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Abstract

We investigate the asymptotic bias of the ordinary least squares

estimator for spatial autoregressive models. We show that this esti-

mator is biased as well as inconsistent for the parameters regardless of

the distribution of the disturbance. Illustrative examples are provided.
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1 Introduction

Many studies deal with the spatial modeling of phenomena in a regression

context. Recent examples of empirical work that explicitly incorporate spa-

tial dependence concern the forecasting of cigarette demand using panel

data, Baltagi and Li (1999), the study of responses of real wages to local

and aggregate unemployment rates over time, Ziliak et al. (1999) and the

estimation of a hedonic model for residential sales transactions, Bell and

Bockstael (2000). From a theoretical side, Kelejian and Prucha (1998, 1999)

and Conley (1999) developed new estimators based on Generalized Method of

Moments (GMM) to deal respectively with generalized spatial models and

lattice models.1 Readers are also referred to Ripley (1981, 1988), Cressie

(1991) and Sajjan (2000) for special topics on spatial processes.

Two structures of spatial dependence mostly encountered both in the

statistics and econometrics literature are sources of statistical inference prob-

lems: spatial dependencies across observations for the response variable (de-

pendent variable) and spatial autocorrelation in the error terms. Indeed,

contrary to time-series models which are associated with uni-directional time

�ow, there is no natural order for arranging spatial data. Spatial data are

supplemented with a multi-directional motion. This particular characteristic

of spatial processes precludes a simple transposition of time-series method-

ologies. As outlined by Anselin (1988, p.59), the asymptotic properties of the

ordinary least squares estimator for the model with spatial residual autocor-

relation are more in line with the times-series analogue. Indeed, parameter

1By general spatial model we mean a cross-sectional regression model for spatial data

containing both the spatial lag of the response variable as additional regressor and a

disturbance term that is spatially autoregressive.
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estimates will still be only unbiased but ine�cient due to the nondiago-

nal structure of the variance-covariance matrix of the error terms. In light

of this, Kelejian and Prucha (1997) have shown that, in a spatial autore-

gressive errors speci�cation, the attempt to use a two-stage least squares

procedure based on the Cochrane-Orcutt (1949) transformation leads to in-

consistent estimates. Kelejian and Prucha (1997) demonstrated that the

response function of the spatial autoregressive model associated with the

Cochrane-Orcutt transformation violated Amemiya's (1985, p.246) rank con-

dition, raising identi�cation issues for the spatial parameter.

In a regression context and from a methodological viewpoint, when a

spatial lag of the response variable is used as additional regressor, the spa-

tial dynamics involved induces the problem of endogeneity. Indeed, contrary

to time-series models where the lagged term of the dependent variable is

uncorrelated with the error if there is no serial residual correlation, in the

spatial context, this correlation occurs regardless of the properties of the

disturbance. As a result, the ordinary least squares estimator will be in-

consistent. This inconsistency is mentioned in papers presenting alternative

estimation procedures, see e.g., Anselin and Bera (1998) for a review of var-

ious available estimators. However, to the best of our knowledge, the details

of the theoretical reasons of this inconsistency have not yet been published.

The purpose of this paper is to investigate the asymptotic properties of

the ordinary least squares estimator for autoregressive spatial models. We

show that this estimator is biased as well as inconsistent regardless of the

distribution of the disturbance. We provide a detailed proof that the bias

of the ordinary least squares estimator for autoregressive spatial models is
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Op(1) and not zero.

The paper is organized as follows. Section 2 presents the model and some

examples illustrating the issue. Section 3 is devoted to theoretical results.

Section 4 concludes the study.

2 Model and examples

Without loss of generality, let us consider a linear regression model generated

from a spatial stochastic process of the form

yn = �Wnyn + "n; j�j < 1; (1)

where yn is a n�1 vector of observations for the response variable (dependent

variable), Wnyn is a spatial regressor with Wn denoting a n � n spatial

weighting matrix; that is to say, Wn expresses for each (row) observation

those (columns) locations that belong to its neighborhood set as non-zero

elements. Clearly, Wn is the matrix of a graph, Berge (1983). This de�nition

will be illustrated in the examples below. � is a spatial parameter (to be

estimated) and "n is a n � 1 vector of error terms. The speci�cation (1)

is widely used in empirical analysis and usually referred as to pure �rst

order spatial autoregressive model by analogy with time-series.2 Indeed,

if we assume that E("n) = 0, then the conditional expectation of yn is

E(ynj:) = �Wnyn. The dependent variable can then be viewed, in part, to

depend on a weighted average of the values it takes on neighboring cross-

sectional units. For reasons of generality, we permit the elements of the

matrices and vectors to depend on the number of observations n, that is to
2The model (1) may be viewed as the spatial analogue of time-series AR(1) processes,

that is yt = �yt�1 + "t.
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form a triangular array. Thus, in the notations an index n denotes the size

of the sample. This notation allows us to �x ideas on elements of the model

which depend on n.

