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Abstract

We build an analytical model to understand dynamic interlinkage between volatility in
economic growth and stochastic demographic dynamics. The time series properties of the
model are exploited to offer introspective understanding of the existence and persistence of
endogenous and exogenous growth dynamics within our analytical setting. Our research
shows that if the economy faces high degree of interdependence between its volatility and
stochastic demographic growth in the past with the possibility of slow dissipation of shocks
at present, then future economic growth will experience chaotic dynamics. We investigate
two possibilities: a process with persistent shocks that can slowly wither away in future,
and a jump process that would characterize how economic growth would respond to the
arrival of sudden change in demographic system.
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1 Introduction

The fact that a stochastic demographic system can determine the pattern of future economic
growth is something that has been repeatedly investigated in the recent literature (see for in-
stance, Azomahou, Mishra, and Parhi [in press]; Birdsall et al. (2001); Lindh and Malmberg
(2007); Parhi and Mishra (2009), and others). The proposed channels have been varied; for
instance, while Azomahou, Mishra, and Parhi [in press] propose the instrumental role of envi-
ronment within the dual system of economic growth and demography, Parhi and Mishra (2009)
underline the importance of human capital within this framework. The common points in these
and the extant theoretical and empirical research are as follows. First, the theoretical models
often assume stationary population growth. Wherever non-stationarity has been introduced,
its effects have been assumed to be either “one-off” type or a continuous dissipation before long
where the shocks die out completely. From empirical perspective, long-memory mechanisms
have been introduced to lend flexible interdependence dynamics between economic growth
and demographic system, in particular, population growth. Despite appreciable progress of
the existing literature towards a comprehensive understanding of the dynamic association be-
tween these systems, further research is warranted to characterize (i) if stochastic population
growth contributes towards the existence and persistence of exogenous/endogenous economic
growth in various economies, (ii) if demographic system experiences a sudden jump process
like character, how would that govern the volatility of the economic system. This paper aims
to undertake a serious study of these perspectives.

Extant literature in demography and economic growth for the past three centuries since
Malthus (1798) have impelled us to believe that despite having distinct evolutionary characters,
perturbations in demographic system is very likely to induce instability in economic growth in
the long run. However, the conventional practice in (empirical) economic growth models has
been to treat population growth as stationary implying that stochastic shocks to the popula-
tion series would completely disappear in the long-run and thus would exert no measurable
impact on its long-run mean and variance. Exception being Azomahou, Mishra and Parhi [in
press]. Statistically, a stationary series may still accommodate long-memory features, how-
ever the shock convergence patterns of short-memory and long-memory stationary processes
are vastly different (e.g., Bailey, 1986). From economic theoretic and policy perspectives such
differences are interesting as they determine, among other things economies” speed and pace
of growth over time as well as could provide important information about the existence of
exogenous or endogenous growth mechanism. Although recent research (e.g., Boucekkine et
al., 2002, Azomahou et al., 2009) have rendered some observations on the effects of stochas-
tic shocks using dynamic overlapping generations and spatial vector autoregressive models,
they have remained silent on the plausibility of stationary population growth assumption, and
how, the exception (that is, non-stationary population growth) could characterize exogenous
and endogenous growth mechanisms. Lau (1999, 2003) provide some directions of research on
the implications of unit root on endogenous/exogenous growth, but not how such characteri-
sations in case of demographic system would reveal the economic growth dynamics.

Empirical growth literature often presents a gaussian distribution for economic growth im-
plying that the growth rate of output consists of small shocks that satisfy the conditions of
the standard central limit theorem (CLT). That is, the output growth is considered as the con-
sequence of an accumulation of many small shocks. By the central limit theorem, then one
can predict that the distribution of growth rates becomes Gaussian. However, the distribution
of output growth does not have to be Gaussian; rather it can closely follow Laplace distribu-
tion, which has a fatter tail than Gaussian. The implication is that there is a relatively higher
probability that an economy experiences more extreme events than predicted by a Gaussian
distribution. The non-normality of growth rates challenges the existing models because it in-
dicates the underlying mechanism of economic growth is different from the one suggested by



many empirical research. Thus, one may assume that the growth rate consists of independent
random shocks but does not satisfy the conditions of the standard central limit theorem. If we
look at the extant research on the determinants of economic growth (Sala-i-Martin, 1997), it is
quite obvious that an economy can growth for all sorts of reasons, for example, as in our case,
demographic changes, environmental dynamics, financial and political growth, etc. Some of
them can have positive and some negative effects on long-run growth. The shocks these vari-
ables would impart on economic growth can thus be varied, of heterogenous magnitudes, and
can have a disproportionate impact on the output. Therefore, we need a broad generalisation
of the standard central limit theorem.

Khintchine (1937) provides description of the fundamental limit theorem on sums of in-
dependent random variables, which state that if the distribution of sums converges, its limit
belongs to infinitely divisible distributions. This family of distributions includes the Laplace
distribution, as well as the Gaussian. Moreover, if an infinitely divisible distribution is given,
there exists a corresponding Levy process. The Levy process corresponding to the Laplace
distribution is called variance gamma process. Therefore, the sample path properties of this
process represent how an economy grows. One can find that this process is a pure jump pro-
cess, that is, its value increases or decreases by jumps. This process, which is used in our paper,
would be of immense interest to understanding growth dynamics. There are some interesting
research though; Moreno et al. (2011), for instance, discuss the usefulness of jump process to
reflect how economic variables respond to the arrival of sudden information.

The rest of the paper is structured as follows. In section 2, we discuss implications from
literature covering deterministic and stochastic models. Section 3 present some discussions
about the source of stochasticity and provide a description of basic framework of persistence
and stochasticity. Section 4 presents and discusses the implications of the results for exoge-
nous and endogenous growth. Section 5 introduces a jump process in population growth and
presents analytical results. Empirical results are presented in section 6. Results of simulation
exercise are discussed in section 7. Finally, section 8 concludes with some notes on the main
findings.

2 Literature

The rapid advancement of modern science has impelled us to believe that despite existence
of distinct evolutionary mechanisms of populations (human and/or animals)!, economy and
the environment, the individual systems are getting increasingly interdependent over time. A
shock to one of these systems, therefore, is bound to generate ripple effect in another, albeit in
smaller magnitudes. Given the intricacies of interaction and complex mapping of shock pro-
file for the interacting systemes, it is always difficult - though not impossible - to design course
of actions limiting further proliferation of shocks and with an intent to bring stability to the
systems at large. If two systems are similar, working out the shock profiles for individual and
interactions may be easy. However if the systems possess different evolutionary characters
(e.g., human population and economic system), understanding their interactions in the face of
an endogenous or exogenous shocks are not always straightforward. Indeed, the uniqueness
of demographic evolution lies in the fact that it depends invariably on the (inter) actions of
the economy and the environment. Research over the past two centuries (since Euler, 1760;
Malthus, 1798) have not gone in vain: demographers, economists and environmental scientists
recently have been constantly offering rich theoretical and empirical analysis in an attempt to

'Throughout the paper we will imply human population growth as the broad term for population growth.
Evolutionary process of animal population - especially some small species - are independent of human actions and
therefore the implied stochasticity in economic growth in this paper does not result from stochasticity in animal
population population growth. We are only interested in the causes and consequences of stochasticities in human
population.



understand the underlying dynamics of evolutions of these systems with and without interac-
tion. Easterlin (1966, 1968), Dasgupta and Heal (1980), Dasgupta (1995), Kelley and Schmidt
(2001), Birdsall et al. (2001), Jaimovich and Siu (2009) are some of the fine examples in this
regard.

