHW shows an initial negative reaction to a positive shock 

of both T1rec_flow and T1rec_stock13. We propose that this reaction may be interpreted as 

the result of the disruptive impact of radical technologies. Indeed, radical technologies create 

a new stream of incremental innovations that should drive productivity acceleration. 

However, at the same time, radical technologies have a disruptive impact on existing 

technologies, by replacing them. This may have a negative impact on productivity during the 

emergence phase of radical technologies, when their productivity gains are typically low 

compared to established technologies (Christensen, 1997). Our results suggest that while the 

creative impact is generally predominant, during the first 5 years after the appearance of a 

radical technology, it is its disruptive impact that prevails. 

 

Fig. 6. Impulse response function of TFPHW after a simulated positive shock on Rec_flow, 
T1rec_flow, and T1rec_stock 

 

                                                           
13 Although TFPHW initially shows a positive reaction to a positive shock of Rec_flow, we observe even in this 
case a subsequent negative reaction before the peak. 
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Tab. 3 shows the variance decomposition of TFPHW according to our technological 

variables. We observe that TFPHW variations are due to: 

 2.5% of Rec_flow variations the third year, 8.7% the sixth year, and 13% after about 15 

years, when the explained variance stabilizes 

 7% of T1rec_flow variations the third year, 22.7% the sixth year, and 31% after about 

15 years, when the explained variance stabilizes 

 8% of T1rec_stock variations the third year, 21.7% the sixth year, and 30% after about 

15 years, when the explained variance stabilizes  

The variance explained by T1rec_flow and T1rec_stock is similar and important: after 15 years 

more than 30% of productivity variations are explained by the variations in the flow and stock 

of TNI. Moreover, the variance explained by T1rec_flow and T1rec_stock is more than twice 

the variance explained by Rec_flow.  

Overall, these results provide support for our HP1: Technologically novel inventions 

cause a temporary acceleration of productivity. Indeed, both the flow and stock of TNI, as 

measured by our indicator of RN, cause an acceleration of productivity that occurs after 5 

years and lasts about 10 years. Moreover, the variations in both the flow and stock of TNI 

explain an important part of productivity variations. The fact that T1rec_flow and T1rec_stock 

have a higher impact on TFPHW and explain TFPHW variations much more than Rec_flow 

further supports HP1: compared to T1rec_flow, Rec_flow patents have a lower degree of 

technological novelty (see section 3.2.) and coherently with HP1, they have a lower impact on 

TFPHW and explain TFPHW variations to a lesser extent. 

The flow and stock of total patents are not significant, suggesting that the number and 

stock of total inventions have no impact on productivity. The same holds for the stock of 

patents with positive RN (Rec_stock) and the flow of patents that introduced a new IPC-code 

(New_ipc). The latter result suggests that inventing a new component have no direct impact 

on productivity, what matters in terms of productivity is recombining in a novel way such 

components. However, there may be an indirect impact (not captured by our analysis), 

because recombination would be limited without the periodic creation of new components. 

Finally, the variables in percentage are never significant, which might perhaps confirm that 

the total number of inventions is not important in order to explain productivity. 
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Tab. 3. Variance decomposition of TFPHW: VAR Model with TFPHW and RECFLOW; VAR Model with TFPHW and T1RECFLOW; VAR Model with 
TFPHW and T1RECSTOCK 