Despite its simplicity, this model captures all the e�ects of the presence

of a spatially lagged response variable, and can therefore be used for our

purpose. To ease notations, let zn := Wnyn. If we assume the errors to be

i.i.d., the OLS estimator for � denoted �̂ is

�̂n = (z0nzn)
�1
z0nyn: (2)

Substituting the expression for yn in (1) the population parameter from (2)

leads to

�̂n = �0 + (z0nzn)
�1
z0n"n: (3)

Based on relation (3), the convergence of �̂ towards the true value of �

denoted �0 requires the following conditions:3

plim
n!1

n�1(z0nzn) = Mz ; (4)

with Mz a non-zero scalar and

plim
n!1

n�1(z0n"n) = 0: (5)

In the spatial framework, condition (4) can be satis�ed with suitable restric-

tions on the value of � and on the structure of the spatial weighting matrix.

But except in the trivial case where � = 0, condition (5) does not hold. The

aim is to show that the limit in probability of the bias E(�̂n)� �0 is not zero

unless � = 0. To show this, we make use of the following assumptions.
3It should be noted that the class of distributions allowed for "n precludes the Dirac

mass.
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Assumption 1 The "i;n are i.i.d. with mean zero and variance �2" < 1.

Moreover, there exists a �nite non negative constant c" such that for all i,

1 � i � n, 8n � 1, the s-th absolute moments are such that Ej"i;nj
s � c" <

1; 8s > 0.

Assumption 2 All diagonal elements !ii;n of the spatial weighting matrix

Wn are zero and the o�-diagonal elements !ij;n are such that
Pn

i=1 j!ij;nj �

�! and
Pn

j=1 j!ij;nj � �! for all j = 1; � � � ; n; 8n � 1, where �! is a �nite

constant.

Assumption 3 The matrix (I � �Wn) is nonsingular and the following sums:

Pn
i=1 jmij;nj and

Pn
j=1 jmij;nj are bounded by, say �m < 1 for all j =

1; � � � ; n;n � 1, with mij;n being an element of Mn = (I � �Wn)
�1, for all

j�j < 1.

Using the Markov inequality, it is easy to show that the second part of

Assumption 1 implies that n�1
Pn

i=1 j"i;nj
s = Op(1), 8 s > 0. Assumption

2 allows us to restrict the extent of the spatial dependence. Under some

conditions related to the eigenvalues of Wn and the restriction that j�j < 1,

the invertibility ofMn is ensured as stated in Assumption 3.4 We give some

examples to illustrate the issue.

Consider a spatial system constituted by four units S = fs1; s2; s3; s4g

located on a straight line and arranged in the increasing order of the indices.

We can de�ne the neighborhood sets Vsi , with Vsi indicating the neighbors

of si, by Vs1 = fs2g, Vs2 = fs1; s3g, Vs3 = fs2; s4g and Vs4 = fs3g.
4If all eigenvalues of Wn are less than or equal to one in absolute value, j�j < 1 implies

that all eigenvalues of �Wn are strictly below one in absolute value, which ensures that

Mn =
P
1

i=0
�iW i

n, Horn and Johnson (1985).
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In the �rst example, we use as spatial weighting matrix the binary matrix

of dimension 4� 4 denoted W1;n of the graph associated with S. This yields

a �rst order contiguity matrix

W1;n =

0
BBBBBBBB@

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

1
CCCCCCCCA
: (6)

Let "n be a vector of error terms with suitable dimension. The assumptions

on "n and W1;n yield

E
h
"0nW1;n(I � �W1;n)

�1"n

i
=

1

D
2�2"�(3� 2�2); (7)

with D = 1� 3�2 + �4. Given the maintained assumptions of the model, the

second term of relation (7) is zero if and only if � = 0 (this term is zero for

�1 = 0 and �2 = �
p

3=2, but the latter violates the assumption j�j < 1).

For the second example, consider a row-standardized version ofW1;n denoted

W2;n. We get

W2;n =

0
BBBBBBBB@

0 1 0 0

0:5 0 0:5 0

0 0:5 0 0:5

0 0 1 0

1
CCCCCCCCA
: (8)

Then,

E
h
"0n(I � �W 0

2;n)
�1
W 0

2;n"n

i
=

1

D
2�2"�(5=4� �2); (9)

with D = 1 � (5=4)�2 + (1=4)�4. In this case also, we have �1 = 0 and

�2 = �
p

5=4, and only the �rst solution is acceptable.
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From these two examples, we note that the expectations are null only

for � = 0, which suggests that condition (5) does not hold unless � = 0.

Note that the above examples can be extended to the case of (S)ni=1 spatial

units on a straight line and it can be shown easily that the same conclusion

applies. We now provide the theoretical proof.

3 Bias properties

Theorem 1 Given Assumptions 1�3, the bias E(�̂n)� �0 is Op(1).

Proof.

The proof is given in two steps. We show respectively that plim
n!1

n�1(z0nzn)

and plim
n!1

n�1(z0n"n) are Op(1).

(i) plimn!1n
�1(z0nzn) = Op(1).

