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1 Introduction

“May you never forget what is worth remembering, nor ever remember what is best forgotten”. –

Irish Blessing

The above quote from Irish Blessing aligns with a reflection of the hidden architecture of model building

by economic theorists and econometricians based on some quantitative convolution of the idea: ‘never forget

what is worth remembering. That is, the persistence of a positive signal for the agent to predict a pattern that

is most likely to occur in interaction with complex socio-economic systems. Further, it becomes increasingly

difficult, although ideally plausible, to least remember negative shocks because a long-term memory of such

a shock can trigger a system instability (Mishra et al. 2023). Clearly, this is what neither a central planner

nor an individual agent would ever want. However, in a real-life scenario, both events occur in tandem at

either the instant of time, t, or at different time points such as t+1, t+2, .... This means that the agent needs

a learning rule to negotiate both negative and positive shocks at the same time or within a short temporal

difference: i.e., trying to forget (ideally very rapidly because this brings stability within the shortest time

duration) and remember the positive one (because this can create a diffusion path of positive expectations).

Memory (irrespective of its lengths, short and long) is an ‘identity of an agent because this ‘identity

helps the agent design his next best strategic action maximizing value. Researchers offer several theoretical

possibilities as potential sources of memory (particularly, long-term memory), such as aggregation, hetero-

geneity of actions, and the individual effects of learning. This paper emphasizes the distinct effects of learning

(particularly the speed of learning) and embeds the same in a ‘distance-theoretic’ framework to propose an

alternative approach to asset value optimisation under uncertainty.

Our identification mechanism consists of two important edifices. First, we consider a setting where

persistence of information asymmetry and their varying magnitudes produce a realistic duration-dependent

type of shock survival process. A variant of this mechanism has been investigated in Parke (1999). Abstracting

from conventional infinite-order autoregressive (AR) and moving average (MA) driven framework, the error

duration model assumes that observed errors follows a stochastic duration instead of dissipating uniformly

over time. The duration aspects allow a financial agent to evaluate persistence profiles of shocks for the

(asymmetric) duration. In other words, the length of duration of shocks or their survival probabilities vary

around the intervention (short or long duration before and after the intervention). Indeed, in a financial

setting, one can possibly identify asset positions as one would model elements that have stochastic durations,

where those durations reflect ‘persistence or memory’ of certain degrees. Instead of a uniform duration or

interval (a feature which does not comply often with real life data), we allow an asymmetric duration. For
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instance, shocks display greater persistence after the intervention of a negative policy shock (such as an

increase in interest rate) and lower persistence prior to the intervention. Such heterogeneous persistence

profiles can produce varied magnitudes of memory so much so that asset price volatility can be fractionally

integrated (with long memory) if ‘a few asset positions last longer than would be predicted by the lifetimes

of typical positions (Parke, 1999).

The basic mechanism for an error-duration model is the overlay of a sequence of shocks which are of both

stochastic magnitude and stochastic duration. The stochastic element accommodates a type of characteristic

that may be persistent but may have a random assignment/occurrence. In other words, an observed time

series such as stock prices (returns) or volumes at a given point of time, is actually a mathematical repre-

sentation of sum of those shocks that survive to that point. Eventually, the nature of the distribution of the

duration of these shocks actually determines the order of integration (or fractional integration) of the series.

Technically (as we shall explore in Section 3), the fractional integration would require that only a small

percentage of the shocks have long durations (or more persistent), which is typically the case in financial

markets. We use this mechanic as our baseline source of long memory and combine it with an agent’s learning

behavior considering his relative economic positioning.

Recently, in an intuitively appealing and theoretically robust framework, Chevillon and Mavroeidis (2017)

demonstrated that learning can generate memory. Bauwens et al. (2023) expanded the methodological

underpinning of Chevillon and Mavroeidis to introduce a model that could generate a long-memory with

substantial lag-size reduction (in their case, with just one lag). This dimensionality reduction is important

because in real life financial or economic worlds, agents ‘best remember a lag 1 shock’, assuming that long-lag

shocks are somewhat incorporated within the immediate lag (lag 1). It is within this robust lag-assumption,

agents often engage in the unavoidable dynamics of comparison across social or economic positions. As an

example, consider a case where a financial agent wishes to predict an asset position for himself. He would

take into account not only his own position at t − 1, but also, of the position of another agent (j) at t − 1.

A predictive conformity of his position at t + 1 (in general, an equilibrium decision) is based on his social

position in relation to others. This position drives the core of learning at an instant of time. We recognise

the centrality of such a process, that is, an agent’s ‘social positioning’ with asymmetric error duration, one

which is likely to originate from persistent information asymmetry. This eventually helps us introduce a

long-memory social distance-driven learning model (an acronym that we denote as DSDLM).

The rest of the paper is planned as follows. Section 2 provides a synoptic overview of the learning and long-

memory literature eliciting how learning and memory are intertwined. Section 3 presents our model design.

Section 4 provides a numerical example. Finally, Section 5 presents a discussion of our main arguments and
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summarizes the results.

2 Literature

The literature on learning and long memory has developed ostensibly over the years. In our view, both

streams of thoughts have grown in parallel and remarkably well in their own respective fields of development.

