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Abstract

In this paper, T extend the Olley-Pakes (1996) estimation method to the CES
production function with biased technical change. The new semi-parametric ap-
proach allows consistent estimation of the degree of returns to scale, the elasticity
of substitution, and the bias in technical change. Identification of these param-
eters is achieved under the assumption that the data generating process reflects
not only technologies but also optimizing behavior of producers. Using data from
U.S. manufacturing industries over the period 1958-2005, I find strong evidence
that industries are characterized by a production technology with the elasticity of

substitution below one and with significant biased technical progress.
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1 Introduction

The seminal paper of Olley and Pakes (1996) introduced a structural semi-parametric
method, the so-called control function approach, to deal with the endogeneity problem
encountered in estimating production functions. This class of estimation techniques

! Following Olley and

has been applied in a large number of recent empirical studies.
Pakes (1996), recent developments have exclusively focused on the Cobb-Douglas spec-
ification, for example, Levinsohn and Petrin (2003), Ackerberg et al (2006), Wooldridge
(2009), and De Loecker (2011).? The Cobb-Douglas specification, however, is an ex-
treme restrictive assumption that ignores key features of the economy, in particular,
the non-neutrality of productivity improvements (biased technical change).

In general, the neutrality restriction can be relaxed by considering a class of pro-
duction functions where technical change is non-separable from the productive factor.
In particular the non-linearity of CES specifications allows us to study biased technical
change. But at the same time the non-linearity together with unobserved technical
change increases the difficulties in estimating parameters. In this paper, I investigate
how a CES production function with biased technical change and non-constant returns
to scale can be consistently estimated.

Three approaches were used in the literature for estimating a CES production func-
tion. The most common estimation method uses the first order conditions of profit
maximization. Based on first order conditions, Berndt (1976) provided estimates of the
elasticity of substitution which are close to unity. Antras (2004) showed that Berndt’s
results are biased toward the Cobb-Douglas specification, because his estimates suffer
from spurious regression bias. The second approach uses the Kmenta (1964) approx-
imation to transform the nonlinear CES function into a linear-in-parameter equation
in order to facilitate estimation (for example, Thursby and Lovell, 1978). The third
one consists of estimating jointly the first order conditions and production function in
a system. The origin of this idea can be traced back to the paper of Nerlove (1967) and
a recent application is Klump et al (2007). Chirinko (2008) provides a survey of the
recent literature and shows that the elasticity of substitution lies in the range of 0.4 to
0.6. for U.S. economy. However, all these estimation methods have their limits and are

not suitable for the purpose of this study. The first order conditions approach is based

!Empirical studies using the Olley-Pakes control function approach include, for example, Javorcik
(2004), Konings and Vandenbussche (2008), and De Loecker (2011).

2The interested reader is referred to Ackerberg, Benkard, Berry, Pakes (2007) and Van Beveren
(2010).



on optimizing behavior of producers only, while the Kmenta approximation is based on
the production function that captures only technology. Based on different aspects of
production analysis, the regression models produce divergent results and contribute to
the lack of consensus on the value of the substitution elasticity. Compared to single
equation approaches, the system estimation is able to provide more efficient estimates
of technology parameters by using both aspects of information (production function
and first order conditions), see Leon-Ledsma et al (2010). However, the estimation
strategies used in this literature does not follow the recent developments of techniques
that address the input simultaneity bias.

Firm’s input decisions are typically related to productivity. Therefore, the Ordinary
Least Squares (OLS) estimation suffers from the simultaneity bias. The traditional esti-
mation methods that control the simultaneity bias, include the Instrumental Variables
(IV), the fixed effect (Mundlak, 1961) and the dynamic panel (Arellano and Bond,
1991), however are not able to provide satisfactory results in the case of production
function estimation, see Van Beveren (2010). Olley and Pakes (1996) have developed
an alternative empirical strategy to overcome endogeneity problems. In this paper, I
combine two strands of literature: the one that focus on estimating the CES produc-
tion function by using traditional methods (for example, Berndt, 1976, Antras, 2004,
Klump et al, 2007 and Leon-Ledsma et al, 2010) and the one that deals with endogene-
ity problems by using the semi-parametric estimation method with a Cobb-Douglas
specification (for example, Olley and Pakes, 1996, Levinsohn and Petrin, 2003 and De
Loecker, 2011). T contribute to the literature by proposing an extension of the Olley-
Pakes method for the CES production function with biased technical change, which
allows consistent estimation of the degree of returns to scale, the elasticity of substitu-
tion, and the bias in technical change. Both information on technology (characterized
by production function) and optimizing behavior of producers (characterized by first
order conditions) are used to achieve identification.

This study differs from the existing literature in several ways. First, I generalize
beyond the Cobb-Douglas specification to a more flexible CES production function with
Hicks-neutral and factor-augmenting productivity shocks. I propose a semi-parametric
estimation method that is able to deal with the endogeneity bias caused by the two
unobserved productivity shocks. Second, since I have long time series for many sectors,
I estimate the model for different periods and for different sectoral groups in order to
understand the technology evolution and the intra-industrial distortion. Using data

from U.S. manufacturing industries over the period 1958-2005, it transpires that within



the class of CES production functions the unitary elasticity of substitution restriction
is rejected. I provide estimates of sectors-level returns to scale and elasticity of sub-
stitution, which are 0.95 and 0.63, respectively. The estimation results show that the
Cobb-Douglas-based estimator generally overestimates the degree of returns to scale. 1
also find that the degree of returns to scale is diminishing over time and differs across
sectors. By using the estimated elasticity of substitution, I recover the growth rate of
relative biased technical change.

The remainder of this paper is organized as follows: I first present the CES pro-
duction function with biased technical change and some implications in Section 2. In
Section 3, I discuss the control function approach, the identification conditions and the
estimation procedures. Empirical results and robustness checks are given and analyzed

in Section 4. Section 5 concludes.

2 The CES production function with biased technical

change

Before going into the formal econometric analysis, I frame the problems and give the
precise definition of notions discussed above. Firstly, I focus on the CES functional

specification, then introduce the technical change terms.

2.1 The CES specification

Consider a production function F(.) of two factors, labor (L) and capital stock (K)
with the value-added output, Y. The elasticity of substitution ¢ between capital and
labor is defined by the percentage change in factor proportions due to a change in the

relative marginal products, see Hicks (1932):

_ dlog(K/L)

= " dlog(Fr/Fy) = )

where Fix and F, denote 0F /0K and OF /0L, respectively. Given this definition, Arrow
et al (1961) derived an aggregate production technology with Constant Elasticity of
Substitution (CES):

Y = F(K,L) = ClaK*s + (1 —a)L% |77, (2)



where C' is the constant term. Factors are gross complements in production when
o < 1 and substitutes when o > 1. The CES production becomes Cobb-Douglas when
o = 1. This function is homogeneous of degree p in K and L. For any given value of
o, the functional distribution of income is determined by « € (0,1). This distribution
parameter also depends on the units in which capital and labor are measured and on
an arbitrary normalization point. Klump et al (2011) emphasized the importance of
normalizing the CES function, when it comes to identifying the two terms, C and «a.
Without normalization, the two parameters (C' and «) could be any arbitrary point.
Here, I focus only on identifying the parameters o and p.