Fortunately, inconclusive results in the past demonstrating the impact of demographic fluc-
tuations on economic growth (see Kelley and Schmidt, 2001) did not dissuade researchers to
further investigate the interactions from new perspective. In fact, the endogenous economic
growth theory’s (e.g., Lucas, 1988; Romer, 1990; Rebelo, 1991) enormous success and intuitive
appeal in recent times has only meant that the centrality of age-specific population growth in
economic fluctuations is irrefutable and irreconcilable (Boucekkine et al., 2002; Mishra, 2006;
Jaimovich and Siu, 2009; Mishra and Diebolt, 2010). This implies then a shock (either endoge-
nous or exogenous) in one of the systems would induce persistence effect in the other and
that continuous interactions in the presence of perturbations may lead to chaotical growth dy-
namics with monotonic volatility over time. Prskawetz and Feichtinger (1995) show that the
underlying mechanism describing the demographic process is exceedingly complex, charac-
teristically non-linear and may result in a pattern which exhibits chaotical dynamics. This is
not surprising given that demographic process experiences many endogenous shifts over time
due to the interaction between demography and the economy and the feedback effect follow-
ing them. These typical features are however infrequently studied in the theoretical literature
where temporal variation of the demographic variables come into the prominence.

Relatedly, stochastic models of population growth has been examined in theoretical biol-
ogy where stochasticity was shown to arise from multistate Markov transition. Volatility in
economic growth in economic-demographic process then would mean that conditional on the
state of economic system, demographic response (in terms of transition probability) may gen-
erate stochastic behavior. However, the extant models banked upon a memory-less property of
demography and economic system in the sense that dependence on shock in course of history
did not matter for current growth. All past information on correlatedness of shocks was only
appended in a single past information set - reflecting irrelevance of the long past events while
using Markov models. But then, a stochastic shock in demographic and economic system could
also be generated with a more realistic approximation, viz., a nonstationary Markovian transi-
tion process or a long-memory process. However, research considering the former is new and
has not been rigorously carried, most possibly due to the problem of characterization of transi-
tion matrix of the demographic process in a non-stationary domain. The research in case of the
latter is also underdeveloped despite its intuitive appeal for modeling evolution of stochastic
shocks.

While the use of Markov process provides theoretically tractable results with reasonably
easy interpretation and inferences on stability and invertibility of the system, it does not ap-
proximate reality. Indeed, recent empirical research (viz., Gil-Alana, 2004; Mishra et al. (2009)
on population and scores of research on output), thanks to the pioneering work on nonstation-
ary time series in the past four decades since Dickey and Fuller (1971), have demonstrated that
population and economic growth are characterized by ‘long-memory’ mechanism in the sense
that a shock to these systems take very long time to converge to the long-run mean. In the
context of foregoing discussion, it implies then that ‘systems with memory rather than without
memory’ of shocks approximates better the complex interaction of demography and economic
growth in the presence of stochasticity.?.

*Tuljapurkar and Haridas, 2006 mentions about the use of long-memory in discerning the autocorrelation be-
tween environment and population growth



3 Stochasticity: source and characterisation of persistence

This section begins with explaining why stochasticity in demographic system is plausible. We
describe various channels through which this may arise. We then present an analytical model
where a stochastic version of Solow-Swan model is examined both within a long-memory
mechanism and with a jump process of stochastic shocks.

3.1 Source of stochasticity

Among several reasons investigating why demographic system might exhibit stochasticity,
Shaffer’s (1987) proposition is of interest. Arguably, what has, by and large, become the stan-
dard classification of stochasticity goes back to the 1978 dissertation by Shaffer, which was
later published in 1987 by M. E. Soul in “Viable Populations for Conservation”, Cambridge
University Press. Shaffer (1987) argues that demographic stochasticity is caused by chance re-
alizations of individual probabilities of death and reproduction in a (finite) population. Shaffer
distinguished four sources of uncertainty that can contribute to random extinction of popula-
tion:

* demographic stochasticity which arises from the chance events in the survival and repro-
ductive success of a finite number of individuals.

¢ environmental stochasticity due to temporal variation of birth and death rates, carrying
capacity, and the population of competitors, predators, parasites, and diseases.

¢ natural catastrophes such as floods, fires, droughts, etc.

* genetic stochasticity resulting from changes in gene frequencies due to founder effect,
random fixation, or inbreeding.

Shaffer went on to argue that all these factors increase in importance as the population size
decreases. He defined a minimum viable population (MVP): ‘A minimum viable population
for any given species in any given habitat is the smallest population having at least a 95%
chance of remaining extant for 100 years despite the foreseeable effects of demographic, envi-
ronmental, and genetic stochasticity, and natural catastrophes. Lande et al. (2003) argue that
demographic stochasticity “refers to chance events of individual mortality and reproduction,
which are usually conceived of as being independent among individuals” whereas environ-
mental stochasticity “refers to temporal fluctuations in the probability of mortality and the
reproductive rate of all individuals in a population in the same or similar fashion. The impact
of environmental stochasticity is roughly the same for small and large populations.” This is
further elaborated: “Random variation in the expected fitness that is independent of popula-
tion density constitutes environmental stochasticity. Random variation in individual fitness,
coupled with sampling effects in a finite population, produces demographic stochasticity.”

Nevertheless, environmental fluctuations or even random catastrophes affect the size of a
population only insofar as they affect reproduction and death rates, that is, by creating demo-
graphic fluctuations. Moreover, Lande and others regard random catastrophes as extreme cases
of environmental stochasticity. Usually, models of demographic stochasticity are distinguished
from models of environmental stochasticity using as a criterion whether the stochastic factor
explicitly depends on the population size as a parameter. If it does, the model in question is
one of demographic stochasticity; if it does not, it is one of environmental stochasticity. This
choice captures the intuition mentioned earlier that the effect of the former depends on the
population size whereas the effect of the latter does not.> Whether in the form of catastrophes

*The mathematical analysis of these models is non-trivial. The most general and uncontroversial theoretical
result to date is that progressively larger populations are required for safety in the face of demographic, environ-
mental, and random catastrophic stochasticity. Moreover, because of the structural uncertainly of these models,
apparently slight differences in assumptions and techniques routinely lead to widely divergent predictions.



(i.e., exogenous shocks) or stochasticities from endogenous mechanisms (e.g., from interaction
mechanism with environment), prediction in the presence of stochasticity of an accurate demo-
graphic pattern long time in the future is always a formidable task. Existence of randomness
is nevertheless a natural phenomena, entities facing uncertainties tend to innovate faster for
survival, and chance events are what offers hope for a new life. Afterall, stochasticities rule.
The crux is to understand its dynamics for a better living.

* Environmental stochasticity as a cause of demographic stochasticity

Demographic stochasticity is caused by environmental stochasticity from a nearly continu-
ous series of small or moderate perturbations that similarly affect the birth rates of individuals
within each age in a population. Additionally, catastrophes are large environmental pertur-
bations that produce sudden major reductions in population size. Whether in terms of sim-
ple environmental or behavioral changes or large scale environmental changes (in terms of
catastrophes), demographic system by and large is often subject to continuous perturbations.
Sometimes the effect of these perturbations go unnoticed, however, as it happens, these small
disturbances contribute to large scale environmental and demographic changes in the long-run.

Demographic system does not evolve independent of economic and environmental sys-
tems. The continuous interaction between demographic, economic and environmental factors
thrives on continuous feedback effects from one system to the other and that renders the re-
lation highly non-linear (Azomahou and Mishra, 2008). Additionally, it is well-understood
that the evolutionary mechanisms of economic and demographic systems are different. To a
reasonable extent it can be said that unless certain demographic standards are met (say mini-
mum population with standard replacement rate), the internal dynamics of economic system
will be severely upset. For instance, given the speed of demographic growth, specifically in
terms of age-structured population growth, declining fertility and mortality, increase in edu-
cated mass, and faster population aging, economic functioning must take recourse to cogniz-
able policy changes so as to restore balance for a ‘sustainable demography-economic” growth
in the longer run. The natural occurrence of demographic and economic system interaction
provides reason to stress that any endogenous shift occurring in one system would have long-
term consequences for the other. This convention has been stressed, nonetheless, in most of the
population literature.

