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Abstract

This study expands on the patent-paper pair (PPP) detection model developed
by Nguyen and Carraz (2025, Scientometrics) by systematically comparing it
with two prominent large-scale approaches: Marx and Scharfmann (2024) and
Wang et al. (2025). Although these models all aim to identify instances where
the same research result is disclosed through both a patent and a scientific paper,
they differ substantially in scope, design, and methodological assumptions. The
Nguyen and Carraz model is designed for the Japanese academic context and
integrates inventor–author matching, citation overlap, and semantic and lexical
similarity within a supervised learning framework. In contrast, Marx and Scharf-
mann rely on detecting long identical word sequences (“self-plagiarism”) via a
random forest classifier, and Wang et al. implement an inventor-centric cluster-
ing method with logistic regression applied to title and abstract similarity. We
directly compare the Nguyen and Carraz dataset with those of Marx and Scharf-
mann and Wang et al., focusing on PPPs involving Japanese academic assignees.
Despite the shared national context, there is minimal overlap: only 168 PPPs
overlap with the Marx and Scharfmann model and 425 overlap with the Wang
et al. model. When evaluated on a shared validation set, the Nguyen and Carraz
model outperforms both alternatives in the Japanese academic context, espe-
cially with logistic regression features. Feature extensions such as self-plagiarism
and geographic distance offer only modest improvements under non-linear mod-
els. These findings highlight the importance of designing context-specific models
and exercising caution when applying global PPP datasets to localized settings.

Keywords: Patent Paper Pair; Methodology; Matching algorithm; Academic patent;
Japan

JEL Classification: 031 , 034 , 05

1



1 Introduction

Patent-paper pairs (PPPs), in which the same research result is protected by a patent
and published as a scientific paper, have emerged as a valuable analytical tool for
studying the interface between scientific research and technological innovation. By
capturing instances of dual disclosure, PPPs provide concrete evidence of cases where
scientific discovery and inventive application arise from a common research project.
The potential of PPPs was first demonstrated in the work of Murray and Stern (2007),
and was subsequently expanded by Lissoni et al. (2013) and Magerman et al. (2015).

More recently, the field has seen significant methodological advances, driven by the
availability of structured data on non-patent literature (Marx and Fuegi 2020, 2022)
and the increasing sophistication of text mining and machine learning techniques. For
example, Marx and Scharfmann (2024) introduced a large-scale PPP detection model
that exploits the identification of long identical word sequences, a way to mimic “self-
plagiarism” between patent and publication abstracts, coupled with a random forest
classifier trained on a dataset of over 800 manually reviewed PPPs. In parallel, Wang
et al. (2025) developed a two-step approach that first constructs an academic inventor
database through name disambiguation and affiliation matching, and then applies
domain-specific clustering along with logistic regression to assess document similarity.
These improvements significantly increase the scope of PPP matching beyond previous
rule-based or manually curated approaches and have enabled the emergence of large
open datasets.

As a result, a new wave of large-scale PPP studies has emerged over the past two
years, including contributions by Kwon (2024), Lippert and Förstner (2024), Marx
and Scharfmann (2024), Raiteri and Buettner (2024), Nguyen and Carraz (2025) and
Wang et al. (2025). Collectively, these studies underscore the growing interest in PPPs
as an analytical construct for understanding the co-evolution of science and technology
across institutional, disciplinary, and national contexts.

The present study contributes to this growing body of work by extending previ-
ous research specifically tailored to the academic context of Japan, as developed by
Nguyen and Carraz (2025). Although narrower in geographic scope than the models
proposed by Marx and Scharfmann (2024) or Wang et al. (2025), the Van Thien and
Carraz approach prioritizes a cohesive institutional framework and incorporates exten-
sive validation procedures. emphasizes a cohesive institutional context and extended
validation exercises. Using a dataset of 115 universities and 22 public research insti-
tutes in Japan, the model employed a scoring system that integrates inventor-author
matching, semantic and lexical similarity, and citation overlap. The model was trained
on a manually validated dataset supported by over 700 PPPs and achieves high predic-
tive performance. The resulting open dataset consists of 16,899 high-confidence PPPs
identified between 2004 and 2018.

