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Abstract

This paper characterizes the short- and long-run Cournot equilibrium with heterogeneous firms

and stochastic technological change. In our model, firms have different technologies with heteroge-

neous fixed and variable costs and various degrees of markups. In a framework with homogeneous

firms, Mankiw and Whinston (1986) show that the long-run Cournot equilibrium may be inefficient

due to too many entries. We extend their result to the case of heterogeneous firms and show that

higher industrial concentration of production is welfare improving. Using administrative data for

French manufacturing firms, we estimate a wide degree of unobserved heterogeneity in both fixed

and variable costs, and find a negative correlation between both. Our simulation results show that

markups surprisingly only induce slight inefficiencies in the allocation of output, implying that it is

almost compatible with welfare maximisation. Instead, firms’ choice to employ heterogeneous and

often inefficient technologies turns out to harm more substantially welfare and aggregate output.

Keywords: cost function, fixed cost, marginal cost, returns to scale, technological change, misal-

location, markups, nonlinear least squares, panel data.
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1 Introduction

Firms’ cost efficiency importantly affects welfare and the standard of living. If firms increase their

efficiency in the production process, they are able to produce more without incurring higher costs. In

a competitive environment, this decreases output prices, and, consequently, increases consumer welfare.

If firms have market power, they usually lack incentives to convert the increase in efficiency into an

increase in output and a decrease in prices. This hampers the growth of more efficient firms and leads to

a (socially) inefficient allocation of production, and negatively affects consumer welfare. See for instance

Berry et al. (2019) and Syverson (2019) for literature reviews and detailed discussions on market power

and macroeconomic implications.

To measure firms’ cost efficiency and the effect of misallocation implied by market power on welfare,

most studies, however, employ cost functions with restrictive functional forms by neglecting fixed costs

and unobserved heterogeneity.1 This has important consequences: such specifications are not able to yield

plausible (optimal) output levels and are not suited to investigate issues related to the size distribution of

firms and its determinants, and produce biased results and inference. Moreover, neglecting fixed costs also

bears the risk of overestimating market power: larger firms with higher fixed costs might not increase the

markup for the sake of exerting market power, but to cover higher fixed costs (De Loecker et al., 2020).2

A sound analysis of efficiency, market power and welfare at the firm-level, therefore, requires cost

functions with multiple dimensions in unobserved heterogeneity. Moreover, this specification cannot be

simply additive, since heterogeneity in the fixed costs vanishes in the derivation of the profit-maximizing

condition and is useless for generating heterogeneous firm size. Conversely, heterogeneity in the variable

cost function is unable to explain why so many small firms make positive profits while others do not.

In this paper, we propose a novel framework allowing for joint heterogeneities in fixed and variable

costs, embedded in the Cournot competition model, where heterogeneous firms interact strategically,

choosing their optimal output level given aggregate output, cost and demand parameters. The model

not only allows us to investigate the interplay between fixed and variable costs, and firm size, but also to

disentangle the effects of technological efficiency, market power, and allocative inefficiency on welfare.

The contribution of the paper to the literature is threefold. First, we empirically implement the

theoretical results related to the existence and unicity of the Cournot equilibrium. More precisely, while

this literature often considers industries with identical firms and symmetric equilibrium, there are some

interesting exceptions. Novshek (1985) showed that a short-run Cournot equilibrium exists under weak

conditions on firms’ cost function. Unicity of the short-run Cournot equilibrium with heterogeneous firms

was derived by Gaudet and Salant (1991). In the long-run, when firms’ entry and exit occurs, Acemoglu

and Jensen (2013) and Okumura (2015) proved that the existence of the Cournot equilibrium still holds

(but is no longer unique in general). We contribute to this literature and amend the homogeneous firm

Cournot model and investigate differences in technologies and their interplay with firm size. While our

purpose is mainly empirical, we also describe the theoretical implications of heterogeneous technologies at

the firm level, both on the short- and the long-run Cournot equilibrium. Interestingly, we show that there

is an ordered relationship between firm size (in terms of output) and their type of heterogeneous technol-

ogy. While the theoretical framework for the occurrence of joint heterogeneity and their interdependence

is studied by Chen and Koebel (2017), we are not aware of any theoretical contribution simulating the

welfare implications of operating heterogeneous firms at Cournot equilibrium.

Second, using administrative French firm-level data, we contribute to the existing empirical literature

1Most studies in the empirical literature rely on efficiency measures derived from production functions (such as translog
or Cobb-Douglas) whose corresponding cost functions neglect fixed costs.

2De Loecker et al. (2020) estimate the markup by employing a Cobb-Douglas production function that neglects fixed
costs. To investigate whether firms charge higher markups as they incur higher fixed costs, they use profitability measures
that include total costs and fixed costs. As we will show, our approach, instead, allows us to take fixed costs directly into
account with an estimation procedure considering total cost and output supply.
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by explicitly introducing joint heterogeneity in the fixed cost and in the variable cost of production and

study the interplay between both types of heterogeneity. A large part of the literature tackling the

issue of productivity and technological change bases its identification strategy on the production function

(Ericson and Pakes, 1995). Considering a production function is helpful to estimate productivity, but is

not suitable to identify fixed, variable and average costs. The empirical literature on cost functions mainly

focuses on univariate heterogeneity, either in the variable cost function (Davis, 2006) or in the fixed cost

function (Berry, 1992) or in total cost (Esponda and Pouzo, 2019). While these specifications all entail

unidimensional heterogeneity in the total cost function, we allow for multidimensional heterogeneity in

both the fixed and the variable cost functions. For that purpose, we propose an appropriate identification

and estimation strategy of the Cournot model, composed of the inverse demand function addressed

to an industry and (nonlinear) cost functions with multidimensional unobserved heterogeneity. More

specifically, we estimate in a first step the inverse demand function, applying instrumental variable and

fixed effects methods to deal with the simultaneity bias. In a second step, we use the obtained demand

parameters to estimate in a nonlinear system-equation approach the firm-level cost and output supply

functions. Here, we have to deal with the incidental parameter problem occurring when taking into

account unobserved heterogeneity in fixed and variable costs over firms and across time: the number

of free parameters to be estimated increases with the number of observations, leading to inconsistent

estimates when not appropriately handled. A further factor causing inconsistent estimates if not taken

into account arises when heterogeneity is unobserved and neglected while being correlated with firms’

decision variables, i.e. the optimal level of output.3 To solve these problems, we employ a control-

function approach in combination with nonlinear least squares allowing us to consistently estimate the

cost function parameters and to uncover the distribution of unobserved heterogeneity in fixed and variable

costs. Our empirical results confirm the theoretical underpinnings, showing a negative relation between

variable and fixed costs: a large share of small firms does not incur any fixed costs, but this share is

significantly decreasing in firm size.

Third, we contribute to literature on the measurement of welfare and misallocation. It is well known

that the short-run Cournot equilibrium is generally not welfare-maximizing. Mankiw and Whinston

(1986) have shown that even in the long-run, firms’ entry and exit do not necessarily contribute to reduce

this inefficiency. We extend their result to the case of heterogeneous firms and empirically investigate to

which extent redistributing output over firms allows an increase in both welfare – by improving allocative

efficiency and reducing total costs – and aggregate industry output. Starting from a long-run Cournot

equilibrium, we perform simulations to evaluate the welfare loss due to markups, output misallocation

and technological inefficiencies.

Measuring misallocation has particularly gained attention in the literature (Hopenhayn, 2014). One

reason for this development is the increasing availability of detailed micro data. Baily et al. (1992), for

instance, use data from US manufacturing establishments between 1972 and 1988, showing that reallo-

cation from less to more efficient production units accounts for half of aggregate productivity growth.

Restuccia and Rogerson (2008) build a general equilibrium model and illustrate that idiosyncratic shocks

to producers’ decisions importantly affect reallocation of resources and by that total output and pro-

ductivity. Hsieh and Klenow (2009) find that if production inputs in China and India were allocated as

efficiently as in the US, aggregate productivity would increase by 30%–50% and 40%–60%, respectively.

Markups, i.e. a firm’s ability to open a gap between output price and marginal costs, are considered

as an important source of market imperfections, and misallocation. For example, Peters (2020) intro-

duces a Bertrand competition framework, where firms increase markups during the life-cycle of their

product(s) by consistently investing in productivity growth. The author then shows that a higher churn

3In the production function literature, this is also known as the “transmission bias“, see Gandhi et al. (2020) and the
cited literature therein.
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intensity - the rate by which new entering firms replace the products of older firms relative to the rate

at which firms increase their market power - compresses the markup distribution and reduces the degree

of misallocation. Using US data covering the period 1997–2015, Baqaee and Farhi (2020) show in a

general equilibrium approach that reallocation from low- to high-markup firms accounts for about 50%

of aggregate productivity growth (since these firms are also highly efficient). However, the authors also

demonstrate that removing firms’ markups would further increase aggregate productivity by 15%. Using

US manufacturing data, Edmond et al. (2023), find a sizable but much lower effect of firms’ markups

and implied missallocation on aggregate productivity and welfare. Our paper shares the purpose of that

literature but contrasts with its result: in France, the sole removal of price markups has had a hardly

visible impact on aggregate output and price. As our simulation shows, the main impact on welfare is

obtained by closing firms with negative profit and reallocating their production to more efficient firms.4

For the empirical analysis, we use French fiscal firm-level data covering the period from 1994 to

2019 (FICUS and FARE data). The data comprises the universe of active firms, but we consider only

those belonging to the manufacturing industry. We consider 184 industries at the 4-digit aggregation

level, within which firms are assumed to produce an homogeneous output and to compete à la Cournot.

Especially for France, the stylized facts document that there are many very small firms but a lack of

medium-sized and few but influential large firms (Ceci-Renaud and Chevalier, 2010).5 In a typical 4-digit

industry, 0.5 % of all firms hire about 39 % of the employees working in this industry, and produce 56 % of

total industry output. The concentration ratio of the 3 and 10 biggest firms are typically C3 ≃ 45% and

C10 ≃ 74%. These figures document that there are few actors which must have strong market power, and

a large competitive fringe of smaller firms. This seems compatible with the theoretical Cournot model

adopted here, allowing for technological differences between firms.

The reminder of the paper is organized as follows. Section 2 presents the heterogeneous firm setup

and describes the short-run Cournot equilibrium. Section 3 characterizes the long-run equilibrium. The

theoretical results pertaining to the inefficiency of the Cournot equilibrium are discussed in Section 4,

which also describes the welfare-maximizing allocation of production over firms. The data and descriptive

statistics are presented Section 5. Section 6 and 7 discuss the empirical model along with the estimation

strategy and presents the results. Sections 8 and 9 discuss the estimation and the simulation results.

Section 10 concludes.

2 Short-run Cournot equilibrium with heterogeneous quadratic

cost functions

Within each industry firms are competing à la Cournot. In the short-run, there are N active firms facing

the same inverse demand function

p = P (yn +

N∑

j ̸=n

yj), (1)

where p denotes the output price, yn the production of firm n and Y−n ≡
∑N

j ̸=n yj the total output of

firms’ n competitors. We do not introduce subscripts for the industry yet, but it is important to realize

that the inverse demand is specific to industry i.

We assume that the total cost function of each firm is the sum of a firm-specific fixed cost and a

4See also De Monte (2024), who studies the joint evolution of aggregate productivity and markups and the role of
reallocation using similar data on French manufacturing firms.

5Various studies showed that size-dependent regulations in France distort labor allocation and so the employment-based
firm-size distribution (see, for instance, Garicano et al. (2016) and Gourio and Roys (2014)). Our paper distinguishes itself
from that literature by aiming to quantify technological differences in fixed and variable costs and how this relates to the
output-based firm size distribution and welfare.
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variable cost function:

cn(wn, yn) = un(wn) + vn(wn, yn), (2)

where the fixed cost of production un depends upon input prices wn but also upon technological choices

and constraints which are specific to firm n. The variable cost function vn satisfies, by definition, the

condition vn(wn, 0) = 0.

Each firm is profit-maximizing and chooses its output level according to the first-order optimality

condition:

P (Y ) + P ′(Y )yn =
∂cn
∂yn

(wn, yn) (3)

where Y denotes the aggregate output level of the industry.

Note that if the fixed cost function un is heterogeneous but the variable cost function vn is the same

over all firms, then (3) implies identical output levels over all firms with the same input prices. Such

a model would attribute differences in firm sizes to differences in input prices. Here, heterogeneity in

variable costs is helpful to yield optimal individual production levels able to approximate the empirical

distribution of firm sizes. The second main advantage of our heterogeneous firm framework is that it can

explain why bigger firms have increasing returns to scale while smaller firms have decreasing returns. In

the homogeneous case with U-shaped average cost functions, returns to scale are increasing for production

levels smaller than the efficient scale of production and decreasing for larger production levels. This is

not necessarily the case here.

We assume the following regularity conditions (which will be empirically investigated later on):

Assumption 1. The inverse demand function P is nonnegative, continuous, differentiable and decreasing

in Y .

Assumption 2. The cost function is continuous in wn and yn, nonnegative, differentiable and increasing

in wn and yn.

Assumption 3. There exist firm-level and aggregate production levels y and Y such that

(i) the marginal revenue is lower than the marginal cost:

P (Y ) + P ′ (Y ) y < ∂cn/∂yn (wn, y) , (4)

for any y > y and Y > Y , and any firm n = 1, ..., N ;

(ii) the cost function is not too concave:

P ′ (Y ) < ∂2cn/∂y
2
n (wn, y) , (5)

for any y < y and Y < Y , and any firm n = 1, ..., N .

A1 and A2 are common in microeconomics and industrial economics. Assumption A3(i) implies that

there is an upper threshold y to individual production (because marginal cost is always higher than

marginal revenue for y > y). A3(i) forbids the occurrence of highly nonconvex cost functions. Condition

A3(ii) is common in the literature on Cournot oligopoly, see Amir and Lambson (2000) for instance. The

Cournot equilibrium exists under relatively mild conditions, and we follow Novshek (1985) who showed

its existence provided that:

Assumption 4. The marginal revenue function satisfies:

P
′

(Y ) + ynP
′′

(Y ) ≤ 0, (6)

for any value of yn ≤ Y < Ny.
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A1 and A4 imply that the marginal revenue function is decreasing. A3(ii) and A4 ensure that the

profit function is concave, without requiring convexity of the cost function in y. A4 together with the

second-order condition for profit-maximization imply that firms’ reaction functions are downward sloping.

Gaudet and Salant (1991) have shown that A1–A4 imply the uniqueness of the Cournot equilibrium. Amir

(1996, Corollary 2.2) used another condition implying the existence of the Cournot equilibrium which is

not equivalent to A4. A4, however, was found to be more useful for deriving some results below.

We follow Novshek (1984) and consider the backward reaction functions as the solution in yn ≥ 0 to

the system of N equations (3), for given values of aggregate output Y and input prices wn:

ybn(wn, Y ). (7)

Assumptions A3(ii) and A4 guarantee that the backward reaction functions are nonincreasing in Y .

Given existence, we then characterize the Cournot’s equilibrium as the solution to the equation

Y =

N∑

n=1

ybn(wn, Y ), (8)

which guarantees that all firms’ projections about aggregate output are fulfilled at equilibrium. We de-

note the equilibrium by Y N , and yNn = ybn(wn, Y
N ), and note that these functions depend upon the

characteristics of all firms active in the industry.6 We have the following interesting implications:

Proposition 1. Under A1–A4, at the Cournot equilibrium with fixed number of firms:

(i) The elasticity of inverse demand ϵ(P, Y ) satisfies −N < ϵ(P, Y ) < 0.