Period S.E. DTFPHW DRECFLOW 

 1  0.155026  100.0000  0.000000 

 2  0.164198  98.21994  1.780059 

 3  0.167183  97.47349  2.526514 

 4  0.167689  97.48786  2.512139 

 5  0.173812  97.48743  2.512575 

 6  0.179678  91.28340  8.716599 

 7  0.183415  87.61245  12.38755 

 8  0.184091  87.04654  12.95346 

 9  0.187046  86.99720  13.00280 

 10  0.187280  87.02921  12.97079 

 11  0.187562  86.77515  13.22485 

 12  0.187626  86.71938  13.28062 

 13  0.188009  86.77310  13.22690 

 14  0.188129  86.70729  13.29271 

 15  0.188195  86.64760  13.35240 

 16  0.188214  86.63484  13.36516 

 17  0.188316  86.64302  13.35698 

 18  0.188336  86.63619  13.36381 

 19  0.188363  86.61150  13.38850 

 20  0.188368  86.60810  13.39190 

Period S.E. DTFPHW DT1RECSTOCK 

 1  0.155303  100.0000  0.000000 

 2  0.162252  99.99998  2.24E-05 

 3  0.170479  91.89915  8.100851 

 4  0.171408  91.80933  8.190673 

 5  0.177374  91.50554  8.494456 

 6  0.191850  78.24439  21.75561 

 7  0.193986  76.80977  23.19023 

 8  0.198624  73.62843  26.37157 

 9  0.200326  74.04564  25.95436 

 10  0.200370  74.05435  25.94565 

 11  0.203569  71.84146  28.15854 

 12  0.203707  71.85905  28.14095 

 13  0.204757  71.57441  28.42559 

 14  0.205947  70.75544  29.24456 

 15  0.206007  70.72276  29.27724 

 16  0.206818  70.22577  29.77423 

 17  0.207256  69.98709  30.01291 

 18  0.207360  69.92090  30.07910 

 19  0.208045  69.47546  30.52454 

 20  0.208251  69.34696  30.65304 

Period S.E. DTFPHW DT1RECFLOW 

 1  0.154212  100.0000  0.000000 

 2  0.160780  99.99704  0.002959 

 3  0.167749  93.01991  6.980087 

 4  0.168376  93.05986  6.940137 

 5  0.174017  93.26641  6.733591 

 6  0.191212  77.27953  22.72047 

 7  0.195227  74.56023  25.43977 

 8  0.201671  70.47611  29.52389 

 9  0.204078  71.03691  28.96309 

 10  0.204453  70.93389  29.06611 

 11  0.205822  70.00933  29.99067 

 12  0.205975  69.95834  30.04166 

 13  0.206590  69.89731  30.10269 

 14  0.207568  69.24559  30.75441 

 15  0.207592  69.23610  30.76390 

 16  0.208082  68.94695  31.05305 

 17  0.208356  68.81608  31.18392 

 18  0.208401  68.78797  31.21203 

 19  0.208808  68.53063  31.46937 

 20  0.208907  68.47376  31.52624 
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4.3. Analysis at technological field level 

In order to test HP3 and HP4, we have estimated the direction and sign of causality 

between TFPHW and the 35 variables that represent the annual flow of TNI (T1rec_flow) for 

each technological field (WIPO IPC_35). We find that only 5 out of 35 fields have a positive 

causal relationship with productivity. This suggests that those TNI that contributed to 

productivity growth during 1920-2000 are concentrated in a handful of technological fields. 

These are labeled as “leading technological fields” because of their positive impact on 

productivity. These are the following (as described by Schmoch 2008): 

IPC_35 1. Electrical machinery, apparatus, energy (signif.: p<1%): it primarily covers the non-

electronic part of electrical engineering, e.g., the generation, conversion and distribution of 

electric power, electric machines, and basic electric elements (resistors, magnets, capacitors, 

lamps or cables) 

IPC_35 3. Telecommunications (signif.: p<5%): it is a very broad field covering a variety of 

telecommunications techniques and products 

IPC_35 19. Basic materials chemistry (signif.: p<5%): it primarily covers typical mass chemicals 

such as herbicides, fertilizers, paints, petroleum, gas, detergents etc. 

IPC_35 25. Handling (signif.: p<5%): it comprises elevators, cranes or robots, but also 

packaging devices; in terms of research intensity, the field is quite heterogeneous 

IPC_35 28. Textile and paper machines (signif.: p<1%): it includes machines for specific 

production purposes; textile and food machines represent the most relevant part of these 

machines. 

Fig. 7 shows the impulse responses function of TFPHW after a simulated positive shock 

on our 5 leading technological fields, while Tab. 4 contains the variance decomposition of 

productivity obtained by building a model where TFPHW is explained by the 5 field variables. 

We can see from fig. 7 that the fields differ in terms of both duration and amplitude of the 

impact on productivity: “Electrical machinery, apparatus, energy” has the highest impact, and 

together with “Basic materials chemistry”, it also has the longest impact. For all the 5 fields, 

optimal lag equals to 6 or 7 years (one or two years more than the lag at the aggregate level), 
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and, before reaching their peak, all fields, except “Handling”, display the same initial negative 

impact, more or less pronounced, that we have observed at aggregate level.  