Interestingly, in spite of differences in evolutionary structure of various systems, most of
them share common properties. For instance, initial modeling strategies of macroeconomic/financial
time series were in line with random walk. That is, they are cyclic and non-periodic. However,
recent strategy stresses that most macroeconomic time series resemble neither random walk
nor white noise, suggesting that a hybrid between the random walk and its integral may be
useful. In a similar vein, for over centuries we have observed cyclical behavioral pattern of
demographic system, captured in terms of demographic transition. It has also been observed
that the demographic states are repetitive after long years, so that gives rise to a kind of long-
swing behavior with past dependence property of the system. Intuitively, this implies that a
particular kind of demographic state tend to settle for some period of time due to a specific
interaction nature of demography-economic state. After saturation, a new demographic state
emerges which owes its course due to innovation and development. Once that also gets satu-
rated, the demography-economic system tend to return to old equilibrium path. Typically, this
has been summarized in terms of demographic transition and multi-transition demographic
states in demographic literature ( e.g., Cohen, 1979; Tuljapurkar and Haridas, 2006).

4 Demographic stochasticity and persistence

An important aspect of studying stochasticity of a system is to understand its persistence char-
acter. That is, under stochastic setting, how a shock to the system persists over time. Does it



converge fast enough to make the system stable or it drifts away forever without any possi-
bility of returning to the mean value? Such inquiries have formed the basis of stochastic eco-
nomic growth’s application to real world data. Despite its centrality in gauging the long-term
consequences on economic growth, study of persistence properties for stochastic population
growth is rather sparse. Allen and Allen (2003) in an exceptional research compare three differ-
ent stochastic population models with regard to persistence time. The authors study discrete
and continuous time Markov chains and stochastic differential equations to model the ran-
dom nature of individual birth and death processes and provide mechanism to understand the
persistence effect in these models. An alternative approach would be to study the accumula-
tion dynamics of stochastic shocks in population series over time and estimate magnitude of
persistence. The current paper studies the accumulation dynamics of shocks in population se-
ries over time. To lend appropriate comparison, we first briefly summarize Allen and Allen’s
(2003) three stochastic population models, which are basically memory-less models. Next, we
present the long-memory persistence approach to population dynamics using a conventional
ARFIMA(p,d,q) and duration dependence model with long memory character (Parke, 1999).

4.1 Memory-less model: Markov chain and demographic stochasticity

At time 7, denote the state of the demographic system as D.. The elements of D, comprises
of points (assuming it to be infinite) p; described at each point in time, t. We have in mind
that 7 consists of broader time span where ¢ forms the space of 7. During the transition of
demographic state, D, from say D,, to D,,, continuous perturbations might have occurred at
different ¢ interpoints. Over the span 71 to 7, the perturbations accumulate and over time the
sum of perturbations are likely to produce a non-mean convergent distribution of the system.
While this is a natural possibility, extant growth and demography theories assumed this to be
stationary, in the sense that shocks get smoothed out and summed perturbations always tend
to converge in the long-run. Although most theoretical analysis on stochastic demographic
system utilize stationary Markov mechanism, it is prudent to assume that the probability dis-
tribution of the state of the demographic system at a given point may depend on the system’s
state at the previous stage. The use of stationary Markov chain - assuming that the transition
probabilities are time-homogenous - is probably to easily characterize the long-run or steady
state behavior of the demographic and economic system. However, real world demographic
system evince character which are inherently non-stationary and possesses a persistent shock
which takes long time to converge. That makes the transition probability time-dependent (in-
stead of time-homogenous).

Anily and Federgruen (1986) provided tools for characterizing the long-run behavior of
finite, nonstationary Markov chains in which the time-dependent transition probabilities con-
verge to a limiting matrix. Our purpose in this section is not to describe a non-stationary
Markov chain model, rather we present intuitions from stationary Markov process under which
persistence properties are defined. For expositional purpose, recall that for the state of transi-
tion of demographic system, D, we can define a common state space 1, ...,n. In period 7, the
system moves from state i to state j with probability p(7);;. For stationary Markov chain with
transition matrix P, it is ergodic if limn_wo(Pg — P[;) =0foralli,j,l €{1,..., N}, ie., the effect
of starting state vanishes as time progresses. A stationary chain* is ergodic if and only if it is
aperiodic and has a single subchain, in which case it satisfies a stronger convergence result: a
unique steady state distribution 7 exists with lim,, ,(P];) = m; forall i, € {1,..., N'}.

Allen and Allen (2003) describe persistence time in Markov chain (MC) and stochastic dif-
ferential equation models for birth b(N) and death d(V) rates satisfying conditions in C1 — C4.

*A finite nonstationary Markov chain would mean that a sequence of transition matrices {P(7)}52; defined
on a common state space 1,...,n. In period 7, the system moves from state ¢ to state j with probability p(7);;.
For nonstationary Markov chains, the effect of the starting demographic state may vanish, while the products
{P(1)...P(7)}32, fail to converge.



The discrete time MC assumes that both time and population size are discrete valued. As-
suming that At is a fixed time interval and ¢t € {0,At,2A¢t,...} and that At is sufficiently
small such that at most one change occurs during the time interval At. Given the population
size N, birth and death occurs with probabilities, b(/N)At and d(N)At respectively. Denote
the probabilities associated with N(t) as pny(t) = ProbN(t) =V,V = 0,1,...,M, and p(t) =
(po(t),p1(t), ..., pas(t))T. The transition probabilities is py . (A) = Prob(N (¢ + At)), where py. (At)

b(N)At,z =N —-1,N e 1,.... M,

d(N)At,z =N+1,N €0,1,.... M — 1,
1—[b(N)+d(N)]At,z = N,N €0,1,...,N 1)
0, otherwise. (2)

Then, pn (t + At) satisfies the following difference equations:
pn(t+ At) = b(N — 1)Atpy-1(t) + d(N + 1)Atpy11(t)

+(1 = [o(N) + d(N)]A)pn (1) ®)

for N =1,2,....M—1.For N = 0and N = M, po(t+At) = po(t)+d(1)Atpi(t) and pps(t+At) =

b(M —1)Atppr—1(t) + (1 —d(N)At)par(t). The difference equations project forward in time and
in matrix form they can be expressed as:

p(t + At) = B(t) (4)

where P is the transition matrix.

In continuous MC model, ¢ € [0, 00). For At sufficiently small, the infinitesimal transition
probabilities py,(At) are similar to those given in (1). As At — oo, a system of differential
equations for the probabilities px (t) satisfy the forward Kolmogorov differential equations:

D) b — 1o 1(1) ~ [B(V) + d(N o (1)
+d(N+1)pN+1(t)7NE {1""7M} (5)
and dpé;t(t) = d(1)p1(t). In matrix form,
Z_]Z:QpapN():l (6)

where matrix @ = (g;;) is the infinitesimal generator matrix (for details see Allen and Allen,
2003).

Finally, for stochastic differential equation case, both time and state are continuous vari-
able. Denoting p(NV,t) as the probability density function and assuming that birth and death
processes satisfy conditions C'1 — C4, Allen and Allen (2003) state the Kolmogorov differential
equation:

Op(N,t) __ O([b(N) = d(N)]p(N, 1))

ot ot
1 9*([b(N) + d(N)]p(N, 1))
3 ON2 @

for N € (0,M),t € (0,00). From the forward Kolmogorov equation the sample paths N(t)
of the stochastic process satisfy Ito stochastic integral which is often expressed as stochastic
differential equation:

D _ bv(e) - v (e)
/BN ) £ d(N(T))dvgt(t) N (0) > 0. (®)



The persistence time in each of the three models are defined by the difference (discrete time
MC) and differential equations (continuous time and stochastic differential equations). Allen
and Allen (2003) derive the the explicit formula for mean persistence time for both discrete and
continuous time models assuming the initial population size Nj.

4.2 Model with memory: Time dependence and long memory mechanism

The Markov models described above are memory-less models and stochastic shocks in N (t)
cannot be sustained for long. The system has limited ability to carry past shocks to the future.
However, demography - like any other physical and non-physical system - possesses tendency
to remember past shocks and which affect the current as well as future growth trajectory of
the system. This implies that Markovian models are not sufficient to describe true persistence
property of shocks, which are otherwise characterized by time series processes. Cumberland
and Sykes (1982), for instance, examined the crude vital rate of Sweden and supported the
view that a natural starting point in modeling the crude vital rate of a human population is
a first-order autoregressive (AR) process. Gil-Alana (2003) and Azomahou and Mishra (2009)
examined the stochastic nature of population growth for OECD and non-OECD countries using
a fractionally integrated autoregressive moving average (ARFIMA) (to be defined shortly) and
found that population growth in most of these countries are characterized by stochastic long-
memory persistence, in the sense that a shock to the population growth takes very long time
to converge - which is contrary to the conventional modeling of the variable in a stationary
domain.