Considering the innovative nature and extensive scale of Marx and Scharfmann
(2024)’s model, this study conducts a comprehensive comparative analysis to evalu-
ate the validity, specificity, and robustness of the model developed by Nguyen and
Carraz (2025). Additionally, the inventor-focused methodology by Wang et al. (2025)
provides another critical benchmark, allowing us to clearly articulate the methodolog-
ical divergences and their implications. The results of this comparison highlight how
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distinct design choices, ranging from feature selection to model scope, substantially
shape PPP detection outcomes, reinforcing the need for methodological frameworks
that are carefully adapted to specific research contexts.

The remainder of the paper is organized as follows. Section 2 outlines the
methodological framework developed by Nguyen and Carraz (2025), including dataset
construction, the design of the matching algorithm, and the supervised learning model
used to detect academic PPPs in the Japanese context. Section 3 offers a comparative
evaluation of this approach alongside the models proposed by Marx and Scharfmann
(2024) and Wang et al. (2025), with particular attention to methodological design,
predictive performance, and contextual applicability. Section 4 concludes by examin-
ing the findings’ implications and emphasizing the trade-offs and complementarities
among PPP detection strategies.

2 Methodology Overview

This study develops and evaluates the Nguyen and Carraz (2025) model for detect-
ing academic patent–paper pairs (PPPs). This section provides a summary of the
methodology developed by Van Thien and Carraz; a full description is available in
the original study. The corresponding code and dataset are openly accessible at:
https://github.com/ReneCarraz/Patent-Paper-Pair.

2.1 Institutional Scope and Dataset Construction

The sample was constructed from 115 universities and 22 National Public Research
Institutes (PRIs) in Japan, each of which had at least one patent granted by the United
States Patent and Trademark Office (USPTO) between 2004 and 2018. The choice to
rely on USPTO data was motivated by the richer availability of non-patent literature
(NPL) citations compared to Japanese patent filings. Patent data were obtained from
the PatentsView platform, while bibliometric records were obtained from OpenAlex.
After applying filters based on institutional affiliation and authorship, the final dataset
included 10,896 patents and 652,610 publications.

2.2 Identification of Candidate Matches

Potential PPPs were initially identified by matching inventors listed in patent appli-
cations to the first or last authors of publications affiliated with the same institution.
A publication was considered a candidate if its date fell within a three-year win-
dow from the priority date of the patent (-1 to +2 years). To refine the dataset, we
excluded review articles and applied institutional filters to ensure consistency. This
process resulted in 467,669 potential matches.

2.3 Scoring System

To assess the similarity between candidate PPPs, Nguyen and Carraz (2025) develop a
four-dimensional scoring system that integrates both lexical and contextual indicators:

• Inventor Score: Measures the proportion of overlapping inventors and authors,
requiring that either the first or last author be an inventor.
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• Semantic Similarity Score: Computed via S-BERT embeddings using cosine
similarity between the title and abstract of patents and papers, capturing context-
aware semantic proximity.

• Word Overlap Score: Calculates the lemmatized word overlap between patent
and paper abstracts and titles, normalized by the total word count.

• Citation Overlap Score: Measures bibliographic citation overlap using NPL
citations from the Marx and Fuegi datasets (Marx and Fuegi 2020, 2022).

Each indicator was normalized to a range of 0 to 1, enabling a multi-dimensional
assessment of relatedness between documents.

2.4 Labeled Dataset and Model Development

Nguyen and Carraz (2025) develop a supervised machine learning model to classify
true PPPs using the four similarity scores described above. To generate training data,
they validate 722 pairs using two methods: (1) direct author feedback from a sample
of 90 researchers (143 confirmed matches, 247 false matches), and (2) manual visual
validation of 600 randomly selected pairs based on shared thematic content, author
affiliations, and graphical elements. A balanced training dataset of 361 positive and 361
negative matches is constructed, the latter including a control group of semantically
similar but unrelated works identified via OpenAlex’s related works function.