Lately, researchers have been seeking to explore the source of long-memory in the form of endogenous learning

of agents. There are still substantive ambiguities on how learning (discrete and discontinuous) determines

long memory when agents invariably make comparisons of their own as well as others’ social status. In other

words, an agent may be wary of the financial gains from an asset position of another agent (making her

socially and financially more secured and identifiable). The question is how one can combine those central

features of learning (about social positions) and exploit duration nature of error dependence with persistence

asymmetric information. Often, then the question focuses on rationality of choice of agents. Can people learn

enough to make useful decisions by observing the choices and experiences of others? If there are multiple

equilibria in a strategic model, perhaps reflecting low and high levels of financial economic activity, can the

process by which agents approach equilibrium be used to predict the outcome? In this section, we present a

summary of the existing literature on learning and memory, which guide us in designing our research question.

Learning is central to agents’ identity and their ability to grow in any environment. In addition, in a

financial market setting, agents who demonstrate the quicker ability to learn tend to earn better financial

rewards. The speed of learning is often seen to be proportional to the inverse of time loss to correct or

innovate a strategy. Learning and memory are fundamental processes that play a crucial role in various

aspects of human life, including financial decision-making. In recent years, there has been growing interest in

developing novel approaches to learning and memory in finance, with the aim of improving financial literacy

and decision-making abilities among individuals and organizations.

In this section, we provide a comprehensive overview of existing work on learning and memory in finance,

highlighting the current state of knowledge, and identifying areas for future research. Several theories have

been proposed to explain how people learn and remember information related to finance. One of the most

widely accepted frameworks is the Atkinson-Shiffrin (A-S) model, which posits that information first enters

sensory memory before being transferred to short-term memory and eventually long-term memory (Atkinson

& Shiffrin, 1968). However, this model has been criticized for oversimplifying the complexity of human

memory and neglecting factors such as motivation, attention, and prior knowledge (Tulving & Thomson,

1973; Eichenbaum et al., 1999).
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Another influential theory is the Information Processing Theory (IPT), which suggests that learning and

memory are functions of the amount and quality of information processed (Sweller, 1988). According to IPT,

people process information through a series of stages, including attention, perception, encoding, storage, and

retrieval. However, this theory assumes that all information is equally important, failing to account for the

fact that people typically focus on specific aspects of financial information while ignoring others (Hoffrage,

2015).

A more nuanced perspective on learning and memory comes from the Levels of Processing Framework

(LOPF), which proposes that information can be processed at multiple levels, including shallow or surface

level, deep or semantic level, and finally, the level of relational or contextual connections (Craik & Lockhart,

1972). Although LOPF acknowledges the importance of deeper processing, it does not fully address the issue

of motivation and goals in learning and memory (Bjork & Bjork, 1992). Recent Advances in Neuroscience and

Financial Decision Making. Wang et al. (2018) explore the application of deep learning techniques to financial

markets prediction. The authors begin by discussing the challenges associated with forecasting financial

markets, such as non-stationarity, volatility, and high dimensionality, and argue that deep learning models

are well positioned to address these challenges due to their ability to learn complex patterns and relationships

in large datasets. They then provide a comprehensive overview of various deep learning architectures that

have been applied to financial market prediction, including feedforward neural networks, recurrent neural

networks, and convolutional neural networks.

In another stream of work, Khalil and Pipa (2021) use news analytics to assess the potential of deep

learning and natural language processing (NLP) in financial forecasting. They examine the strengths and

limitations of these techniques and discuss how they can be used to improve financial prediction. The authors

provide a detailed analysis of various studies that have applied deep learning and NLP to financial forecasting

tasks such as stock price prediction, sentiment analysis, and text classification. In addition, they explore the

challenges associated with implementing these methods in real-world scenarios and highlight future research

directions in this field. Overall, Khalil and Pipa’s work offers valuable insights into the application of advanced

computational methods in finance and contributes significantly to our understanding of their capabilities and

limitations.

Various other related research covers a wide range of models including linear regression, decision trees,

random forest, support vector machines, neural networks, convolutional neural networks, long-short-term

memory (LSTM) networks, gated recurrent units (GRU) and attention-based LSTM. The authors noted

that while these models have shown promising results in predicting stock prices, there are still challenges

such as dealing with high-dimensional data, handling non-linear relationships, and addressing the problem of
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overfitting. In general, the paper provided valuable insights into the use of machine learning and deep learning

models for stock market price forecasting. It served as a useful resource for researchers and practitioners

interested in this area.

Hsua and Lessmanna (2022) present a comprehensive overview on the current state of financial market

forecasting, comparing the strengths and weaknesses of machine learning and financial economic approaches.

The authors analyze the advantages and disadvantages of various machine learning models, such as linear

regression, decision trees, and artificial neural networks, in terms of their precision, interpretability, and

ability to handle complex financial data. They also examine the limitations of traditional financial economic

models, including their reliance on simplified assumptions and the difficulty in capturing market dynamics.

Furthermore, the authors discuss recent advances in hybrid models that combine elements from both machine

learning and financial economics, highlighting their potential to improve forecast accuracy and provide more

robust results. Through their literature review, Hsua and Lessmann demonstrate the importance of bridging

the gap between these two fields to develop more effective and practical financial market forecasting tools.

Many authors exploit deep learning models where their use can help predict future price patterns. The

researchers show that their method outperforms traditional statistical models in some cases, demonstrat-

ing the potential of deep learning techniques for financial forecasting. In general, the substantive literature

contributes to the growing body of research applying deep learning to financial markets and suggests that

universal features of price formation may exist across different assets and time scales. However, the au-

thors acknowledge that further study is needed to fully understand the origins and implications of these

characteristics and to improve the accuracy and robustness of deep learning models for financial forecasting.