In this paper, we draw on Mishra (2006), Mishra et al. (2009) and Azomahou and Mishra
(2009) to model demographic and economic growth system with a long memory framework
(to be described shortly). Economic historians may refer this to hysteresis effect. However, our
point of departure lies in the basic distinction between long memory process and hysteresis
process. In the literature, hysteresis effect is often confused with long memory series, since
the hysteresis effect is a persistence in the series like the long memory effect. But the long
term behavior of the hysteretic series is very different from the long term behavior of the long
memory series: the hysteric series are not mean reverting whereas the long memory series
are (if correctly differenced). Since the mean reverting property is crucial for many economic
models for checking the stability of the equilibria, distinguishing between long memory and
hysteresis effect is important. This difference is due to the fact that hysteresis models have
in fact a short memory, since the dominant shocks erase the memory of the series, and the
persistence is due to the permanent and non-reverting state changes at a microstructure level.

To further elucidate, recall that population growth is denoted by n; at time ¢ and total pop-
ulation size as V. A long-memory in n; can be defined as follows:

Definition 1 Denote d as the integration parameter lying on the real line, k as the lag length. Now,
suppose that ny is a process with autocovariance function (k) ~ C(k)k**=t as k — oo, C(k) # 0,
where k defines the lag between current and distant observations. Then n, is a long-memory process if
the autocovariance function decays slowly to the mean value over time.

Now let’s define the fractional integrated autoregressive (AR) moving average (MA) pro-
cess (ARFIMA (p,d,q)) for p AR order and ¢ MA order along with fractional d for n; with /without
feedback effect from the economy. Two cases are distinguished. In the pure demographic
model, dynamics of population growth (n;) is determined by its autoregressive and moving
average structure such that n; at time ¢ is led by its own evolutionary characteristics and by the
evolution of some stochastic shocks. In this setting, no feedback effect accrues from economy
to demography and the converse, but the dynamics is governed by exogenous growth gener-
ating mechanism. Interaction model (as described below), however, may contain terms which
explain structural dynamics of n; even while being explained by ARMA features.



We describe two demographic models (viz., pure and interaction) using an autoregressive
fractionally integrated moving average (ARFIMA. For details see, Bailley, 1996 for excellent
survey on these models).

* Pure demographic model:

(1 — L)*®(L) (¢ — po) = p1 + O(L)uy )

In this case, population growth is dependent on past and stochasticity in population growth is
modeled solely in terms of past shocks in the system.

e [nteraction model:

In the model described below stochasticity in population growth depends not only on its
own evolutionary effect, it also thrives on the evolutionary consequences of economic system
as well.

(1= L)*®(L)(ns — po) = p1 + By + O(L)uy (10)

where us ~ iid(0,02); ®(L) = (1—¢1 L—---— ¢, LP): AR(p); O(L) = (1401 L+---+6,L7): MA(q).
Furthermore, 1o and p; are intercepts which affect the demographic system differently (due to
the way they enter the system). x; is the vector of explanatory variables which may include
lagged dependent variable and others with a possibly distributed lag structure. Formally, (1 —
L) can be described by power series expansion mechanism:

s dd—1)(d—2)...(d—j+1
(1—L>d—Z(—1>J( o). @ ) (11)
— J!
7=0
where d(d_l)(d_ﬁ)'“(d_j *1 is the binomial coefficient which is defined for any real number d and

non-negative integer j. The most intuitive exposition of (1 — L)% for a time series is via their
infinite order moving average (MA) or autoregressive (AR) representations. In this instance,
expressing M A(co) of (1 — L)? for the time series would mean that we have an expression:
Y720 hi L7, where hg = 1 and

—dr(j—d)  j-d—1_
hj = - hj1,j > 1. 12
I T —dT(+1) ;b= (12)

It may be noted that the AR and MA representations of fractionally differenced series il-
lustrate the central properties of fractional process, particularly long-range dependence, which
is the focus of this paper. Allowing d to lie on the real line renders a flexible mechanism to
display varied shock convergence properties. For instance, with d = 0 in (1 — L) = ¢ without
AR and MA components, that is with a fractional Gaussian process, the system exhibits ‘short
memory’ because the autocorrelations in this case is summable and decay fairly rapidly so that
a shock has only a temporary effect completely disappearing in the long run. Long memory
and persistence is observed for d > 0. In this case, the shock affects the historical trajectory of
the series. However, greater is the magnitude of d, stronger is the memory and greater is shock
persistence. For d € (0,0.5), the series is covariance stationary and the autocorrelations take
much longer time to taper-off. When d € [0.5, 1), the series is a mean reverting long-memory
and non-stationary process. This implies even though remote shocks affect the present value
of the series, this will tend to the value of its mean in the long run. For —1/2 < d < 0 the
process is known to be fractionally over-differenced. In this case, there is still short memory
with summable autocovariances, but the autocovariance sequence sums to 0 over (—oo, +00).
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For d < —1/2 the series is covariance stationary but not invertible. And finally, when d > 1
the series is nonstationary and exhibits ‘perfect memory” or ‘infinite memory’. There is no un-
conditional mean defined for the series in this case. The process defined by this value of d is
non-stationary and non-mean reverting. In this case, the mean of the series has no measured
impact on the future values of the process. Important to note that for 0.5 < d < 1, there is
no variance, so the existence of the mean would need to be established in each case. There
is a median, however. So this case may be described by ‘median reversion’. The results are
summarized in Table 1.

Table 1: Fractional components and their interpretation

[ d | Interpretation |
0 : Short-memory population growth, log population is I(1)
1 : Non-stationary population growth, log population is 1(2)

<0,0.5> :Long-memory population growth, log population is I(d+1)

But what intuitive explanation long-memory system offers for understanding demographic
and economic growth stochasticity? Silververg and Verspagen (1999) explain that long-memory
is intermediate between a relatively unstructured stochastic world in which the present is just
the summation of unrelated random events in the past (a random walk), and a rigidly pre-
dictable cycle or trend with relatively negligible, mean reverting stochastic disturbances. It is
indeed so, as it preserves the notion of even the distant past continuing to influence the present
in a somewhat law like fashion, allowing the future to be structured while remaining shrouded
in a haze of uncertainty.

4.3 Duration dependence

Stochasticity in population growth can also be defined by duration dependence, which assumes
similarity with Markov mechanism in that a shock must survive some periods in order it to
be defined it as persistence or long memory. The survival probability indicates the length of
persistence. Technically, if we describe population growth by (1 —L)%n; = ¢, the basic question
is what sort of process might generate such data. For finite order autoregressive and moving-
average approximations for fractionally integrated processes require extremely long lags to
achieve any kind of accuracy. For relatively small samples, it is possible still to identify the
source of long-memory in population growth with greater degree of accuracy using an error-
duration representation (Parke, 1999). The underlying idea is to describe a process where a
shock survives some periods giving rise to persistence characteristics. Assuming ¢;,¢t = 1,2, ...
as a series of i.i.d. shocks with mean zero and finite variance, o2, the error can be described to
possess stochastic duration 7; > 0, surviving from period s until period s + 7. Let I, ; be an
indicator function for the event that error e, survives to period ¢ such that I, ; = 1 fort < s+n;
and I,; = 0 fort > s+ n, If py is the probability that e, survives until period s + %, i.e.,
pr = Is s11 = 1, then a realization z; can be described by the sum of all errors ¢;_;,7 = 0, 1,2, ...
that survive until period ¢: z; = ZZ:_OO I, te5. The survival probabilities pg, p1, p2, ... are the
fundamental parameters of the error duration representation of z;

Irrespective of the mode of definition of stochasticity (i.e., whether duration dependence
or simple temporal dependence), we inevitably arrive at the same properties of population
growth concerning shock convergence property. In the ensuing sections we utilize the temporal
behavior of population and economic growth to lend an intuitive explanation to the possible
effect of stochastic long-memory effect of demographic system on economic growth.