 

 

Fig. 7. Impulse responses function of TFPHW after a simulated shock on IPC1, IPC3, IPC19, 
IPC25, IPC28 

 

Tab. 4. Variance decomposition of TFPHW: Global VAR Model with TFPHW and the 5 leading 

technological fields 

Variance Decomposition of DTFPHW: 

 Period S.E. IPC1 IPC3 IPC19 IPC25 IPC28 TFP 

1 0.16 0.00 2.36 1.53 0.57 3.63 91.91 

2 0.16 0.82 2.19 1.44 3.74 5.59 86.21 

3 0.17 1.62 2.62 2.27 3.66 6.39 83.44 

4 0.17 1.67 4.00 2.29 7.48 6.05 78.51 

5 0.18 1.50 3.62 4.76 6.97 10.58 72.57 

6 0.19 9.38 4.25 4.94 7.60 9.62 64.22 

7 0.22 22.96 5.42 7.94 6.02 8.17 49.49 

8 0.23 26.09 5.00 7.72 5.59 7.86 47.73 

9 0.24 26.33 4.75 9.38 6.10 7.58 45.86 

10 0.24 26.53 4.76 9.31 6.08 7.52 45.81 
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By looking at TFPHW variance decomposition in Tab. 4, we observe that after 10 years, 

the variations in the flow of TNI in the 5 leading fields explain together a very important part 

(54%) of TFPHW variations. The most influencing field is “Electrical machinery, apparatus, 

energy”, whose variations explain alone 26.5% of TFPHW variations. “Telecommunications” is 

the sector that explains least productivity variations, with only 4.7% of TFPHW variations 

explained. This result is consistent with those studies that attribute the low rate of 

productivity growth since the 1970s to the low importance of ICTs compared to the 

technologies of the second technological revolution (Gordon, 2012). Overall these results 

provide evidence for our HP3: Technologically novel inventions that cause productivity 

acceleration are concentrated in a restricted number of leading technological fields. 

In order to identify the industrial sectors corresponding to our leading technological 

fields and shed light on the mechanisms through which technological novelty in these fields 

may affect productivity growth, we adopt a two-step approach. First, we link technological 

fields to their industrial sectors by using the Neuhäusler, Frietsch and Kroll (2019) concordance 

matrix between WIPO IPC_35 fields and NACE (Rev.2, 2-digit) industrial sectors. Second, we 

rely on Pavitt (1984) taxonomy, as revised by Bogliacino and Pianta (2011, 2016), to identify 

the innovation patterns characterizing each sector14. The concordance matrix provides, for 

each technological field, the percentage of patents originated by each of the 99 2-digit NACE 

sectors. Tab. 5 shows such percentages for the main industrial sectors in which our 5 leading 

technological fields are concentrated15. As we can see, only 4 out of 99 industrial sectors have 

significant shares (>10%): “Manufacture of chemicals and chemical products” (NACE 20), 

“Manufacture of computer, electronic and optical products” (NACE 26), “Manufacture of 

electrical equipment” (NACE 27), and “Manufacture of machinery and equipment” (NACE 28).  

                                                           
14 One limitation of this analysis is that we use a contemporaneous concordance matrix in order to interpret 
patterns dating back to the 1920s. However, we are not aware of any such concordance matrix relating 
technological fields and industrial sectors over such a long period of time. Our analysis thus relies on the 
hypothesis that these sectors have broad patterns of innovation that persist over long periods, which is not so 
heroic when comparing Pavitt’s (1984) analysis and the more recent analysis by Bogliacino and Pianta (2011, 
2016). 
15 For example, the technological field 3 (Telecommunications) is highly concentrated in the NACE sector 26 
“Manufacture of computer, electronic and optical products”, which originates 68% of all Telecommunications 
patents. The remaining sectors related to this technological field have a share between 0% and 5%. Similarly, 
for the technological field 19 (Basic materials chemistry), patents originate at 45 % from NACE sector 20 
“Manufacture of chemicals and chemical products”, the remaining sectors have a share between 0% and 5%. 
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Tab. 5 also contains the innovation pattern of each sector, as provided by Bogliacini 

and Pianta (2011): “Manufacture of computer, electronic and optical products” (NACE 26), 