In a recent work, Anh, Inoue and Kasahara (2022) present a novel approach to modeling financial markets

that takes into account the idea of innovation processes and expected utility maximization. The authors

propose a framework that incorporates memory effects and allows the consideration of multiple factors that

influence investment decisions. Their model captures the notion of ”innovation” as a way to describe how

new information is incorporated into market prices, leading to a more realistic representation of market

behavior. Using this approach, the authors are able to demonstrate how their model can reproduce fat-tailed

distributions and volatility clustering, two phenomena that are observed in real-world financial markets but

difficult to capture using traditional models (see Bekiros et al. 2021 for clustering implications of correlated

shocks at the fat-tailed, leading to different learning dynamics) . Additionally, they show how their model can

be used to analyze the impact of policy interventions and changes in market structure on market behavior.

Overall, the paper represents a significant contribution to the field of financial econophysics, offering a fresh

perspective on the complex nature of financial markets and their behavior.
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An agent-based mechanism in memory generation has been presented by Zheng et al. (2022), where the

authors provide a comprehensive examination of long memory in financial markets through the lens of a

heterogeneous agent model. The authors integrate concepts from cognitive psychology, behavioral finance,

and agent-based modeling to create a rich and nuanced portrait of market behavior. They convincingly

demonstrate that the presence of long memory in investors’ decision-making processes can lead to the emer-

gence of complex patterns in market activity, including volatility clustering and fat-tailed returns. The model

developed by the authors captures the essential characteristics of financial markets, including the coexistence

of rational and irrational behaviors and the role of social influence in shaping market opinion. Furthermore,

they show that their model can replicate many stylized facts of financial markets, such as the anomalous

behavior of stock prices and trading volume. This paper makes a valuable contribution to our understanding

of financial markets and offers deep insights into the development of more accurate and realistic models for

market simulation and prediction.

3 Model

In this section, we present and characterize a distance-based and learning driven long-memory model for an

asset in a financial market. Our strategy requires robust identification of potential sources of long-memory

based on which a learning rule can be designed. Several influential works preside over our choice. Firstly,

we follow the running and the most popular strand of literature that recognizes the role of heterogeneity

and aggregation (see, e.g., Granger, 1980; Abadir and Talmain, 2002; Zaffaroni, 2004; and Schennach, 2018).

Secondly, we are driven by recent contributions in the field focusing on the assumption of a representative

agent framework with constant parameters (Chevillon and Mavroeidis, 2017). The latter assumption avoids

confounding inferences with various models of long-range dependence (discussed, for instance, in Granger,

1980, and similar scores of research following him). To fully exploit the distinguishing features of our model,

we present below required preliminaries.

3.1 Long-memory and Learning: Some preliminaries

We begin with a conventional expression of an integrated process of order d for a time series, yt (for t =

1, . . . , T ).

(1− L)dyt = ψ(L)εt (1)

where (1 − L)d is the (fractional) difference operator of order d with d is fractional and lies between 0 and
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1. In an extreme case where d = 1, (1 − L)1yt = yt − yt−1 = ∆yt. It is a first order difference equation,

the root of which becomes explosive as time grows, indicating the instability and irreversibility of the system

to the steady-state value. ψ(Lj) is the coefficient of the error term (ε) at each specific time period t − j

with
∑∞

j=0 |ψ(Lj)| <∞, j = 0, 1, 2, . . . , and the error term (εt) is a white noise process with zero mean and

constant variance, viz. εt ∼ iid(0, σ2). As explained in Hamilton (1994), if d > 1/2, yt will no longer be

stationary as the inverse of (1− L)d approaches infinity.

yt = (1− L)−dψ(L)εt (2)

Based on the power series expansion technique, the operator (1− L)−d can be demonstrated as

(1− L)−d =

∞∑
j=0

γjL
j (3)

where γ0 ≡ 1 and

γj =
(d+ j − 1)(d+ j − 2) · · · (d+ 2)(d+ 1)(d)

j!
(4)

where γj ∼= (j + 1)d−1 given that d < 1 and j is large.

In summary, the series yt can be a mean-reverting process when the superscript d− 1 in γj ∼= (j + 1)d−1

is less than 0, that is, d < 1. This indicates that the impacts of the shocks from previous periods on yt

will gradually decrease over time. The conventional mechanics of shock propagation, as described above and

summarized below in Table 1, assume that the memory of a dynamic system can be described primordially

as a function of long lags. Here, each lag should contain the best set of information at that point of time

about both the present and the past values of the system. However, because the available information is

imperfect at any point of time, there is always a remnant of the past that flows through the passage of time

to the present moment. Such a flow can simply be modeled in a linear setting or to approximate real life

dynamics, can be modelled non-linearly.

Insert Table 1 about here

In this setting, learning occurs at each time lag and progressively accumulates until the system stabilises.

An ideal condition would be fast-paced learning through successive lags, possibly with just one lag! If all

information from the past can be stored in the immediate lag in a financial time series, then this immediate

lag is technically the best predictor of the time series. It not only reduces the dimension by improving the

degrees of freedom, but also offers a powerful opportunity to project all past values within the immediate lag
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of a series. Whilst such an approach has remarkable technical reliability in an atomistic world of ‘no social

interaction’. we, however, live in a highly interactive expectation-driven world. The one-lag assumption as

an optimum driver of the current value of a time series, then appears at odds with highly probable dynamic

interaction with other time series within a system.