Then a logistic regression model is trained using the four scores. The model demon-
strates strong performance under stratified fivefold cross-validation, achieving an F1
score of 0.80. Comparative benchmarking against prior models (e.g., Lissoni et al. 2013;
Magerman et al. 2015) confirms the enhanced precision and recall of this approach.

2.5 Results of Matching Process

Applying the trained model to the full dataset of 467,669 potential matches results
in the identification of 16,899 high-confidence academic PPPs. Of these, 1,280 are
one-to-one matches, while 2,726 patents are associated with multiple publications.
Descriptive statistics show that most PPPs are concentrated in materials science,
chemistry, and physics. The most frequently represented institutions include the Uni-
versity of Tokyo, Kyoto University, Tohoku University, and the National Institute of
Advanced Industrial Science and Technology (AIST).

An analysis of feature importance indicated that citation overlap score and word
overlap score were the most predictive indicators in the model. Specifically, the logistic
regression coefficients showed strong statistical significance for citation overlap (β =
1.24, p < 0.001) and word overlap (β = 0.85, p < 0.001), while the inventor score
also played a significant but comparatively smaller role (β = 0.45, p < 0.001). The
semantic similarity score, although not statistically significant on its own, contributes
to the overall robustness and interpretability of the model.
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3 Comparison

To further assess the validity and distinctiveness of Nguyen and Carraz (2025) model,
we conducted a structured comparison with two prominent large-scale PPP detec-
tion approaches: Marx and Scharfmann (2024) and Wang et al. (2025). This section
is divided into four parts. Section 3.1 outlines the main methodological differences
between the three models, focusing on dataset coverage, feature design, and model
architecture. Section 3.2 compares overlapping PPPs identified in the Japanese con-
text, using four core metrics: Inventor Score, Citation Overlap, Word Overlap, and
Semantic Similarity. Robust statistical tests are applied to highlight where the mod-
els diverge in what they detect. Section 3.3 uses a validated dataset of 722 PPPs to
benchmark model performance. Each model’s feature set is applied under identical
conditions, and the models are evaluated using both logistic regression and random
forest classifiers. This enables a direct performance comparison applied to a shared
evaluation framework. Section 3.4 expands on this by examining whether integrating
additional features inspired by Marx and Scharfmann, such as self-plagiarism indi-
cators and inventor–assignee distance, into the Van Thien and Carraz model adds
predictive value.

3.1 Descriptive Statistics

Table 1 summarizes the key methodological differences among three PPP detec-
tion models: the model of Nguyen and Carraz (2025), Marx and Scharfmann (2024)
and Wang et al. (2025). While all models rely on open-access patent and publica-
tion metadata, they differ substantially in scope, feature design, and methodological
approach.

The model proposed by Nguyen and Carraz (2025), evaluated in the present study,
targets Japan’s academic sector and combines inventor–author matching, semantic
and lexical text similarity, and citation overlap within a supervised learning frame-
work. By contrast, Marx and Scharfmann (2024) adopt a global approach centered on
detecting high-confidence “self-plagiarism” via long identical sequences, author name
overlap, and citation-based features, using a random forest classifier. Wang et al. (2025)
implement an inventor-centric model, clustering disambiguated inventor profiles and
applying logistic regression on title and abstract similarity.