“Manufacture of chemicals and chemical products” (NACE 20) are both classified as Science 

Based industries, while “Manufacture of electrical equipment” (NACE 27) and “Manufacture 

of machinery and equipment” (NACE 28) are classified as Specialized Suppliers. Following 

Pavitt (1984), Science Based sectors, like the computer and chemical sector, draw their main 

source of innovation from intense in-house R&D activities, based on the rapid development 

of underlying science, to produce both product and process innovations. Their technologies 

are pervasive and have a large range of applications. The main focus of Specialized Suppliers, 

instead, is the generation of product innovations in intermediate goods or capital equipment 

for use in a variety of user sectors. These industries are a particularly important source of 

process innovations for Scale Intensive sectors (food products, metal manufacturing, 

shipbuilding, motor vehicles …) as they supply them with machines allowing to replace labor 

and to lower production costs. Specialized Suppliers rely on in-house R&D activities, highly 

skilled labor and strong user-producer relationships. 

 

Tab. 5. Leading technological fields, related industrial sectors and patterns of innovation 

Technological field 

(WIPO IPC_35 fields) 

Related industrial sectors 

(WIPO IPC_35 – NACE concordance) 

Patterns of innovation 

(Bogliacino and Pianta 2016) 

1. Electrical machinery, 
apparatus, energy  

26. Manufacture of computer, electronic and 
optical products (26%*) 

Science based 

27. Manufacture of electrical equipment (15%) Specialized suppliers 
28. Manufacture of machinery and equipment 
(14%) 

Specialized suppliers 

3. Telecommunications  26. Manufacture of computer, electronic and 
optical products (68%) 

Science based 

19. Basic materials chemistry  
 

20. Manufacture of chemicals and chemical 
products (45%) 

Science based 

25. Handling  26. Manufacture of computer, electronic and 
optical products (11%) 

Science based 

28. Manufacture of machinery and equipment 
31%) 

Specialized suppliers 

28. Textile and paper machines  
 

20. Manufacture of chemicals and chemical 
products (16%) 

Science based 

26. Manufacture of computer, electronic and 
optical products (22%) 

Science based 

28. Manufacture of machinery and equipment 
(25%) 

Specialized suppliers 

*% of patents originated from the NACE 2-digit sectors 
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In examining how different industries contribute to labor productivity growth, 

Bogliacino and Pianta (2011) show that both Science Based sectors and Specialized Suppliers 

rely on two distinct, but complementary, “engines” leading to increased competitiveness and 

reduced costs: a strategy of technological competitiveness – based on intense R&D activities 

to innovate in products and open up new markets – and a strategy of cost competitiveness, 

based innovation in processes and machinery, with the objective of increasing efficiency 

through labor saving investment, flexibilization of production, and cut-price competition. 

Bogliacino and Pianta (2011) also highlight that while the latter strategy emerges as a strong 

aspect of innovative activities in all industries, its impact on productivity growth is inferior to 

that of a search for new products and markets, typical of Science Based and Specialized 

Suppliers industries alone. Hence, our analysis seems to indirectly suggest that the main 

source of productivity growth during the 20th century has been the creation of new R&D 

intensive products, including capital products (machinery), and new markets. 

For the leading technological fields, the direction of causality goes from technological 

variables to economic variables, like at the aggregate level. At the aggregate level, we found 

no causal relationship going from economic variables to technological variables. At the level 

of technological field, instead, we found this relationship. More precisely, TFPHW has a 

positive impact on the flow of TNI in three fields and a negative impact in one field. We label 

as “demand-driven” those technological fields for which the sign of the causal relationship is 

positive, based on the idea that investments in radical technologies in these fields rise during 

period of growing productivity because demand is higher and innovation risk lower (see 

section 2). These sectors are (following Schmoch’s definition):  

IPC-35 21. Surface technology, coating (signif.: p<1%): the coating of metals, generally with 

advanced methods, represents the core of this field 

IPC-35 27. Engines, pumps, turbines (signif.: p<1%): it covers non-electrical engines for all 

types of applications, in quantitative terms, applications for automobiles dominate 

IPC-35 31. Mechanical elements (signif.: p<5%): it covers fluid-circuit elements, joints, shafts, 

couplings, valves, pipe-line systems or mechanical control devices.  