It is not always possible to generalise that all time series could generate long memory with just one

lag, as the governing features of those series may accrue to a different data generating process. Therefore,

the high-dimensional interaction that takes place in a financial market can reveal that such a step-by-step

learning and adjustment process faces inescapable impacts of greater speed of arrival of both endogeneous

and exogeneous shocks. They make learning very complex. Thus, the long-memory process that germinates

from such a learning dynamics can be hard to characterize with long-lag dependence structure because the

relationship between each remote lag with the succeeding one, and the latter with the current value of the

series can be highly non-linear and very likely stochastic. The model of one-lag theory of Bauwens et al.

(2023) is a clever approach in this regard, but its efficacy as a reliable and powerful predictor of the current

value of the series is problematic given complex ’social interactions of various lags of the series with other

series in the growing system’.

What we have presented so far is the context of memory defined from an individual agent’s perspective.

But because we live in the dimension of a system, then, what one would be seeking is the transformation of

individual memory into collective memory. The latter leads to an emergent and a recursive system defining

a new narrative of learning-based long-memory characterisation. What matters here is the pace at which

negative shocks taper-off over time. Denoting the memory of the individual or the system as S, and by

allowing S to be a function of some known factors (X) and some unknown factors (ϵ) at time, t, then

temporal change in ‘memory’ - keeping other things constant - would converge in probability, to (S̄).

St = f(Xt, ϵt) (5)

lim
t→T

d(St)

dt
→ S̄ (6)

This implies that depending on the convergence speed and length of time (very short or long), the system

settles to a stable system. This notion of asymptotic convergence to stability of the system encapsulates the

role of a type of learning that is inherently drawn from a weakly inefficient system. In case, one assembles - as

in a typical financial market - both private and public information and exploit the historical nature of the data

reasonably well, the system gives rise to a strong efficiency. The learning in this context is not supposed to

be driven solely by the asymptotic character. Rather, as recent authors (we will discuss about them shortly)
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would argue a rather short-span dependent autoregressive phenomenon to characterise a long-memory. Note

that the convergence speed of shock duration can be asymmetric (greater speed of convergence before the

intervention of a shock and smaller speed in the aftermath of intervention) as well as tighly interlinked with

spillover learning dynamics that arise within an integrated system, such as the highly immersive financial

world. The question one pose is whether persistence profiles depict ‘smooth’ trajectory reflecting continuous

improvement through various lags.

In real life financial markets or economic conditions we often come across situations where (positive and

negative) shocks can exhibit duration-specific correlation, one which can demonstrate a mean-reverting but

long-memory process. In other words, we have ignored so far the fact that there can a duration within which

the errors can survive up to a point of time with certain probability. As noted earlier, we regularly come

across circumstances in financial worlds where errors do not display a continuous persistence without being

disrupted somewhere with certain probability of duration. Indeed, duration enables persistence of errors or

shocks with the power of asymmetry and the latter, we know from theory is a major source of non-linearity.

Whilst a linear dependence of errors over time is a theoretically plausible and computationally less demanding

feature, asymmetry and non-linearity are more reality driven. Agents in any (complex interactive) system

demonstrate a natural inclination to learning, but this learning is not continuous due to the way errors

survive certain period of being persistent and being non-persistent in other duration. An error-duration

dependent learning process is closer to real life financial dynamics where the memory that originates from

such mechanisms of learning presents a robust mechanism to reflect on agents’ complex behaviour in a far

more complex system. Accordingly, we present below a duration model of the error drawing on Parke (1999).

We then extend this framework by accommodating a ‘distance’ metric among interacting variables in a ‘social

or economic’ space.

3.2 Duration Model of Error and Long-memory

Parke (1999) introduced an error-duration dependent long-memory process. We will exploit the rich properties

of this model to build our proposed construct. To avoid notational ambiguities, denote as before ϵt (t =

1, 2...T ) as a series of i.i.d. shocks with mean zero (no bias) and finite variance σ2 (i.e., a stable system).

Let us assume that the error ϵ, has a stochastic duration ds ≥ 0, indicating that it has survived from period

s to period s+ ds. Survivability here is proximus to the broad idea of persistence; a shock that survives for

a certain period can be alternatively explained by a shock that is persistent for the duration of the period of

survival. The duration-driven persistence is both technically and intuitively different from the conventional

persistence properties of a time series; whilst the former can estimated varied persistence patterns specific to
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durations or survival of shocks, the latter assumes a smoothing and linearisation of shocks over the course of

time. Duration models are popular in economics and finance, especially when modeling the effects of some

policy intervention, for instance, in the financial markets.

Denote Is,t as an indicator function with respect to a situation where error ϵs survives to period t. In

other words, if the shock survives the entire duration s + ds, we describe this by Is,t = 1 for t = s + ds.

Likewise, if t > s + ds, that is, time t is greater than the duration of survival (s + ds), then we denote

this by the indicator function Is,t = 0. We can assign probabilities to survival of shocks. Denote pk as the

probability that ϵs survives to the period s+k: that is, Pk = P (Is,s+k = 1). If Pk, k = 0, 1, 2, .... is monotone

non-increasing, then following Parke (1999), we can show that the realization of values in yt (such as stock

returns or stock prices at time t) is the sum of all errors ϵt−i, i = 0, 1, 2, etc.. that survive until period t :

yt =

t∑
t=−∞

Is,tϵs (7)

Here, survival probabilities specified by (p0, p1, p2, ...) are for a specific duration and are crucial parameters

of the concept of error-duration (ED) representation of yt. For this process, the autocovariance function (γk)

can establish a link between the model that describes the duration of the error and other representations.