Each approach emphasizes distinct dimensions of PPP detection. Nguyen and Car-
raz (2025) model focuses on identifying academic PPPs within a national research
context. Marx and Scharfmann (2024) prioritize textual reuse, emphasizing direct
phrase overlap between documents in a global setting. Wang et al. (2025) , by con-
trast, capture broader inventor-centric connections through clustering techniques and
abstract similarity evaluation. These differences influence both the composition of
detected PPPs and the types of analytical conclusions each model supports.
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Table 1: Comparison of the Models Methodology

Criteria Nguyen & Carraz
(2025)

Marx & Scharf-
mann (2024)

Wang et al. (2024)

Dataset Source Open-access: Yes;
16,899 PPPs;
Patents USPTO +
OpenAlex. Japan-
focused, academic
inventors

Open-access:
Yes; ˜500,000
PPPs; USPTO +
OpenAlex, self-
plagiarism detection,
author-inventor
matching

Open-access: Yes;
14,137,072 PPPs;
PATSTAT + Sco-
pus; inventor-based
clustering

Sample Selection
Criteria

Manual validation
+ supervised model
using inventor-
author match,
semantic and lexical
similarity, citation
overlap

Self-plagiarism
detection: long
exact sequences
(> 10 words)
between patent and
paper abstracts;
author-inventor
name overlap; cita-
tion; combined in
a random forest
classifier

Candidates
generated via
author-inventor dis-
ambiguation and
domain clustering;
logistic regression
on abstract/title
similarity applied in
classification stage

Benchmark Pair-
ing (Non-PPPs)

Semantically similar
but manually veri-
fied false pairs; unre-
lated but similar doc-
uments using Ope-
nAlex related works

Pairs published > 5
years apart; random
combinations of pub-
lications with over-
lapping names

Not explicitly
detailed; inferred
via clustering and
logistic modeling

“Golden Goose” -
Training Set

Validated 722 pairs
(researcher survey +
manual inspection)

800+ hand-coded
PPPs for validation

Used disambiguated
author-inventor data
as training proxy

Geographical
Restriction

Academic
Japan-based
institutions

Global scope, no
specific geographical
restriction

Global scope with
focus on inventor-
level profiles

Feature Types
Used

Inventor score,
S-BERT-based
semantic similar-
ity, word overlap,
citation overlap,
publication time gap
(3-year window, -1
to +2)

Textual overlap (self-
plagiarism), author
name match, cita-
tion presence (patent
cites the paper),
institution–assignee
distance, publication
time gap (4-year
window, -2 to +2)

Title/abstract
similarity, author-
inventor affiliation,
cluster proximity,
publication time gap
(5-year window, -3
to +2)

Feature
Importance

Most important:
citation overlap and
word overlap

Most important:
Textual overlap
(self-plagiarism) and
author name match

Most important:
author-inventor
link and abstract
similarity
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Criteria Nguyen & Carraz
(2025)

Marx & Scharf-
mann (2024)

Wang et al. (2024)

Other Notable
Features

Focus on
institutional-level
validation; contex-
tual model tuned to
Japanese academic
system

Emphasis on
high-confidence
self-citations and
large-scale global
matching

Inventor-centric
view; large-scale
global matching

3.2 Feature-Based Comparison of Overlapping PPPs

To enable a direct comparison with the model developed by Nguyen and Carraz (2025), the
analysis focused on the subsets of PPPs from Marx and Scharfmann (2024) and Wang et al.
(2025) that intersect with Japanese assignees, given the national specificity of the Van Thien
and Carraz dataset. We obtained the complete lists of PPPs from Marx and Scharfmann and
Wang et al., filtering each to include only cases where the patent’s assignee is in Japan. Specif-
ically, first, we obtained the PPP data published by Marx and Scharfmann from the Reliance
on Science platform (https://relianceonscience.org/patent-paper-pairs). This dataset pro-
vides patent IDs, and we used USPTO data to extract the country of each assignee. We then
filtered out pairs where the assignee country did not include Japan. Similarly, we downloaded
the PPP data published by Wang et al. from Zenodo (https://zenodo.org/record/15478277).
This dataset contains application IDs, and we used USPTO data to map application ID to
patent ID. We then obtained the assignee country for each patent. Finally, we filtered out
any pairs with an assignee country other than Japan.