However, TNI in these 3 technological fields are not pervasive as they do not generate 

productivity growth at the aggregate level (as shown by results on the leading technological 
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fields). Fig. 8 shows the impulse responses function of demand-driven fields when we simulate 

a positive shock on productivity and Tab. 6 contains the variance decomposition of the three 

fields. We can see that demand-driven sectors are more heterogeneous in terms of optimal 

lag, which is 11, 2, and 5 years for IPC21, IPC27 and IPC31, respectively. The amplitude of the 

impact for “Engines, pumps, turbines” and “Mechanical elements” is higher, but shorter than 

for “Surface technology, coating”. In addition, if we look at the explained variance in Tab. 6, 

we see that productivity variations explain the 26% of the variations in the flow of TNI of 

“Surface technology, coating”, while for “Engines, pumps, turbines” and “Mechanical 

elements” the explained variance is only 13% and 14%, respectively. 

 

 

Fig. 8. Impulse responses function of IPC21, IPC31, IPC27 after a simulated shock on TFPHW 

 

Like for the leading technological fields, we show, in Tab. 7, the industrial sectors and 

the pattern of innovation associated with demand-driven technological fields. Interestingly, 

among demand-driven sectors we find 3 of our leading industrial sectors – the computer, 

chemical and machinery sectors – but we also see some new sector, i.e., the manufacture of 

motor vehicles and of other transport. The latter is included by Bogliacino and Pianta (2011) 

among the Scale and Information Intensive industries16. These industries benefit from large 

economies of scale and are characterized by oligopolistic markets in which technological 

change is often incremental. Such industries mainly rely on a cost competitiveness strategy 

with a major role played by the share of firms indicating the suppliers of equipment as the 

source of their process innovation (Bogliacino and Pianta 2011).  

                                                           
16 They comprise motor vehicles, mineral oil refining, coke and nuclear fuel, rubber and plastics, basic metals, 
and financial services related to information technology 
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Tab. 6. Variance decomposition of IPC21, IPC27 and IPC31 (VAR Model with TFPHW and IPC21; 
VAR Model with TFPHW and IPC27; VAR Model with TFPHW and IPC31) 

Period S.E. IPC21 TFP  Period S.E. IPC27 TFP  Period S.E. IPC31 TFP 

1 4.09 100.00 0.00  1 7.92 100.00 0.00  1 12.52 100.00 0.00 

2 4.57 99.71 0.29  2 8.66 97.42 2.58  2 12.69 99.29 0.71 

3 4.61 99.35 0.65  3 9.18 87.01 12.99  3 13.31 95.22 4.78 

4 4.86 98.94 1.06  4 9.18 87.00 13.00  4 13.77 89.12 10.88 

5 4.95 96.34 3.66  5 9.21 87.07 12.93  5 13.99 89.18 10.82 

6 4.97 95.97 4.03  6 9.21 87.06 12.94  6 14.27 89.37 10.63 

7 5.30 84.84 15.16  7 9.22 86.99 13.01  7 14.29 89.23 10.77 

8 5.48 84.93 15.07  8 9.22 86.99 13.01  8 14.56 89.20 10.80 

9 5.52 85.15 14.85  9 9.22 86.99 13.01  9 14.58 89.14 10.86 

10 5.66 83.77 16.23  10 9.22 86.99 13.01  10 14.68 89.08 10.92 

11 5.67 83.77 16.23  11 9.22 86.99 13.01  11 14.72 88.62 11.38 

12 6.04 76.15 23.85  12 9.22 86.99 13.01  12 14.74 88.47 11.53 

13 6.06 76.19 23.81  13 9.22 86.99 13.01  13 14.76 88.50 11.50 

14 6.09 75.80 24.20  14 9.22 86.99 13.01  14 14.76 88.48 11.52 

15 6.17 74.07 25.93  15 9.22 86.99 13.01  15 14.80 88.44 11.56 

16 6.19 73.63 26.37  16 9.22 86.99 13.01  16 14.81 88.38 11.62 

17 6.20 73.59 26.41  17 9.22 86.99 13.01  17 14.81 88.38 11.62 

18 6.24 73.50 26.50  18 9.22 86.99 13.01  18 14.81 88.33 11.67 

19 6.32 74.02 25.98  19 9.22 86.99 13.01  19 14.82 88.30 11.70 

20 6.32 73.98 26.02  20 9.22 86.99 13.01  20 14.82 88.30 11.70 

 