11



5 Model

5.1 Some basic properties

To know how stochastic demographic system may induce volatility in economic growth, we
would like to show that the conditional mean and variance of k—period aggregate output is a
function of stochastic memory of demographic system.

To show this, assume a simple economic-demography growth model (EDM):

Yt = Yt—1+ M (13)

where 7, ~ (0, 037). This model provides us with simple explanation that past population
growth impacts output at time ¢ because it takes time for the economy to feel the effect of
population rise (which is presented in terms of net resource users). Similarly, by adding 1 on
each side of this equation, we get a relation that implies output at period ¢ + 1 depends on pop-
ulation growth at period t. Thus, there is a feedback effect from economy to the demographic
system and the converse.

Proposition 1 Under the assumption of feedback effect between economy and demographic system in
the EDM model (described above), long memory in output growth, y., can be represented by the long
memory in the demographic system.

Proof of proposition 1

Let n; in EDM model (Equation 13) follow an ARFIMA(p,d,q) process:

(1 _¢1L_¢2L2 — e _¢pr)(1 _L)dnt (14)
= (140 L+ 012+ +0,L9¢
with usual definitions: E[nes] = o2, if t = s, 0, otherwise. We assume ¢(L) # 0 for z < 1.

Re-write (14) as: ¢(L) "' (1 — L)~90(L)e;. Now, denote w(L) = ¢(L) !, where w(L) = > 7% w; L}
and use the identity w(L)¢(L) = 1 to find the unknown coefficients recursively:

wo = 1,

wi = ¢1wo,

wa = P1w1 + ¢awp and so,

Wi = g1wi—1 + -+ Ppwi_p fori =p,p+1,---.

Further, using Binomial expansion of (1 — L)¢, we have (1 — L)™¢ = >°%°, WU.
Multiplying (1 — L)~?and ¢(L)~!, we get

L=L) L) " =) 2L (15)
j=0
where
2 =1if j =0,
2 = wo (d+J—1)j!~(d+1)d +
wl% + -4+ wj_1d + wj , otherwise.

And finally, for j > 0, describe
Vi = zj + 2101 + - 2j—4bq
withz 1 =---=2_,=0.
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Denote the cumulative k—period output, y; at time ¢ as Yt(k) and the M A(oo) representation of
Yt as

ye=Y Vi€ j. (16)
i=0

To know the effect of stochastic demographic shocks on aggregate output, we utilize EDM and
M A(c0) representations such that:

k k k ‘ "
Yt( )= 2oy Yokt = - 2opey Do Vi€t + 2 e
. k
Denoting Ci( )= Vit Y1+ i (1),
we can write
L k
Y =0 2 (Pea i+ Xy ma

)

The conditional expectation of Yt(l‘C then equals:

E[v®] = ; (Pevrju (17)

and the conditional variance of k—period cumulative output is:
von (92 1)

18)
k k) )2 k (
=723 (41531) ol +7. Zl(cjl Ten + 0

Expressed in terms of (, aggregate output is a function of stochastic memory component
both in mean and variance, thus completing the proof of long memory in output due to long-
memory in aggregate population. [J

5.2 Stochastic Solow Model with Long-Memory

In this section we provide a theoretical construct expounding the relation between long mem-
ory and output growth. We use a stochastic version of Solow-Swan model where population
growth in the model, instead of being constant, is assumed to be stochastic so that dynamics
of population growth can determine the dynamics of output in the economy. Drawing on the
intuition and construct of long-memory population growth described in the preceding section,
we allow population in Solow-Swan model to follow a long-memory data generation process
(DGP). The economy is assumed to be closed. The production function of the representative
agent is given a Cobb-Douglas type:

Y; = AKFN} (19)

where 0 < o < 1, Y; is output at time ¢, K; is capital input at ¢. Labor input, /V; governed by
the growth of population, n; so that

Ny = (1 +ng)Ney (20)

where population growth, n;, in our system is assumed to follow a long-memory data generat-
ing process which evolves as

(1= L)*®(L)n; = O(L)e; 1)
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L is the lag operator as defined before and

- IG-d
1 - L) = - ] 22
(-1 ]Z:; I'(j+ 1)I(—d) 22)
PL)=1+¢L+..+¢pLP)and O(L) = (1 — 6L — ... — 0,L?) are AR and M A polynomials

respectively. Moreover, the investment, /; and capital stock equations are described as
Kipn=(1-98)K + I (23)

In the above equation, capital stock is assumed to decline at a constant rate of § (0 < 6 < 1) per
period. Given that s is the fraction of Y to be invested, then

Iy = sY; (24)
Consumption is defined according to
Ci=(1-9)Y; (25)

Proposition 2 Given a production function of Solow-Swan type where population growth follows a
long-memory data generating process (DGP) (Equations 8 - 12), the output growth in the economy will
also follow a long-memory DGP. Long-run convergence of output will be determined depending on the
‘degree” of memory of stochastic population shocks.

Proof of proposition 2

The immediate effect of long-memory population growth on economy’s long-term output,
consumption and investment growth can be observed by plugging the long-memory DGP of n;

in the production, capital, and consumption equations. Assuming that (L) = ((EJZIEI:::;ZZLL?) =

1° in equation 21 and substituting it in equation 20 and then in equation 19, we obtain

Y = AKP[(1+ (1= L)""(L)er) Ne-1)] (26)

The output per capita, y; = (Y;/V;) in this case is a function of sequence of shocks, thus regu-
lating the “efficiency unit of output’ by the stability of shocks. Moreover, since (1 — L)% can be
represented by impulse-response mechanism, viz., 3 7% (j + 1)4-1, inducting this in equation
26 then depicts

Y = AKP[(1+ ) (G + )" (L)er) Nen)] (27)
j=0

Assuming the effect of technology, A, to be constant on Y;, or by assuming that growth
in A is caused by population pressure, a unit shock in n; in equation 27 can exhibit how Y;
responds to it. Nevertheless, it is clear that depending on the magnitude of d, the behaviour
of V; can determine the nature of output growth in the economy. Now, since consumption
and investment are a function of output, the persistence of shocks in output, consumption and
investment growth in the economy. Denoting, aggregate output and aggregate consumption at
T as Q7 and C7 it can be shown that Zthl Y: = f(K,n(d)), and Zthl Cy = f(Y,n(d)) where
n(d) denotes long-memory population growth.

>This assumption is not binding but assumed for simplicity.
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5.3 Stochastic Solow Model with Brownian Motion

We now have the necessary tools to analyze the behavior of the stochastic model over time. We
first introduce the main structure of the Stochastic Solow Model with the Brownian Motion,
and then consider the long run or steady state.

The construct
As before, the Cobb-Douglas production function is
F(Ky, L) = AK{LY,

where A > 0 is the level of technology, € (0,1), 5 =1 — c.
In the deterministic model, the net increase in the stock of physical capital at a point in time
equals gross investment less depreciation:

K; = sY; — 0K;, Ly =nL; (28)

where K; = dK;/dt denote the net increase, s € (0,1) is a constant saving rate, § € [0,1] is
the depreciation, the population grows at a constant, exogenous rate n > 0. The fundamental
differential equation of the Solow-Swan model is

ke = sf(k) — (n+ 6)k. (29)

Assume that the growth rate of K; and L; are affected by some random disturbance, (29)
can be written as:

dK; = (sY; — 0K;)dt + K;dBJ (30)
and
dL; = nLydt + LydBF (31)

where B and B} are given Brownian Motions. The perturbations of K; and L; are results
from independent effects of large number of small factors, so we can use Brownian Motions to
describe disturbances in (30) and (31). We denote the variance of B by o dt, Bf by odt, and
cov(dBJ,dB}) == ok pdt.