This yielded 4,387 PPPs from the Marx and Scharfmann (2024) dataset (out of 107,820,
or 4.1%) and 99,675 PPPs from the Wang et al. (2025) dataset (out of over 14 million, or
0.7%). Among these, only a small fraction overlapped with our 16,899 PPPs. Specifically, 168
pairs were common between Nguyen and Carraz (2025) and Marx and Scharfmann’s dataset,
and 425 pairs were common with Wang et al. dataset (see Table 2). The remaining Japanese-
context pairs – 4,219 were unique to Marx and Scharfmann, and 99,250 were unique to Wang
et al. – did not appear in Nguyen and Carraz. This limited overlap highlights that each
model, with its unique criteria, identifies a distinct set of PPP connections. Even within the
same country and time span, many pairs identified by the global models were absent from
our list, and vice versa.

Table 2: Overlap of PPP datasets for Japan (2004–2018)

Dataset Total Entries
Entries in Common

with Nguyen & Carraz (2025) Unique Entries

Nguyen & Carraz (2025) 16 899 — 16 899
Marx & Scharfmann (2024) 4 387 168 4 219
Wang et al. (2024) 99 675 425 99 250

The dataset constructed by Nguyen and Carraz (2025) is designed to include only patents
and publications affiliated with Japanese academic institutions. After rigorous filtering based
on institutional affiliation and authorship, the dataset contained 10,896 patents and 652,610
publications. These were used to generate a pool of candidate matches. After applying a
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supervised learning model based on four key similarity indicators, 16,899 high-confidence
PPPs were identified. Consequently, each PPP in this dataset is explicitly linked to a Japanese
academic institution. In contrast, the global models developed by Marx and Scharfmann
(2024) and Wang et al. (2025) cover a much broader population of PPPs, only a small
fraction of which involve Japanese academic assignees. Consequently, their capacity to detect
Japan-specific academic PPPs seems to be limited in scale and coverage.

To evaluate the differences between the PPPs identified by Marx and Scharfmann (2024),
Wang et al. (2025) , and those in the Nguyen and Carraz (2025) dataset, we examined
the distributions of four key matching features used in the Nguyen and Carraz model —
inventor score, citation overlap, word overlap, and semantic similarity —across three groups:
(1) the complete Nguyen and Carraz dataset, (2) the subset overlapping with Marx and
Sharfmann’s Japan-related PPPs, and (3) the subset overlapping with Wang et al.’s (See
Table 2). Statistical tests revealed that the distributions of these features differ significantly
between the groups.

To assess distributional assumptions, we applied the Shapiro–Wilk test for normality and
Levene’s test for homogeneity of variance. Both tests rejected parametric assumptions. As a
result, we used the Mann–Whitney U test (Nachar 2008) to compare feature distributions
between the Nguyen and Carraz (2025) dataset (N = 16,899) and the subsets from Marx and
Scharfmann (2024) (N = 168) and Wang et al. (2025) (N = 425). The results, summarized
in Table 3, show statistically significant differences in several features.

Table 3: Mann–Whitney U Test Results

Feature Comparison U statistic p-value Significant (α = 0.05)

Inventor Score
NC vs. Marx 1,023,852 < .001 Yes
NC vs. Wang 3,616,683 0.738 No

Citation Overlap Score
NC vs. Marx 1,463,022 0.984 No
NC vs. Wang 4,585,140 < .001 Yes

Word Overlap Score
NC vs. Marx 674,783 < .001 Yes
NC vs. Wang 2,696,451 < .001 Yes

Semantic Similarity Score
NC vs. Marx 1,092,886 < .001 Yes
NC vs. Wang 2,914,453 < .001 Yes

Note: For brevity, “Marx” refers to the intersection with Marx & Scharfmann (2024), “Wang” refers to the

intersection with Wang et al. (2024), and “NC” to the full dataset of Japanese academic PPPs identified

by Nguyen & Carraz (2025).

Feature-level comparisons confirm that design choices significantly influence how PPPs
are identified. For example, Marx and Scharfmann (2024)’s reliance on strict text reuse signals
may have skewed their dataset toward high-confidence inventor-linked PPPs, while Wang
et al. (2025)’s broader clustering approach produces overlaps in semantic and lexical similarity
but diverges in citation linkage with Nguyen and Carraz (2025) ’s model.