Given the two factors CES production function above, the parameter p only repre-

sents the degree of returns to scale in capital and labor, i.e.,

OlogY  OlogY 3)
dlogL, ~ OlogK"

p=

When capital and labor are increased, if output increases in the same proportion, i.e.,
p = 1, then the technology exhibits constant returns to scale. If output increases less
than proportionately, i.e., p < 1, the technology exhibits decreasing returns to scale.
If output increases more than proportionately, i.e., p > 1, the technology exhibits
increasing returns to scale. We also need to be aware of the degree of aggregation
under study. Basu and Fernald (1997) and Basu (2008) showed that the estimate of
returns to scale varies with the aggregation level, in particular it seems to be smaller
in disaggregated data. The estimation results presented in Section 4 are obtained from
U.S. manufacturing data at the six-digit NAICS level.

2.2 Factors-augmenting technical change

Technical change can enter the production function in different ways. The most common
choice is the Hicks-neutral technology, i.e., A,F (K, L), as in the case of Cobb-Douglas
production function. Hicks-neutrality implies that technical change does not affect the
balance between labor and capital demand. Other economic neutrality conditions are
Harrod- and Solow-neutrality assumptions. If technical change is Harrod-neutral, the
production function becomes F(K, B;L), where Bj is the labor-augmenting productivity,
an increase in productivity is equivalent to having more labor. If technical change is
Solow-neutral, i.e., F(ByK, L), where By is the capital-augmenting productivity, an

increase in productivity is equivalent to saving capital. In this paper, I relax these



neutrality assumptions by considering the following CES production function:

o—1 o—1. op

Y = AhF(BhK, BlL) == Ah[Od(BkK) o + (1 - Oé)(BlL) 4 ]ﬁ (4)
We can also rewrite this production function as:
Y = Ala(BK)*% + (1 — )L |77, (5)

where A = A,,/B/ is the relative Hicks-neutral productivity, and B = By/B is the
relative capital-augmenting productivity.

Given a basic assumption that firms minimize costs, firms set marginal products
equal to input prices. The first order conditions of the CES production function under

cost minimization problem imply that:

1) G ©

where w and r denote the wage and the rental capital price, respectively. This equation

illustrates that the capital-labor ratio depends on the biased technical change but not
on the neutral technical change. If factors are complements in production (o < 1),
firms reduce their capital-labor ratio when they face an increase in relative capital-
augmenting productivity. If factors are substitutes (o > 1), firms raise their capital-
labor ratio. When o = 1 (Cobb-Douglas specification), the effect of biased technical

change vanishes and the factors ratio becomes proportional to w/r.
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Figure 1 - Average capital-labor ratio and factor price ratio for U.S. manufacturing
industries in the period 1958-2005.

Given any value of the elasticity of substitution, the growth of the capital-labor ratio
can be decomposed into two parts, the relative price effects and the biased technical
change effects. Figure 1 shows the evolution of average capital-labor ratio for U.S.
manufacturing industries in the period 1958-2005.%> By examining this figure, we can
expect that o was significantly different from one in the period of the late 60s and early
80s. The next section presents the strategy for estimating the parameters of interest,

p, 0 and the growth rate of technical change by using the control function approach.

3 Identification and estimation via control functions

The assumption that data reflect technology and optimizing behavior of producers
implies that the DGP can be represented by a set of equations, which includes the
production function (technology) and the optimal input demand functions (optimization
behavior). Both aspects of information are used for identification, in particular the two
equations of our regression model are Equations (5) and (6).

Kit g=1

p L) T (l—a)| +logdi+ e (7)

“log |a(By

logVy = plog L +
o

3This series is obtained by averaging the 462 U.S. manufacturing industries.



Equation (7) is the logarithmic transformation of (5) with an error term appended:;
1 = 1,..., N indexes sectors and ¢ = 1,...,7T indexes time. The parameters p and
o are our central parameters of interest. The scalar disturbance term e; is an ex
post shock, which captures the exogenous shocks that are not anticipated by firms.
Hence ¢;; does not affect the optimal choice of labor demand and capital-labor ratio.
The endogenous variables L; (optimal labor demand) and IL(_Z: (optimal capital-labor
ratio) are partially determined by unobserved productivity shocks A; and Bj;. Similar
models have been studied by Chesher (2003), Imbens (2007), Imbens and Newey (2009)
in the nonparametric framework. Imbens and Newey (2009) provide various partial
identification results for the structural equation via the control function approach (e.g.
average derivatives, bounds for quantile and average structural function). However,
these results are not sufficient for recovering the two technology parameters p and o.
The principal reason for the lack of point identification is that the unobserved variable
B;; is not additively separable from the regressors in the production function. Therefore,
in the following lines, I will linearize Equation (7) in order to obtain a more tangible
form for the empirical investigation.

Firstly, I eliminate the constant term and the potential individual effect by first-

differencing model (7):

a(ByEt) T 4 (1 - a)
AlogYjs = pAlog Ly + pallog : f{zifl o1 + AlogA; + Aeiy. (8)
o — Oé(Bit_l L;,l) s 4+ (1 — O()

Consider the optimal capital-labor ratio equation:

K; a \ (wi\ .,
— — Be 9
Lit <1 o Oé) (Tit > i ( )

where the input price ratio 1;’—1; is observed and exogenous w.r.t. A; and By (firms are
k2

assumed to be price-takers). We can use (9) to substitute the unobservable productivity

shock B;; from Equation (8). Some algebraic manipulation yields:

Ki o—
log(1 — ) + logS;; = log [a(Bit 7 B (1 a)} : (10)
it
where the observed variable S;; is defined as Zj?fg"j +1 and S}, denotes a latent variable.

According to (10), one can replace the latent variable with the observed one, but as



in practice the substitution of the latent variable is usually not perfect, I introduce a

scalar measurement error term. This leads to a fully additive regression model:

NlogYy = pOlogLiy + yAlogSy + Dy + Aey: (11)
AlogS;: = AlogSy, + i, (12)
where a;; = logAy, v = 25 and 1y is a classical (zero-mean and uncorrelated with

AlogS},) measurement error term.