 

Tab. 7: Demand-driven technological fields, related industrial sectors and patterns of 
innovation 

Technological field Related industrial sectors Patterns of innovation 

21. Surface technology, coating  20. Manufacture of chemicals and chemical 
products (21%) 

Science based 

26. Manufacture of computer, electronic and 
optical products (17%) 

Science based 

28. Manufacture of machinery and equipment 
(10%) 

Specialized suppliers 

27. Engines, pumps, turbines  28. Manufacture of machinery and equipment 
(39%) 

Specialized suppliers 

29. Manufacture of motor vehicles, trailers and 
semi-trailers (18%) 

Scale and information intensive  

30. Manufacture of other transport equipment 
(11%) 

Specialized suppliers 

31. Mechanical elements  28. Manufacture of machinery and equipment 
(29%) 

Specialized suppliers 

30. Manufacture of motor vehicles, trailers and 
semi-trailers (19%) 

Scale and information intensive  
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Bogliacino and Pianta (2011) shows that demand is a key factor for explaining the 

contribution to labor productivity of all types of industries. However, the authors also highlight 

that while demand growth is highly important for Science Based (relevance of increasing 

returns), Specialized suppliers (relevance of interaction with clients) and, even more, for Scale 

and information intensive industries (relevance of new expanding service markets), it is much 

less important for the last category of the Pavitt taxonomy, namely Suppliers Dominated 

industries. In fact, these industries, characterized by a model of cost competitiveness with the 

search for more flexible production, do not appear among our demand-driven sectors. 

 

 

 

 

 

 

 

 

Fig. 9. Impulse responses function of IPC25 after a simulated shock on TFPHW and Variance 

decomposition of IPC25 (VAR Model with TFPHW and IP25) 

 

Finally, we find that one field, “Handling” (IPC_35 25), has a double causal relationship 

with TPHHW: it positively causes TFPHW (as showed by results on the leading technological 

fields), but it is also negatively caused by TFPHW (signif.: p<5%), which means that a negative 

(positive) variation of productivity would cause an increase (decrease) of TNI in this field. 

Among the 5 leading technological fields, only handling, also displays a relationship running 

Variance Decomposition of IPC25: 
 Period S.E. IPC25 TFP  

1 9.26 100.00 0.00  
2 9.31 99.02 0.98  
3 9.72 91.07 8.93  
4 10.01 86.88 13.12  
5 10.02 86.78 13.22  
6 10.13 86.99 13.01  
7 10.32 85.69 14.31  
8 10.41 84.78 15.22  
9 11.02 75.59 24.41  

10 11.15 76.04 23.96  
11 11.95 71.13 28.87  
12 12.07 71.53 28.47  
13 12.35 68.27 31.73  
14 12.43 67.93 32.07  
15 12.45 67.74 32.26  
16 12.46 67.74 32.26  
17 12.47 67.76 32.24  
18 12.52 67.29 32.71  
19 12.55 67.11 32.89  
20 12.6 67.21 32.79  
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from productivity to TNI. Fig. 9 shows the impulse responses function and the variance 

decomposition of the field. Optimal lag, in this case, is the highest one, i.e., 13 years, after 

which the negative impact of productivity on TNI starts dumping. The variance decomposition 

indicates that, after 20 years, TFPHW variations explain an important part (almost 33%) of the 

variations in the number of TNI in the field. As shown in Tab. 5, patents in this field are mainly 

concentrated in the machinery (31%) and computer (11%) sectors. 

