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Abstract

Storm is among the main threat for European forestry generating huge economic damage. The

decrease of the timber price due to the storm occurrence largely contributes to these economic impacts.

Timber storage appears as the standard policy to implement in order to limit these negative impacts.

Consequently, in this article, we propose a global economic assessment of a storage policy taking into

account the impacts on producers, consumers and the cost of public funds. For that purpose, we develop

a tractable theoretical model which assesses welfare losses and gains incurred/earned by all agents of the

society (forester (supply), consumers (downstream agents), and the public agent), from the storage. The

model is then simulated. Our results show that globally, the storage policy is always desirable except

for the consumers in the case of storms associated with a low magnitude.
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1 Introduction

Forest ecosystems are threatened by natural hazards, and among them, storm is the

most damaging event. In Europe, over the period 1950-2000, an annual average of 35

million m3 of wood was damaged by disturbances, and more than half were due to storms

(Schelhaas et al., 2003). Europe was hit by several extreme storms these last decades,

such as Lothar and Martin in 1999, Gudrun in 2005, Kyrill in 2007 and Klaus in 2009.

In France, Lothar and Martin felled about 8% of the total growing stock in a forest area

covering 15 million hectares. Klaus felled 32% of the maritime pine growing stock in

Aquitaine (forest area of 1 million ha). In Sweden, Gudrun damaged approximately 2%

of the growing stock on a national basis (Gardiner et al., 2011). Occurrence of storm

generates huge losses. For example, Lothar and Martin in 1999 are responsible for 30

millions m3 of damage in Germany for a total financial loss of e1.4 billion, and 140

millions m3 of damage in France amounting to e4.57 billion (Caurla et al., 2015). More

recently, Klaus was associated with a total of 42 millions m3 of damage in south-western

France for a loss estimated between e1.34-1.77 billion (Lecocq et al., 2009). An important

consequence of the storm occurrence is the sudden and unplanned increase in the supply

of timber in the market that translates into a price decrease.

After Gudrun, the average prices of sawlogs of spruce and pine in Sweden was only

63% and 86%, respectively, of those in the year before the storm (Gardiner et al., 2011).

After Klaus, 50% of the windfalls suffered from a depreciation due to a price decrease on

the timber market (Nicolas, 2009). Hurricane Hugo in U.S in 1989 was another example,

damaging 20% of the southern pine on the South Carolina Coastal Plain. Modelling

revealed a 30% negative price spike due to salvage (Prestemon and Holmes, 2000). In

order to try to cope with this price decrease after storm occurrence, a classical option for

governments is to facilitate wood storage. After Lothar and Martin, Germany provided a

public help of e15.3 millions for windfall hauling, transportation, storage and replanting

(Holecy and Hanewinkel, 2006), whereas French government implemented a 10-years

program providing e920 millions with the objective to remove windfall timber, to clear

and replant, and to create storage areas for harvested timber (CGAEER, 2010). After

Klaus, the French government dedicated e25 millions to the creation of storage area

(Bavard et al., 2013).

Climate change is suspected to have a serious impact on storm occurrence, both on
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frequency and intensity, so that the return period is projected to reduce significantly

and the associated damage are predicted to increase (Della-Marta and Pinto, 2009; Gar-

diner et al., 2011; Brèteau-Amores et al., 2020). In addition, Schelhaas et al. (2010) show

that forest damage from wind are expected to increase in the future mainly as a conse-

quence of increase in the total growing stock and in vulnerability. The public intervention

through financial help could then be multiplied in the future, thus coming up against the

limited capacity of the government budget. In this context, to provide a global economic

assessment of policies based on storage, taking into account their impacts on producers,

consumers and the cost of public funds, becomes a question of great importance.

In the literature, the management of production risk in forestry due to storm occur-

rence has been analysed through prevention and insurance (Brunette and Couture, 2008;

Holecy and Hanewinkel, 2006; Brunette et al., 2015b). The literature also focuses on price

volatility and most of the time this volatility is an ad hoc component of the analysis of

the research question, as in Rakotoarison and Loisel (2017) for example, where storm

risk and price risk are considered independently one from another. The question of the

management of price volatility is sometimes also evoked through contract (Brodrechtova,

2015; Barkaoui and Dragicevic, 2016). To our knowledge, only one paper assumed that

storm occurrence has an impact both on production and price (Brunette et al., 2015a).

However, the way to manage price risk after storm occurrence is rarely evoked. Two

exceptions are the articles of Costa and Ibanez (2005) and Caurla et al. (2015) dealing

both with storage.