By the It6 lemma, we have

dky = (sf (ki) — pke)dt + kdBy, 2
where
u:n+5+UKL_U%

and
dB, = dBF — dBE.

(32) describes stochastic Solow-Swan Model with Brownian motion. From (32), we can easily
address:

1. Per capita capital k; is a homogenous diffusion process which the drift and the diffusion
coefficients are s f(k;) — uk; and k7 (0% — 201, + 0% ) respectively;

2. The Markov property of k; shows that: the economic status at the presents can forecast
the trend for the future. Namely, if s > ¢, k; = k, then the probability density of &, is
determined by k; = k. Meanwhile, by using Kolmogorov equation, the transition function
p(t, k, k1) can be obtained. If s > ¢, V(a, b),

b
Pa < ks <blk = k) = / p(s =t k, y)dy;
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3. From (32), the expected growth rate of &; is

Y = E(%) 3/ )

k (33)
=sf(k) — (n+d+o0oxr — 0%).

In the absence of stochastic disturbance, we have the deterministic growth rate gy :

g= = S 1) 9

From (33) and (34),

2
Y — gy = OKL — OF..

This means when o, > a%, the existence of the stochastic disturbance can raise economic
growth. On the contrary, ok < a%, the existence of the stochastic disturbance can reduce
economic growth. Precisely, if the magnitude of L, is bigger then Ky, then o < oxor < 07,
Y < gt, therefore the growth rate will decrease. In exceptional circumstances, L; is disturbed
but K; does not, that is 02 > 0, 0% = 0, in this case the growth rate will decline. Contrarily,
if K, is affected by stochastic shocks but L; does not, O’% =0, a%( > 0, then the growth rate
will remain the same. It can be clearly seen that, the perturbation of K; and L, has different
influences for the economic growth. L, has relatively bigger impact than k.

The Stability Analysis

We define a steady state as a situation in which the various quantities grow at constant rate.
In the deterministic Solow Model, the steady state corresponds to k; = 0, the corresponding
value of k; is denoted by kj, that is sf(kf) = (n + 0)ki, t — 0, ky — k*. We say ks = k} is
asymptotically stable in (0, c0) globally.

The stability of the system will change along with the appearance of the stochastic distur-
bance. Firstly, (32) does not have the steady state apart from k; = 0 since k; is eliminated by the
stochastic disturbance terms. Secondly k; = 0 in (32) is not obvious, apparently k; = 0 in (29)
is not a steady state, so it is not comparable. We will consider the exponential stability of the
system in this section. As almost surely exponentially stable can easily apply asymptotically
stable in global, so we will focus on this kind of stable on the stochastic system. A lyapunov
funcion can be used to analyze the stability of (32).

Suppose that D = R, V(k;) = k?, we have

s.f (k)

sup {— + 02 — Z,u] < 20?
k>0 bk

and

. Sf(kt) 2 2
nf |57 4 0% — 2] > 20”

They implies:

k 249
SupSf( t)<0 +2u

35
E>0 2s (35)

and

2
nf sf(ke) - o +2,u‘
k>0 k 2s

(36)
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Let (k) := f(]]:t). Then one can obtain
ki (ki) = ke f' (ke) — f(Ke), ke > 0.

Thus
. . !/
]ll_% o(kt) = %g%f (kt) = oo,
and
lim ¢(k) = lim f'(k) = 0.
k—o0 k—o0
Therefore we have

sup (k) = ¢(0) = oo, inf p(k;) = p(00) = 0.
k>0 k>0

The discriminant condition (35) and (36) can be re-written as

02 421 > 00 (37)

o2 +2u < 0. (38)
Obviously, (37) is not possible. From (38) we can obtain
2(n+0) + 0% < o7. (39)

It means: if 02 < 2(n+4) + 0%, (32)’s solution is not exponentially stable in [0, oc] a.s.. In other
words, per capita capital exponential grows from the initial point, the trajectory of the solution
that starts from D = [0, co) but also eventually coverage in D. Therefore, (39) is the criterion of
the exponential instability of the zero solution of (32).

5.4 Stochastic Solow Model and the Jump Process

So far, we dealt with a continuous time stochastic Solow-Swan model. In this section, we relax
this assumption and rather investigate what would happen if the stochastic shocks appear as
jump process. The underlying idea behind this is that demographic systems often experience
sudden jump in their dynamic behavior - due either to sudden perturbations from the nature
or from the economy because of excessive human interventions.

To understand the nature of jump process, we will use Jump-type Lévy processes to repre-
sent the stochastic disturbances in the Solow-Swan Model. The most well known examples of
Lévy processes are Brownian motion and the Poisson process.

Construct

Let {NX};>0 and {N}'};>0 two poisson processes with intensity measures \;, Ao, we further
assume that (N/<, NF) = M\ ot where (NS, N}) stands for the quadratic process of N and
N{. The Poisson distribution with associated parameter ) is:

]P(NtK(w):n):e_Alt()\;—t‘), n=12...,
and g}
P(NtL(w)zn):e_Mt%, n=12....
Consider
dK; = (sY; — 0K;)dt + K, dN[ (40)
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and
dL; = nLydt + LidNE (41)

Due to the It6 formula, we obtain from (41)

1 _n

1
dt — —

dl—) = —
(Lt) K, 2L

dNE. (42)

We also have

1. K

d<Kt7_> 2Lt

43
. A \odt (43)

Also by the It6 formula, we deduce that

K 1
dky = d(=2) = —dK; + Kd(

1 1
Ly Ly Ly

) + d{Kq, L—t>- (44)

Substitute (40), (42),(43) into (44), we can get

k -k
dky = [sf (k) — 6ke — nk; — 5t>\1)\2]dt + kdNJ — édNtL. (45)
Therefor (45) is a stochastic Solow-Swan Model with jumps. From (45), the expected growth

rate of k; is

dkt S kt
dkey _ s (k)

1 1
—6—n—= — - 46
2 k‘t 6 n 2)\1)\24’)\1 B 2 ( )

or =E(
Recall in the deterministic model, the growth rate gy :

gk:%:%ft)—(n—l-é).

From (34) and (46), we have

1 1
— g = ——A A2+ A\ — =)o
Ok — 9k 212+ 152

This means when 2\; — A\ A2 — A2 > 0 the exitances of the stochastic disturbance driven by
jumps can raise the growth. On the contrary, 2\; — A\j A2 — A2 < 0 the growth will be reduced.
If Ay = A2 = 0 the stochastic disturbance disappears, then ¢, = gs.

Stability Analysis

As the same deification in Section 2, the steady state level of capital stock is the stock of capital
at which investment and depreciation just offset each other, that K; = 0.

In order to analyze the stability of (45). we will employ lyapunov function. Assume D =
Ry, V(k) = k?, we have

sf(kt)
k

t
+ Martingale.

dki = k7| — 26— 2n — 2\ A0 + 3\ — ZAQ}

By the definition of lyapunov function, if

k
sup <M —20 —2n — 2X\1 2 + 30\ — §)\2> <0,
k>0 t 1
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The above condition can guarantee the system is exponentially stable, otherwise

k>0 t

the system is not exponentially stable. They implies:

sf(ke)  20+2n+2XMA — 3A1 + 32X
sup <
k>0 ki 2s
and

3
i Sf(kt) - 20 4+ 2n + 2X1 09 — 3\ + Z)\Q
E>0 Kkt 2s

Let (k) := f(,]jt), then, we can get
k2o (ky) = kof' (k) — f(ke), ke > 0.

Thus

. BT / -

lim o(ke) = lim f (kt) = oo,
and

lim (k) = lim f'(k;) = 0.

k—oo k—oo

Therefore we have

sup (ki) = ¢(0) = oo, inf (ki) = p(c0) = 0.

The discriminant condition (47) and (48) can be re-written as

26 4+ 2n 42X Ao — 3A\ + ;l)\g > 00
and
20 4 2n 42X\ A2 — 3\ + %)\2 < 0.
Apparently, (49) does not hold. Under the criterion of (50), that
2(6 +n) <3\ —2X2Ag — Z/\g

The stochastic system is exponentially unstable.