Parke (1999) showed that γk = σ2
∑∞

j=k pj and pk = (γk−γk+1)/σ
2. The most important mechanic in Parke’s

idea of error-duration driven long memory feature is how certain shocks survive until a specific period. This

makes no assumption that the survivability has to be at the full duration of the sample or the entire time

path of the history of the series. Shocks can ‘survive’ only for a sub-period of time within the observed longer

time horizon, but this survival characteristic is long-enough to generate a persistence-type feature.1

Exploiting these results and following Parke (1999), we can now establish that the process yt has a long

memory if limn→∞
∑n

k=1 kpk or limn→∞
∑n

k=1 k(γk − γk+1)/σ
2 is non-finite. In the following, we describe a

process that has an implicit character of error duration but with a short time lag. Basically, the idea, as we

will see shortly, concerns how a short-duration lag (particularly, lag 1) can generate a long-memory feature.

However, before reconciling the models of Parke (1999) (error-duration) with Chevillon and Mavroeidis

(2010) (on the role of learning in long-memory), and Bauwens et al. (2023) (the importance of one time lag

in generating memory), we need to understand the general mechanic of how learning can generate memory.

We briefly outline the model of Chevillon and Mavroeidis (2010) below and introduce an extension later.

1For this specification, the autocovariances of (1− L)yt can be represented in the form of σ2(pk − pk−1) as the probability
of survival between two time periods drive the growth of variance.
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3.3 Learning and long memory (persistence)

In a simple expectation driven framework, a typical learning model can be presented by expressing a linear

correspondence between an expected value of the time series, yt at time t+1 (denoted by yet+1 and its current

value (yt).

yt = γyet+1 + xt (8)

Here yet+1 represents the expectation of yt+1 conditional on information up to time t. Furthermore, γ (which

should be typically > 0 and < 1) can describe the learning parameter: a positive effect of learning occurs

when γ > 0 and the learning deliver a stable outcome when γ < 1. As γ is close to 1, the system takes longer

time to stabilise in contrast to when γ is close to 0. Importantly, note that when γ is close to 0, the speed

of learning is faster and transformation of the system from instability to stability happens in the quickest

time. However, when γ is close to 1 (typically, greater than 0.5), the speed of error correction in the sytem

is slow and the system takes longer time to stabilise. Within this long duration, the arrival of some other

exogenous/endogenous shocks are quite likely and if this happens, the ’survival’ of shocks or error term to

the next period can mask a non-converging pattern. In other words, shocks may appear to last forever - a

feature that is often unreliably accepted/rejected with the conventional test of a unit root in a time series.

Evans and Honkapohja (2001) and latter, many authors have extensively studied this model.

Equation 8 can be generalised to an infinite-horizon expectation framework (thus introducing an autore-

gressive feature) by assuming that yt = f(xt, x
e
t+1):

yt = xt +

∞∑
j=1

γjx
e
t+1 (9)

If agents in a financial market are rational, then we can set yet+1 = Et(yt+1) and x
e
t+j = Et(xt+1) assuming

rational expectations (where, Et captures expectations). In other words, agents’ expectations about the

future should be technically equivalent to the average of future values of the variable in question. Further,

with the condition that |γ < 1| and there are no bubbles (limt → ∞|Et(yT )| < ∞ for all t < ∞), the

specifications (8) and (9) are equivalent (see, e.g., Blanchard and Fischer, 1989). The same is not true under

adaptive learning mechanism (see Preston, 2005, 2006). Although equations 8 and 9 represent linear learning

rules, in practice, one may use non-linear mechanics (such as a quadratic specification) to ensure stability

in the effects of learning. In that case, how expected value of financial gains from an asset investment, for

instance, would determine the current value can be reasonably mapped from a linear to a series of admissible

11



values in a non-linear space.

In a setting describing adaptive learning (Sargent, 1993; Evans and Honkapohja, 2001), the limitations

that financial agents would face are the same as empirical economists because the latter are known to assume

models, but they are not aware of their true parameter values. Hence, empirical economists estimate the

parameters econometrically, throwing thus an inherent challenge of reconciling true learning rules with the

empirically compliant one. In particular, agents would like to build expectations driven by a law of motion

of the processes yt or xt. The parameters of these processes are estimated recursively given the information

that is accessible to them. In this setting, the agents’ forecasts can be expressed as weighted averages of

past data (a typical feature of a conventional learning process). However, the weights may vary over time

to accurately reflect the information along with the increase in the sample. This is an important feature

of learning. Researchers often use linear learning algorithms, so that they can envisage that a long range

dependence can arise without the need for nonlinearities (on which recent econometric literature on the

source of long-memory has advanced) (see Diebold and Inoue, 2001; Davidson and Sibbertsen, 2005; Miller

and Park, 2010, and the surveys by Granger and Ding, 1996; Davidson and Teräsvirta, 2002).