(ii) Firm n’s market share satisfies yNn /Y < −1/ϵ(P, Y ).

(iii) The value of the marginal cost of production decreases with firm size.

(iv) The price markup increases with firm size.

(v) For a subset of N ′ < N active firms, Y N ′

< Y N and yN
′

n > yNn for a firm n active at both Nash

equilibria.

P1 restates several claims that are well known to researchers working in the field of Cournot equilibrium

with heterogeneous firms, but often not to be found in textbooks considering mainly homogeneous firms.

It follows from P1 that if we order firms by size (say from the smallest to the biggest), this implies that

the same order carries over to the markup and the reverse ordering applies to the marginal cost. P1(v)

corresponds to what Mankiw and Whinston (1986) refer to as business-stealing: new entries contribute

to increase total output but reduce the individual production levels of incumbents. In the context of

heterogeneous firms, this result is derived by Acemoglu and Jensen (2013) and Okumura (2015, Lemma

1).

Equality (3) implies an interesting relationship between firms’ profit rate, the inverse demand elasticity

and the rate of returns to scale:

pyNn − cn
cn

=
1

1 + ϵ (P ;Y ) yn/Y
ϵ (cn; yn)− 1. (9)

Ceteris paribus, the higher the rate of return to scale 1/ϵ (cn; yn), the lower the profit rate; the higher

the market share yn/Y , the higher the profit rate. Equation (9) also implies that for a firm with positive

6The superscript N denotes both the Nash equilibrium, and the fact that the number of firms is kept constant (no entry,
no exit) here.
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profit there is a lower bound for its market share given by

yNn
Y N

≥
ϵ (cn; yn)− 1

ϵ (P ;Y )
.

Hence, firms with increasing returns to scale must have sufficient market share in order to have positive

profits.

We rewrite the cost function in order to highlight two key unobserved parameters γu
n and γv

n which

deform the conditional mean functions u and v that are common to all firms:

cn(wn, yn) = γu
nu(wn) + γv

nv(wn, yn), (10)

u(wn) = E[un(wn)|wn] (11)

v(wn, yn) = E[vn(wn, yn)|wn, yn] (12)

The definitions of u and v imply that E[γu] = E[γv] = 1. These heterogeneity parameters can

be correlated with wn, yn (just as in linear fixed-effects models, for instance). While actually any cost

function (2) can be written this way, we now restrict firm heterogeneity to be stochastic and exogenous:

Assumption 5. The technological parameters γn = (γu
n , γ

v
n) are

(i) stochastic and exogenous to the firm,

(ii) known by firms prior to producing and competing à la Cournot.

A5 ensures that the heterogeneity terms are not a deterministic function of the same explanatory

variables as the cost function, and that they are exogenous to the firm, in the sense that they do not

(systematically) change with wn, yn. This assumption can be justified by the fact that the choice of the

technology was made just before the firm first entered the market, and the current value of γu
n and γv

n are

considered as (conditionally) random technological shocks. Note that an increase in γu
n or γv

n corresponds

to a negative technological shock while a decrease in these parameters represents technological progress.

More restrictive versions of A5 are found in the literature, assuming either that γu
n = 0 (Jovanovic, 1982),

γu
n = γu (Hopenhayn, 1992), γv

n iid (Jovanovic, 1982), or γv
n is independent of γu

n (Bresnahan and Reiss,

1991).

The variable cost heterogeneity parameter γv
n is related to the additive “total factor productivity“ term

ωn often considered in the context of production functions. When y = ωnf(x) where x denotes a vector

of inputs, and the production function f is linearly homogeneous in x (which is equivalent to v being

linearly homogeneous in y), then γv
n = 1/ωn. Production functions compatible with the bi-dimensional

heterogeneity like (10) in the cost function are described by Chen and Koebel (2017).

Figure 1 represents five zones characterizing different types of firms. In zone I, firms exhibit higher

than average variable costs and relative low fixed costs. These type of firms can enter or exit the market

without bearing high sunk costs. Zone II corresponds to a zone of generalized inefficiency: firms exhibit

both higher fixed and variable costs. Firms located in zone III are extremely efficient and able to produce

with fixed and variable costs lower than average. Zone IV comprises firms producing with lower than

average variable costs and higher fixed costs. In zone V, firms operate with an average technology and

are similar to a representative firm characterized by E[γu] = E[γv] = 1.
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γu

γv

E[γu]

E[γv]

I II

III IV

V

Figure 1: Five technological zones

In the different zones depicted on Figure 1, firms are not only different with respect to their technology,

but we also expect to see differences in the levels of the endogenous variables.

Proposition 2. Under A1–A5, at the short-run Cournot equilibrium with fixed number of firms:

(i) Firm i individual production level decreases with γv
i .

(ii) Firm i production level increases with γv
j .

(iii) The aggregate equilibrium level of production decreases with γv
i .

(iv) Individual and aggregate production levels are unaffected by a change in γu
i .

(v) Firm i’s profit decreases with γv
i and γu

i .

(vi) Firm i’s profit increases with γv
j .

This result, proven (for completeness) in the Appendix, follows from the first and second order op-

timality conditions and the fact that the marginal cost function is positive. It has been generalized by

Acemoglu and Jensen (2013) to cases with multiple equilibria. Related results for input demands have

been derived by Koebel and Laisney (2014). For output supply, Février and Linnemer (2004) obtain

a similar result, but for the case of constant marginal costs. It is intuitive that an increase in firm i’s

marginal cost (through higher γv
i ) decreases its output, but not straightforward to prove due to firm het-

erogeneity and the existence of aggregate Cournot effects in the backward reaction functions. According

to this result, we expect to see bigger firms located in zone III or IV of Figure 1. It is noteworthy (P2(ii))

that despite the output levels of all competing firms decreasing after a favorable productivity shock on

firm i, the aggregate Cournot output is increasing, too (P2(iii)). This means that cost-reducing techno-

logical change hurts firms that are not affected by it, they lose market share, but aggregate production

in the industry increases. The increase in market size outweighs the redistributional effect in the market

shares.

Assumption A5 does not introduce any restriction about the relationship between γu
n and γv

n, and we

considered in P2 that both variables could be shifted independently the one from the other. We now

introduce a form of interrelation between them. The parameter γv
n reflects the efficiency of the variable

cost function: the lower it is, the better for the firm. Conversely, the parameter γu
n is often considered as

an inefficiency, increasing the level fixed cost.

From microeconomic theory, however, we know that the fixed cost is non-decreasing and the variable

cost is non-increasing in the level of fixed inputs – see for instance Varian (1992, Chapter 5.1). When

the level of fixed input(s) is unobserved, because only information on firms’ total capital stock and total

labor demand is available, this induces a negative correlation between the fixed and variable cost.
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Assumption 6. The variable cost efficiency is a transformation of the fixed cost efficiency:

γv = e(γu) + η, (13)

with function e decreasing and strictly convex, and the random term η iid, with an expectation equal to

zero, constant variance and uncorrelated with γu.

Function e transforms the firm-specific fixed cost efficiency γu
n into a variable cost efficiency γv

n char-

acterizing firm n’s production technology. A6 implies that, on average, there is a trade-off between

technological parameters γu
n and γv

n, characterized by e. A6 has an interesting empirical implication:

cov(γu
n , γ

v
n) < 0. (14)

This inverse relationship between fixed and variable costs is often neglected in international trade (com-

pare with Melitz (2003)) or industrial economics (see for instance Bresnahan and Reiss (1991)), where

fixed costs are often considered as a pure inefficiency. We will test whether this assumption or instead

our more general version stated in A6 is satisfied or not.

For our empirical investigation, we need still more unobserved heterogeneity than introduced so far,

and require some more restrictive cost functions. We assume that firms have quadratic cost functions:

Assumption 7. The variable cost function vn is quadratic in production and exhibits heterogeneity in

slope and curvature:

vn(wn, yn) = γv
1nv1(wn)yn +

1

2
γv
2nv2(wn)y

2
n, (15)

and the heterogeneity terms γv
1n, γ

v
2n are stochastic and satisfy A5 and E[γv

1n] = E[γv
2n] = 1.

The quadratic specification of the cost function stated in A7 is compatible with the criteria of local

flexibility of the cost function, which is shown to be important for empirical investigations (Diewert and

Wales, 1987). The family of cost functions defined by (2) and (15) is able to approximate a variety

of cost functions usually considered in the literature. We introduce three multiplicative firm-specific

terms γu
n , γ

v
1n and γv

2n to capture heterogeneity over firms, in both the levels of fixed and variable costs

and in the slope of the variable and marginal costs. This is more general than the uni-dimensional cost

heterogeneity considered by Panzar and Willig (1978). The specification given by (2) and (15) generalizes

the heterogeneous fixed cost specification of Spulber (1995) (who sticks to the constant marginal cost

assumption). It also extends the heterogeneous (but constant) marginal cost specification of Bergstrom

and Varian (1985) and of Salant and Shaffer (1999). While uni-dimensional heterogeneity in marginal cost

is useful to allow for unobserved heterogeneity in the level of firms’ output, bi-dimensional heterogeneity

is important to explain why the growth rate of firms with the same output levels can be different.

The specification of heterogeneity given in (15) is compatible with the former version given in (10) if

we define overall variable cost heterogeneity γv as a weighted average of γv
1n, γ

v
2n as

γv
n =

γv
1nv1(wn)yn + 1

2γ
v
2nv2(wn)y

2
n

v(wn, yn)
, (16)

where the variable cost function v is identical for all firms and defined by evaluating vn at the mean

values E[γv
1n] = E[γv

2n] = 1, that is

v(wn, yn) = v1(wn)yn +
1

2
v2(wn)y

2
n. (17)

While the multi-dimensional technological heterogeneity in (γu
n , γ

v
1n, γ

v
2n) is important from an empirical
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viewpoint, the two-dimensional representation of (γu
n , γ

v
n) based on (16) is helpful for economic interpre-

tation as well as for drawing (two-dimensional) plots and figures.

For γv
2n > 0, the firm-specific average cost function is U-shaped if un > 0 and v2n > 0 and reaches its

minimum for production level y
n
=
√
2γu

nu/(γ
v
2nv2). The efficient scale of production can therefore be

different from one firm to the other (for unobserved technological reasons). The quadratic specification

is convenient as it allows us to obtain an explicit solution for the Cournot’s equilibrium in terms of

(nonnegative) individual and aggregate production levels:

ybn(wn, Y ) =
P (Y )− γv

1nv1(wn)

γv
2nv2(wn)− P ′(Y )

, (18)

Y N =

N∑

n=1

ybn(wn, Y
N ). (19)

This highlights that the firm level of production at the equilibrium yNn = ybn(wn, Y
N ) does not only depend

upon aggregate output and input prices, but also upon the technological parameters γn. Equation (18)

denotes the backward reaction mapping shown by Novshek (1985). It illustrates that ceteris paribus, the

higher the variable cost the lower the production level yNn (see (P2(iii)) if both γv
1n ≥ 0, γv

2n ≥ 0.

Averaging the first order optimality conditions over firms yields

P (Y N ) + P ′(Y N )yN = v1 +
1

N

N∑

n=1

v2ny
N
n . (20)

The Cournot equilibrium is fully characterized by the average marginal cost. Firms do not need to

precisely know the values of (v1n, v2n) of each of their competitors to figure out the Cournot equilibrium:

some distributional statistics are sufficient, such as the number N of competitors, the sample averages

of the marginal cost terms v1, v2, and the covariance cov(v2n, y
N
n ) between the slopes of the marginal

cost and the elementary production levels. Contrary to the case with constant marginal costs, considered

by Bergstrom and Varian (1985), the way production and slope characteristics are jointly distributed

over firms matters at the equilibrium. This extension also allows firms to respond heterogeneously to

exogenous changes in costs and demand.

In order to derive further interesting results, we consider a more restrictive form of heterogeneity

characterized by:

Assumption 8. The variable cost heterogeneity is unidimensional, in the sense that:

γv
1n = γv

2n > 0. (21)

A8 reduces the dimension of heterogeneity and allows us to focus only on marginal cost heterogeneity

instead of having to discuss the first and second derivative of the cost function explicitly. Under A8, γv
n

defined in (16) is independent of (w, y). The restriction (21) could be weakened and is not necessary for

the empirical part of the paper, but it is interesting for giving further intuition on the drivers behind our

empirical findings, which can hold (by continuity) in cases where A8 is not satisfied.

Proposition 3. Under A1–A8, we consider two firms at Cournot equilibrium, both with similar input

prices w and random term η. The Nash equilibrium production levels of firms i and j satisfy yNi < yNj iff

(i) the biggest firm is more productive: γv
i > γv

j

(ii) the biggest firm has a lower variable cost for each unit produced: vi
(
w, yNi

)
/yNi > vj

(
w, yNj

)
/yNj

(iii) the biggest firm has higher fixed costs: γu
i < γu

j and ui (w) < uj (w)

(iv) the biggest firm has a larger efficient scale of production.
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P3 implies that when firms are heterogeneous in their technologies, these differences induce them to

choose different operating sizes, creating a relationship between firms’ production levels and their techno-

logical characteristics. If we order firms into ascending output levels, there is equivalently a corresponding

ordering of the technological parameters γv and the variable unit cost of production. For the fixed costs

and the efficient scale of production, the ordering is only perfect if we control the random term η. With

randomness, the order is preserved on average.

The aggregate production Y N implicitly defined in (19) also depends upon the number N of active

firms, and we now study entry and exit and how adjustment in N affects the main results of this section.

3 The long-run Cournot equilibrium

We now characterize a Long-Run Cournot Equilibrium (LRCE) as a short-run Cournot equilibrium in

which the number of active firms adjusts to exhaust expected profit opportunities. Firms choose either to

enter or exit the market using available information. We denote by N the set of firms indices which are

active, and by M the set of firms’ indices which are inactive. The LRCE corresponds to a game in which

firms choose their activity and production levels simultaneously, see Lopez-Cuñat et al. (1999) who also

compare the simultaneous game with the one where entry and production choices are sequential. Active

firms incur a fixed cost cn (wn, 0
+, γn) = un (wn) and inactive firms have cn (wn, 0, γn) = 0.

Active firms expect nonnegative profits and all potential entrants expect nonpositive profits. We

introduce the superscript C to characterize the long-run Cournot outcomes yCn and Y C . Conditionally

on observables, the cost function is subject to randomness due to unknown technological progress at the

beginning of the period (see A5). It turns out that aggregate production, individual production, and

profits are also random, hence, the entry/exit condition defining the LRCE is given by:

E
[
P
(
Y C
)
yCn − cn

(
wn, y

C
n

)]
≥ 0, (22)

E
[
P
(
Y C + ym

)
ym − cm (wm, ym)

]
≤ 0, (23)

for any n ∈ N and m ∈ M. The expectation operator E denotes the (rational) expectation with respect

to the technological shocks γn which are random (and whose distribution is conditional on information

available to the firm at the time of decision). We assume that conditions (22) and (23) are satisfied by

the data generating process. Acemoglu and Jensen (2013, Theorem 1) or Okumura (2015, Theorem 1)

showed that under A1–A4 the LRCE with heterogeneous firms exists. The equilibrium is not unique

however: different information sets condition the expectations in (22) and (23) and characterize different

LRCE. The distribution of the technological shocks is conditioned by the firms’ specific history: entering

firms draw γnt from a different distribution than firms which have already experienced 20 or 40 years

of activity and which have reached some size. We follow Novshek (1984) and Acemoglu and Jensen

(2013) and consider that firms cannot change their technology without further cost. Conditionally on

observables, differences in the technology over firms (and time) is random (see A5). This is different from

Götz (2005), Acemoglu and Jensen (2013, Section 5.4), and Ledezma (2021) who consider that firms can

choose their production technology optimally. In this context, only the more efficient technologies are

chosen, with the consequence that, at equilibrium, firms tend to be similar in technology and firm size.