The model (11)-(12) can be viewed as an EIV (Error-in-Variable) model in which we
are still facing two endogeneity problems. The first endogeneity problem is due to the
Hick-neutral productivity shock that affects the optimal labor demand decision of firms,
then the regressor AlogL;; is correlated with the unobserved term Aay;. The second
endogeneity problem is that the regressor AlogS;; is correlated with the measurement
error 1;;. There are different ways of estimating the parameters in linear regression
models with endogenous regressors. 2SLS is one of the most common estimators in
linear IV regressions. An asymptotically-equivalent alternative is the control function
approach. In this paper, I use the latter approach because of the lack of valid instru-
ments for controlling productivity shocks. The following sections discuss the control
function approach, the identification conditions and the estimation procedures. I also
compare the estimations based on different production function specifications (CES

versus Cobb-Douglas).

3.1 The control function approach

The control function approach was first developed and applied to correct the selection
bias of binary response models in Heckman and Robb (1985). This method has been
extended for identification of a wide class of models where the explanatory observed
variables and the explanatory unobserved variables are not independently distributed.
For instance, it is used for triangular simultaneous equations models in Imbens and
Newey (2009), for treatment effect models in Heckman and Vytlacil (2007) and for
measurement error models in Hahn, Hu and Ridder (2008). The use of the control
function approach for estimating a production function was introduced by Olley and
Pakes (1996). The control function approach is a closely related alternative to the
classical IV method. In 2SLS estimation, the exogenous variations of instruments are

used directly for constructing moment conditions, while the idea of the control func-



tion approach is to use control variables (either observed or estimated) that purge the
dependence between the observed and unobserved explanatory variables.

Formally, consider a general regression model, y = f(z,u), where the regressor z
is correlated with the error term u. Given the assumption that = and w are inde-
pendent conditionally on a control variable v, Imbens and Newey (2009) give a set
of the identification results for this nonlinear models with non-separable disturbances.
The identification power of the control variable (v) can be illustrated by the following

equation (Imbens and Newey, 2009, p1488). For any integrable function A(y),

BA@) | 2.0] = /Uwﬂnunmmwm
- /MﬂnwﬁwszM@\%

where F,| is the conditional cumulative distribution function (CDF) of u. The identi-
fication comes from the fact that the unobserved variable u of the structural equation
can be integrated out by conditioning on v. Since in this paper, we are dealing only
with the linear regression model, a weaker assumption is sufficient: x and u are mean-
independent conditionally on v, instead of the stochastic independence. For the rest of

this paper, a valid control variable is defined as follows:

Definition
A wvalid control variable is any observable or estimable variable v such that x and u are

mean-independent conditionally on v, i.e.,
Elu | 2,v] = Blu | o], (13)

where r and u are not independently distributed.

Now, as a concrete example consider a simple linear regression model:
y = Pz + u, (14)
with the reduced form equation of x:
x=g(z,v). (15)
where the variable z is assumed to be a valid instrument that is highly correlated with x

10



and uncorrelated with v and v. The endogeneity of z arises if and only if u is correlated

with v. I assume that v is observable or estimable and can be used as a proxy for wu:
u=m(v) +e, (16)
where Efve] = 0. Plugging (16) into the linear regression model (14) gives:
y = Br +m(v) +e, (17)

where the function of v is viewed as an additional regressor. It can be shown that v is
a valid control variable, which satisfies (13), i.e., E[u | z,v] = E[u | g(z,v),v] = E[u |
z,v] = E[u | v]. The identification of J is achieved in the model (17) if and only if =
is not an deterministic function of v. Otherwise, there is a collinearity problem, i.e.,
y = Bg(v) + m(v) + e. Thus, in this setup the identification requires the presence of
at least one exogenous variable z in (15), which satisfies E[u | z,v] = E[u | v]. This is
similar to the rank condition in the 2SLS estimation. Since x and v are uncorrelated
with the error term e, the parameter § and the function m(.) can be consistently
estimated by Robinson’s (1988) estimator. Compared to the 2SLS estimator, the main
advantage of using the control function approach in linear regression models is that
this estimation method can be implemented whether the instrument z is observed or
unobserved.

When instrument z is not available in the data but several candidates of the control
variable are observed (typical choices of the control variable for controlling productivity
shocks, are the investment, Olley and Pakes, 1996 and the material demand, Levinsohn
and Petrin, 2003), then the model (17) can be directly estimated. While when z is
observed but v is unobserved, the control variable is estimated by using z and z in the
first stage of the estimation. For instance, the estimated conditional CDF of z given z

has been proved to be a valid control variable, see Imbens and Newey (2009).

3.2 Identification conditions

We return to our model of interest, the CES-based model (11)-(12). The two poten-
tial sources of bias are the endogeneity caused by the unobserved productivity shock,
a;t, and by the measurement error, 7n;;. For controlling the first endogeneity problem
(caused by the productivity shock), it seems hard to find a valid instrument but con-

trol variables are available. For controlling the second endogeneity problem (caused

11



by the measurement error), valid instruments are available. Thus, the treatments of
the two endogeneity problems are different. Now, I provide conditions that guarantee

identification of our model.

Assumption 1  For any observation (indezed by i and t), there is a variable Vi such

that the labor demand L;; can be written as:
Lit = L(Zlit7 %it)a (18)

where a; is mean-independent of Z1; given Viy.

Under Assumption 1 the dependence between regressors and the unobserved pro-
ductivity shock a; can be purged by conditioning on variable Vj;. The identification
of the model (via control variable Vy;) is achieved as long as there is some exogenous

variation in either L; or Vi;. To see this point, note that:
E[ait | L, Vlit] = E[az’t ’ L(Zita Vut), Vut] = E[ait | Z1it Vlz't] = E[ait | Vlz‘t}, (19)

where the last equality follows from the mean-independence condition. The choice of
control variables depends essentially on whether it satisfies Assumption 1. Given an
observed control variable Vj;;, one can replace a;; with a nonparametric function of V.
In a similar way, the second endogeneity problem (caused by the measurement error,

nit) can be solved by using the next assumption:

Assumption 2 For any observation, at least one valid instrument is available such
that:
AlogS;; = h(ZQit) + Vait, (20)

where ny is mean-independent of Zyy given Voy.

The additivity restriction is imposed in (20) for simplifying the estimation procedure.
Given the data at hand, V5;; is not observed. However, we can assume that the growth
rate of % or the lagged values of S;; are valid instruments (Zy;) and estimate Vo
in the first-stage. The traditional approach in the linear EIV case is to estimate the
model by using the 2SLS estimator. But the estimation procedure based on the control

function approach is more convenient here. Under Assumption 2, the residuals Vy;; is a

12



valid control variable:
E[m‘t | AlOgSz‘t, V2it] = E[nit | h(ZQit> + Vair, VQit] = E[m‘t | ZQit; VQz’t] = E[mt | VQit], (21)

and by construction Va; is a proxy for 7;, then the model (11)-(12) can be identified

by inverting out 7;;.