These contrasting results underscore that PPP datasets are shaped by the priorities
embedded in each model’s design. The low overlap and distinct feature profiles suggest that
no single methodology offers a complete and unified picture. This has important implications
for studies relying on PPPs to trace knowledge transfer, commercialization, or dual disclosure.
In the next section, we compare the predictive performance of the three models within a
shared validation framework.
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3.3 Comparison of Model Performances

To benchmark the Nguyen and Carraz (2025) model against those developed by Marx and
Scharfmann (2024) and Wang et al. (2025), we replicated each feature set based on their
published methodologies and publicly available code. Rather than comparing models on their
original datasets, we applied each feature set to Nguyen and Carraz’s labeled dataset of 722
PPPs, evenly balanced between 361 positive and 361 negative examples while covering 444
unique patents and 575 unique papers. This approach ensured that all models were evaluated
under the same data conditions, allowing us to directly assess the contribution of feature
design to classification performance. Nguyen and Carraz feature set includes four compo-
nents: inventor score, semantic similarity score, word overlap score, and citation overlap score,
as described in Section 2.3. Marx and Scharfmann’s feature set consists of title similarity,
abstract similarity, the number of shared author names between paper and patent, the pro-
portion of inventors who are also authors, and the geographical distance between the patent
assignee and the author’s affiliated institution. Meanwhile, the feature set used by Wang et
al. includes word overlap and semantic similarity measures for both titles and abstracts (see
Table 1 for a concise description of all models).

For each feature set, we trained both a logistic regression model and a random forest clas-
sifier to evaluate predictive performance. While Nguyen and Carraz (2025) model employed
logistic regression, we adopted Marx and Scharfmann (2024)’s use of random forests to exam-
ine whether non-linear classifiers offer improved accuracy. The models were trained using
stratified fivefold cross-validation, and the results are summarized in Table 4.

Table 4: Model Performance across Different Feature Sets (5-fold cross-validation)

Type Feature
Set

Accuracy Precision Recall F1

Logistic Regression
NC 0.8144 0.8259 0.7915 0.8080
Marx 0.7659 0.7551 0.7813 0.7675
Wang 0.7714 0.7875 0.7393 0.7594

Random Forest
NC 0.8352 0.8245 0.8492 0.8365
Marx 0.7908 0.7803 0.8044 0.7919
Wang 0.7424 0.7355 0.7594 0.7434

Note: For brevity, “Marx” refers to Marx & Scharfmann (2024), “Wang” refers to Wang et al. (2024), and

“NC” refers to Nguyen & Carraz (2025).

Random forest classifiers show a slight performance advantage across all feature sets.
When using Nguyen and Carraz (2025) features, the random forest achieved an F1 score of
0.8365 and demonstrated consistently high accuracy, precision, and recall. This suggests that
non-linear models can more effectively capture complex feature interactions, especially when
combining heterogeneous inputs such as semantic similarity, co-authorship, and bibliographic
overlap.

Nevertheless, the feature set developed by Nguyen and Carraz (2025) outperformed those
of Marx and Scharfmann (2024) and Wang et al. (2025) across all classifier types. This
highlights the importance of incorporating various dimensions of similarity, such as lexical,
semantic, citation-based, and institutional, into a single framework. Furthermore, the stable
results across linear and nonlinear classifiers support the generalizability of their approach.
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These findings highlight the methodological soundness and adaptability of the proposed
scoring system for broader PPP research.

3.4 Improvements

Building on the comparative evaluation in the previous section, we aimed to extend the work
of Nguyen and Carraz (2025) by exploring whether the integration of additional predictive
features could further enhance model performance. In particular, we drew on elements intro-
duced by Marx and Scharfmann (2024), notably their use of “self-plagiarism” detection and
the inclusion of geographic distance between inventors and assignees—features that poten-
tially capture latent dimensions of authorial overlap and institutional proximity. While these
variables were not part of the original Nguyen and Carraz model, we hypothesized that, when
combined with the existing indicators, they could provide complementary predictive value in
identifying high-confidence PPPs.