Costa and Ibanez (2005) provided a cost-benefit analysis of the storage policy imple-

mented after the windstorms of 1999 in France. They show that on average, the windfalls

have been stored for 3.5 years for a global unit costs of e17.2/m3. The authors indicated

that, from the point of view of the forest owners, the storage was not profitable, and for

the public authority, the overall balance is not positive too since 85% of created storage

area had negative outcomes. This article provides a cost analysis and neglects the ben-

efits for the demand side of the market. In addition, since it is applied to a particular

case study, the results lack of generality.

Caurla et al. (2015) assessed the economic impacts of the public help implemented by

French government after Klaus in 2009 on the forest sector. They show that the global

impact was beneficial, in-site storage and export abroad were favored, as compared to
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a situation without a plan, which favored direct consumption. In addition, the price de-

crease after Klaus was reduced when the storage proportion increase. This article is also

based on a particular case study.

This short overview lets appeared that storage has been analysed in forestry through

case studies with mitigated results in terms of economic impact.1 In addition, the ar-

ticles provide a partial approach both in terms of actors (only producers and public

funds) and analysis (only the costs). As a consequence, the objective of this article is

to provide an economic analysis of the storage policy by developing a welfare analysis,

which assesses costs and benefits incurred/earned by all agents of the society (forester

(supply), consumers (downstream agents), and the public agent), from the policy of stor-

age. The desirability of the policy is assessed by comparison with the absence of policy

(laissez-faire). We propose to address this research question through the development of

a tractable theoretical model. We also provide empirical evidence through simulations.

We show that globally, the policy is always desirable except for the consumers in case of

storms associated with a low magnitude.

The rest of the paper is structured as follows. Section 2 presents the microeconomics

model with in a first step the standard hypothesis without the storage policy and then, we

introduce the policy. Section 3 presents the results of the simulations. Section 4 discusses

the implications of the results and concludes.

2 Model

We first presents the basics of the model without storage (benchmark), and then we

introduce the policy.

2.1 Setting

We consider a representative risk-neutral forester aiming at maximizing its own ex-

pected profit. This forester is in a monopoly position, and faces the whole demand for

wood. Only one species of wood exists. The forester can harvest standing wood, which

is considered as being wood of high quality. In addition, in case of a storm occurring, a
1Note that some theoretical articles in economics offer interesting perspective on the way to model

storage although not applied to a forestry context. See for example Deaton and Laroque (1992) and
Newberry (1989).
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quantity Q of wood falls on the ground. This quantity, denoted by Q, is windfall, and

we assume that this windfall is a wood of lower quality than the standing wood which is

harvested. As a consequence, in case of a storm, the market of wood becomes dual: the

harvested standing wood (high quality), and the windfall (low quality).

We consider 3 periods: in a first period (period 0), the forester decides a first quantity

of standing wood to harvest. This quantity is QR0. We consider that there is a lag in

time between the harvesting period, and the time where the wood is sold: the cost of

harvesting QR0 is incurred in period 0, while the benefit from selling QR0 is earned in

the next period, period 1.

However, in period 1, a storm may occur (with a probability p). In that case, there

is a quantity Q of windfall. As regards windfall, since the quality of wood deteriorates

very quickly, the forester has to sell it at the period of storm: so, in period 1, both the

longshoring cost of the windfall is incurred and the benefit from selling it is earned.

Moreover, still in period 1, the forester has the possibility to harvest another quantity of

standing wood and, again, the cost is incurred in period 1 but the benefit from selling is

earned in the next period, period 2. In case of storm, this harvested quantity is denoted

QRH
1 , and in the case where no storm occurs (probability (1−p)), the quantity harvested

in period 1 is QRNH
1 .2

In period 2, the forester earns the benefit from selling the standing wood that was

harvested during period 1 (see the expression of forester’s profit later).

This setup can be represented by the decision tree in Figure 1 where F stands for

“Forester” and N stands for “Nature”. There is no discount factor, and we consider no

capacity constraint as regards the ability to harvest.

Let k be the unit cost of harvesting standing wood, and k be the unit cost of long-

shoring windfall. Hence, the total cost of harvesting QR0 in period 0 is kQR0, and the

total cost of longshoring Q in period 1 in case of storm is kQ. For a given quantity of

wood, the cost of longshoring windfall is higher than the cost of harvesting standing

wood: k > k. Indeed, it is more complicated and it takes more time and workforce to

evacuate wood after a windstorm than harvesting wood as usual.

When a storm occurs, the market becomes dual: both wood of high quality (harvested

standing wood) and wood of low quality (windfall) are present on the market. For a
2The superscript H stands for “harm” and denotes the state of Nature where storm occurs. The

superscript NH (no harm) refers to the state of Nature where no storm occurs.
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Figure 1: Decision tree

given quantity of wood, we suppose that the consumers’ willingness to pay for the wood

of high quality is higher than for the wood of low quality. However, both kinds of wood

are imperfect substitutes. As a result, the demand functions are the following.