Overall these results provide empirical evidence for our HP4: Technologically novel 

inventions may be endogenous at the level of technological field, that is, dependent of 

productivity variations. In fact, we have seen that productivity variations may cause positive 

variations in the flow of TNI in some fields (demand-driven fields), or it may cause negative 

variations, like for the field handling. This suggests that some radical technologies can be 

endogenous. With respect to sign of endogeneity, these results seem to indicate that some 

radical technologies rise during periods of growing productivity, when demand is higher and 

risk lower, while, some other radical technologies rise during periods of decreasing 

productivity, when the opportunity profits of former radical technologies are exhausted, 

market, are saturated and demand for existing products is low. Hence, demand seems to play 

a role, either positive or negative, on radical technologies depending on the field. However, it 

seems that, among endogenous technologies, only those that rise during periods of 

decreasing productivity have a positive impact on productivity. 

 

 

5. Conclusions  

This paper tries to provide empirical evidence on the long-run relationship between 

technology and productivity by testing, for the first time, the sign and direction of causality 

between technological novelty and productivity over the whole 20th century. Our results 

intend to contribute to research on technological change and long-run economic development 

through a cliometric approach, based on Granger’s causality, that proposes an otherwise 

lacking perspective. On the other hand, by providing a deeper characterization of technology 

that focuses on the concept of recombinant novelty, we try to contribute to cliometric studies 

on the determinants of economic growth. 
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With respect to causality running from technologically novel inventions (TNI) to 

productivity, we find that:  1) the flow and stock of TNI cause an acceleration of productivity 

that occurs after 5 years and lasts about 10 years; 2) variations in the flow and stock of TNI 

explain an important part of productivity variations. To the extent that the degree of 

technological novelty of inventions approximates the degree of radicalness of technologies, 

these results provide empirical support to the hypotheses that radical technologies have a 

positive, but temporary, impact on productivity, and that there is a lag between the 

emergence of radical technologies and their effect on productivity (Crafts, 1995; Freeman and 

Perez, 1988; Helpman and Trajtenberg, 1994; Kuznets, 1930; Mensch, 1979; Mokyr, 1993; 

Perez, 2010; Schot and Kanger, 2018; Schumpeter, 1939) 

Our results also show that those TNI that contribute to productivity growth are 

originated by only five leading technological fields, whose patents are mainly concentrated in 

the sectors of specialized suppliers of capital equipment (machinery and electrical sectors) 

and in science based sectors (computer and chemical sectors). Variations in the flow of TNI in 

these fields explain together about 54% of productivity variations. This result indicates that 

radical technologies at the origin of productivity growth are concentrated in a handful of 

leading technological fields and sectors. As highlighted by Bogliacino and Pianta (2011), the 

contribution to productivity growth of these sectors relies essentially on the creation of new 

products, including capital products (machinery), and new markets based on intense R&D 

activities. Hence, our analysis seems to indirectly suggest that the main source of productivity 

growth during the 20th century has been the creation of new R&D-intensive products and 

markets. In addition, we find that inventing a new component has no direct impact on 

productivity, what matters in terms of productivity is recombining in a novel way such 

components. Also, the flow and stock of inventions, as proxied by the flow and stock of total 

patents, have no impact on productivity. 

 With respect to causality running from productivity to TNI, our analysis shows that, at 

the aggregate level, there is no causal relationship, meaning that productivity variations have 

no impact on the variations in the flow of TNI. This could suggest that radical technologies are 

exogenous, as proposed by various scholars (Kuznets, 1930; Schumpeter, 1939; Clark et al., 

1981; Mokyr, 1993; Craft, 1995), in the sense that they do not depend on economic variables 

like productivity. However, when we looked at the flow of TNI at the level of technological 
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field, we find more complex relationships. Productivity has a positive impact on the flow of 

TNI in three fields, labeled as demand-driven fields, which, nevertheless, are not the fields 

that drive productivity growth. This seems to indicate that some radical technologies are more 

likely to rise during periods of growing productivity, when demand is higher and innovation 

risk lower. Demand-driven technological fields are mainly concentrated in the automotive 

sector (a scale intensive sector) and in three of the leading sectors mentioned above, i.e., the 

computer, chemical, and machinery sectors.  