It would be challenging with this approach to endogenously generate a distribution of firms’ sizes close

to those usually observed in a given industry.7

7Even in a setup with homogeneous firms, the Cournot equilibrium can be asymmetric, see for instance Novshek (1984).
The corresponding distribution of firm sizes is still very restrictive, however.
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4 Welfare and the optimal distribution of production

We now consider the welfare implications of the observed distribution of output, and investigate, following

Mankiw and Whinston (1986), the welfare loss at the LRCE. In a setup with identical firms, Mankiw

and Whinston have shown that under business stealing (see P1(v)), the free entry equilibrium leads too

many firms to enter the market in comparison to what is optimal from the welfare viewpoint. This result

has been extended by Amir et al. (2014) to a setup where the planner controls either entry (but not

production) or entry and production. In our situation with heterogeneous firms, the central planner has

to carefully consider technological differences when deciding which firm is allowed to produce and how

much. We assume that she knows the technological parameters γn of each firm. The welfare function is

similar to the one of Mankiw and Whinston (1986):

W
(
{yn}

M
n=1, {γn}

M
n=1

)
=

∫ ∑M
m=1

ym

0

P (s) ds−
M∑

m=1

c (wm, ym, γm) (24)

Note that all M firms are considered as potential contributors to economic activity in W .

4.1 Short-run optimal distribution of production

In the short-run, the planner has to decide whether firm m is entitled to produce or not, and how much

each firm produces, for given firm level technological choices. There is neither entry nor exit, but a firm

can be inactive and produce nothing. In this context, the welfare maximizer is able to remove some

inefficiencies that are introduced by markups and imperfect competition. Technological characteristics

are exogeneous, and the output levels are set such that:

WS ≡ max
{yn}M

n=1

{
W
(
{yn}

M
n=1, {γn}

M
n=1

)
: {yn ≥ 0}Mn=1

}
.

The Short-Run Optimal Welfare (SROW) is characterized by the first-order Kuhn and Tucker necessary

conditions for an inner maximum for W :

P

(
M∑

m=1

ym

)
=

∂cn
∂yn

(wn, yn)− λn, yn ≥ 0, λn ≥ 0, λnyn = 0, (25)

for n = 1, . . . ,M. The welfare-optimizing individual and aggregate productions are denoted by ySn and

Y S . It follows that a welfare maximizer (i) sets the production level of active firms to equalize price and

marginal cost (ySn > 0 ⇒ λS
n = 0) and (ii) sets ym = 0 for any firm with a marginal cost above the price.

A3(ii) ensures that W is concave in yn at ySn > 0, and that the above first-order conditions are

sufficient for ySn to maximize W . Condition (25) requires that at the optimum, all active firms produce

with the same marginal cost, which contrasts with LRCE at which active firms are characterized by a

price greater than or equal to their marginal cost. The next result characterizes the SROW and extends

Mankiw and Whinston (1986) to a setup with heterogeneous firms.

Proposition 4. Assume A1–A5 and A8. In comparison to the SROW, the LRCE is characterized by:

(i) A lower aggregate production and a higher price: Y C < Y S and P
(
Y C
)
> P

(
Y S
)
.

(ii) Welfare is too low: WC ≤ WS, and profits are too high: πC
n > πS

n .

(iii) Big firms which produce too little, yCn < ySn .

(iv) Small firms with global decreasing returns which produce too much: yCn > ySn

(v) Small firms with increasing returns which either produce too little, or should produce nothing.

(vi) A subset of the firms active at LRCE is still producing a positive quantity at the SROW: NC ≥ NW .
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The proof of P4 (see Appendix) is constructive in the sense that it characterizes which firm is producing

more and which one will be inactive at the SROW. It also defines a big firm as a firm with a level of

production at the LRCE such that its marginal cost of production is too low for welfare maximization:

∂cn
∂y

(
wn, y

C
n

)
< P

(
Y S
)
,

and conversely for a small firm. This result is also useful for our empirical purpose of investigating the

efficiency of the LRCE (see Section 9). We use P4 to implement the algorithm to compute the SROW and

the corresponding reallocation of output over firms at the SROW. Contrary to Mankiw and Whinston

(1986), increasing the efficiency of the equilibrium affects firms differently. According to P4(iii) and

P4(iv), it is optimal to reduce the size of smaller firms (with decreasing returns) and increase the size of

bigger firms.

Instead of centralizing all production decisions, the central planner can equivalently introduce a tax

and subvention scheme for inciting firms to produce at the socially optimal level. Comparing the con-

ditions (25) and (3) we see that the aggregate production level of Y S can be decentralized through the

introduction of a sale tax τ specific to each firm and given by:

τn (y) =

∣∣∣∣1−
P (Y S)

P (Y C
−n + y)

∣∣∣∣ .

Note that the sale tax rate is decreasing in y at the LRCE and takes a value of zero at the SROW. See

Guesnerie and Laffont (1978) for related results.

An interesting consequence of P4 is:

Proposition 5. Under A1–A8, we consider firms with similar input prices w at Cournot equilibrium.

Assume that the cost functions are convex. Then NS ≤ NC and the Hirschman-Herfindahl index of

concentration is higher at the SROW than at the LRCE.

P5 implies that an efficient industrial policy should not try to minimize industry concentration at all

costs. Actually, the opposite policy would improve welfare in the case of Cournot competition. A related

corollary has been proposed by Salant and Shaffer (1999, Corollary 2), but for a situation where aggregate

production stays constant. We generalize their result to the comparison of two situations with different

levels of aggregate output since Y S ≥ Y N . The economic intuition behind the result is as follows: for

given N the Cournot equilibrium price is too high, P
(
Y N
)
≥ P

(
Y S
)
, by P4(i) and incites small and

inefficient firms to enter the market, while for welfare maximization the planner prefers to increase the

production of the technologically more efficient firms. Those big firms, however, do not spontaneously

increase their production because they are aware that in order to sell it, the firms have to accept a

decrease in price and profits. The proof of P5 is provided in the Appendix, and is both a consequence

of the properties of the Hirschman-Herfindahl index, and of P4, which states that the SROW is achieved

through redistribution of output from the socially inefficient and smaller firms to the efficient and bigger

firms. We, however, need to focus on convex technologies in order to exclude the occurrence of P4(v).

We also reduce the dimension of heterogeneity sources and assume identical input prices. By continuity

in w, P5 still applies if input prices are close enough but not strictly identical for firms n and m.

4.2 Long-run optimal welfare

In the long-run, the planner also has an entrepreneurial duty and selects the production technologies

that will be active at Long-Run Optimal Welfare (LROW). The planner can replicate some production

technologies in order to maximize welfare. In a decentralized economy, in contrast, the type of technology
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is private knowledge of the entrepreneurs. Although there is a financial incentive to adopt the most

efficient technologies, both the firm size distribution and productivity distribution provide evidence for

large differences in technologies.

While at SROW, a firm producing nothing bears the fixed cost un, in the LROW, the cost of inactivity

is zero (the planner forbids entrance of such a firm). The resulting discontinuity of the cost function at

ym = 0 has now to be treated more carefully. A second difficulty is that the planner now has to decide

which technologies to activate and to replicate in the long-run. Formally:

WL ≡ max
{yn,γn}M

n=1

{
W
(
{yn}

M
n=1, {γn}

M
n=1

)
: {yn ≥ 0}Mn=1 ∧ {γn}

M
n=1 ∈ Γ

}
. (26)

The technological set Γ ⊂ R2 denotes the set of all technologies available. The long-run optimal value

satisfies WL ≥ WS , because the planner faces fewer restrictions in (26) in comparison to (25). Solving

this problem numerically, by evaluating W over all discrete elements of Γ, is time intensive: for a given

industry there are MM ordered arrangements of all elements in Γ. For each arrangement it is necessary

to compute the optimal individual and aggregate output levels by solving (25), which is computationally

not feasible. Fortunately, a useful property for reducing the set of candidate technologies for optimal

welfare is available. Under A1 to A7, the SROW individual output quantities ySn are nonincreasing in γv
n,

and the same applies to the aggregate optimal production Y S . This implies that all LROW optimal γ

parameters belong to the technological frontier, defined as the lower (nonconvex) hull of the technological

parameters as:

ΓL = {γn ∈ Γ : ∄γm ∈ Γ ∧ γm < γn} . (27)

This subset ΓL ⊆ Γ can be computed rapidly. At the LROW, the planner can freely choose the technology

in order to maximize welfare, so she considers the lower envelope cost function which corresponds to the

technological long-run:

cL(w, y) = c(w, y; γL) = min
γ∈ΓL

c(w, y; γ) (28)

The cost function cL is now homogeneous over all firms (and is for instance considered by Mankiw and

Whinston (1986)). The long-run technological parameters γL are optimal (and vary with w, y in general).

In the long-run, the following claims are satisfied:

Proposition 6. Under A1–A8, we consider firms with similar input prices w, and ignore the integer

constraint on N . Then

(i) the LROW exists and is unique,

(ii) at LROW all firms have zero profit and local constant returns to scale,

(iii) WL ≥ WS,

(iv) the fixed cost is zero at LROW if e′(γuL) < u(w)/v(w, yL),

(v) it is equivalent to maximizing the central planner problem WL or decentralized profits wrt (yn, γn),

for a given price level which clears the product market with free entry.

By P6(ii), at LROW, all firms produce at the minimum of the average cost, which characterizes local

CRTS. It is not surprising, given that the planer maximizes welfare with less technological constraints

at LROW than in the short-run, that WL ≥ WS . Less common is condition P6(iv) which is compatible

with the use in the long-run of a technology with positive fixed costs. For a small level of yL, however,

the threshold u(w)/v(w, yL) in P6(iv) can be big, and the planner can choose a technology with no fixed

cost, in which case γvL = e(0). When all firms produce the same amount, the Hirschman-Herfindahl
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index of concentration is 1/NL.8

P6 connects the literature on heterogeneous and homogeneous technologies: at LROW the optimal

technological choice is unique, all active firms use the same technology. Under the above assumptions,

the distribution of firm sizes degenerates to a mass point at yL. This degenerate distribution of output is

far from the observed density of output, and observed heterogeneity alone is only able to explain a narrow

part of the departure between observed and optimal distribution of output. Imperfect competition and

unobserved heterogeneity also contribute to explaining this gap, and we will investigate it empirically.

It is not possible to conclude that at LROW cL/yL ≤ cSn/y
S
n , because lower average costs are achieved

at the price of a higher fixed cost, which is not necessarily efficient at LROW. It is neither true that

Y L ≥ Y S , nor that NL ≤ NS are necessarily satisfied. Regarding the total number of firms active at

LROW, the planner closes all firms producing nothing at SROW (and avoids bearing the fixed cost), and

replicates the most efficient firm. In the long-run, the number of active firms crucially depends upon the

shape of the function describing the relation between variable and fixed cost efficiency, e(γu), which is

an empirical issue.

5 Data and descriptive statistics

We use French fiscal data available at the firm level covering the years 1994 to 2019 (FICUS and FARE

data).9 The data comprises the universe of active firms, but we consider only those belonging to the

manufacturing industry.10 The observations contain information on firms’ balance sheet and income

statements, where each firm is identified by a specific identification number, which is constant over

time. Table 1 lists the manufacturing sectors considered with the corresponding number of firms and

observations.

A basic data cleaning consisted of excluding observations with missing, zero or negative values for

sales, labor cost, material cost, and capital cost. We consider all firms with at least one employee, and

trim the distribution of profit rates, keeping only observations within the 1% and 99% quantiles. This

leaves us with 1,503,299 observations and 172,057 firms. The panel is unbalanced, and on average a given

firm is observed for 8.9 years.

8If we consider the integer constraint, then further technologies could be used at LROW in order to produce the residual
output.

9FICUS and FARE refer to “fichier de comptabilité unifié dans SUSE“ and “fichier approché des résultats d’Esane“,
respectively. That is, FICUS was part of the French firm-level database SUSE and was replaced in 2008 by FARE, which,
in turn, belongs to the current database ESANE.

10We exclude the industry for food processing (10), the manufacture of tobacco products (12), and the manufacture of
coke and refined petroleum products (19). Industry 10 is excluded as it comprises the overwhelming part of the total number
of firms and should, in our view, be treated separately. Industries 12 and 19 are excluded for reason of the very low number
of observations. See Online Appendix A for more details.
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Figure 2: The density of firms’ profit rate and log-levels of production

Firm-level profit rates are defined as (py/c − 1) × 100, and actually represent pure profit rates, as

the user cost of capital is included in the cost of production. The empirical distribution of the observed

profit rates cost is given in Figure 2 and illustrates that the data are fundamentally heterogeneous. The

density of the profit rates (left figure) mimics the distribution of the average cost since by definition

py/c = p/(c/y). The density is not normal, but asymmetric, and exhibits a large tail for values below

the median (of 4.0%) and a thin tail above. The density of the log-levels of production is illustrated on

the right of Figure 2 (over all firms and years).

Some evidence for productive inefficiency is straightforwardly available from the descriptive statistics.

There is a huge heterogeneity in the level of average cost cnt/ynt over firms, which is compatible both

with technological heterogeneity and inefficient output allocation over firms. About 10% of the firms

have an average cost which is three times the median average cost in manufacturing. In each industry,

output reallocation spontaneously occurs, but at a very slow pace. Over the 184 four-digit industries, the

inter-quartile range of cor(cnt/ynt, ynt/Y4t) goes from –0.077 to –0.039. This negative correlation also

means that the average (over firms) of the average cost, is higher than the production share weighted

average cost. In other words, bigger firms have a lower average cost than smaller firms.

Table 1: Description of 2-digit industries

Industrya Description # Firmsb # Obs.c

11 Beverages 3,404 28,558
13 Manufacturing of textiles 6,695 59,549
14 Manufacturing of wearing apparel 14,378 75,828
15 Manufacturing of leather and related products 2,933 21,842
16 Manufacturing of wood and of products of wood and cork 13,115 114,862
17 Manufacturing of paper and paper products 2,725 29,985
18 Printing and reproduction of recorded media 20,611 174,507
20 Manufacturing of chemicals and chemical products 5,104 49,597
21 Manufacturing of basic pharm. products and pharm. preparations 931 8,661
22 Manufacturing of rubber and plastic products 8,511 90,773
23 Manufacturing of other non-metallic mineral products 11,420 98,991
24 Manufacturing of basic metals 2,098 20,181
25 Manufacturing of fabricated metal products 34,578 352,806
26 Manufacturing of computer, electronic, and optical products 6,982 56,847
27 Manufacturing of electrical equipment 4,901 44,049
28 Manufacturing of machinery and equipment 12,974 115,669
29 Manufacturing of motor vehicles, trailers and semi-trailers 4,003 38,262
30 Manufacturing of other transport equipment 1,831 13,745
31 Manufacturing of furniture 14,863 108,587

Total 172,057 1,503,299

a) Statistical classification of economic activities in the European Community, Rev. 2 (2008)
b) # Firms describes the number of unique firms (ids) active over the period 1994-2019.
c) # Obs. describes the total number of observations over period 1994-2019.
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5.1 Explained and explanatory variables

Firm-specific data are mainly nominal values and cover the value of production, total labor costs, the

value of intermediate inputs, as well as the capital stock. Firms’ nominal production is measured by the

sum of firms’ sales, stocked production, and production for own use. The value of intermediate inputs is

given by firms’ expenditures for raw materials and other intermediary goods. As proxy for firms’ capital

stock we use the amount of tangible assets reported in the balance sheet. We use industry-specific price

indices (at a two-digit aggregation level) in order to convert the nominal values in real terms.11 The

wage level is firm-specific and is obtained by dividing the labor costs by the number of employees. These

calculations yield the firms’ total production ynt, and input vector xnt = (xk,nt, xl,nt, xm,nt)
⊤ as well as

price indices pnt for output and inputs wnt = (wk,nt, wl,nt, wm,nt)
⊤. In order to calculate the user cost

of capital, wk,nt, we follow Hall and Jorgenson (1967) and set wk,t = wi,nt(1 + rt) − wi,n,t+1(1 − δnt),

with wi,nt denoting the price index for investment (available at the industry level), rt is the long-run rate

of interest and δnt the annual rate of capital depreciation.12 Note that, for our purpose, we only keep

those firm observations with values larger than zero in capital stock, number of employees, intermediate

inputs, and production. The total cost of production is defined as cnt = w⊤
ntxnt.