In the case of linear learning mechanic, one can conveniently express this by mean plus a random noise

model. The ‘mean’ represents average learning - a feature of group characteristics. Basically, it means that

our typical learning is a group phenomenon as long as we live in a society full of competitive and boundedly

rational agents (Sargent, 1993). The noise has a random feature so that there is no bias and the unit variance

dictates stability of learning. Another assumption concerns that random errors are not correlated over time so

that the serial correlation of unknowns does not impact the learning feature (an average). We thus represent

the idea in the form of the assumption (below).

The process xt is determined by xt = µ + ϵt, where µ is a constant and ϵt is i.i.d., with E(ϵt) = 0 and

E(ϵ2t ) <∞. Such an assumption ensures that |γ| < 1 in equations 8 and 9 are stable. To envisage a long-lag

feature of learning, we can introduce a recursive system: yet+1 =
∑t

i=1 yi so that the expectation of yt at

t+1 is the sum of all y over the time horizon t. What happens if there is a mean-shift in the learning model.

The mean can shift in situations whenever there are, for instance, structural re-positioning of the system

following significant ‘innovation’ (for instance, policy). This mechanism allows us to model the mean in a

time-varying structure, specifically an autoregressive (AR) process of µt. Limiting the process to AR(1) (as

we know from theory that an AR(1) series can give rise an an MA(∞ process): µt = µt−1 + ζt, t ≥ 1. Here

α0 = α and ζt are i.i.d. with zero mean and finite variance.

The signal-to-noise ratio of the above process is given by Γt = var(vt)/var(ϵt), which indicates the

proportion of signals weighed by noise. Eventually, this proportion can drive the agent’s learning speed. It
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is easy to see that yet+1 is a function of the current and past values of yt and µt. In summary, the learning

algorithm can be represented by linear functions of the past values of yt. This can accommodate time-varying

coefficients to capture the dynamic learning and adjustment process.

yet+1 =

t−1∑
j=0

κt,jyt−j + ψt (10)

The faster an agent discount effects from past observations, the greater becomes the speed of adjustment

the efficacy of learning. We can estimate this using the mean delay of κt, denoted asm(κt) =
1

κt(1)

∑t−1
j=1 jκt,j .

An econometrician can use the magnitude of m(κt) relative to the sample size as an indicator of the ‘length’

of the learning window. Chevillon and Mavoredis (2018) show that this drives the memory of the process

that is induced by learning dynamics.

To summarise, if an agent starts with a sensible model, if the environment is stationary, if it is costless

to obtain and process information, then eventually the agent learns enough about the environment to make

optimal decisions. Following our representation of learning algorithms in static and dynamic settings, our

next task is to show when an agent learns, how quickly she converges to a ’group’ outcome so that the

’conformist’ representation helps her position own financial status relative to the competitors - which is what

investors in a financial market do.2 By introducing such a construct we aim to solve two problems that are

not discussed in the extant literature. First, we show that how an agent discounts past information in order to

build her current model depends on the relative ’positioning’ of the agent in the’social space.’ Eventually, the

magnitude of learning can be driven by the error-duration dependence in such a way that an agent’s relative

social positioning within that period can allow her to either drift away or converge to a social optimum. The

memory that lingers from such a strategy would ideally drive the speed at which past observations should

exert dissipating effect on the current value of the system. We describe such a mechanism in the following

section.

3.4 The instrumentality of ‘space’ in learning and memory

Agents’ choices are sparsely atomistic. Rather, the relative nature of choices, irrespective of whether observing

another agent at the same point of time or comparing her choices with herself and others at different points of

time, makes learning a complex phenomenon. One can still apply a linear learning rule to individual choices

(e.g., whilst forecasting a pattern of stock price movements based on her own social/financial position as well

as the same position of others within a system). In other words, whether she really wants it or not, she is

2See Gupta, Mallick and Mishra (2018) for a related discussion in the context of household consumption.
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naturally exposed to the tangency of relativism.3 Following on our representation of learning and memory

in the preceding section, we now expand the model behavior by introducing a status and a conformist model

to understand learning behaviour of agents in the financial markets.

To formalize the above idea, let us assume that there are two time periods for an individual’s choice:

influenced by ’intrinsic’ value of location and expected benefits from social exchange, i.e. the benefits gained

due to proximity with one’s neighbors or observations at two different points of time (0 and 1). These

two components are captured in a utility function U , for each agent, which is maximized to determine the

direction of their movement along the real line. We build two models (status and conformist) drawing on the

seminal ideas of Akerlof (1997).

3.4.1 Status Model

In this model an agent chooses the status-producing variable x (such as a financial asset, a crypto or a green

asset as an example) to maximize the indirect utility function

U = −α(x̄− x)− ax2 + bx+ c (11)

As long as the agent falls behind everyone else in her choice of x, the agent loses utility in amount α(x̄− x),

where x̄ is the choice of everyone else. For instance, choosing a green asset is like a status seeking investment.

If everyone is investing in this asset (x̄) but the agent concerned chooses to refrain from investing in this

asset, then this creates a status problem. Not only that, she will be likely to be neglected in social space

(because green asset investment conforms sustainability objective of an economy). It is not therefore, difficult

to assume that x has an intrinsic value to her of −ax2 + bx+ c because this value may decline over time in

case the expected social return is less over time (the quadratic component). The last term C is a constant

that drives the innate value of the asset. Therefore, in equilibrium, the agent chooses

x = (b+ d)/2a (12)

3.4.2 Conformist Model

The agent cannot ever remain alienated from the group. There will be a point of time, she would like to

’conform’ to the group’s identify. If everyone around is investing in green assets, the agent herself - upon

delaying the idea of the investment for sometime - can eventually give up and converge to everyone’s idea.