To extend the original feature set developed by Nguyen and Carraz (2025), we constructed
an augmented version that incorporates several additional variables. These include semantic
similarity between titles and abstracts (using S-BERT embeddings), lexical word overlap for
both titles and abstracts, inventor–author overlap, and citation overlap based on shared DOI
references—features already present in the baseline model. To this, we added two elements
inspired by Marx and Scharfmann (2024): geographical proximity (measured via Haversine
distance between author and assignee affiliations) and the total length of the three longest
shared textual sequences between the patent and publication abstracts, serving as a proxy
for self-plagiarism.

When trained with logistic regression, Table 5 shows that the extended model achieved
an F1 score of 0.8131(±0.0168), with precision at 0.8270 and recall at 0.7918. These results
are comparable to those of the original Nguyen and Carraz (2025) specification, suggesting
that the inclusion of additional features does not substantially improve performance under
linear assumptions. By contrast, the random forest model performed slightly better, reaching
an F1 score of 0.8597, indicating that non-linear classifiers are more effective in capturing
complex interactions among the expanded set of features.

Table 5: Model Performance with Extended Feature Set

Classifier Accuracy Precision Recall F1 Score

Logistic Regression 0.8131 0.8270 0.7918 0.8087
Random Forest 0.8587 0.8545 0.8653 0.8597

Despite the comparable performance, feature importance varied notably between the
two classifiers. In the logistic regression model, the most influential feature was citation
overlap (β = 1.182, p < 0.001), followed by word overlap (β = 0.734, p < 0.001) and
semantic similarity (β = 0.466, p = 0.016). Inventor–author overlap also showed a significant
contribution (β = 0.385, p < 0.005), while the additional features, self-plagiarism (β = 0.10,
p = 0.441) and geographic distance (β = −0.08, p = 0.532), had coefficients close to zero and
were not statistically significant. These results suggest that the extensions add limited value
in a linear setting. Table 6 reports the full set of coefficient estimates and significance levels.

In the random forest model, we assess predictor relevance with permutation feature impor-
tance, which quantifies the drop in predictive accuracy when a variable’s values are randomly

10



Table 6: Feature Weights (Logistic Regression, with Extended Feature Set)

Feature Coefficient

Citation Overlap 1.182***
Word Overlap 0.734***
Semantic Similarity 0.466
Inventor–Author Overlap 0.385**
Geographic Distance −0.079
Self-Plagiarism 0.103

Significance levels: ∗p < 0.01, ∗∗p < 0.005, ∗∗∗p < 0.001.

permuted (Breiman 2001). This metric substitutes for p-values, which are unavailable because
random forests lack parametric coefficients with tractable sampling distributions, making
classical hypothesis tests inapplicable (Altmann et al. 2010). In the extended version of the
Nguyen and Carraz (2025) model, citation overlap remained the most influential variable
(importance = 0.325), followed by semantic similarity (importance = 0.179) and word over-
lap (importance = 0.210). In contrast, the additional features, self-plagiarism (importance
= 0.036) and geographic distance (importance = 0.101), played a comparatively minor role,
indicating limited added value in the non-linear setting.

Table 7: Feature Importances (Random Forest, with Extended Feature Set)

Feature Importance

Citation Overlap 0.325
Semantic Similarity 0.179
Word Overlap 0.210
Inventor–Author Overlap 0.150
Geographic Distance 0.101
Self-Plagiarism 0.036

Because self-plagiarism and geographic distance were relatively unimportant in both mod-
els, we conducted a feature ablation analysis to see if removing these variables would improve
or at least preserve overall performance. In the logistic regression model, excluding geographic
distance slightly increased the F1 score to 0.8122, while removing self-plagiarism marginally
decreased it to 0.8055. Both outcomes remained close to the full model’s performance. In the
random forest classifier, removing self-plagiarism and geographic distance produced modest
reductions in the F1 score, to 0.8504 and 0.8301, respectively. This indicates that, while these
features contribute some value in nonlinear settings, their overall impact is limited.