5.2 Descriptive statistics

Table 2 shows the average number of firms active in a typical 4-digit industry, as well as the distribution

of firm sizes over the 1994–2019 period. At the 4-digit level the number of firms is obtained by dividing

the total number of observations available for the year 2015 by 184, the number of 4-digit industries,

which yields an average number of 310 active firms.13 See Online Appendix A for further details on

the construction of the data and data cleaning. The table also reports the average number of firms

by different firm size (measured by the number of employees). It shows that the number of firms is

globally decreasing in firm size. On average, most firms have between 2 to 4 employees, representing

a share of about 23% of all firms. Table 2 also informs us about market concentration in a typical

4-digit industry: firms with less than 20 employees represent about 74% of all firms, and produce only

12% of total production, whereas the few firms with 500 employees and more produce about 52% of the

aggregate (4-digit) production. These figures not only document that there are few actors with strong

market power, but also that there is a large competitive fringe of smaller firms. In our view, this seems

compatible with the theoretical Cournot model adopted here, which allows for unobserved technological

differences between firms. This unobserved heterogeneity is important for yielding a size distribution of

firms endogenously, and comparable with the observed distribution reported in Table 2.14

11The sectoral price data are available in the French national accounts at
https://www.insee.fr/fr/statistiques/2832666?sommaire=2832834

12The interest rate was provided by the Banque de France at: https://www.banque-france.fr/statistiques/taux-et-
cours/taux-indicatifs-des-bons-du-tresor-et-oat. We calculate δnt at the industry level by considering the ratio between
the consumption of fixed capital and fixed capital, see www.insee.fr/fr/statistiques/2383652?sommaire=2383694

13Edmond et al. (2023) calibrate an oligopoly model based on US manufacturing data at the 4-digit level to study the
effect of markups on welfare. Hereby, the total number of firms of an average 4-digit industry is 359, with a large part of
small firms, which appears to be similar to the patterns in our data.

14See also Online Appendix A.3, Table A4, which is complementary to Table 2, and shows the same statistics but for
2-digit industries.
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Table 2: Statistics by firm size in a typical 4-digit manufacturing industrya

Firm sizeb # of firms
Share of

firms
Share of

employees
Share of

production
Average

cost
Profit
rate

1 42 13.55 0.37 0.32 92.1 6.2
2–4 73 23.55 1.78 1.05 94.4 3.9
5–9 66 21.29 3.82 2.17 93.9 3.8
10–19 49 15.81 5.69 3.47 93.4 4.1
20–49 47 15.16 12.49 9.12 92.8 4.1
50–99 15 4.84 9.05 7.06 93.9 3.1
100–199 9 2.90 11.09 9.56 94.4 2.5
200–499 6 1.94 15.16 14.56 94.4 2.0
500+ 3 0.97 40.55 52.68 95.8 1.1
Total 310 100.0 100.0 100.0 93.6 4.0

a Columns 3 to 5 report averages over all 4-digit industries and years (1994–2019). Shares are given in
%. Columns 6 and 7 report the median per-unit cost and median profit rate for each firm size.

b Firm sizes are measured by the number of employees.

The last two columns of Table 2 report the median values of the average cost, and profit rate over

all years and firms within a specific size class. These descriptive statistics show that the median value

of the observed average cost of production is smaller for the smallest firms. This helps to understand

why there are so many small firms in France compared to other countries. The highest average cost is

achieved for the biggest firms (with 500 employees and more). This descriptive/empirical pattern already

invites us to conjecture that there is allocative inefficiency at the long-run Cournot equilibrium where

inefficient firms are too large. For large firms, higher average costs are sustainable due to their ability to

price above their marginal cost. Heterogeneity in the unit cost of production implies that it is possible to

reduce the total cost of production by reallocating output from firms with high average cost to firms with

lower average cost. It does not imply, however, that big firms are inefficient and should be closed and

replaced by small firms: their minimum level of the average cost could be below the one of small firms,

but they are just lacking incentives to produce at this level in order to preserve their market power. In

order to identify this inefficiency, we have to go beyond these stylized facts and investigate firms’ average

cost curve. We have especially to consider unobserved heterogeneity in the cost of production in order to

obtain consistent estimates of the cost and output supply functions, and assess the degree of inefficiency

of the economy.

6 Inverse output demand estimates

This section studies the output demand addressed to an industry i = 1, . . . , I, and estimates the elasticity

of output demand wrt its price, which is related to the inverse function of (1). The output price index is

available at the two-digit industry level, for I = 22 industries, and for the same time range of 26 years as

in our firm-level data. For the estimation, two years are lost due to differentiating (and so T = 24 years).

We consider the following parametric specification for the output demand for industry i:

lnYit = αi + αY lnYi,t−1 + αp lnPit + αIM lnP IM
it + ϵit (29)

In addition to the (domestic) product price Pit, we include as regressor the price index P IM
it for the imports

of the corresponding goods, which are close substitutes to domestic products considered in Yit. Industry

fixed effects αi are included, and, as adjustment of demand to the prices may not be instantaneous

but under the influence of the lagged level of aggregate quantities, the variable lnYi,t−1 is also taken

into account. Further variables influencing demand are the economy-wide GDP, unemployment rate,

and demographic variables. All these variables are not industry-specific and could be captured by the

time dummies (as in Koebel and Laisney (2016)). With 528 observations however, we choose not to

overparameterize our model and consider the more parsimonious specification with 22 industry-specific
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fixed effects and 3 parameters. The elasticity of demand wrt domestic product price is then given by αp.

The industry specific effect can be correlated with the explanatory variables and the random term ϵit

is correlated with lnPit since in the aggregate product price adjusts to shocks. We eliminate the industry

specific effect by differentiating over time:

∆ lnYit = αY ∆ lnYi,t−1 + αp∆ lnPit + αIM∆ lnP IM
it + ηit, (30)

with ηit = ∆ϵit.

Several variables that shift the output supply (but not directly output demand) can be considered

as instruments: they are correlated with lnPit and uncorrelated with the random term ηit. We use two

types of orthogonality conditions. A first set of instruments ZC is used to impose contemporaneous

orthogonality conditions: E[
∑

t z
j
ntηnt] = 0. The instruments in this set include the industry labor cost,

the intermediate consumption price index, the export price index, and the import price. A second set

ZD imposes a weak exogeneity requirement common in dynamic panel data econometrics: E[zjnsηnt] = 0

for some s ≤ t − 1. To avoid instrument proliferation, we limit the number of instruments in ZD that

would otherwise grow over time (see, for example, Roodman (2009)).

Given an (L× L) weighting matrix W, the GMM estimator is defined by minimizing in α:

(
I∑

i=1

T∑

t=1

ηitz
⊤
it

)
W

(
I∑

i=1

T∑

t=1

zitηit

)
= η⊤ZWZ

⊤η. (31)

The random terms ηit and ηjs are likely to be correlated, both between industries (which are interde-

pendent) in a given year, and within a given industry over two consecutive time periods. So we use

two-ways clustering and allow for heteroskedasticity, for contemporaneous dependence between residuals

of different industries, and for temporal dependence within a given industry and consecutive time periods.

See Online Appendix B for details.

Table 3 reports the estimated values of the parameters along with their standard deviations. The

estimates of the fixed-effects and first difference specifications of the output demands are given for the

purpose of comparison in columns 1 and 2. Our preferred specifications rely on GMM and the correspond-

ing estimated parameter values are included in the range of the fixed effects (FE) and the first-difference

(FD) estimates. The test for overidentification does not reject the validity of our different sets of instru-

ments. The estimates reported in columns 3 and 4, are obtained with 3 and 2 lag values of lnPit and

lnYi,t−1 in the set ZD. The estimates of column 5 only consider one lag for lnYi,t−1. This gives us a

total number L of instruments comprised between 26 and 139. The estimates are relatively stable wrt

the number of instruments we consider. We retain the estimates reported in column 5.

Tests for the occurrence of autocorrelation in the ηit of order two and higher lead to rejecting this

hypothesis. This rejection (together with the high p-value of the over-identification test) supports the

validity of our instruments. According to the GMM estimation results, the estimated short-run elasticity

of demand with respect to price is −0.58 and is statistically significant at the 1% threshold. Domestic

products and imports are substitutable with a cross price elasticity of 0.45. The coefficient of lagged

output is estimated at 0.80 and found to be significant. This introduces a gap between short- and

long-run price elasticities. The clustered standard errors are substantially smaller than the HAC-robust

standard errors, probably because additional independence over spaced time periods is assumed when

clustering.
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Table 3: Output demand estimates

FE FD FD-GMM FD-GMM FD-GMM
αY 0.928

(0.02)
0.040
(0.04)

0.759
(0.07), [0.03]

0.779
(0.07), [0.04]

0.805
(0.04), [0.08]

αp −0.072
(0.07)

−0.747
(0.16)

−0.550
(0.18), [0.08]

−0.611
(0.20), [0.09]

−0.581
(0.17), [0.20]

αIM −0.004
(0.06)

0.606
(0.16)

0.463
(0.21), [0.07]

0.530
(0.23), [0.08]

0.451
(0.12), [0.17]

No. OIC - - 139 49 26
OIT - - 0.99 0.99 0.69

Notes: HAC robust standard errors in parenthesis, clustered standard
errors in brackets. No. OIC: number of overidentification conditions.
OIT: p-value of the over-identification test (for the validity of the or-
thogonality conditions).

These estimates are useful to calculate the inverse demand elasticity which is central in our model,

and also for computing the long-run elasticities, obtained for Yi,t−1 = Yit. The corresponding estimates

are provided in Table 4. The inverse demand elasticity is obtained by ε
(
P d, Y

)
= 1/ε

(
Y d, p

)
and is

estimated to as −1.72 in the short-run and −0.34 in the long-run. Standard errors are obtained using

the delta-method (with the HAC variance matrix).

Table 4: Industry short- and long-run elasticities of output demand

Short-run Long-run
ε̂
(
Y d, p

)
ε̂
(
P d, Y

)
ε̂
(
Y d, p

)
ε̂
(
P d, Y

)

−0.581
(0.17)

−1.723
(0.50)

−2.983
(1.14)

−0.335
(0.13)

Standard errors are given in parenthesis and esti-
mated by applying the delta method.

The short-run inverse price elasticity is substantial. The estimate of the long-run elasticity of demand

wrt price is somewhat bigger (in absolute value) than the estimate of −1.7 obtained by Koebel and

Laisney (2016) for US manufacturing (without controlling for the price of imports, however). With

Cournot competition, there is an interesting relationship between the markup and the market share y/Y ,

parameterized by the inverse demand elasticity:

p

∂c/∂y(w, y)
=

1

1 + ε (P d, Y ) y/Y
. (32)

Using the estimates of Table 4, we draw the estimated short- and long-run relationship between markup

and market-share in Figure 3. Firms in the competitive fringe have a markup of 1. In conformity with

P1(iv), for which Figure 3 provides an illustration, the markup is monotonically increasing in market

share. While in the short-run there is substantial markup, in the long-run this markup falls to the

interval 1.10−1.15, which is much smaller. Instead, in the short-run, sluggish adjustment toward market

equilibrium price and quantity, according to the dynamic relationship (29) with strong anchoring to the

lagged aggregate output level, confers substantial market power and a markup of 1.50− 2.20 to the few

firms with the biggest market share.
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Figure 3: The markup and firms’ market share

Our estimate of the inverse demand elasticity satisfies A1 and is also broadly compatible with A4.

Indeed, when the inverse demand elasticity ϵ is constant,

P ′ (Y ) + yhP
′′ (Y ) = ϵ

P (Y )

Y

[
1 + (ϵ− 1)

yh
Y

]
,

which is negative for any individual market share satisfying yh/Y ≤ 1/ (1− ϵ) . Our estimate of this

upper bound is a market share of 36.7% in the short-run, and 74.9% in the long run. Both inequalities

are satisfied by 99.9% of the observations.

7 Cost function specification with unobserved heterogeneity

It is well known that unobserved heterogeneity causes estimation biases when it is neglected and correlated

with the explanatory variables – see for instance Wooldridge (2010) for a detailed overview of the linear

model. Unobserved heterogeneity also raises concerns about the incidental parameters, which, especially

in nonlinear models, preclude consistent estimation of parameters and statistics of interest. Martin (2017)

and Wooldridge (2019) consider unobserved multiplicative heterogeneity. We also have to deal with the

endogeneous output level included as explanatory variable in the cost function.

Given the quite long time dimension of our data, we now include a deterministic time trend, t, as a

further argument of the cost function. Further, to allow for variation in firms’ technologies, we estimate

the cost function for each of the 19 2-digit industries separately.15

Unobserved heterogeneity in the fixed and variable costs introduces correlation between their produc-

tion and the random term. We propose an approach to take this endogeneity into account. Our most

general empirical model considers the cost function:

cnt = unt(wnt, t) + v1,nt(wnt, t)ynt +
1

2
v2,nt(wnt, t)y

2
nt + ηcnt. (33)

We assume that the random term ηcnt is such that E[ηcnt|wnt, t] = 0. Regarding unobserved heterogeneity,

we assume a somewhat more general specification than the one considered in the theoretical model, and

15See Online Appendix C for more details on the estimation procedure.
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allow for both multiplicative and additive unobserved heterogeneity. For the variable cost, we consider:

vj,nt(wnt, t) = γ
vj
ntvj(wnt, t) + η

vj
nt, j = 1, 2. (34)

The fixed cost cannot take negative values, so that we specify:

unt(wnt, t) = max
{
γu
ntu(wnt, t) + ηunt, 0

}
. (35)

For the sake of identification, we impose:

E[γj
nt] = 1, E[ηjnt] = 0, j = u, v1, v2. (36)

Cost heterogeneity γnt ≡ (γu
nt, γ

v1
nt , γ

v2
nt) and ηnt ≡ (ηunt, η

v1
nt, η

v2
nt) is known by the firm, which uses this

information to set its optimal output level in order to equalize marginal revenue and marginal cost:

pt + P ′(Yt)ynt = γv1
ntv1(wnt, t) + γv2

ntv2(wnt, t)ynt + ηv1nt + ηv2

ntynt + ηpnt (37)

with the random term ηpnt such that E[ηpnt|wnt, t, γ
v
nt, η

v
nt] = 0. As γnt, ηnt are unobserved to the econo-

metrician, and because these terms are correlated with output, we need to find suitable control variables

to avoid estimation biases. We rely on the assumption:

Assumption 9. The unobserved technological random terms satisfy (for j = u, v1, v2, c):

(i) E[γj
nt|wnt, t, ynt] = E[γj

nt|wnt, t, znt], E[ηjnt|wnt, t, ynt] = E[ηjnt|wnt, t, znt]

(ii) E[γj
nt|wnt, t, znt] = E[γj

nt|znt] = γj(znt) = 1 + (znt − z)
⊤
βj

(iii) E[ηjnt|wnt, t, znt] = E[ηjnt|znt] = ηj(znt) = (znt − z)
⊤
δj.