3.3 Estimation procedures

Now I describe the estimation procedure for the CES based model (11)-(12), which
follows closely the previous identification discussion. I also review briefly the estimation
strategy proposed by Olley and Pakes (1996) for the Cobb-Douglas model, which is

included in our empirical studies for comparison.

The Cobb-Douglas based model (Olley and Pakes, 1996) The regression model

based on the Cobb-Douglas production function is:
AlogY; = BiAlogLy; + PrANlog Ky + Nay + ANeyy. (22)

Olley and Pakes (1996) assume that the investment function I;(.) is strictly monotonic
in ay;, i.e.,
Ly = I(Kit, ai). (23)

Then (23) can be inverted to ay = I, '(Ky, I;;), where the variables K;, and I;; are used
as control variables. Substituting this inverse function into the model (22), we have:

AlogYi = fiAlogLy + ®(Kit, Liv, Kir—1, Lit—1) + D, (24)

where ® (K, Ly, Kip—1, Iy—1) = BpNog Ky + I (K, 1) — Iy (Kig—1, Iiy—1). Thus, we
can estimate the parameter 3, and the nonparametric functions by applying Robinson’s
(1988) estimator on (24). Olley and Pakes (1996) assume that productivity a;; evolves

exogenously as a first-order Markov process:

agp = FElay | information, 1] + &

= Flay | ap—1] + &,

13



where a firm’s expectations about future productivity depend only on a;_1, and &;
is the unexpected innovation in a; that is orthogonal to the information set at t — 1,
i.e., E[&; | information,_1] = 0. Assuming a linear model a; = 7 + pa;;—1 + &, the
implied innovation term is &; = a;; — 7 — pai_1. Given the estimated coefficient Bl of
the first-stage estimation, we can rewrite the unexpected innovation as a parametric

function of observations:

&t (Br, 7, p) = logYs — BlogLi — BilogKy — 7 — p(logYi_y — BllogLi—1 — BrlogKi_1).

Typically, the production timing assumption suggests that the period s capital de-
mand (K;s) and the period s — 1 labor demand (L;s_1), for s < ¢, are decided upon
at t — 1 or before, and are included in the information set at t — 1. This assumption
implies that both K, and L;,_; must be uncorrelated with the unexpected innovation
(&¢ ). In particular, T estimate the parameter (i, 7 and p by using GMM with the
following instruments: the capital accumulation at ¢ (AlogK;;) and the lagged value of
labor demand (logL;;_1).* Given the estimates of 3, and Sy, the degree of returns to
scale is computed as the sum of the two estimated parameters, pop = Bl + ﬁk under
the Cobb-Douglas specification. The estimator pcp is a sequential two-step estimator

whose standard error is computed using the bootstrap.

The CES based model The treatment of the unobserved productivity a; remains
the same as in the Olley-Pakes estimation method, but the additional difficulty here is
that the regressor AlogS;; is correlated with the measurement error 7;;. Consider the
model (11)-(12) where the term Aay is substituted as before:

NlogYy = pAlogLy + yAlogSi — yni + o(Kig, Liy Kig—1, Li—1) + Dey, (25)

with o(Ky, Lig, Kit1, Liv—1) = I, (K, Iy) — I, (Kis—1, Iiy_1). If the control variable is

directly observed, the measurement error term 7, can be proxied by a nonparametric

function, i.e., E[yn;; | Vai] = T'(Vai). However, the control variable Vy;; is unobserved,

then it has to be estimated first. Assume that the growth rate of input price ratio,
Wit

le., Zoyy = is a valid instrument that satisfies Assumption 2. The preliminary

estimated values of the control variable V5;; are obtained based on the kernel estimation:

ols

4The starting values of GMM estimation is: ¢ = 0, p = 1 and Bk obtained by regressing Ada;; =
ANlogYss — BlAlong-t — B Alog K,y on AlogK ;.

14



Voir = AlogSy — h(Za;). Since we cannot insert an estimated variable into a nonlinear
function, we need to restrict the nonparametric function I'(.) to a linear parametric

one, i.e., E[yny | Vai| = —0Vay.
AlogYi = pAlogLi; + vAlogS;: + 9‘72# + O(Kit, Lty Kip—1, Lit—1) + Degy. (26)

Therefore, the parameter p, v and 6 can be consistently estimated by using the Robin-

son (1988) estimator. Since the first-stage estimation is nonparametric, the asymptotic

variance matrix of the estimator depends on preliminary estimates and it is difficult to

compute using general results for semi-parametric regression models. Thus, the corre-

sponding standard errors are obtained using the bootstrap. Henceforth, the estimated
ol

elasticity of substitution is recovered as: ¢ = 75

3.4 Bias of the Cobb-Douglas specification

Now the question is, what differences should we expect in term of estimation outcomes
between the Cobb-Douglas-based regression model and the CES-based regression model.
Firstly, the Cobb-Douglas model sets the elasticity of substitution, o, to one. Thus, if
the economy was not characterized by the Cobb-Douglas technology, then we should
find estimates of o that significantly differ from one. Secondly, both models produce
estimates of returns to scale, p. I will show in the following lines that the Cobb-Douglas
specification may overestimates the returns to scale.

For the sake of clarity and convenience, I focus only on the bias of misspecifica-
tion. Thus, the technical change terms, A;; and B;; are disregarded in this subsection.
Consider the Kmenta approximation of (2):

1 o—1
logYy; = C + palog Ky + p(1 — a)log Ly + 5P

a(l —a)(logKy; — logLit)Q, (27)

where C' is the constant term. The last term of the right hand side is ignored when one
considers the Cobb-Douglas production function. The first-difference transformation

yields:
AlogYy = pallogK; + p(1 — a)AlogLy, (28)

+%p"77104(1 — a)[(logK;; —logLy)?* — (logKi—1 — logLi—1)?.

If B, and 3, are the estimated coefficients of AlogK and AlogL based on the Cobb-

15



Douglas specification. According to the well known results of Theil (1957), the expec-
tations of these estimators are:

R 1 o—-1

E(Br) = po+ ol

a(l - @) (20)

B(3) = p(1 - @) + 597

. a(l — a)my, (30)

where 7, and 7; are the two estimates obtained from the regression of the omitted
variable, (logK;; —logL;;)* — (logKy;—1 —logLi;—1)?, on the included variables, AlogKj;
and AlogL;;. Thus, the bias of the estimated returns to scale by using the Cobb-Douglas

specification is:

N N 1 o—-1
E(5k+5z)—ﬂz§ﬂ >

Given the parameter p is positive and « € [0, 1], the bias of estimated returns to scale

Oz(l—&)(ﬁ'k—Fﬁ'l). (31)

based on the Cobb-Douglas specification are summarized in the following table.