3See Tamvada, Shrivastava and Mishra (2021) for a discussion with respect to a developing country.
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Whether the agent really gains from ’conforming’ to everyone’s decision is an issue (which is beyond the

scope of this paper), however, it satisfies her to assume that if everybody gains, she gains. If everybody loses,

she loses too. In other words, being in the ‘herd’ and identifying herself in that group, the agent may not feel

like a sole ’loser’ in the competitive social race. In a crypto investment scenario, for instance, the volatility

of cryptos can be attributed primarily to ’herd-mentality’ driven investing aptitude (to either take risks like

others, where the latter may be irrationally driven). The above examples help us build a conformist model,

the agent would like to minimize the social distance between herself and others. In this case she does not seek

to be better than other people, but instead wants to be as much like them as possible. The utility function is

U = −α|x− x̄| − ax2 + bx+ c (13)

In the above, the agent can experience a loss of utility of magnitude α|x− x̄| because he does not comply

with others (such as our example of buying green assets). Because everyone is similar in equilibrium, x = x̄.

This setting produces multiple equilibria as long as the distance α > 0. The distinct clusters of agents who

have various values of α represent a dynamic learning environment where they would move quickly - in the

social space - towards the point where everyone has achieved a social optimum (i.e., everyone’s choice). The

problem facing each individual i is how to choose x1i conditional on her initial social position, x0i. If we

compare this with Parke’s (1999) error duration framework, we can envisage the distance that shocks survive

from an initial position to a terminal position, a length that determines the extent of memory or persistence.

However, the agent has to make expectations about the position of her potential trading partners in

social/financial exchange. One can expect multiple outcomes depending on how these expectations are

formed. The simplest assumption concerns how the acquired social position ‘of all the other individuals will

coincide with their initial position’ (Akerlof, 1997). With such static expectations about social position, αe
1,ij ,

i’s expected acquired distance between herself and j will be x1i−x0j . In sum, each respective agent i chooses

the respective value of x1i to maximize:

Ui(x) =
∑
j ̸=i

ψ

(f1 + |x0,i − x0,j |) (f2 + |x1,i − x0,j |)
+ [−ax21,i + bx1,i + z + wi] (14)

• ψ: Constant of proportionality; a, b are arbitrary constants.

• f1 + (x0,i − x0,j)- Inherited social position: For instance. Expected benefit from social interactions

and is the key term in emphasising the motive for movement towards a particular neighbour - as the

distance between individuals i and j decreases the benefits increase significantly.
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• f2 + (x1,i − x0,j) - Attenuator of social distance: For instance, ’learning status’. These are exogenous

contextual factors

• −ax21,i+bx1,i+z+wi - Intrinsic value: here z represents exogenous factors, wi represents factors, such

as demographic variables (age, gender, social and economic classes, etc. The quadratic component in

the function captures the fact that as the intrinsic value rises, the utility will increase at a decreasing

rate.

3.5 A Learning-driven memory model with social positioning of agents

So far, we have presented fundamental characteristics of learning rules leading to long-memory, and duration-

dependent models that can drive long-memory persistence. Furthermore, we have also presented a social

distance model of choice of risk positions of financial investments triggering a persistence type of behaviour

depending on the financial agent’s relative social positioning. In this section, we combine the elements of

the distance approach (status and conformist) into the learning based and duration driven long-memory

characterisation of of a financial asset. The starting point of our formalization is to allow survival of shocks

with specific durations (realistically observed). Assuming two time points (t0 and t1) where shocks survive

and then do not persist at all, one can generate learning rules separately for the duration of errors. In fact,

the relative social position of an agent and the loss function as well as the intrinsic values (see Equations 14

and 15, respectively) can differ significantly depending on the duration of shocks’ survival (eventually being

driven by the survival probability, p). In equation 8 we have presented the realization of yt with respect to

durations. Embedding it into Equation 9, we now obtain:

yt = β

t∑
t=−∞

[Is,t+1ϵs]
e + xt (15)

and

yet+1 =

t−1∑
j=0

κt,j [Is,t−1] + ψt (16)

Using representations in equations 15 and 16 and using some algebraic manipulations, we arrive at the

following:

U(yet+1) =
ψ

[f1 + (I(s, 0)i − I(s, 0)j)] [f2 + (I(s, 1)i − I(s, 0)j)]
+ [−ax21,i + bx1,i + z + wi] (17)

The expected utility gain for a financial agent at t + 1 (U(yet+1)) is modelled here as a function of first,
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the agent’s inherited social position in the sense that as the agent observes other agents investing in a risky

asset, he learns by thinking that the other agent might have a reliable information for investment. The agent

then keeps investing in such an asset until the point he realises that the investment is no more profitable

and move to a new social positioning. In other words, the investor’s actions survive the duration of the time

he believes in other agent’s decisions. Hence, one may expect a certain degree of persistence in investment

decisions (a memory process) - a feature reflective of duration model of Parke (1999). Furthermore, the

investor compares his social position of today (that is, his total utility from a prior investment) with another

investor’s position yesterday. This status-seeking social positioning also leads to a persistence like feature,

one that can be identified as a long-memory process. Thus, in our proposed formalisation, we identify the

source of a long-memory by social positioning of the investor in asset-value optimisation between time periods

and between other investors. We are now able to present the following proposition.