The first two conditions in A9(i) imply that the dependence between unobserved heterogeneity terms

and ynt can be controlled for by the variables znt. Similar conditions play a central role in Wooldridge

(2019), in the context of correlated random effects. For later use, we also rewrite A9 as:

γj
nt = γj(znt) + ζjnt, ηjnt = ηj(znt) + ξjnt, (38)

whose random terms satisfy

E[ζjnt|wnt, t, ynt] = E[ζjnt|wnt, t, znt] = 0, (39)

E[ξjnt|wnt, t, ynt] = E[ξjnt|wnt, t, znt] = 0. (40)

The last two conditions A9(ii) and A9(iii) imply that unobserved heterogeneity is mean independent

from wnt, t conditionally to znt. Just as with control functions, conditioning on the variables znt allows

us to control for unobserved correlated heterogeneity. For simplicity, in A9 we restrict the functions γj

and ηj to be linear in the parameters and in the control variables znt. The vector of empirical means z

is subtracted from znt to ensure that the unconditional expectations satisfy E[γj
nt] = 1 and E[ηjnt] = 0.

The unobserved γj
nt, η

j
nt values capture the relative state of firm n’s technology at time t in comparison

to a reference technology (denoted by u and vj) that is identical for all firms and time periods. As these

relative efficiency levels are known to the firm, it will produce more when both efficiency indicators are

favorable, which makes output ynt endogenous in the expression of the cost function. According to A9,

however, these relative efficiency levels depend only upon the control variables znt. Similar to Olley

and Pakes (1996) we consider past investment, the age of the firm, and as recommended by Wooldridge

(2019) we include firm-specific averages (correlated with firm specific fixed effects) and the number of
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firms’ occurrences in the survey, to capture selection effects.16

The main empirical implication of A9 is that it allows us to replace the disturbing correlated random

terms γj
nt, η

j
nt in the first-order condition (37), by respectively γj(znt) + ζjnt and ηj(znt) + ξjnt, which

comprise the helpful control functions and unproblematic random terms ζjnt, ξ
j
nt. Using A9, the optimality

condition (37) becomes:

pt + P ′(Yt)ynt = γv1(znt)v1(wnt, t) + ηv1(znt) + γv2(znt)v2(wnt, t)ynt + ηv2(znt)ynt + εpnt (41)

εpnt ≡ ζv1nt + ξv1nt + ζv2ntynt + ξv2ntynt + ηpnt. (42)

Under A9, the random term εpnt satisfies E[εpnt|wnt, t, znt] = 0, but is correlated with ynt through ηpnt.

We circumvent the endogeneity of ynt in (41), by solving this optimality condition in y, which gives our

output supply function:

ynt =
pt − γv1(znt)v1(wnt, t)− ηv1(znt)

γv2(znt)v2(wnt, t) + ηv2(znt)− P ′(Yt)
+ εynt (43)

≡ ys(pt, wnt, t, znt) + εynt.

The function ys denotes the firm-level supply function and the random term εynt is such that

E[εynt|pt, wnt, t, znt] = 0. (44)

It turns out that under A9, we can consistently estimate the parameters of the output supply function

by nonlinear least squares.

The output supply, however, does not allow us to identify the total cost function, because the fixed

cost and its heterogeneity distribution over firms (and time) cannot be identified from the expression of

ys. For this reason we append to our model a reformulated cost function. Equation (33) is problematic

because, even under A9, the random term ηcnt is likely to be correlated with ynt: random shocks affecting

costs lead firms to adjust output. To avoid this difficulty, we substitute ynt by

ysnt + εynt,

in the expression of the cost function (for the sake of conciseness, we skip the arguments of the supply

function and add a subscript nt to denote the function values). We assume that the random term of the

supply function exhibits some heteroskedasticity of the form:

σ2
y ≡ E[(εynt)

2|wnt, t, znt] = σ2
0 + σ2

1y
s
nt, (45)

where σ0, σ1 denote constant variance parameters, which are squared to ensure that σ2
y is positive. This

allows us to replace in the cost function, the squared production level by

y2nt = (ysnt)
2 + σ2

y + νnt, (46)

where E[νnt|wnt, t, znt] = 0. With these notations, the cost function becomes:

cnt = max{γu(znt)u(wnt, t) + ηu(znt), 0}+ γv1(znt)v1(wnt, t)y
s
nt + ηv1(znt)y

s
nt (47)

+
1

2
γv2(znt)v2(wnt, t)((y

s
nt)

2 + σ2
y) +

1

2
ηv2(znt)((y

s
nt)

2 + σ2
y) + ηc(znt) + εcnt,

16See Online Appendix A.3, Table A4, for some descriptive statistics for these variables.
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where

εcnt ≡ ζuntu(wnt, t) + ξunt + ζv1ntv1(wnt, t)ynt + ξv1ynt +
1

2
ζv2v2(wnt, t)y

2
nt +

1

2
ξv2y2nt (48)

+ γv1(znt)v1(wnt, t)ε
y
nt + ηv1(znt)ε

y
nt +

1

2
γv2(znt)v2(wnt, t)νnt +

1

2
ηv2(znt)νnt + ηcnt.

As under A9, E[εcnt|wnt, t, znt] = 0, we can append equation (47) to (43) and form a system whose

parameters can be consistently estimated by nonlinear least squares.

We specify the parametric functional forms for u v1 and v2 and consider that they belong to the family

of quadratic cost functions:

u (w, t; θu) = θ⊤ww + θ⊤wtwt+
1

2

w⊤Θwww

ζ⊤w
, (49)

v1 (w, t; θ1) y =

(
θ⊤1ww + θ⊤1twt+

1

2

w⊤Θ1www

ζ⊤w

)
y (50)

v2 (w; θ2) y
2 =

(
θ⊤2ww

)
y2 (51)

The vectors of parameters θw, θwt, θ1w, θ1t and θ2w have dimension (J × 1), whereas the symmetric

matrices Θww and Θ1ww are (J × J). In order to identify the terms in the linear and quadratic functions

of w, we impose that

Θww = Θ⊤
ww, Θ1ww = Θ⊤

1ww, (52)

ι⊤Θww = ι⊤Θ1ww = 0 (53)

where ι denotes a (J × 1) vector of ones. We use the Laspeyres price index ζ⊤w for normalization in

order to impose linear homogeneity in w on the cost function. Both fixed and variable cost functions are

flexible in the sense that they provide a second-order approximation to an arbitrary fixed and variable

cost function; see Chen and Koebel (2017) on this issue. There is a total of 5J+J(J−1) free parameters.

In our case, J = 3 and there are 21 free θ parameters in the deterministic part of the cost function, and

51 further β, δ, σ2
y parameters behind unobserved (and correlated) heterogeneity.

8 Estimation results

The theoretical model outlined in Sections 2 to 4 corresponds to a specific case of the more general

empirical model of Section 7. For this reason, we do not expect the statements of the different propositions

to be satisfied at each observation. However, we expect to see the results valid on average, over the years

and the population of firms. We discuss these estimates and their relationship with the model below.

8.1 Unobserved heterogeneity

We present our estimates of the unobserved fixed and variable cost efficiency (which corresponds to

stochastic technological change). In Section 7, we introduced 6 heterogeneity terms. To shorten the

presentation and simplify their interpretation, we aggregate these 6 terms in 2 terms compatible with our

theoretical part, namely equations (10) and (16). The aggregate fixed cost heterogeneity is defined as

the ratio between individual and the mean fixed cost function evaluated at wnt. Similarly, the variable

cost heterogeneity corresponds to the ratio between individual and mean variable cost function values
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(obtained for γv
1 = γv

2 = 1 and evaluated at wnt, ynt):

γ̂u
nt ≡

ûnt

û(wnt)
, γ̂v

nt ≡
v̂nt

v̂(wnt, ŷnt)
. (54)

Table 5 reports some percentiles of their respective distribution. Fixed cost is found to be zero for most

firms (73%), but it is significant for about 27% of the observations. There is considerable heterogeneity

about the size of these fixed costs. The distribution of γ̂v is centered on 1, and has a somewhat larger

tail on the left of the median than on the right.

Table 5: Distribution of firms’ unobserved heterogeneity

Q10 Q25 Q50 Q75 Q90
γ̂u
nt 0.00 0.00 0.00 0.12 3.06

γ̂v
nt 0.82 0.94 1.03 1.12 1.21

Note: Q10 to Q90 report the 10th to the
90th percentile of the respective distribu-
tion.

The parameter γv represents variable cost heterogeneity. While about 25% of the firms have a variable

cost more than 6% below average (for which γv = 1), there are also 25% of the firms with average costs

higher than average by 12% or more. This unobserved heterogeneity is estimated to be economically

relevant and, according to Proposition 3, we expect it to strongly influence a firm’s size.

Figure 4 and 5 show kernel density estimates of the distribution of γ̂u (on the left) and γ̂v (on the

right).17 Both densities are single peaked, and show that there is a high probability mass around γu = 0

and around γv = 1.
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Figure 4: The density of fixed cost
heterogeneity γ̂u
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Figure 5: The density of variable cost
heterogeneity γ̂v

Table 6 summarizes the percentage of estimates corresponding to 4 possible estimated signs of the

linear and quadratic parts of the variable cost function, v1,nt and v2,nt, which vary for each observation

over the sample. In almost all cases, predicted marginal costs are convex (98% of the observations) with

both v1,nt and v2,nt positive. In 0.8% of the cases, we find evidence for decreasing marginal cost. Such a

result is only economically sustainable if firms are able to charge a markup over their marginal cost.

17The densities are estimated using a second–order Gaussian kernel and likelihood cross–validation to obtain optimal
bandwidths.
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Table 6: Share of observations for different types of heterogeneity in v1,nt, v2,nt in %

v1n ≤ 0 v1n > 0
v2n ≤ 0 1.2 0.8
v2n > 0 3.0 95.0

Note: Figures are given in %.

Table 7 reports the estimates of unobserved heterogeneity over firm size. The share of firms with

no fixed costs and the median value of the fixed cost are given in the first two columns. For small

firms, we find that the large majority of firms have no fixed costs: 83% of the firms with one employee

produce without any fixed costs, but this rate decreases in firm size: less than 53% of the firms with

more than 200 employees have no fixed costs. An economic narrative can be provided: small firms have

lower profits (although their profit rate is higher), more credit constraints and a higher probability of

bankruptcy, which incite them to invest in technologies with no fixed cost. Bigger firms can afford fixed

costs, which are not directly productive (like organisational costs, or cost-reducing R&D expenditures),

and which allow them to reduce the variable cost of production. The estimates of Table 7 are in line with

the theoretical predictions: the fixed cost parameter is larger for bigger firms, and the marginal (and

variable) cost parameter is lower for bigger firms, in conformity with P3(i). These findings also highlight

the shortcomings of usual specifications for cost functions, such as the Cobb-Douglas or the translog,

which exclude, by construction, the occurrence of fixed costs.

Table 7: Fixed and variable costs by firm size

Firm size Su=0 ûnt/cnt γ̂u
nt

γ̂v
nt

1 83.25 0.00 0.00 1.09
2–4 76.07 0.00 0.00 1.07
5–9 72.72 0.00 0.00 1.06

10–19 75.48 0.00 0.00 1.03
20–49 66.68 0.00 0.00 0.98
50–99 60.87 0.00 0.00 0.90

100–199 59.65 0.00 0.00 0.80
200–499 52.65 0.00 0.00 0.70

500+ 12.31 0.28 41.73 0.55
Total 72.52 0.00 0.00 1.03

Notes: Firm sizes are measured by the num-
ber of employees. Su=0 denotes the share of
firms with zero fixed cost. Column ûnt/cnt

reports the median value of the share of fixed
cost in total cost. Columns γ̂u

nt
and γ̂v

nt
re-

port the median value of the estimates γ̂u
nt

and γ̂v
nt

.

8.2 Returns to scale and rate of technological change

The rate of Returns to Scale (RTS) is defined by

∂ ln c

∂ ln y
(w, t, y). (55)

When the estimated statistic is lower than one, the observation exhibits increasing RTS, while RTS

are constant or decreasing when the statistic is equal to or greater than one. The cost function also

comprises a time trend as argument, and allows us to compute estimates for the Rate of Technological

Change (RTC):
∂ ln c

∂t
(w, t, y). (56)

Here we only take into account the direct effect of t on total cost, for constant level of the technological

parameters (which also change over time). These statistics depend upon the explanatory variables (both
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observed and unobserved) and are different for each observation in our sample. Table 8 summarizes

the estimates of these elasticities over all observations of the sample. It is interesting to note that

about 30% of the estimates correspond to increasing RTS, about 35% to constant RTS (with a cost

to output elasticity comprised between 0.95 and 1.05), and 35% to decreasing RTS. The distribution

is not symmetric but positively skewed: the lower percentiles are more distant from 1 than the higher

percentiles. Estimates for increasing returns are quite common for cost functions, and this result contrasts

with the estimates usually found with a production function approach which frequently yields decreasing

RTS. See for instance Diewert and Fox (2008) for a discussion. These contradictory empirical results are

often attributed to the endogeneity of the production level in the cost function, which is expected to be

correlated with unobserved heterogeneity. As our approach controls both for unobserved heterogeneity

and endogeneity of output, our estimates are not affected by these sources of bias.

Table 8: Distribution of firms’ returns to scale and rate of technological change

Q10 Q25 Q50 Q75 Q90
∂ ln c/∂ ln y 0.59 0.92 1.04 1.11 1.22
∂ ln c/∂t –0.24 –0.03 0.00 0.02 0.17

Note: Q10 to Q90 report the 10th, to the 90th percentile
of the respective distribution.

The RTC represents a deterministic technological change, because the time trend t is not random.

The results show a negative RTC for about half of the estimates. The estimates corresponding to the

lower and higher quantiles are quite large.

One of the main conclusions of the Cournot model with heterogeneity is that there is an ordering of

unobserved heterogeneity and firm size. We investigate this relationship further and report statistics by

firm size. Table 9 completes the information given in Tables 8 and reports the quartiles of RTS and RTC

by firm size. The median value of RTS is globally diminishing with firm size by about 6%. The share of

firms with increasing RTS is smaller among small firms than for bigger firms.

Regarding deterministic technological change, the estimated median value of ∂ ln c/∂t is stable with

firm size. RTC is important for very small firms, representing a cost reduction of about 1% by year,

ceteris paribus, for the groups with 1 and 2–4 employees, respectively. This rate then decreases with firm

size (in absolute value), and becomes negative again for larger firms.