Table 1 - The bias of estimated returns to scale based on the Cobb-Douglas

specification

T+ 7 <0 T, +m =0 T+ >0

o <1 overestimation unbiased  underestimation
oc=1 unbiased unbiased unbiased

o > 1 underestimation  unbiased overestimation
0 < 0 underestimation  unbiased overestimation

The case of negative elasticity ¢ < 0 is not allowed by economic theory, but due
to estimation errors this case is empirically possible. Since the empirical results in this
paper suggest that o < 1 (see Section 4) and 7y + 7, is generally negative, we can
expect that the regression based on the Cobb-Douglas specification overestimates the
degree of returns to scale. The estimation results in the next section will confirm this

conclusion.

4 Empirical Investigation

The empirical investigation focuses on U.S. manufacturing industries at six-digit NAICS

aggregation level. The information needed for conducting the econometric analysis
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comes from the NBER Manufacturing Industry database, which contains annual infor-
mation on output, employment, payroll, investment, capital stock and other inputs cost
together with prices deflators of 462 industries from 1958 to 2005. The construction of
this database has been discussed in the technical report of Bartelsman and Gray (1996).
The detailed description of this data set is reported in Appendix. Compared to firm-
level data sets, the NBER data set offers some advantages. Firstly, it contains the price
indexes that are the essential information for characterizing the optimizing behavior.
Secondly, it allows us to avoid the multiple products problem of the firm-level data.
Finally, at the six-digit NAICS aggregation level we still have a large number of sectors,

which guarantees a good asymptotic approximation for cross-sectional regressions.

4.1 Estimation results

I start by reporting the estimates of returns to scale and elasticity of substitution for
different windows of observation and for different sector groups. Then, given the esti-
mates of technology parameters, I recover the Hicks-neutral and the factor-augmenting

productivity and compute their annual growth rates.

Table 2 - Estimates of the full panel (1958-2005)

Cobb-Douglas CES
Labor () 0.907 (0.008) -
Capital (By) 0.306 (0.016) -
Returns to Scale (p) 1.213 (0.019)  0.954 (0.025)
Elasticity of Substitution (o) 1 0.629 (0.009)
T+ 20.524 (0.033)

Table 2 summarizes the estimation results over the full panel as well as the estimated
standard errors (obtained by using the bootstrap with 1000 replications). The second
column reports the estimates of parameters 5, and S based on the Cobb-Douglas
specification (following Olley and Pakes, 1996). The third column gives the estimation
results for the CES model. The degree of returns to scale defined in (3) is computed as
the sum of 5; and S; in the Cobb-Douglas model, which is 1.213 with a 95% confidence
interval [1.176, 1.250]. This result indicates that the industries were characterized by
increasing returns to scale technology. The estimated degree of returns to scale obtained
from the CES based model is 0.954 with a 95% confidence interval [0.906, 1.003], which
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suggests that the technology exhibits non-increasing returns to scale. The estimated
elasticity of substitution is 0.629 with a 95% confidence interval [0.611, 0.647| that is far
from covering one. In Section 3.4, I showed that the Cobb-Douglas based estimation of
returns to scale suffers from an omitted variables bias when the elasticity of substitution
differs from unity, see Table 1. The estimate of 7 + m in Equation (31) is negative and
significantly different from zero, which indicates that the Cobb-Douglas based regression
overestimates the degree of returns to scale.

When T is large in the panel, one potential concern is the non-stationarity of the
data. The first-difference transformation could stationarize series in the linear function,
but not for nonlinear parts of the model. Therefore, given the non-stationarity the
question we need to ask is whether the estimation results obtained by using the long
panels are misleading? To answer this, I consider shorter panels, where T = 3 and
compare the estimation results with previous findings. In this case, the estimation
relies mainly upon the cross-sectional variation, thus the results are less affected by
the problem of non-stationarity. The estimation results are reported in Table 3. The
evolution of estimated returns to scale and elasticity of substitution with the 95%
confidence intervals are depicted in Figures 2 and 3, respectively.

On the average, I find the similar estimation results as for the full panel case.
The average estimates obtained from the CES based model suggest that the industries
were characterized by a non-increasing returns to scale technology with the non-unitary
elasticity of substitution, while the Cobb-Douglas based model predicts increasing re-
turns to scale. The average estimated returns to scale obtained from the Cobb-Douglas
specification and the CES specification are 1.164 and 0.819, respectively. The average
estimated elasticity of substitution is 0.675.

Comparing the estimates of returns to scale obtained from the two models, we see
that the Cobb-Douglas based regressions overestimate the degree of returns to scale in
the majority of cases (14 out of 16 panels). Figures 2 and 3 show that the estimates of
returns to scale are diminishing over time in both models, while the estimates of the
elasticity of substitution are relatively stable. By regressing the estimates of returns
to scale on a linear trend, I find that the decreasing rates are 3.4% (based on the
CES specification) and 3.9% (based on the Cobb-Douglas specification) for each period
of three years. This result may reflect the fact that the growth of U.S manufacturing
industries was more and more driven by the technical change rather than the economies

of scale.
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From Figure 3, we can see that the confidence intervals of the estimated elasticity
of substitution lay entirely below one for 8 out of 16 panels. In 3 out of 16 panels,
the confidence intervals cover one, where we cannot conclude on the substitutability of
production factors. The estimated elasticity of substitution should not be heeded in 5
cases, because their standard errors are very large. For the cases in which the estimated
elasticity of substitution are significantly below unity, the estimates of 7; + 7 predict
correctly the bias of estimated returns to scale based on the Cobb-Douglas specification.
For example, in the panel “64-65-66", the estimated m; + 7, is significantly negative and
the Cobb-Douglas based regression overestimates the degree of returns to scale; in the
panel “88-89-90”, the estimated m; 4+ 7 is not significantly different from zero and the
two estimates of returns to scale are close.

The size of elasticity of substitution has important economic implications, for ex-
ample ¢ is critical for determining the pattern of capital accumulation or the path of
growth. Previous estimation procedures only produce the economy’s aggregated esti-
mates. The elasticity of substitution, however, may differ across sectors. Now I stratify
the panel according to the sectoral classification (the 3-digit NAICS) and perform the
regressions for each sub-group of manufacturing industry. The estimation results are
reported in Table 4. Figures 4 and 5 depict the corresponding estimates with 95%
confidence intervals for different sectors.