Proposition: If the distance (d) decreases between i and j both at time t and between time t and t− 1,

then greater is the duration (i.e., with stronger asymmetry) of errors (shocks), it is essential for i to learn

faster to minimise a negative effect of memory.

Proof : It is straightforward to see from equation 17 that as the distance between two agents (i, j)

declines (the second function in the denominator), the agent learns quickly to arrive at a social optimum.

Eventually, the last term (the quadratic component) helps speed up the declining weight of the distance -

or error spacing or duration between two time periods, leading to smaller magnitude of memory. In other

words, the greater is the distance (the second term in the numerator (f1 + (I(s, 1)i − I(s, 0)j as well as the

first term (f2 + (I(s, 0)i − I(s, 0)j), the greater will be the magnitude of memory. This can drive a further

alienation from the desired equilibrium.

4 Numerical example

We characterise equation 17 by exploiting the basic learning rule as in equation 8. Initial parameterisations

of equation 8 along with equation 11 (the status model) help us produce Table 2 where we have undertaken

Monte Carlo simulation for over 10,000 replications. In the Table 2, α is the indicator of distance (viz.,

the distance between two successive values in the duration function or the distance between two agents’

estimates at two different points in time). We have used three cases: α = 0.1 and α = 0.9 are, respectively,

lowest and highest distance in the sense that whenever, for instance, α = 0.9 there is a long gap between
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observations in the duration function or the expected returns from an asset between two time periods is the

highest between two agents. Under this ‘distance’ numeric we generate different estimates of memory (or

d) using both Robinson (1995) and local Whittle estimator of Shimotsu and Phillips (2005). The empirical

rejection frequencies of one-sided 5% level tests of our null hypotheses are tested against the alternatives:

H0: d = 0 against H1: d > 1 and H0: d = 1 against H1: d < 1.

Insert Table 2 about here

In Table 2, we have recorded the mean estimates of d. Technically, we expect a greater strength of

memory as the distance increases (α becomes large). Basically, we find that E(d̂) increases in α. Because

T is fixed, a higher α corresponds to a shorter learning window, so much so that the actual memory of the

process becomes a decreasing function of the length of the learning window (a result similar to Chevillon and

Mavroeidis, 2017).

5 Discussion and Conclusions

This paper exploits this advancement in modeling and proposes a novel short-lag linear autoregressive model

in a dynamic learning environment influenced by an investor’s social positioning. Our proposed mechanic

is supposedly holistic in nature, aimed at delivering greater predictive power than traditional models used

for financial data. In fact, our main identifying mechanism is a process of learning with fast-paced error

correction, where an immediate lag and its projections in social positioning setting can help capture longer

period of temporal dependence in financial data. With real-life examples in the financial market, we compare

the efficacy of our estimates with the conventional model and show that our mechanism can be computa-

tionally less burdensome and have better predictive power. As we reflect on the memorable quote by Irish

Blessing, financial markets - like any other dynamic system - should remember positive shocks (so that the

propagation of relatively less risky return becomes more realistic). At the same time, these markets should

forget (or quickly smooth out) the effects of bad shocks so that the system becomes asymptotically stable.

The extension to test for correct specification of a DSDLM model and its predictive power, in a setting of

less liquid markets, such as commodities, remains an avenue for future research.
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Table 1: Memory properties of yt with different d values

d Value Memory Stationarity Mean/Variance Learning Shock Duration
d < 0 Long Stationary Mean-reversion/Finite Fast-paced Long-lived

d = 0 Short Stationary Mean-reversion/Finite Fast-paced Short-lived

0 < d < 0.5 Long Stationary Mean-reversion/Finite Fast-paced Long-lived

0.5 ≤ d < 1 Long Non-stationary Mean-reversion/Infinite Extremely slow Long-lived

d = 1 Permanent Non-stationary, No Mean-Reversion/Infinite No learning Permanent
unit root process

d > 1 Permanent Non-stationary No Mean-Reversion/Infinite No learning Permanent, the effects
increase over time
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Table 2: Simulated estimates

Average of (̂d) Pr(Reject d = 0) Pr(Reject d = 1)
α τ Robinson Local Whittle Robinson Local Whittle Robinson Local Whittle
0.1 0.1 0.005 -0.015 0.129 0.105 0.801 0.933

0.5 0.056 0.044 0.178 0.199 0.723 0.897
0.8 0.223 0.208 0.401 0.451 0.587 0.756
0.9 0.326 0.297 0.499 0.598 0.501 0.674
0.99 0.467 0.388 0.702 0.774 0.433 0.621

0.5 0.1 0.017 -0.019 0.131 0.13 0.834 0.938
0.5 0.115 0.071 0.222 0.238 0.747 0.879
0.8 0.321 0.252 0.498 0.534 0.584 0.747
0.9 0.419 0.358 0.654 0.649 0.526 0.687
0.99 0.566 0.477 0.789 0.786 0.456 0.655

0.9 0.1 0.033 -0.002 0.145 0.152 0.822 0.946
0.5 0.1198 0.132 0.333 0.372 0.712 0.85
0.8 0.472 0.451 0.684 0.741 0.549 0.778
0.9 0.649 0.587 0.847 0.862 0.555 0.689
0.99 0.794 0.739 0.957 0.941 0.52 0.67
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