Table 9: Median RTS and RTC statistics by firm size

c/y RTS RTC
Firm size Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75
1 90.2 98.0 112.8 0.89 1.06 1.20 –0.11 –0.01 0.06
2–4 91.5 100.5 135.5 0.90 1.04 1.13 –0.06 –0.00 0.04
5–9 90.6 100.6 135.3 0.93 1.04 1.10 –0.02 0.00 0.02
10–19 88.9 99.0 118.2 0.95 1.04 1.10 –0.01 0.00 0.01
20–49 84.6 96.4 115.7 0.95 1.04 1.10 –0.01 0.00 0.01
50–99 82.9 94.1 113.0 0.94 1.03 1.09 –0.02 0.00 0.01
100–199 77.7 89.5 110.7 0.92 1.02 1.08 –0.02 0.00 0.01
200–499 75.5 89.4 121.5 0.91 1.02 1.08 –0.02 –0.00 0.01
500+ 89.0 115.0 214.1 0.87 1.00 1.08 –0.03 –0.00 0.02
Total 88.7 98.7 118.5 0.92 1.04 1.11 –0.03 0.00 0.02

Notes: Firm sizes are measured by the number of employees. Q25, Q50, and
Q75, respectively, denote the lower quartile, the median, the upper quartile of
the estimated statistics.
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9 Welfare implications of market power

In this section we simulate the different policies implied by SROW and LROW. That is, using the

estimated parameter values, we now investigate the welfare implications of market power and related

technological inefficiencies outlined in Section 4. While the NLS estimates provide decent fit between

predicted and observed level of production over all industries (see Online Appendix D, Table D1), we

simulate the policies only for firms belonging to the 6 2-digit industries with the highest model fit, in

order to reduce computation time and increase prediction accuracy (these are industries 11, 16, 22, 23,

27, and 31, see Table 1 for a description).18

Before exploring the outcome of simulated reallocation(s) of production, we have to investigate

whether assumption A6 of a decreasing and convex relationship between γu and γv, required for P3,

P5, and P6, is empirically supported. Figure 6 reports the estimated values of the parameters for the

firms belonging to the 6 selected industries at the year 2015. We consider a single year in order to reduce

computational burden, and avoid dealing with technological change, entry and exit. The orientation of

the plots confirms that the estimates are broadly compatible with A6. This evidence gives further support

for the statement of the propositions.
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Figure 6: Estimates of unobserved fixed and variable cost efficiency, γu and γv, for selected industries of
the year 2015

We now turn to the simulation. First, we use the parameters’ estimates and compute the LRCE,

characterized by (22) and (23). The fixed point of the economy is numerically characterized in the second

18See Online Appendix D for more details on the simulation procedures.
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row of Table 10. The simulated LRCE values for aggregate price and quantities are close to the actual

data (reported in the first row), which is anticipated, because the LRCE model was estimated to fit the

data. There are some differences, however, in the level of welfare, average costs and profit rate. This

is partly due to the simulation of the Cournot equilibrium, which imposes a production level equal to

zero on firms whose optimal production level would have been negative. About two firms in 77 cases are

affected by this corner solution (see Table 10). It turns out that the simulated levels of average cost are

somewhat higher, while the simulated profit rate and welfare are lower at the LRCE in comparison to the

data. Overall, the gap between the data and the model is rather small and the estimates are plausible.

Second, we simulate the SROW policy, whose results are reported in the third row of Table 10. Here,

the simulation consists in setting the market power of all firms to zero, which redistributes individual

outputs over firms in order to resolve the inefficiency due to market power. This new and regulated opti-

mum is described in Section 4.1, whose properties are given by P4 and P5. At SROW all firms producing

at the LRCE are still active (some firms produce zero output, though), so there is still a technological

inefficiency due to too many occurrences of inefficient firms. According to P4, a competitive output

reallocation would improve welfare, increase total output, reduce the price, and, under the assumptions

of P4, increase the concentration of output over firms. We simulate the SROW separately for each of

the 6 industries and find only small empirical support for welfare-reducing market power effects in the

short-run. The results reported in the SROW row of Table 10 show that only a small decline in aggregate

price of about 0.4% can be achieved through the suppression of market power, while aggregate quantities

stay almost constant (and even slightly decrease). Also, this policy slightly decreases the median profit

rate, to 0.64% (from an initial level of 0.88% at the LRCE).

Given the predictions of P4, we initially expected to find output being reallocated from smaller to

larger firms (with lower marginal costs). However, the results reported in Table 10 show that industry

concentration slightly declines. This is not in contradiction with P4, because the proposition holds when

input prices are the same for all firms. In the data, however, average wages tend to be higher in bigger

firms, which reduces their profit as well as the welfare gains of allocating supplementary production to

those bigger firms. Our main conclusion is that the detrimental welfare effect of imperfect competition

is small: If all firms with market power set the price equal to their marginal cost, aggregate production

would hardly rise, and the aggregate price would only slightly decrease. This contrasts with the recent

literature on market power in the US, where Baqaee and Farhi (2020) and Edmond et al. (2023) find

more sizable effects of markups on aggregate productivity and welfare.

Table 10: Welfare and output distribution at LRCE, SROW and LROW

Y P W c/y u/y π N HH C3 C10

Data 234.5 99.0 103.3 98.4 1.29 79.0 11.9 48.3 74.0
LRCE 237.4 99.7 131.2 99.0 0.0 0.88 77.5 11.2 46.3 73.0
SROW 237.0 99.3 149.7 99.6 1.5 0.64 77.5 9.6 43.7 70.0
LROW Q75 237.1 98.9 160.6 97.6 0.0 1.00 385.8 - - -
LROW Q90 237.1 98.8 163.4 96.3 0.0 1.90 122.9 - - -
LROW Q99 238.1 96.5 167.8 94.8 0.0 3.15 42.8 - - -

Notes. The table reports median values over all 4-digit industries. The raw values of the
variables Y , P , and W , are computed at the 2-digit industry level (over 6 industries).
The estimates of c/y (average cost), u/y (average fixed cost), and π are computed for
each firm. The statistics N , HH, CR3 and CR10 are computed at the 4-digit aggregation
level. N corresponds to the number of active firms. The Hirschman-Herfindahl index
and two concentration ratios (resp. for 3 and 10 firms) are denoted by HH,C3 and C10).
At LROW the concentration indices are not computed as they are equal, respectively, to
1/N, 3/N , and 10/N .

Figure 7 sheds further light on the narrow price and output gap between LRCE and SROW. It

represents the median value of relative wages (given by the dots) over all firms within a given size bin,

together with the median value of the variable cost heterogeneity γ̂v
n (given by the cross).
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Figure 7: Median values of relative wages and γ̂v
n, by firm size, for the year 2015

This figure helps us to understand why the Cournot equilibrium is empirically very close to the SROW.

For constant wages, slight differences in the γv parameter yield substantial differences in marginal cost,

market power, and welfare. Figure 7 provides empirical evidence for the fact that bigger firms have (in

the median) a substantially lower value of the γv parameter, and pay higher wages than smaller firms.

This increases the marginal cost of these firms, and reduces the negative welfare effect of market power.

More precisely, compared to firms with less than 99 employees, those firms with 100–199, 200–499, and

500+ employees, exhibit a higher median value of wages of 11%, 21%, and 39%, respectively, and a lower

value of the median variable cost parameter γ̂v
n of 2%, 6%, and 36%, respectively.

The last three rows of Table 10 describe LROW simulations which consist in removing firms’ market

power and replicating for the firm closest to the 0.75 quantile of the profit rate distribution (and similarly

for the 0.90 and 0.99 profit quantile). This procedure is inspired by P6(v), and the fact that total profit

is a good indicator of technological efficiency. More specifically, for each 4-digit industry belonging to

a given 2-digit industry, we identify the firm closest to the 75% (90%, 99%) quantile of the profit rate

distribution, which will be replicated. This induces reallocation among firms and adjustments in aggregate

price and output (just as described microeconomic textbooks). The iterative replication process stops

when the profit is close to zero in one of the 4-digit industries. For realism, we impose the constraint

that the weight of each 4-digit industry in the aggregate 2-digit industry is constant.

Our replication exercise shows that the price and the average cost of production decreases when we

select and replicate more efficient firms and go from the 0.75 to the 0.99 quantile. At the same time,

aggregate production increases very little and welfare increases more substantially. The average number

of active firms in the LROW is close to 386 for the row Q75, and decreases to 123 and 43 when a more

efficient firm is replicated. This is a consequence of the fact that more efficient firms are bigger on average.

The finding of increasing welfare by the elimination of inefficient firms and the reallocation of their

output to more efficient firms was already documented by Lahiri and Ono (1988) and more recently by

Cowan (2024), however, under some restrictive assumptions (constant marginal cost, no fixed cost). As a

useful feature, our model allows us to investigate the implications of fixed costs, which are not considered

in these studies. We find that fixed cost allows to better account for the observed joint heterogeneity in

output level, profit rate, marginal cost and markup. In the long-run the median value of the fixed cost is

zero for the replicated firms showing that there also exist efficient technologies with no fixed cost.
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10 Conclusion

This paper investigates Cournot competition with heterogeneous firms, and highlights the regularities

emerging in this context between firm size, market shares, marginal cost, and market power. For given

input prices, a useful theoretical result allows us to infer the ordering of firms’ unobserved cost efficiency

from the (observed) ordering of firms’ sizes. A further result generalizes Mankiw and Whinston (1986)’s

theorem about excess entry at Cournot equilibrium to the case of heterogeneous firms. Once firms’

heterogeneity is considered in the analysis, excess entry concerns small and inefficient firms which do not

contribute to reducing the market share and market power of bigger and efficient firms.

While greater firm size is a good indicator of cost efficiency, it is at the same time an indicator of welfare

inefficiency due to market power. The question of how to best deal with this contradiction from a welfare

perspective is an empirical question and should, as we propose, be tackled using both estimations and

simulations. Using administrative French firm-level data, the estimation results confirm that unobserved

cost heterogeneity is substantial, and affects both the fixed and the variable costs. A main finding

presented in the paper is the negative correlation between fixed and variable cost heterogeneity. This is

a crucial result as it implies that estimates of cost efficiency, variable and marginal costs, and markups

are biased if fixed costs are not taken into account. A second result, obtained by using simulations,

contrasts with the existing literature on misallocation due to market power. Our simulation results show

that removing market power has a negligible impact on aggregate production and price, and triggers

little output reallocation from bigger to smaller firms. The third result of our contribution is provided by

the simulation which consists in replicating technologically efficient firms, and removing inefficient firms

from the market. The effect on output price and welfare is achieved through the reduction of the average

cost of production, but was found to be empirically rather small, when the output share of each 4-digit

industries are restricted to be constant. The policy implication that we draw from this simulation, is that

in France cost-reducing innovations and technological progress are more likely to improve welfare than

policies aiming to fight against market power. Our simulation study highlighted limited price reduction

and moderate increase in production quantities, but differences in wages are substantial between the

median-sized and the larger firms. Wage increases compensate the detrimental effect of market power

and reduce the degree of inefficiency between the observed short-run equilibrium with heterogeneous firms

and the idealized long-run equilibrium with only the most efficient firms being active.
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Appendix

A Proof of the propositions

Proof of Proposition 1

P1(i) and P1(ii). By A1 it follows that ϵ (P, Y ) ≡ P ′ (Y )Y/P (Y ) < 0. By A2, at equilibrium P (Y ) +

P ′ (Y ) yNn > 0 hence P (Y )
(
1 + ϵ (P, Y ) yNn /Y

)
> 0. Summing these inequalities over N gives P1(i).

The inequality also implies that individual market shares are bounded above: yNn /Y < −1/ϵ (P, Y ).

P1(iii). From the first-order condition ∂cn/∂y = P (Y )(1+ϵ (P, Y ) yNn /Y ) it turns out that at Cournot

equilibrium

yNi > yNj ⇔
∂ci
∂y

(
wi, y

N
i

)
<

∂cj
∂y

(
wj , y

N
j

)
.

Claim P1(iv) directly follows from P1(iii) and the definition of the price markup P/(∂cn/∂y).

Claim P1(v) corresponds to Okumura (2015, Lemma 1). □

Proof of Proposition 2

Input prices could be heterogeneous over firms, but without affecting the result, so we use notation w in-

stead of wn. The Cournot equilibrium is characterized by N individual production levels yNn

(
w, {γv

n}
N
n=1

)

and Y N
(
w, {γv

n}
N
n=1

)
such that the first- and second-order optimality conditions are satisfied. We find

it convenient to omit the arguments
(
w, {γv

n}
N
n=1

)
of Y N and yNn in the equations below. At Cournot

equilibrium, individual and aggregate output levels satisfy:

P
(
Y N
)
+ P ′

(
Y N
)
yNi = γv

i

∂v

∂y

(
w, yNi

)

Y N =

N∑

n=1

yNn

Differentiating the first-order optimality condition with respect to γv
i for two different firms, i and n,

gives

(
P ′
(
Y N
)
+ P ′′

(
Y N
)
yNi
) ∂Y N

∂γv
i

+ P ′
(
Y N
) ∂yNi
∂γv

i

=
∂v

∂y

(
w, yNi

)
+ γv

i

∂v2

∂y2
(w, yi)

∂yNi
∂γv

i

(
P ′
(
Y N
)
+ P ′′

(
Y N
)
yNn
) ∂Y N

∂γv
i

+ P ′
(
Y N
) ∂yNn
∂γv

i

= γv
n

∂v2

∂y2
(
w, yNn

) ∂yNn
∂γv

i

.

Let us define

aNn ≡

[
P ′
(
Y N
)
− γv

n

∂v2

∂y2
(
w, yNn

)]−1

,

which is negative by A3(ii), and write

∂yNi
∂γv

i

= aNi ·

(
∂v

∂y

(
w, yNi

)
−
(
P ′
(
Y N
)
+ P ′′

(
Y N
)
yNi
) ∂Y N

∂γv
i

)

∂yNn
∂γv

i

= −aNn ·
(
P ′
(
Y N
)
+ P ′′

(
Y N
)
yNn
) ∂Y N

∂γv
i
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If we sum all partial effects ∂yNn /∂γv
i over all n = 1 to N this gives

∂Y N

∂γv
i

= −
N∑

n=1

aNn ·

((
P ′
(
Y N
)
+ P ′′

(
Y N
)
yNn
) ∂Y N

∂γv
i

)
+ aNi

∂v

∂y

(
w, yNi

)

⇒
∂Y N

∂γv
i

=
aNi

1 +
∑N

n=1 (P
′ (Y N ) + P ′′ (Y N ) yNn ) aNn

∂v

∂y

(
w, yNi

)
.

Then A1 guarantees that ∂v/∂y
(
w, yNi

)
≥ 0, by A3 aNi < 0, and A4 implies that the denominator is

positive, so
∂Y N

∂γv
i

≤ 0.

Replacing this term in the individual output supply reaction, shows that for n ̸= i,

∂yNn
∂γv

i

≥ 0

so that necessarily
∂yNi
∂γv

i

≤ 0.

We also see that a marginal change in the fixed cost parameter γu
i , holding the parameter γv

i constant,

has no effect on the Nash equilibrium. These inequalities prove claims (i) to (iv). Claim P2(v) follows

from the definition of the profit function

πN
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
)
yNi

(
w, {γv

n}
N
n=1

)
− γu

i u (w)− γv
i v
(
w, yNi

(
w, {γv

n}
N
n=1

))

which is impacted by a change in γu
i and γv

i as follow

πN
i

∂γu
i

(
w, {γv

n}
N
n=1

)
= −u (w) ≤ 0

πN
i

∂γv
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
) ∂yNi
∂γv

i

+ P ′
(
Y N
)
yNi

∂Y N

∂γv
i

− vi − γv
i

∂v

∂yi

∂yNi
∂γv

i

= P ′
(
Y N
)
yNi

∂Y N
−i

∂γv
i

− vi < 0,

where the last simplification is obtained by using firm’s i first-order condition for optimality. Similarly:

πN
i

∂γv
j

(
w,
{
γv
j

}N
j=1

)
= P ′

(
Y N
)
yNi

∂Y N
−i

∂γv
j

≥ 0.