There are significant differences among the estimates of technology parameters
across the sectors. The estimates of returns to scale lay in the range of 0.566 to 1.173
with the CES model, and the estimates of the elasticity of substitution lay in the range
of 0.479 to 0.865. As for previous findings, the Cobb-Douglas based regressions overes-
timate the degree of returns to scale in the majority of sectors, expect for Sector 316
(Leather & allied prod) where the estimated returns to scale by considering the CES
specification is higher. All estimates of the elasticity of substitution are significantly
below one, which rejects once again the Cobb-Douglas specification. In 15 out of 20
cases, the estimates of m; 4+ 1, are negative and significantly different from zero, which
explain the overestimation of returns to scale by the Cobb-Douglas based regression. In
other cases, the estimates of 7;+ 7, have relatively large estimated standard errors that

we cannot conclude on the direction of the bias for the Cobb-Douglas based regression.
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Table 3 - Estimates with the short panel of 3 periods

Cobb-Douglas CES
Panels B Br B+ B p o T+ m
58-59-60 1.066 0.258 1.324 1.237  0.377  —0.959
(0.032)  (0.076) (0.087) (0.064)  (3.790) (0.108)
61-62-63 1.019 0.623 1.642 1.060 0.847  —0.051
(0.027)  (0.088) (0.090) (0.074)  (0.045) (0.137)
64-65-66 0.958 0.478 1.436 1.001 0.819 —0.245
(0.033)  (0.151) (0.144) (0.073)  (0.041) (0.092)
67-68-69 0.981 0.383 1.364 1.107 0.861 —0.519
(0.043)  (0.098) (0.101) (0.078)  (0.023) (0.125)
70-71-72 0.783 0.816 1.600 0.860 0.910  —0.236
(0.029)  (0.112) (0.115) (0.127)  (0.075) (0.193)
73-T4-T5 0.972 —0.486  0.487 0.766 0.837 0.125
(0.044)  (0.148) (0.156) (0.076)  (0.035) (0.172)
76-T7-78 0.903 0.408 1.310 0.831 0.622 0.386
(0.037)  (0.128) (0.126) (0.094)  (0.193) (0.147)
79-80-81 1.137 0.091 1.228 0.965 0.685  —0.652
(0.051)  (0.096) (0.112) (0.103)  (0.078) (0.115)
82-83-84 0.971 0.394 1.365 0.551 0.691  —0.300
(0.048)  (0.127) (0.127) (0.122)  (0.072) (0.134)
85-86-87 0.848 0.340 1.188 0.716 —0.266 —0.524
(0.040) (0.132) (0.133) (0.126) (11.247) (0.183)
88-89-90 0.762 0.095 0.856 0.735 0.767 0.198
(0.049)  (0.117) (0.122) (0.136)  (0.067) (0.142)
91-92-93 0.716 0.325 1.041 0.478 0.829 0.626
(0.037)  (0.148) (0.151) (0.089)  (0.449) (0.124)
94-95-96 0.605 0.376 0.981 0.601 0.905 0.256
(0.053)  (0.197) (0.207) (0.186)  (0.234) (0.133)
97-98-99 0.833 0.225 1.057 0.622 0.656  —0.461
(0.053)  (0.100) (0.142) (0.148)  (0.092) (0.170)
00-01-02 0.803 0.121 0.924 1.045 0.812 0.169
(0.041)  (0.152) (0.175) (0.169)  (5.444) (0.227)
03-04-05 0.580 0.251 0.831 0.532 0.451  —0.450
(0.054)  (0.134) (0.123) (0.198)  (37.401)  (0.131)
Mean 0.871 0.293 1.164 0.819 0.675 -
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Figure 2 - Estimates of returns to scale with 95% confidence intervals, the sloping line

represents the fitted line of the regression of estimates on a linear trend.
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Figure 3 - Estimates of elasticity of substitution with 95% confidence intervals obtained from

the CES-based model, the horizontal line represents the average value of estimates when the
panels “59-59-607, “64-65-66", “67-68-69”, “00-01-02” and “03-04-05" are disregarded.
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Table 4 - Estimates with sectoral stratification

Cobb-Douglas CES
Sectors N-T 157} B B + Bx P o T + m
Food mfg (311) 2112 0.809 0.384 1.242 0.767 0.546 —2.108
(0.042)  (0.112) (0.127) (0.121)  (0.048)  (0.100)
Beverage & tobacco prod. (312) 432 0.768  0.191 1.035 0.785  0.557 —0.789
(0.077)  (0.136) (0.197) (0.212)  (0.106)  (0.199)
Textile & mills (313&314) 864 0.820 0.241 1.129 0.566  0.709 —0.592
(0.041)  (0.085) (0.106) (0.111)  (0.055)  (0.101)
Apparel (315) 1104  0.838  0.152 1.032 0.940 0.795 —2.847
(0.031)  (0.066) (0.088) (0.111)  (0.082)  0.163)
Leather & allied prod.(316) 480 0.847 —0.147  0.713 0.715 0.865 —1.218
(0.057)  (0.194) (0.199) (0.164)  (0.050)  (0.221)
Wood product mfg (321) 672 0.794  0.197 1.040 0.791 0.687  0.146
(0.043)  (0.120) (0.123) (0.087)  (0.042)  (0.092)
Paper mfg (322) 960  0.742  0.240 1.051 0.579 0.642 —0.638
(0.039)  (0.126) (0.178) (0.253)  (0.058)  (0.164)
Printing (323) 576 0.870 0.201 1.122 1.032 0.664 —0.862
(0.024)  (0.108) (0.127) (0.110)  (0.034)  (0.106)
Petroleum & coal prod. (324) 240 0.890 0.294 1.230 1.089 0.677 0.160
(0.125)  (0.212) (0.279) (0.358)  (0.118)  (0.305)
Chemical mfg (325) 1632 0.814 0.191 1.049 0.598 0.479 —0.422
(0.041)  (0.145) (0.151) (0.097)  (0.074)  (0.096)
Plastics & rubber prod. (326) 768 0.967  0.377 1.143 0.806 0.562 —0.341
(0.040)  (0.097) (0.095) (0.094)  (0.048)  (0.073)
Nonmetallic mineral prod.(327) 1152 0.952  0.002 1.019 0.994 0.568  0.099
(0.029)  (0.071) (0.077) (0.065)  (0.029)  (0.084)
Primary metal mfg (331) 1248 0.966  0.032 1.044 0.961 0.627 —0.669
(0.052)  (0.145) (0.154) (0.131)  (0.051)  (0.145)
Fabricated metal prod. (332) 2064  0.925  0.268 1.243 1.029 0.639  0.005
(0.020)  (0.114) (0.117) (0.064)  (0.024)  (0.077)
Machinery (333) 2352 1.012 0.153 1.215 1.041 0.613 —0.548
(0.025)  (0.136) (0.138) (0.075)  (0.049)  (0.070)
Computer & electro. prod. (334) 1344 0.867  0.679 1.592 1.173 0479 —1.062
(0.031)  (0.097) (0.101) (0.085)  (0.209)  (0.147)
Electrical equipment (335) 1056 0.906  0.204 1.157 0.694 0.680 —0.169
(0.040)  (0.092) (0.094) (0.111)  (0.042)  (0.106)
Transportation equipment, (336) 1440 1.160  0.031 1.235 0.991 0.669 —0.438
(0.029)  (0.071) (0.075) (0.105)  (0.035)  (0.103)
Furniture & related prod.(337) 576 0.856 0.185 1.088 0.788 0.812 —0.344
(0.042)  (0.125) (0.148) (0.167)  (0.054)  (0.105)
Miscellaneous (339) 1104 0.770 0.294 1.111 0.812 0.641 —0.740
(0.031)  (0.101) (0.112) (0.160)  (0.083)  (0.086)
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Figure 4 - Estimates of returns to scale with 95% confidence intervals for different sectors,