Finally, we find that productivity has a negative impact on the flow of TNI in one field, 

i.e., Handling. Interestingly, this is also one of the five leading fields that contribute to 

productivity growth and, as such, its patents are mainly concentrated in the machinery and 

computer sectors. This result could instead provide support to the idea that some radical 

technologies rise during periods of decreasing productivity, when the opportunity profits of 

former radical technologies are exhausted, market are saturated, and demand for existing 

products is low (Mensch, 1979; Perez, 2002; Saviotti and Pyka, 2004; 2013; Schot and Kangera, 

2018). More in general, these results indicate that some radical technologies can be 

endogenous and that demand plays a role, either positive or negative, on radical technologies 

depending on the field. However, among endogenous technologies, only those that rise during 

periods of decreasing productivity have a positive impact on productivity. These differences 

among technological fields, in turn, may partially explain why, at aggregate level, productivity 

appears to have no impact on TNI.  

Overall, this analysis suggests that one of the causes of the productivity stagnation 

since the 1970s may be a comparatively low degree of technological novelty of prevailing 

technologies, namely ICTs (as proposed by Gordon, 2012). With respect to the more recent 

productivity slowdown, since 2000s, our study suggests that it can have a negative impact on 

TNI in some demand-driven fields. Although these fields appear to have no direct impact on 

productivity growth, many of their patents are concentrated in industrial sectors (computer, 

chemical and machinery) that importantly contribute to productivity growth. Hence, a 

productivity slowdown may have the effect of abating a positive spiral: higher productivity 

leads to more radical technologies, which lead to higher productivity. However, at the same 

time, such slowdown may provide incentive to the emergence of TNI in some other fields, like 

handling - whose patents are also concentrated in the machinery and computer sectors - that 
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are negatively caused by productivity, but that have a positive impact on it. 

Of course this work has limitations. First, patents are an imperfect indicator of 

inventive and innovative activity, and it is likely that our indicator of recombinant novelty, 

though validated by previous studies, captures only some aspects of both the degree of 

technological novelty of inventions and the degree of radicalness of technologies. Research 

on more sophisticated indicators of radicalness can improve our knowledge of the relationship 

between radicalness and productivity. Second, our analysis is likely to show only some average 

results on the relationship between productivity and technological novelty. These average 

results provide a synthetic and quantitative perspective that would otherwise be lacking, but 

they can also hide important differences in the degree of radicalness of technologies and in 

their impact on productivity. Finally, and most importantly, our results hide the rich set of 

institutional and historical factors that are behind the relationship between productivity and 

technological novelty. Integrating at least some of these factors in a global model could 

provide promising opportunities for further research. Another extension may consist in using 

alternative econometric techniques, like the outliers methodology, in order to detect events 

(real shocks) affecting the evolution of productivity and technological novelty.  
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Appendix 

Tab. 1. List of technological fields (IPC8 -Technology Concordance) 
Source: WIPO Statistics Database (Last update: March 2018) 
 
Field_number Sector Field 

1 Electrical engineering Electrical machinery, apparatus, energy 

2 Electrical engineering Audio-visual technology 

3 Electrical engineering Telecommunications 

4 Electrical engineering Digital communication 

5 Electrical engineering Basic communication processes 

6 Electrical engineering Computer technology 

7 Electrical engineering IT methods for management 

8 Electrical engineering Semiconductors 

9 Instruments Optics 

10 Instruments Measurement 

11 Instruments Analysis of biological materials 

12 Instruments Control 

13 Instruments Medical technology 

14 Chemistry Organic fine chemistry 

15 Chemistry Biotechnology 

16 Chemistry Pharmaceuticals 

17 Chemistry Macromolecular chemistry, polymers 

18 Chemistry Food chemistry 

19 Chemistry Basic materials chemistry  

20 Chemistry Materials, metallurgy 

21 Chemistry Surface technology, coating 

22 Chemistry Micro-structural and nano-technology 

23 Chemistry Chemical engineering 

24 Chemistry Environmental technology 

25 Mechanical engineering Handling 

26 Mechanical engineering Machine tools 

27 Mechanical engineering Engines, pumps, turbines 

28 Mechanical engineering Textile and paper machines 

29 Mechanical engineering Other special machines 

30 Mechanical engineering Thermal processes and apparatus 

31 Mechanical engineering Mechanical elements 

32 Mechanical engineering Transport 

33 Other fields Furniture, games 

34 Other fields Other consumer goods 

35 Other fields Civil engineering 
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