□

Proof of Proposition 3

P3(i). As input prices are identical for both firms we skip w from most of our notations and write for

instance v1 instead of v1 (w). When the cost functions are quadratic, marginal costs are linear, and for

yNi < yNj at Nash equilibrium we also have

∂ci
∂y

(
w, yNi

)
>

∂cj
∂y

(
w, yNj

)
(57)

⇔ γv
i ·
(
v1 + v2y

N
i

)
> γv

j ·
(
v1 + v2y

N
j

)
.
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By convexity, v2 ≥ 0, we use the fact that γv
i > 0, γv

j > 0 and yNj > yNi , to conclude that this inequality

is equivalent to γv
i > γv

j .

P3(ii). We use the fact that for two numbers a ≥ 0 and b such that a+ b ≥ 0, we also have a+ b/2 ≥ 0.

We identify

a ≡
(
γv
i − γv

j

)
v1

b ≡ v2 ·
(
γv
i y

N
i − γv

j y
N
j

)

The term a is nonnegative by P3(i) and A2 implies that v1 ≥ 0. The condition a+ b ≥ 0 corresponds to

(57). The implied inequality a+ b/2 ≥ 0 is equivalent to claim P3(ii).

P3(iii). For γv
i > γv

j , and same technological shock η, relationship A7 implies that γu
i < γu

j and

ui (w) < uj (w) .

P3(iv). From γv
i > γv

j > 0 and A7 with ηi = ηj we have γu
i < γu

j and so

γu
i

γv
i

<
γu
j

γv
j

⇔

(
2γu

i u

γv
i v2

)1/2

<

(
2γu

j u

γv
j v2

)1/2

.

□

Proof of Proposition 4

P4(i). At the LRCE characterized by (3), it turns out that for any active firm,

P (Y C
−n + yn)−

∂cn
∂yn

(wn, yn) ≥ 0. (58)

By A1 and A3(ii) this function is decreasing in yn at the LRCE for any active firm. At SROW, for

maximizing W, the social planner chooses {ym}Mm=1 in order to satisfy P
(∑M

m=1 ym

)
−∂cn/∂yn (wn, yn) =

0 for any active firm, which requires that
∑M

m=1 y
S
m ≥

∑M
m=1 y

C
m. Equivalently, by A1, we have P

(
Y S
)
≤

P
(
Y C
)
.

P4(ii). By definition, WS maximizes welfare by choosing the optimal level of production over all firms

active at the LRCE, hence WS ≥ WC . It follows directly from P4(i) and profit maximization, that:

πS
n = P (Y S)ySn − cn

(
wn, y

S
n

)
< P (Y C)ySn − cn

(
wn, y

S
n

)
≤ P (Y C)yCn − cn

(
wn, y

C
n

)
= πC

n .

P4(iii)–P4(v). At the aggregate production level Y S ≥ Y C the firms’ production plans have to satisfy:

∂cm
∂ym

(wm, ySm) =
∂cn
∂yn

(wn, y
S
n ) = P

(
Y S
)
, (59)

for active firms. At the LRCE, firms’ marginal costs are related by:

∂cn
∂yn

(wn, y
C
n ) = P ′(Y C)

(
yCn − yCm

)
+

∂cm
∂ym

(wm, yCm),

so that bigger firms have lower marginal cost at the LRCE (just as in P1). This equation also shows

how each firm n has to adjust yCn in order to achieve ySn satisfying (59). Let us order firms from lower to

higher marginal cost, and define “bigger firms“ as those having at the LRCE a marginal cost lower than

P
(
Y S
)
, and “smaller firms“ the other group with ∂cn/∂yn (wn, yn) ≥ P

(
Y S
)
.

Starting from the LRCE, the social planer requires that:

• bigger firms produce more output: ySn > yCn . Bigger firms with lower but increasing marginal costs
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increase their production up to the point where (59) is satisfied (A3 ensures that such a point

exists). Bigger firms with decreasing marginal cost at yCn cannot have globally decreasing marginal

cost by A3, so their production can be increased to met (59).

• smaller firms with decreasing marginal cost produce more if this allows them to sufficiently decrease

their marginal cost and reach P
(
Y S
)
. If this is not possible, they are shut down.

• smaller firms with increasing marginal costs have to produce less and reduce their marginal cost in

order to satisfy (59). If this is not possible, they should stop their activity.

P4(vi). In points P4(iii)–P4(v) we have identified either firms which should continue to produce at

SROW, or firms which should be shut down. So that NC ≥ NS . □

Proof of Proposition 5

We use the fact that the Hirschman-Herfindahl index of concentration H
(
Y,
∑N

n=1 y
2
n

)
is nonincreasing

in N and increasing when individual outputs are redistributed from smaller to bigger firms. Under

decreasing returns to scale, point P4(v) vanishes, and point P4(vi) can be sharpened to NS ≤ NC . Let

us define κ ≡ Y S/Y C ≥ 1, and starting from LRCE, let us scale all individual output levels up to κyCn .

This leaves the value of Hirschman-Herfindahl index unchanged as

H


Y C ,

NC∑

n=1

(
yCn
)2

 =

NC∑

n=1

(
yCn
Y C

)2

=
NC∑

n=1

(
κyCn
Y S

)2

= H


Y S ,

NC∑

n=1

(
κyCn

)2

 .

Individual firms have now seen their production arbitrarily scaled up by κyCn , so that aggregate production

is equal to Y S . However, in order to produce Y S optimally, such as characterized in P4, the social planner

still has to redistribute the individual output levels κyCn while keeping the aggregate level fixed at Y S .

We will show that this is achieved by redistributing output from smaller to bigger firms, which increases

the value taken by H at SROW. We know that at the LRCE

∂cn
∂y

(w, yCn ) = P ′(Y C)
(
yCn − yCm

)
+

∂cm
∂y

(w, yCm)

and so yCn ≥ yCm iff ∂cn/∂y(w, y
C
n ) ≤ ∂cm/∂y(w, yCm) as in P1. By A7, A8, and convexity, using also

P3(i), we have for any value of y

0 ≤
∂2cn
∂y2

(w, yn) = γv
nv2 (w) < γv

mv2 (w) =
∂2cm
∂y2

(w, ym).

This inequality implies that marginal costs increase more strongly in small firms; so that if we inflate all

individual outputs by multiplication with κ ≥ 1 then,

∂cn
∂y

(w, κyCn ) ≤
∂cm
∂y

(w, κyCm),

which means that bigger firms have still lower marginal costs at
{
κyCn

}M
n=1

than smaller firms. The social

planner wants to implement the equality:

∂cn
∂y

(w, ySn ) = P (Y S)

which she can achieve from individual production levels
{
κyCn

}M
n=1

, by increasing further the output of

the bigger firms (with lowest marginal cost), and decreasing the output of the smaller firms characterized
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by
∂cm
∂y

(wm, κyCn ) > P (Y S).

This redistribution of constant aggregate output from small to bigger firms increases the value of H

achieved at SROW. □

Proof of Proposition 6

P6(i). Under the above assumptions, W is continuous, nondecreasing in γ, and the set of values taken by

the welfare function over ΓL is closed and bounded from below, and so for any given level of y, W admits

a maximum over Γ. The maximum of W on Γ is reached on ΓL ⊆ Γ. The points on the technological

frontier satisfy γv = e(γu), a function which under A6 is strictly convex. For any (w, y) function W has

straight line isoquants in (γu, γv), and so reaches a unique maximum in (γu, γv) on the technological set.

P6(ii). From P6(i) it follows that at the LROW point, the planner adopts the same technology γL for

all active firms, and so all firms produce the same quantity y = Y/N. Under this constraint, the welfare

function (24) becomes:

WL (Ny) =

∫ Ny

0

P (s) ds−NcL (w, y) , (60)

with cL defined in (28). Differentiation wrt y and N then yield the first-order conditions for a maximum,

which states the zero profit condition, and the equality between price and average cost. Together they

imply that cL(w, yL)/yL = ∂cL/∂y(w, yL) = P (Y L), and returns to scale are constant locally. (If N is

restricted to be an integer, then this condition is approximately valid for small values of y in comparison

to Y .)

P6(iii). Both optimization problems (26) and (25) have the same objective function, but there are fewer

constraints in (26), hence WL ≥ WS .

P6(iv). If the inequality holds, then the Kuhn and Tucker complementary slackness condition implies

that γu = 0.

P6(v). The claim follows because the first- and second-order conditions to both problems are identical.

□
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A Data

A.1 Merging of the datasets FICUS and FARE

For the analysis we merge the two fiscal firm-level data sets FICUS and FARE, covering the periods

from 1994 to 2007, and 2008 to 2019, respectively. Both in FICUS and FARE firms are classified by

a 4-digit sector nomenclature "NAF" (nomenclature d’activité française). However, from 2008 onward,

the FARE sectoral nomenclature changed: new sectors appeared (some FICUS sectors were split), some

FICUS sectors disappeared (were merged into a FARE sector). The FICUS nomenclature was organized

according to "NAF 1", while the FARE nomenclature is organized according to "NAF 2". In this study

we construct a single data set, 1994 - 2019, by extending the sector nomenclature NAF 2 throughout the

whole period. That is, we assign the current 4-digit sector nomenclature NAF 2 retrospectively to all firms

observed in FICUS. For firms that are observed both in FICUS and FARE or only in FARE their 4-digit

sector according to NAF 2 is known. However, for firms that have exited the market before 2008 we do

not know to which NAF 2 4-digit sector they would have belonged to if they had continued their activity.

To also classify these firms by the NAF 2 4-digit nomenclature we use the following methodology. We

first only look at firms that are observed in both data sets FICUS and FARE. From these observations we

build a transition matrix where each row represents a 4-digit sector according to NAF 1 and each column

represents a 4-digit sector according to NAF 2. Each cell of the transition matrix contains the number

of firms transiting from a specific 4-digit sector in FICUS (NAF 1) to the new 4-digit sector in FARE

(NAF 2). Table A1 shows an exemplifying transition matrix, where we chose the NAF 1 4-digit sectors

201A - 205C, i.e. the manufacture of wood and products of wood. For instance it can be seen that there

are 2060 firms observed that were classified in FICUS in 201A (first row) and in FARE in the sector 1610

(third column), while there are only 46 observations that were classified in 201A and in FICUS in 0220

(first column). From these observed transition frequencies we then calculate the transition probabilities

by simply dividing each element of the matrix by the sum of its corresponding row. That is, the NAF 1

- NAF 2 transition probabilities are calculated by

pIJ =

∑NJ

n∈I,J 1[n∈I and n∈J]
∑NI

n∈I 1[n∈I]

,

where n is a firm observed in both FICUS and FARE, I and J are specific 4-digit sectors according to

NAF 1 and NAF 2, respectively. 1 is a dummy variable equal to 1 if the condition in parenthesis is

fulfilled. Table A1 shows the observed number of transitions, while Table A2 illustrates the according

transition probabilities. In a second step, firms only observed in FICUS belonging to a specific NAF 1 4-

digit sector, are assigned to a NAF 2 (at the 4-digit level), by a random draw with transition probabilities

given the row of Table A2.
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Table A1: FICUS - FARE: Observed transition frequencies

NAF 2
NAF 1 0220 1392 1610 1621 1622 1623 1624 1629 2223 2512 3101 3109 3319 4329 4332 4391 4399 5610 9524 Total
201A 46 0 2060 5 6 22 35 12 0 0 0 7 0 0 25 24 9 5 0 2256
201B 0 0 498 0 0 0 0 0 0 0 0 0 0 17 4 36 24 0 0 579
202Z 0 0 0 108 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 112
203Z 0 7 33 0 15 1880 8 8 41 26 0 41 0 6 1005 386 34 0 0 3490
204Z 0 0 17 0 0 4 857 6 0 0 0 0 35 0 6 0 0 0 0 925
205A 4 16 10 4 0 21 5 1215 0 0 12 317 0 0 87 0 4 10 156 1861
205C 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 0 0 86

Table A2: FICUS - FARE: Transitions probabilities

NAF 2
NAF 1 0220 1392 1610 1621 1622 1623 1624 1629 2223 2512 3101 3109 3319 4329 4332 4391 4399 5610 9524 Total
201A 0.02 0.00 0.91 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 1.00
201B 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.06 0.04 0.00 0.00 1.00
202Z 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 1.00
203Z 0.00 0.00 0.01 0.00 0.00 0.54 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.29 0.11 0.01 0.00 0.00 1.00
204Z 0.00 0.00 0.02 0.00 0.00 0.00 0.93 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 1.00
205A 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.65 0.00 0.00 0.01 0.17 0.00 0.00 0.05 0.00 0.00 0.01 0.08 1.00
205C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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A.2 Data cleaning

As mentioned in the main text, the industry for food processing (10), the manufacture of tobacco products

(12), and the manufacture of coke and refined petroleum products (19) are excluded from the treated

sample. Further, we only keep observations reporting values larger than zero in capital stock (tangible

assets), number of employees, materials, and production. Table A3 illustrates summary statistics of a

typical four-digit industry if no data cleaning at all was made. The table shows that, compared to the

case with data cleaning (see Table 2 in the main text), the average number of firms is more than doubled,

given by 772. This is mainly induced by the inclusion in Table A3 of industry 10 and to a smaller extent

by keeping firms reporting zero and missing values in the number of employees. However, the table also

shows that firms with less than 10 (500 or more) employees account for about 6.7% (53.0%) of total

production, which is very close to the figures presented based on the cleaned sample. Hence, our sample

generally matches the main characteristics of the French manufacturing sector.

Table A3: Average statistics of a typical four-digit manufacturing industry without data cleaninga

Firm
sizeb

# of firms
Share of

firms
Share of

employees
Share of

production
Average

cost
Profit
rate

0 153 26.06 0.02 3.69 106.50 –6.79
1 59 10.05 0.48 0.35 93.62 4.43
2–4 88 14.99 2.00 1.03 95.66 2.76
5–9 74 12.61 3.99 2.07 94.67 3.17
10–19 52 8.86 5.72 3.36 93.74 3.71
20–49 49 8.35 12.39 8.62 92.74 4.01
50–99 16 2.73 8.88 6.55 93.83 3.08
100–199 9 1.53 10.86 8.82 94.40 2.41
200–499 6 1.02 14.88 13.65 94.41 1.95
500+ 3 0.51 40.77 51.38 95.87 1.03
NA 78 13.29 0.00 0.48 100.44 –2.42
Total 587 100.00 99.99 100.00 96.37 1.98

a All figures represent averages over all four-digit industries and years (1994–2019). Shares are
given in %.

b Firm sizes are measured by the number of employees. The group NA represents those firms with
missing values in the number of employees.