the horizontal line represents the average value of estimates.
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4.2 Recovering the Hicks-neutral and factor-augmenting pro-

ductivity

Given the estimates of technology parameters, I can now recover the relative Hicks-
neutral and factor-augmenting productivity in logarithmic forms, logA;; and logB;;, and
then compute the corresponding growth rates. The term logA;; is defined as logA;; =
logApis — plogBy;; and the term logB;, is defined as logB;; = logByy — logBy;;, where
Ay, is the net Hicks-neutral productivity, B; is the net labor-augmenting productivity
and By is the net capital-augmenting productivity, see Equation (5). Since the net
productivity terms cannot be identified separately, we only interpret the productivity
measures in relative terms.

Given the estimates obtained from the CES based regression, the relative Hicks-

neutral productivity logA;, is recovered by using Equation (7) as:
logAit + ¢ = logYj; — plog Ly — AlogSi, (32)

where ¢ = vlog(1 — «). For the sake of comparison, we can also compute the Hicks-

neutral productivity under the Cobb-Douglas model as:

log AGP = logY, — BilogLi — Brlog K. (33)

Given the estimated elasticity of substitution, I can invert the capital-labor ratio equa-

tion (9) to obtain the expression of logarithmic relative factor-augmenting productivity:

0 i 1 K;
? logi + log L
; Li

08Bt &= olog St e

(34)

where d = —%5log (ﬁ) As mentioned above the parameter « is not identified under
our estimation procedure, but this is not a problem here, these constant terms do not
affect the estimation of the growth rate.

Consider the estimates obtained from the full panel cases,® after averaging over

sectors, I examine the time variation of the aggregated productivity growth rates:

N N
)\tA =N! Z A]ogflit and /\,fB =N"! Z AlogBit.

5Under the CES specification, the estimates are: 6 = 0.629, p = 0.954, 4 = 1.617 and 0= —1.655;
under the Cobb-Douglas specification, the estimates are: ; = 0.907 and 3, = 0.306
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The following figure compares the estimation of the relative Hicks-neutral productivity
growth, A\ and of the relative labor-augmenting productivity growth, —\Z obtained
from the CES based model for the period 1959-2005.
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Figure 6 - Estimation of the relative Hicks-neutral and the relative labor-augmenting

productivity growth rates (A and —AP) for the period 1959-2005

Figure 6 shows that both time series are stationary and that the relative labor-
augmenting productivity growth rates (=P ) is more volatile than the relative Hicks-
neutral productivity growth rates (A ). The time series of the relative labor-augmenting
productivity growth consists of two main spikes. The earlier spike was in 1967, and the
second one has been in 1995 where a spike of /\;54 appeared at the same period. The two
series are positively correlated with a correlation coefficient of 0.486. Now, by averaging

over sectors and periods, I compute the average (annual) productivity growth rates as:

T N T N
M=T7"1N"1 Z Z Alogfl,»t and N =T IN! Z Z Alogf?it.
j t

t 7

I obtain an average Hicks-neutral productivity growth (M%) of 3.37% based on the CES
model (32), while under the Cobb-Douglas model (33) the average Hicks-neutral produc-
tivity growth is 1.89%. I find that labor-augmenting technical progress grew annually
about 6.42% faster than capital-augmenting technical progress, i.e., A% = \BF — \Bl =
—6.42%, where A\PF denotes the net capital-augmenting productivity growth rate and

AB denotes the net labor-augmenting productivity growth rate.% Our estimation of A?

6Under the Cobb-Douglas specification, by construction, the net factor-augmenting productivity
growth is restricted to zero, i.e., AB! = ABk = 0.
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is larger than the one obtained by Antras (2004), i.e., 3.15%. But both findings lead
to the same conclusion that when the production technology is characterized by o < 1,
all firms have the incentive to pursue labor-augmenting innovations on the balanced
growth path rather than capital-augmenting innovations (the theoretical justifications
can be found in Acemoglu, 2003).

The previous estimation of productivity growth are obtained by assuming that all
sectors have the same technology, which is characterized by the degree of returns to
scale (p) and the elasticity of substitution (o) under the CES specification. However,
the results in Table 4 suggest that the production technology may differ across sectors.
Table 5 summarizes the estimation of (relative) average productivity growth rates by
taking into consideration the sectoral heterogeneity. Figure 7 displays the estimated
values of average productivity growth rates for the 20 sectoral groups. In most cases, the
estimates of A lay in the range of 0.02 to 0.05; the estimates of A? are negative (labor-
augmenting technical progress grew faster than capital-augmenting technical progress)
and lay in the range of -0.04 to -0.10. There are 3 outliers , which are sectoral groups
315, 316 and 334. Despite the sectoral differences, the estimation results obtained by
considering the sectoral heterogeneity are generally in line with the previous aggregated

estimation results.
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Table 5 - Estimates of average productivity growth rates with sectoral heterogeneity

Sectors N.-T p o A \B

Food mfg (311) 2112 0.767 0.546 0.037 —0.071
Beverage & tobacco prod. (312) 432 0.785 0.557 0.039 —0.064
Textile & mills (313&314) 864 0.566 0.709 0.035 —0.083
Apparel (315) 1104 0.940 0.795 0.051 —0.223
Leather & allied prod.(316) 480 0.715 0.865 0.023 —0.242
Wood product mfg (321) 672 0.791 0.687 0.025 —0.064
Paper mfg (322) 960 0.579 0.642 0.026 —0.060
Printing (323) 576 1032 0.664  0.023 —0.072
Petroleum & coal prod. (324) 240 1.089 0.677 0.045 —0.062
Chemical mfg (325) 1632 0.598 0.479 0.035 —0.042
Plastics & rubber prod. (326) 768 0.806  0.562 0.036  —0.056
Nonmetallic mineral prod.(327) 1152 0.994 0.568 0.028 —0.040
Primary metal mfg (331) 1248 0.961 0.627 0.027  —0.050
Fabricated metal prod. (332) 2064 1.029 0.639 0.024 —0.053
Machinery (333) 2352 1.041 0.613 0.023 —0.054
Computer & electro. prod. (334) 1344 1.173  0.479 0.070 —0.072
Electrical equipment (335) 1056 0.694 0.680 0.031  —0.063
Transportation equipment (336) 1440 0.991 0.669 0.028 —0.041
Furniture & related prod.(337) 576 0.788 0.812 0.030 —0.107
Miscellaneous (339) 1104 0.812 0.641 0.031  —0.066
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Figure 7 - Estimation of average productivity (A and —\?)