Overall, these results demonstrate that the original feature set developed by Nguyen and
Carraz (2025) —which includes semantic similarity, word overlap, inventor–author linkage,
and citation overlap—is highly effective and robust across linear and nonlinear classifica-
tion models. However, the addition of self-plagiarism and geographic proximity did not yield
notable improvements in the logistic regression setting and may introduce marginal noise
rather than signal. In the random forest model, however, these features contributed more
meaningfully, though modestly, suggesting that they may be useful when optimizing for max-
imum predictive accuracy. These findings support a pragmatic hybrid strategy of employing
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Table 8: F1 Scores After Dropping Features

Classifier Dropped Feature F1 Score

Logistic Regression
None (Full Model) 0.8087
Self-Plagiarism 0.8055
Geographic Distance 0.8122

Random Forest
None (Full Model) 0.8597
Self-Plagiarism 0.8504
Geographic Distance 0.8301

logistic regression with the core feature set for greater interpretability and leveraging ran-
dom forest models with selective feature expansion when enhanced predictive performance is
a priority.

4 Conclusion

This comparative analysis underscores that the three PPP detection models examined —
Nguyen and Carraz (2025), Marx and Scharfmann (2024), and Wang et al. (2025) — yield
markedly divergent results, as clearly demonstrated in Table 2, which highlights substantial
differences in both the quantity and the specific PPPs identified by each model, emphasizing
the distinct selection mechanisms and criteria employed. Notably, the Nguyen and Carraz
approach identified substantially more PPPs explicitly linked to Japanese academic patents,
likely due to its stringent selection criteria, which include exclusively academic institutions
and their associated academic publications, significantly limiting noise and enhancing speci-
ficity. These findings underscore the importance of accounting for local context, including
the relative homogeneity of academic scientists’ behavior in the Nguyen and Carraz study, as
well as the institutional norms and national research practices that influence patenting and
publishing processes.

However, the degree of divergence between the Nguyen and Carraz (2025) dataset and
those of Marx and Scharfmann (2024), and Wang et al. (2025) was surprising, highlighting a
critical caution for researchers: global large-scale models can significantly underrepresent PPP
phenomena when applied to localized or institutional contexts such as the academic landscape
of Japan. This divergence prompted further methodological testing within this study, in which
we extended the original Nguyen and Carraz model by incorporating additional predictive
features inspired by Marx and Scharfmann, specifically, the random forest classifier method,
self-plagiarism indicators, and geographic distance measures.

The results of this comparative analysis confirm the robustness and adaptability of the
original Nguyen and Carraz (2025) feature set, demonstrating consistent and strong per-
formance under both logistic regression and random forest classifiers. The stability of these
results across different modeling approaches indicates that the core feature set effectively
captures the key dimensions necessary for reliable PPP detection, confirming its suitability
and generalizability across diverse analytical contexts. While the extended features offered
modest incremental predictive power within random forest models, the original core features
(semantic similarity, lexical overlap, citation overlap, and inventor-author linkage) remained
central and effective. These findings reinforce the practical value of employing the Nguyen
and Carraz framework as a foundational approach, adaptable to additional features when
necessary. The results also suggest that large-scale models may produce a large number of
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false negatives. This warrants caution when interpreting their outputs in ongoing analyses,
particularly when the breadth of the approach comes at the expense of local specificity.

All resulting datasets —including the full set of Japanese academic PPPs identified
through the extended Nguyen and Carraz (2025) approach— are publicly available onGitHub,
supporting further validation and reuse by the broader research community. Future method-
ological work could explore the application of this approach to other national contexts, as
well as the distinct characteristics of corporate versus academic PPPs. Additionally, the cur-
rent training dataset used by Nguyen and Carraz is limited to 721 validated pairs. Further
expansion of this dataset could strengthen the evaluation of model robustness and enhance
its generalizability across settings.
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