Note that the zi;n's are not independent. Then using the law of large num-

bers for dependent observations (see, e.g., White (1984, p.42)), plimn!1n
�1

(z0nzn)
p.s.
! E(z0nzn). Also, n�1

Pn
i=1 z

2

i;n
p.s.
! E(z2n) and E(n�1

Pn
i=1 z

2

i;n) =

E(z2n). Then,

Ejn�1(z0nzn)j = Ejn�1"0nM
0

nW
0

nWnMn"nj

= E

������
n�1

nX
i=1

nX
j=1

nX
l=1

nX
k=1

nX
p=1

"i;nmki;n!lk;n!lp;nmpj;n"j;n

������

� n�1
nX
i=1

nX
j=1

nX
l=1

nX
k=1

nX
p=1

jmki;njj!lk;njj!lp;njjmpj;nj

Ej"i;njj"j;nj =: �1:

From Assumption 1, Ej"i;njj"j;nj � c" for i = j and Ej"i;njj"j;nj � c2" for
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i 6= j. Assuming that 1 � c" and by the Cauchy-Schwarz inequality we have

�1 � n�1c2"

nX
i=1

nX
j=1

nX
l=1

nX
k=1

nX
p=1

jmki;njj!lk;njj!lp;njjmpj;nj =: �2:

Observing that only jmpj;nj depends on j and using Assumption 3, it follows

that

�2 = n�1c2"

nX
i=1

nX
l=1

nX
k=1

nX
p=1

jmki;njj!lk;njj!lp;nj

nX
j=1

jmpj;nj

� n�1c2"�m

nX
i=1

nX
l=1

nX
k=1

nX
p=1

jmki;njj!lk;njj!lp;nj =: �3;

From �3, only j!lp;nj depends on p and using Assumption 2 we can write

�3 = n�1c2"�m

nX
i=1

nX
l=1

nX
k=1

jmki;njj!lk;nj
nX

p=1

j!lp;nj

� n�1c2"�m�!

nX
i=1

nX
l=1

nX
k=1

jmki;njj!lk;nj =: �4:

It then follows that

�4 = n�1c2"�m�!

nX
i=1

nX
k=1

jmki;nj

nX
l=1

j!lk;nj

� n�1c2"�m�
2

!

nX
i=1

nX
k=1

jmki;nj =: �5

Finally, we have

�5 � n�1
nX

i=1

c2"�
2

m�
2

!

= c2"�
2

m�
2

! <1:

We may conclude that Ejn�1(z0nzn)j = Ejn�1"0nM
0

nW
0

nWnMn"nj is bounded

and thus is Op(1).

(ii) plimn!1n
�1(z0n"n) = Op(1).
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Applying an analogue step to the previous we obtain

Ejn�1(z0"n)j = E
��n�1"0nM 0

nW
0

n"n
��

= E

������
n�1

nX
i=1

nX
j=1

nX
k=1

"i;nmki;n!jk;n"j;n

������

� n�1
nX

i=1

nX
j=1

nX
k=1

jmki;njj!jk;njEj"i;njj"j;nj

� c2"�m�! <1;

and it follows thatEjn�1(z0n"n)j is Op(1). Thus, the bias is Op(1), as the

product of Op(1) terms in the same probability space is Op(1). �

Theorem 2 Given Assumptions 1�3

plim
n!1

n�1(z0n"n) 6= 0; 8 � 6= 0: (10)

Proof.

Note that the expression plimn!1n
�1(z0n"n) can be rewritten as

plim
n!1

n�1"0n(I � �W 0

n)
�1
W 0

n"n: (11)

Let An = B0n with Bn = WnMn. De�ne Xn = (Xn1; Xn2) with Xn1 =

n�1=2"n and Xn2 = n�1=2B0n"n. Considering Sn = [I; Bn] where I denotes

an identity matrix of dimension n, we have Xn = n�1=2S0n"n. Using a

corollary of the Lindeberg-Feller central limit theorem for triangular arrays

(see, e.g., Billingsley (1979, p.319)), the asymptotic distribution of Xn is

Xn
d
�!
n!1

N
�
0; �2�n

�
:

with �n = limn!1 n�1S 0nSn. Applying the continuous mapping theorem

(see, e.g., Ser�ing (1980, p.24)), it then follows that

X 0

n1Xn2
d
�!
n!1

X 0

1
X2;
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with X = (X1; X2)
0 �d N(0; �2�n). Given the maintained assumptions of

the model, it is straightforward to verify that each block of the matrix S0nSn

is nonsingular. As a result, X1 and X2 are not perfectly correlated and thus

P (jX 0

1
X2j > �) > 0; 8 � > 0. Then plimn!1X 0

n1Xn2 6= 0. �

4 Conclusion

In this paper we provide the theoretical proof of the inconsistency of ordinary

least squares estimator for cross-sectional autoregressive spatial models. We

show that the bias of this estimator is Op(1) for all j�j < 1, � 6= 0. The

contribution of this study consists in providing arguments for not using the

OLS estimator (contrary to time-series) in regression models for spatial data

even if this is highly tentative.
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