The stationary distribution of k;

inf <M — 20 —2n —2M A2 + 3X\] — 2)\2) > 0,

(47)

(48)

(49)

(50)

In the deterministic Solow-Swan model, %; finally goes to steady state £;. In a similar way, in
the stochastic model, k; will go to a non-zero random variable as t — oo. If this random variable
is continuous, then we can apply apply it’s probability density function (PDF) denoted by 7(-).

Here 7(-) is named the stationary distribution of ;.

Merton (1975) and Bourguigono (1974) first proposed to use a definition of the stationary
distribution in the theory of economic growth. In this Section, based on Merton’s model, we
provide some extensions for computing the stationary distribution of k; in the stochastic Solow

Model.

Now let us discuss 7 (+). Recall k; is from (32), the production function is k& (0 < « < 1), by

the Kolmogorov forward equation, we have

s(1— k)

o(k) = L % In k,

oo
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where o/ = 1 — a. Then

1 o0 .
_ 2p20(k) / ~2% gk
W(kt) ¢ 0

Nw) ., o2 o
= DD oy eanse® (),

2 +02
where = -2 S w = 137
Therefore

(k) = %Bwkt_%%/oz Cxp(—ﬁk;”‘/).

We need w > 0, which implies the following condition
2(n +0) + 0% > a3.

(51)
Here (51) is the condition which can make k; converges to stationary distribution
Now let us assume (51) is satisfied and

20+ 7’0 B T

= =w— —.
N
aIO-Q !/

Obviously, w = wy, suppose k; has stationary distribution, then
E(k7) = / k() e
0

- rZQ)B“LK; k2T oxp(— Bl Yk
_ oz Dwr)
T

Particularly, lett =1, 7 =a, 7 =

—a/, we have
e = E(ky) = B2 T(w1)/T(w),

(
m = B(kg) = g7 o) — g )

w O'2
E(z_i) _ E(k‘ a) 5 IF;(UJ) ) ﬁfl F(F(:) ) _ 5710.) _ 2:“;:9 )

In the deterministic system, due to f(k;) = k°, the steady state of k; is

g(«qf( ) i E—
M) s

%
= Grs)”

Assume n + J > 0, now we can compare k; and k;. Set e = 1

1 2
= o = 1Ta > lande =55 =,
then we have

ky 2n+20\¢ TI'(z)

k_f_< alo? > [(z+¢)
s 2 T()

= 1 )F(x—i—e)'

When o* — 0, (”T”L‘S) — 1; By Stirling Approximation, we have F(FJ(F )) — laslongas z — oc.
Therefor we can say when o2 — 0, ky — k;
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This conclusion can prove that when the stochastic terms disappears, k; = kf, the steady
state of k; (in deterministic model) is equivalent to &; (in stochastic model).

Thus, the above exercise showed that under both Brownian motion and Jump process,
stochastic population growth would exert differential dynamic effects on volatility in economic
growth. A permanent type of effect is observed when demographic growth follows a Jump pro-
cess. These theoretical findings need to be qualified. In the next section, we perform a small
empirical exercise.

6 Empirical analysis

We present here estimates of long memory for output and population growth for a set of OECD
and non-OECD countries. In Tables 2 and 3 below we report the estimates of the long memory
parameter, d, the magnitudes of which indicate the relative rates of convergence of shocks to the
long-run mean-values over time. The estimation has been performed using Kim and Phillips’
(2000) modified log-periodogram regression method (MLPR). The MLPR method is a modified
version of the following Geweke and Porter-Hudak (GPH, 1983) log periodogram regression:

In[L,(A)] = —2dIn|1 — e<| + In(fu(A\c)) +n; (52)

where the periodogram ordinates of population growth (left hand side of the equation) are
regressed over the spectral representation of the error term and the transformation of (1 — L)%
in the frequency domain. The ordinates are evaluated at the fundamental frequencies ( =
1,...,v. Kim and Phillips (2000) note that (52) is a moment condition and not a data generating
mechanism. The modified GPH, i.e., the MLPR is given as:

In(Iy(\e)) = o — din|1 — e + u(X) (53)

in which the periodogram ordinates, In(7,,(\¢)) are replaced by In(Iyv(A¢)) = Vu(A)Vp(Ae)*
with o = ln(fu,(O)) and u()\c) = ln[[n()\c)/fﬂ()\c)} + ln(f“,(/\c)/fu(())). Note that Vn()\c)Vp()\()*
is the discrete fourier transform and is to be used in the regression instead of In(fy (\¢)). De-
tailed derivations are presented in the appendix.

A practical problem is the choice of v, the number of periodogram ordinates to be used
in the regression. Geweke and Porter-Hudak (GPH, 1983) suggests that the optimal v = T
where o = 1/2 and T is the sample size. The choice involves a tradeoff that may be described
as follows. The smaller the bandwidth, the less likely the estimate of d is contaminated by
higher frequency dynamics, i.e., the short-memory. However, at the same time smaller band-
width leads to smaller sample size and less reliable estimates. As in the case of GPH method,
the smaller value of « (as in ¥ = T*) implies the smaller number of harmonic ordinates (i.e.,
the smaller bandwidth) will be used for the estimation of d. Generally, in empirical analysis,
preference is given to increasing the value of a to check for the consistency of the estimate of d
although simulation experiments can confirm the validity of the selection. For our purpose, we
have used a = 0.60 through oo = 0.80 to estimate d. We choose oo = 0.7 based on a Monte Carlo
simulation experiment (see table below) where we have minimum bias for that bandwidth.®

Tables 2 and 3 we test the null hypothesis of short-memory against the alternative of long-
memory. From the d estimates, we find clear evidence of long-memory for non-OECD countries
where estimated d are significantly greater than 1/2. The d estimates are however smaller than
1 indicating the long-memory persistence with the possibility of convergent shocks in the long-
run. For OECD countries” income are less persistent than non-OECD countries as we analyze
the estimates over different bandwidths. Stationary long-memory features are observed for

®Davidson’s (2007) TSM software is used to carry out the simulation experiment which is built for the GPH
model.
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both sets of countries for per capita income and non-stationary long-memory or highly per-
sistent demographic shocks are observed for some non-OECD countries (where estimated d is
higher than 0.5).

Table 2: Modified log-periodogram estimation of the long-memory parameter for per capita
income

T 7=05 7=055 7=060 7=0.65 7=070 7=0.75 7=0.80

Periodogram

Ordinates 11 14 18 24 30 39 50
OECD

USA  0.416 0.269 0.204  0.096 0.203  0.162 0.104

(0.215)  (0.172)  (0.151)  (0.131)  (0.118)  (0.112)  (0.052)

Japan 0.160 0.211 0.331 0.312 0.200 0.211 0.244

(0.066)  (0.056)  (0.113)  (0.094)  (0.083)  (0.075)  (0.064)

UK  0.052 0.101  —0.029 —0.340 —0.461 —0.484 —0.478

(0.187)  (0.144)  (0.146)  (0.147)  (0.124)  (0.104)  (0.085)

France -0.515 —0.446 -0.397 -0.163 —0.089 —0.119 —-0.152
(0.335) (0.250) (0.189) (0.175) (0.142) (0.120) (0.103)

Canada 0.703 0.453 0.324 0.307 0.173 0.251 0.169

(0.130) (0.153) (0.129) (0.106) (0.101) (0.133) (0.113)

Non-OECD
China 0.706 0.519 0.529 0.514 0.583 0.619 0.625
(0.134) (0.154) (0.131) (0.137) (0.126) (0.105) (0.085)
India 0.387 0.658 0.795 0.503 0.544 0.280 0.241
(0.314) (0.298) (0.264) (0.218) (0.179) (0.173) (0.157)
Brazil 0.373 0.321 0.455 0.508 0.547 0.538 0.611
(0.271) (0.215) (182) (0.138) (0.123) (0.101) (0.125)
South Africa 0.589 0.969 0.751 0.731 0.593 0.404 0.327
(0.296) (0.379) (0.304) (0.235) (0.203) (0.179) (0.145)
Mexico 0.117 0.108 0.267 0.501 0.550 0.476 0.399
(0.294) (0.235) (0.215) (0.179) (0.157) (0.130) (0.107)

6.1 Implications for endogenous/exogenous growth

Lau (1999) used unit root framework to describe the time series properties of endogenous
growth models. He showed that integration and cointegration properties arise intrinsically
in stochastic endogenous growth models under fairly general conditions. If the unit root is
present in the autoregressive polynomial of the variables, it can then characterize the outcome
of endogenous growth mechanisms. They can produce steady-state growth in the absence of
exogenous-growth generating element. From our long-memory estimates, it is clear that there
is significant evidence of long-memory for both per capita income and population. While a
difference stationary model (with unit root assumption) can imply the presence of stochastic
endogenous mechanism, a fractional integration /long-memory in output growth can imply the
existence of stochastic semi-endogenous growth setting. The latter appears to be more power-
ful as real life economic variables often display slow-convergence pattern of stochastic shocks.
One way to understand the impact of stochastic shock in population on per capita income, is
to perform a cointegration analysis. This would also enable us to infer if the joint process is
governed by an exogenous or endogenous growth mechanism.