A.3 Further descriptive statistics

Table A4 shows shares of firms, employees, and production wrt each considered 2-digit industry. The

table shows that the manufacturing of metal products (25) represents the biggest industry in terms of

the average number of firms and average employment, representing about 23% of all firms and 14% of

total employment. Instead, the manufacturing for motor vehicles (29) represents the biggest industry in

terms of production, accounting for about 15% of total production. See also De Monte (2024) for more

descriptive statistics using similar data.
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Table A4: Average statistics by 2-digit manufacturing industrya

Industryb # of firms
Share of

firms
Share of

employees
Share of

production
Average

cost
Profit
rate

11 1098 1.90 1.78 4.01 86.27 3.12
13 2290 3.96 2.93 1.95 91.87 2.68
14 2916 5.04 3.19 1.67 93.76 1.36
15 840 1.45 1.42 0.86 78.09 2.13
16 4417 7.64 2.95 2.03 90.13 4.34
17 1153 1.99 3.37 3.31 95.30 2.96
18 6711 11.61 3.65 1.84 102.94 5.82
20 1907 3.30 7.27 12.61 90.28 0.63
21 333 0.58 3.55 4.35 114.14 1.28
22 3491 6.04 8.52 6.09 94.70 3.49
23 3807 6.59 5.46 5.45 91.08 2.86
24 776 1.34 3.78 5.38 89.92 2.96
25 13569 23.47 13.78 9.31 87.78 6.31
26 2186 3.78 6.41 4.53 157.99 0.42
27 1694 2.93 6.00 5.13 91.85 3.04
28 4448 7.69 8.14 6.93 96.96 1.19
29 1471 2.54 9.87 14.99 95.44 0.12
30 528 0.91 5.35 8.14 96.34 0.40
31 4176 7.22 2.58 1.42 87.21 3.92
Total 57811 100.00 100.00 100.00 93.60 4.00

a All figures are based on the cleaned dataset and represent averages over the period 1994–2019. Shares
are given in %.

b 11-beverages, 13-textiles, 14-wearing apparel, 15-leather/related products, 16-wood/products of
wood and cork, 17-paper/paper products, 18-printing/reproduction of recorded media, 20-
chemicals/chemical products, 21-pharmaceutical products/preparations, 22-rubber/plastic products,
23-other non-metallic mineral products, 24-basic metals, 25-fabricated metal products, 26-computer,
electronic, and optical products, 27-electrical equipment, 28-machinery and equipment, 29-motor
vehicles/(semi-) trailers, 30-other transport equipment, 31-furniture.

Table A5 illustrates the distribution of some variables included in znt to capture unobserved hetero-

geneity for the estimation of the cost function (see Section 7 and Assumption 9 in the main text). As in

the descriptive statistics section, the table reports averages in a typical 4-digit industry, as well as the

distribution of firm sizes over the 1994–2019 period. Beside the average number and the average share

of firms, the table reports the share of investing firms, the investment-to-labor ratio, and the average

firm age as well as the average number of observed periods (denoted by Tn in the main text). Note

that firms’ investment, int, is given by expenditures in intangible assets, reported in the balance sheets,

deflated by the corresponding 2-digit investment price index. Unfortunately, firms’ investments are not

observed for the specific year 2008. We replace the largest part of these missing values by computing

in2008 = Kn2009− (1− δ2008)Kn2008, where Knt represents firms’ intangible assets from the balance sheet,

deflated by a corresponding 2-digit price index, and δt denotes the capital depreciation rate, likewise

calculated at the 2-digit level. It can be seen that the share of investing firms is increasing in firm size,

where the share of investing firms with only one employee is given by 60%, whereas almost all firms

with 500 and more employees report investments in capital (99%). Regarding the investment-to-labor

ratio there seems to be two clusters: one with an investment level of about 6000e (or 0.06) per worker

and another cluster with average investment around 10000e. Considering firms’ average age and average

number of observed periods, it can be seen that, as expected, both variables are increasing in firm size.

That is, while the average age (number of observed periods) of firms with only one employee is given by

12.3 years (4.9 periods), the largest size group, firms reporting 500 and more employees, are on average

31.4 years old (and observed on average for 14.1 periods). Firms’ age, ant, is calculated as the difference

between the current year and the date of creation of the firm. Note that firms’ age does not necessarily

correspond to the number of observed periods as especially small firms often show temporal inactivity

and/or drop out of the sample because of missing values. Both variables should represent good proxies

to capture unobserved heterogeneity.
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Table A5: Further average statistics by 4-digit manufacturing industrya

Firm
sizeb

# of firms
Share

of firms

Share of
investing

firms

Investment-
to-labor

ratio

Firm
age

# of obs.
periods

1 42 13.55 60.08 0.16 12.39 4.87
2–4 73 23.55 69.85 0.07 14.21 7.81
5–9 66 21.29 81.89 0.06 17.45 10.58
10–19 49 15.81 90.20 0.06 20.66 12.31
20–49 47 15.16 94.60 0.06 23.69 12.40
50–99 15 4.84 96.64 0.07 26.49 12.93
100–199 9 2.90 97.66 0.08 27.84 13.32
200–499 6 1.94 98.29 0.10 28.46 13.89
500+ 3 0.97 98.69 0.12 31.41 14.16
Total 310 100.01 81.00 0.08 18.55 10.00

a All figures are based on the cleaned dataset and represent averages over the period 1994–2019.
Shares are given in %.

b Firm size is measured by the number of employees.

B Estimation of the demand function

This section explains how we implement two-ways clustering for the estimation of the coefficient variance

matrix. The methods is exposed by Cameron and Miller (2015) and Cameron et al. (2011) and applied

to the context of GMM. More formally, we assume that

E [ηisηit] = σiist for |s− t| ≤ 1,

E [ηitηjt] = σijtt,

E [ηisηjt] = σijst = 0, for i = j and |s− t| ≥ 2 and for i ̸= j and |s− t| ≥ 1.

As there is no possibility of consistently estimating these parameters, we are instead looking to consistently

estimate the variance matrix V [α̂] of dimension K ×K. It is convenient to define the set S of indices of

the dependent random terms:

S = {i, j, s, t : (i = j, |s− t| ≤ 1) ∨ (i ̸= j, s = t)} .

The cardinality of this set is I(3T − 2) + I(I − 1)T = 12628 and increases with I and T . The GMM

weighting matrix is estimated in a first step (using IV estimates η̂it) by the inverse of

B̂ =
I∑

i=1

I∑

j=1

T∑

s=1

T∑

t=1

zisz
⊤
jtη̂isη̂jt1[i,j,s,t∈S],

where the dummy variable 1[i,j,s,t∈S] = 1 if the indices are included in the set S and 0 otherwise. An

alternative (and easier to code) version of matrix B̂ is:

B̂ = Z
⊤(η̂η̂⊤ ◦ S)Z,

where the IT × IT selection matrix S has an entry (h, j) equal to one if the random terms ηh and ηj

are correlated, and zero otherwise. In our case, only about 4.5% of the elements of S are nonzero. The

Hadamard (term by term) multiplication is denoted by ◦. One difficulty comes from the fact that B̂ is

not necessarily positive definite. The same applies to our estimated parameters’ variance matrix:

V [α̂] = (X⊤
ZB̂

−1
Z

⊤
X)−1,
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where the matrices X and Z are respectively of dimension (IT ×K) and (IT × J) with the number of

instruments not smaller than the number of regressors L ≥ K. We follow Cameron et al. (2011) and

impose positive definiteness on the parameters variance matrix by setting negative eigenvalues to zero in

the eigendecomposition. Here, we actually compare different methods for imposing positive definiteness,

by either restricting matrix S, B,η̂η̂⊤ ◦ S or V [α̂] to be positive definite; the results were different, but

in all cases the diagonal terms of the restricted variance matrix were much lower than the HAC variance

matrix.

C Estimation of the cost function

C.1 Nonlinear least squares optimization procedure

As described in the main text, we estimate the structural parameters of the cost funcition using system

NLS, with the to functions describing the firm-level Cournot optimal output supply and the total cost

function

ynt = ys(pt, wnt, t, znt) + εynt

=
pt − γv1(znt)v1(wnt, t)− ηv1(znt)

γv2(znt)v2(wnt, t) + ηv2(znt)− P ′(Yt)
+ εynt.

cnt = max{γu(znt)u(wnt, t) + ηu(znt), 0}+ γv1(znt)v1(wnt, t)y
s
nt + ηv1(znt)y

s
nt

+
1

2
γv2(znt)v2(wnt, t)((y

s
nt)

2 + σ2
y) +

1

2
ηv2(znt)((y

s
nt)

2 + σ2
y) + ηc(znt) + εcnt, .

By modeling the observed cost components u, v1, and v2 functionally fully flexible and by introducing

the functions γu, γv1 , γv2 , ηu, ηv1 , and ηv2 to control for unobserved cost efficiency, modeled according

to A9 as a linear function of variables contained in z, we finally obtain a nonlinear system with a total of

138 free parameters to be estimated. Hereby the NLS objective function to be minimized encompasses

the sum of squared residuals of both equations defined above. The challenge at hand to obtain a good

model fit is to prevent from obtaining parameter estimates representing a local optimum of the objective

function, which is a likely result given the high dimensional parameter space. Hence, we proceed in the

following.

• Starting values. To find reasonably good starting values we first perform a grid search evalu-

ating the objective function at 500,000 (joint) random draws for all parameters. Those (random)

parameter values yielding the lowest value of the objective function will be used as starting values.

• Numerical optimization. We run the numerical optimisation using the R package optimx and,

more specifically, the optimisation routines Nelder-Mead (NM) and BFGS (Nash and Varadhan,

2011; Nash et al., 2023). To make sure that the numerical optimization does not stop at a local

minima and to finally obtain convergence, we impose two conditions: i) the numerical convergence

criteria need to be met by both NM and BFGS, ii) two successive NM function values are nearly

identical. The numerical optimisation is started by NM (using the starting values obtained from

the grid search) until a large maximal number of iterations is met (100,000 in many cases). The

resulting parameter estimates are then used as starting values for the subsequent optimisation using

the BFGS optimization method. The resulting parameter estimates of the BFGS optimisation are

then used as starting values to optimize the system again using NM. This iterative procedure, i.e.

the changing use of the NM and BFGS method, is repeated until there is no further decrease in the

objective function.
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Remark. The optimization routine is very time intensive due to the large number of observations, the

large number of free parameters, and the changing use of the BFGS and NM algorithm. Parallelization

of the estimation of different 2-digit industries helps to reduce the run time.

C.2 Further results: temporal evolution

Figure C1 shows the evolution of the median of the unobserved variable cost efficiency (γ̂v, solid line)

and the RTS (dashed line), where both measures refer to the left y-axis, as well as the RTC (dotted

line), referring to the right y-axis. The RTC corresponds to the median value (over all firms) of the

estimates for d ln c/dt. While it is found to vary around zero (with positive values between 1994–2006

and mostly negative values thereafter), the effect on total cost is substantial. It should be noted that the

reported median values only include the deterministic changes over time. The stochastic changes in γ̂v

correlated with y and t are not included in this estimate of the reported RTC statistic. This stochastic

technological change is estimated by γ̂v, which is found to be increasing over the entire period 1994–2019,

corresponding to a total increase in variable cost (at the median) of approximately 24%. The median

value of the RTS varies little over time, between 1.02 and 1.06. Even though the median RTS is close to

constant, there is substantial heterogeneity around this value (see tables above).
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Figure C1: Median evolution of unobserved variable cost efficiency (γ̂v), the rate of Return to Scale
(RTS) (both left y-axis), and the Rate of Technological Change (RTC) (right y-axis). The time series
are filtered using a kernel-smoother.

D Simulation

Table D1 summarizes the correlation between fitted and observed values obtained over 19 NLS regressions

(for each 2-digit industry). The table shows that the NLS estimates provide decent fits, which is necessary

for our simulation of output redistribution from less to more productive firms to make sense. In order

to reduce computation time and increase prediction accuracy, we only consider firms belonging to the 6

2-digit industries with the best fit between predicted and observed level of production (given by industries

11, 16, 22, 23, 27, and 31, see Table 1 in the main text for a description).
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Table D1: Correlation between observed and predicted values

corN (cnt, ĉnt) corN (ynt, ŷnt) corN (mrnt, ∂̂c/∂y)
Lower quartile 0.86 0.77 0.99
Median 0.91 0.86 0.99
Upper quartile 0.94 0.91 0.99

The correlations are computed for each of the (19) 2-digit industry sep-
arately, using industry-specific parameters’ estimates. The table reports
the quartiles of these 19 correlations.

The purpose of the presented simulation exercise is to compare the economic outcomes of the three

different scenarios, namely the Long-Run Cournot Equilibrium (LRCE), the Short-Run Optimal Welfare

(SROW), and the Long-run Optimal Welfare (LROW). In particular, as shown in the main text, we aim to

compare the (aggregate) production level, price level, welfare, profits, number of firms, and concentration

measures. We consider a single year (given by 2015) in order to reduce computational burden and to avoid

to deal with technological change, entry, and exit. Further, we only consider the six 2-digit industries

for which the best model fit was achieved. Note that each 2-digit industry is composed of several 4-digit

industries.

• LRCE. We assume that the data describe a structural economy with Cournot competition. The

total observed quantities Y differ form the theoretical values of aggregate Cournot equilibrium Y C

by a sum of random terms (over all firms). We simulate the theoretical Cournot equilibrium Y C as

follows.

1. Code firms’ reaction function based on equation (18), denoted by ybnt. We impose that the

optimal output is included in a window around the observed output level defined by 0 ≤ ybnt ≤

5 × ynt. We compute the profit corresponding to the three potential output choices, i.e. the

lower bound π(0), the inner solution π(ybnt), and the upper bound π(5 × ynt). This ensures

that firms’ production level at LRCE, yCnt, will take reasonable values.

2. Compute the fixed point according to (8). This determines simultaneously the individual

production levels of each firms and the aggregate production level at LRCE for a given 2-digit

industry Y C
t =

∑N
n=1 y

C
nt.

3. Compute the estimated price-level for a given 2-digit industry based on the demand parameter

estimates, denoted by PC
it by rearranging equation (29).

4. Compute profits πC
nt = PC

it y
C
nt − cCnt, where cCnt denotes the fitted values of a firm’s total cost

based on the estimated cost function parameters and the production quantity yCnt (see equation

(33)).

5. Compute the welfare WC according to equation (24).

• SROW. The SROW represents a scenario in which the central planner removes firms’ market

power, and obliges firms to set the price equal to their marginal cost. The SROW is simulated by

the following the steps:

1. Compute firms’ supply functions at SROW, denoted by ySnt, by setting firms’ marginal cost

equal to the market price. Impose that 0 ≤ ySnt ≤ 5× ynt.

2. Compute the fixed point for each 2-digit industry Y S
t =

∑N
n=1 y

S
nt.

3. Compute the estimated price-level for each 2-digit industry based on the demand parameter

estimates, denoted by PS
it .

4. Compute profits πS
nt = PS

ity
S
nt − cSnt.

5. Compute the welfare WS according to equation (24).
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• LROW. The LROW represents a scenario in which the central planner is not only able to remove

markups but also to replicate the most efficient firm to obtain a better social welfare outcome. The

critical task at hand is the choice of the firm to be replicated. For this purpose, we compare three

possibilities: replicating the firm at the 75th, at the 90th, or at the 99th percentile of the profit

distribution. The LROW is simulated by the following the steps:

1. Set the percentile α of the profit distribution in turn to α ∈ {0.75, 0.90, 0.99}

2. Compute the initial number of firms N4,i in each 4-digit industry i. To this end, for a given

2-digit industry, we replicate in each 4-digit industry the firm at the αth quantile of the

profit distribution a sufficiently large number of times in order to match the observed level of

aggregate production in each 4-digit industry. At the starting point, the profit in each 4-digit

industry i was positive (abstracting from few exceptions).

3. Increment the number of firms by a positive unit, chosen to guarantee that the aggregate pro-

duction share of each 4-digit industry within a given 2-digit industry stays constant throughout

the simulation exercise. Repeat this step until the profit is zero in one of the 4 digit industries,

this stationary point characterizes the LROW.

4. Compute the LROW price PL
it , quantity Y L

it , cost and profit cLnt, π
L
nt.

5. Compute welfare WL according to equation (24).
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