5 Conclusion

In this study, I introduced a new method of estimating a CES production function with
biased technical change, which extends the work of Berndt (1976), Olley and Pakes
(1996), Antras (2004), Klump et al (2007) and Leon-Ledesma et al (2010). This ap-
proach is superior to its prior counterparts in three aspects. First, it employs a more
flexible production function specification; second, it is able to deal with the endogeneity
problem of input variables; third, the degree of returns to scale, the elasticity of substi-
tution and the growth rate of biased technical change can be estimated simultaneously.

The new empirical evidences presented in this paper, show that the U.S manu-
facturing industries were characterized by decreasing returns to scale and non-unitary
substitution elasticity (below one) technology; the bias in technical change is mainly
labor-augmenting. Furthermore, the estimation results obtained by considering dif-
ferent windows of observation and stratified data sets, may throw some light on the
questions such as the production technology evolution of last half century and the

intra-industrial distortion in U.S manufacturing sectors.
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Appendix: Presentation of Data set and Construction
of Variables

Different sources of data

The main source of information comes from the NBER-CES Manufacturing Industry databases.”

These data reflect essentially the Annual Survey of Manufactures (ASM) conducted by U.S.
Census Bureau, which aggregates approximately 50,000 establishments to 473 six-digit NAICS
manufacturing sector groups for the period 1958-2005.8 The variables included in the database
are output, employment (production/non-production), payroll, investment, capital stocks, ma-
terials and energy cost together with price deflators. The construction of this database has
been discussed in the technical report of Bartelsman and Gray (1996). Malley and Muscatelli
(1999) provided further detail on the definition of variables.

The variable payroll of the NBER data set does not include social security or other legally
mandated payments, or employer payments for some fringe benefits. Therefore, the labor
costs are systematically understated by this data set. In order to correct this bias, we need to
include fringe benefits. To this end, additional information is required, especially the fringe
benefits costs ratio, i.e, (fringe benefits/total compensation). Two sources of information can
be used, i.e., the 1992-2005 ASM tables and the National Income and Product Account (NIPA)
tables conducted by BEA.

The NTPA tables (especially Tables 6.2 - 6.3 and Tables 6.10 - 6.11), record the compen-
sation of employees, wage and salary accruals, legally required social insurance, pension and
insurance funds from 1948 to 2010 for 21 two-digit SIC sector groups.” We can use these
data for covering the period of 1958 to 1991 by assuming homogeneity within sectors at the
two-digit level. More disaggregated data (at four-digit SIC and six-digit NAICS level) are
available in the ASM tables. For the period 1992 to 1996, we can find the value of fringe
benefits recorded in SIC classification system, while for the period 1997 to 2005 the data are
collected in NAICS.

Construction of capital price

The NBER database provides the total real capital stock (K), then we need to construct the
rental price of capital (Pg) by using the investment price index (Pr). Consider the following
formula: Px; = Pry(1+m) E¢(1 0¢)Prit1], where m denotes the nominal interest rate. In

this study we use the 10-year U.S. treasury constant maturity rate, which comes from the

"The database is accessible on the website: www.nber.org/nberces/nbprod96.htm
8See the website: http://www.census.gov/manufacturing/asm/index.html
9See the website: http://www.bea.gov/national /nipaweb/Index.asp
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Federal Reserve Bank of St. Louis. § is the physical depreciation rate. The depreciation rate
can be computed by using the classical capital accumulation equation, K; = I; + (1 — &) K;—;
or set to be constant (in this paper we assume that 6 = 8%). Assuming that there is no

expectation errors on Pjy1, the above formula can be simplified as: Pg =Py (0 + 7).

Construction of fringe benefits ratio

The total fringe benefits is the employer’s costs for legally required social insurance, employee
pension and insurance funds.!'® The fringe benefits can be computed in two manners: the
difference between the total compensation and the payroll or the sum of costs for social insur-
ance, employee pension and insurance funds (the two methods carry out the similar results in
our data). Thus, the ratio of fringe benefits to total compensation is used to magnify the labor
costs of the NBER database. The main difficulty of incorporating the fringe benefits into the
NBER database is that the data are recorded at different aggregation level and in different
industrial classification systems before 1997. We converted the 2-digit SIC data (for the period
1958-1990) of NIPA tables and the 4-digit SIC data (for the period 1991-1996) of ASM tables

in to the NAICS data, according to the concordance proposed by Census Bureau.!!

Sources of missing values The main source of missing values is that the data on fringe
benefits from the NIPA tables is only available at the 2-digit SIC level. Therefore, we assume
that the fringe benefits are invariant across sectors within the 2-digit SIC industry group.
The second source is that some 6-digit NAICS sectors are missing in the ASM tables for the
period of 2002 to 2005. In this case, we replace the missing values by the variation rate
of corresponding 5-digit NAICS sectors.'> The third source of missing values is due to the
concordance relationships between the 4-digt SIC and 6-digit NAICS classification system.
Some NAICS industry groups correspond to several SIC industry groups. Thus, the fringe
benefits of NAICS sector is computed as the average of fringe benefits of its SIC counterparts.
In some cases, the corresponding SIC groups are not manufacturing industries. Consequently,
their fringe benefits data are not available and we simply disregard these non manufacturing

SIC industry groups for computing the average of fringe benefits.

10The ASM define the fringe benefits as the expenditures for social security tax, unemploy-
ment tax, workmen’s compensation insurance, state disability insurance pension plans, stock
purchase plans, union-negotiated benefits, life insurance premiums, and insurance premiums
on hospital and medical plans for employees.

11See the website: http://www.census.gov/eos/www /naics/concordances/concordances.html
. 5—digit
12The variation rate of fringe benefits at period ¢ of 6-digit sector = F?:fhgn (1+ %),

where F' denotes the fringe benefits rate.
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Finally, we obtain a balanced panel data set that contains the output, adjusted labor

costs, capital cost, investment and material input costs with price deflators for 462 NAICS

manufacturing industry groups over the period 1958-2005.
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