For the purpose, we adopt the two-step strategy as in Caporale and Gil-Alana (2004, 2005)
and discussed succinctly in Gil-Alana and Hualde (2009). The strategy is to employ fractional
integration test in various stages. Accordingly, in the first step, we test for the order of inte-
gration of each series, and if they are found to be of the same order, we test, in the second
step, the order of integration of the estimated residuals of the cointegration relationship. Let us
call ¢, the estimated equilibrium errors between two series, real GDP per capita and aggregate

22



Table 3: Modified log-periodogram estimation of the long-memory parameter for total popu-
lation

T 7=05 7=055 7=060 7=065 7=070 7=075 7=0.80
Periodogram

Ordinates 11 14 18 24 30 39 50
OECD

USA  0.962 0.925 0.982 1.027 1.046 0.968 1.003
(0.171) (0.131) (0.116) (0.115) (0.117) (0.102) (0.090)

Japan  0.696 0.720 0.581 0.430 0.574 0.708 0.664
(0.240) (0.179) (0.145) (0.117) (0.132) (0.110) (0.088)

UK 0.504 0.414 0.315 0.320 0.262 0.195 0.137
(0.371) (0.276) (0.208) (0.150) (0.122) (0.097) (0.078)

France 0.125 0.540 0.494 0.494 0.607 0.575 0.526
(0.152) (0.266) (0.240) (0.176) (0.152) (0.120) (0.103)

Canada 1.087 1.077 0.843 0.658 0.788 0.728 0.703

(0.311) (0.268) (0.223) (0.171) (0.153) (0.127) (0.106)
Non-OECD

China 0.405 0.528 0.534 0.476 0.581 0.670 0.813
(0.267) (0.224) (0.175) (0.127) (0.117) (0.109) (0.108)
India 0.118 0.110 0.119 0.116 0.112 0.089 0.077
(0.072) (0.060) (0.047) (0.035) (0.028) (0.023) (0.019)
Brazil 1.169 1.092 0.978 0.880 0.855 0.773 0.700
(0.213) (0.198) (0.164) (0.131) (0.118) (0.099) (0.081)
South Africa  0.880 0.921 0.984 1.009 1.029 1.016 1.037
(0.239) (0.201) (0.153) (0.115) (0.116) (0.098) (0.085)
Mexico  0.978 0.686 0.707 0.535 0.392 0.466 0.357
(0.509) (0.435) (0.359) (0.264) (0.213) (0.185) (0.148)

Table 4: Monte Carlo simulation for choice of bandwidth

Bandwidth Estimated bias Significance RMSE bias

7=0.60 0.018 3.03 0.019

7=0.65 0.021 2.86 0.023

7=0.70 0.014 2.20 0.015

7=0.75 0.015 2.47 0.016

7=0.8 0.017 2.83 0.018

population for each country:
e = In(Y;) — ayIn P, (54)

where Y; and P; are real GDP per capita and population respectively. & are the OLS estimator
of the cointegrating parameter. Let us consider the model:

(1 - L) = (55)

where u; is a I(0) process ; we applied the Robinson (1995)’s testing procedure in order to test
the null hypothesis Hy : 6 = 0 against the alternative H; : 6 < 0. If the null hypothesis is
rejected, it implies that the equilibrium error exhibits a smaller degree of integration than the
original series: Y;, P, and E; are thus fractionally cointegrated. On the opposite, if the null
hypothesis is not rejected, the series are not cointegrated because the order of integration of ¢
is the same as the order of the original series. As a first step to testing this hypothesis, we have
saved residuals from regression of real GDP per capita on total population for each country.”

"The detailed results have not been reported here but are available with the authors.
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Due to the unavailability of real GDP data before 1950 for some countries and for the sake of
comparison, the regression has been run for the truncated sample over the period 1950-2003.
In the next step, the equilibrium errors €; where i is indexed for each country, are tested for
short or long-memory using Robinson’s (1995) semi-parametric log periodogram regression.
Table 5 presents results of the d estimates of equilibrium errors for each country. It is observed
that at 7 = 0.9, the default value as in Robinson (1995), USA, Japan and UK have d < 0.5
implying that shocks in the equilibrating mechanism will converge and that there is a stable
co-movement among GDP per capita, population and CO; emissions in these countries. For
others, we find that d values range from 0.572 - 0.959, thatis 1 > d > 0.5. The co-movement
of GDP, population and CO; emissions in these countries contain non-stationary long-memory
with a possibility of mean convergence in the long-run. Among countries with values of d in
the range 0.5-0.9, China has highest d (0.959) for equilibrium errors, while South Africa has the
lowest d value (0.572). All d values are statistically significant at 5 percent significance level.

Table 5: Robinson’s (1995) semi-parametric estimation of d for estimated equilibrium errors
(Note: Hp: d = 0. Standard errors are in parentheses)

7 7=070 7=075 7=080 7=0.85 7=090

Periodogram
Ordinates 25 33 41 51 65
OECD
USA 0.217 0.233 0.287 0.205 0.183
(0.085) (0.069) (0.081) (0.070) (0.069)
Japan 0.443 0.449 0.635 0.452 0.426
(0.314) (0.252) (0.175) (0.166) (0.115)

UK 1.191 0.920 0.752 0.648 0.448
(0.331) (0.334) (0.249) (0.209) (0.162)

France 1.023 1.051 1.190 1.112 0.896
(0.464) (0.373) (0.255) (0.223) (0.205)

Canada 1.074 1.046 1.066 1.004 0.711
(0.330) (0.265) (0.214) (0.171) (0.169)

Non-OECD
India 1.065 0.919 0.5915 0.847 0.665
(0.238) (0.220) (0.222) (0.199) (0.153)
China 0.394 0.483 0.993 1.467 0.959
(0.121) (0.128) (0.233) (0.307) (0.284)
Brazil 1.039 0.978 0.943 0.683 0.680
(0.262) (0.214) (0.218) (0.217) (0.152)
South Africa 0.894 0.775 0.725 0.761 0.572
(0.486) (0.400) (0.259) (0.208) (0.172)

Mexico 1.488 1.104 1.006 0.813 0.687
(0.435) (0.452) (0.288) (0.247) (0.235)

7 Discussion and conclusion

This paper had two broad objectives. First, we attempted to model demographic and eco-
nomic growth volatility using both continuous time Brownian motion and Levy Jump pro-
cesses. The idea was to study how economic growth volatility responds to the such types of
stochasticity in demographic system. Second, we introduced a temporal characteristics of de-
mographic and economic growth system to understand the cross effects of stochasticities in
these processes. Our characterisations were meant to shed light on the existence of endoge-
nous/exogenous growth mechanisms under the built systems. We especially emphasized on
the past dependence property of demography and economic growth to understand the exact
nature of stochasticity. Estimates of stochastic shocks evinced high degree of persistence. We
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also built a simple growth theoretic framework in line with Solow-Swan and provided condi-
tions of existence of economic growth stability when both demographic and economic growth
stochasticities produce intricate evolutionary behavior.
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