The demand for wood of high quality (indexed by Q), for a given quantity QR of

harvested standing wood, if no storm occurred is:

PQ(QR) = αR − βRQR

The demand for wood of high quality (indexed by Q), for a given quantity QR of

harvested standing wood, and a given quantity of windfall Q, if storm occurred is:

PQ(QR,Q) = αR − βRQR− δQ

The demand for wood of low quality (indexed by Q), for a given quantity QR of

harvested standing wood, and a given quantity of windfall Q (if storm occurred) is:

PQ(Q,QR) = α− βQ− δQR

Our assumptions about demand lead to: αR > α > 0, 0 < βR < β. δ is a parameter

that takes into account for the imperfect substitution between the two kinds of wood,

with 0 < δ < 1.3

We now turn to present the benchmark case, which is a case of laissez-faire (when

no policy is introduced in case of storm). Then, we will present what happens when a
3These demand functions are inverse demand functions, providing the maximum willingness to pay

for a given quantity of wood.
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policy of storage is introduced in case of storm occurring. In each case, we first determine

the private decisions that are made, and then their impact on the whole society (social

welfare analysis).

2.2 Benchmark: laissez-faire policy

In case of laissez-faire, there is no public intervention in case of storm: the market is

free. We first determine private decisions made by the forester, and then their impact in

terms of social welfare.

2.2.1 Private decisions

First, we have to determine the decisions made by the forester. We make a backward

resolution.

In period 1, in case where there is no storm, the forester’s profit ΠNH
1 is:

ΠNH
1

(
QRNH

1

)
= PQ(QR0)QR0 − kQRNH

1 + PQ

(
QRNH

1

)
QRNH

1

= (αR − βRQR0)QR0 − kQRNH
1 +

(
αR − βRQRNH

1

)
QRNH

1

which is the sum of the revenue from the harvested wood QR0 (harvested in period 0),

minus the cost of harvesting QRNH
1 in period 1, and the revenue from selling QRNH

1

in period 2 (that we incorporate in period 1 for simplicity - since there is no discount

factor).

The optimal quantity of harvested wood in period 1, QRNH∗
1 , satisfies:

∂ΠNH
1

(
QRNH

1

)
∂QRNH

1

= 0 ⇒ −k + αR − 2βRQRNH
1 = 0

⇒ QRNH∗
1 =

αR − k

2βR

In period 1, in the case where storm occurs, the forester’s profit ΠH
1 is:

ΠH
1

(
QRH

1

)
= PQ̄(QR0, Q)QR0 − kQRH

1 + PQ(Q,QR0)Q− kQ+ PQ̄

(
QRH

1

)
QRH

1

= (αR − βRQR0 − δQ)QR0 − kQRH
1 − kQ

+(α− βQ− δQR0)Q+
(
αR − βRQRH

1

)
QRH

1

Relatively to the previous case, there is now the cost (-kQ) of longshoring windfall,
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the benefit from selling it in period 1 (PQ(Q,QR0)Q), and the duality of the market is

introduced.

The optimal quantity of harvested wood in period 1, QRH∗
1 , satisfies:

∂ΠH
1 (QRH

1 )

∂QRH
1

= 0 ⇒ −k + αR − 2βRQRH
1 = 0

⇒ QRH∗
1 =

αR − k

2βR

We can note that, in this case of laissez-faire, these two quantities QRNH∗
1 and QRH∗

1

are similar. The occurrence of storm has no impact on the decision about harvesting in

period 1, since the benefit from harvesting is earned in period 2 while both cost and

benefit from windfall Q are made in period 1.

In period 0, the expected profit is:

E[Π0(QR0)] = −kQR0 + pΠH
1

(
QRH∗

1

)
+ (1− p)ΠNH

1

(
QRNH∗

1

)
And solving ∂E[Π0(QR0)]

∂QR0
= 0 leads to:

QR∗
0 =

αR − 2pδQ− k̄

2βR

Now we turn to assess the social impact of these decisions, by making a welfare

analysis which takes into account benefits and costs from all economic agents.

2.2.2 Social welfare

As usually done in the literature in public economics, social welfare is calculated by

summing all the benefits and costs, for all parties. In the present case where no public

policy is implemented, social welfare consists in summing the forester’s expected profit

(determined above), and the consumers’ surplus.

As regards the consumers’ surplus, we know that consumers get utility from the con-

sumption of wood, and that utility leads to demand functions: PQ(QR) when no storm

occurs, and PQ(QR,Q) and PQ(Q,QR) when a storm occurs (see Section 2.1). Recalling

that demand functions are the consumers’ willingness to pay for each quantity of wood,

we can, from the differences between these functions and market prices, deduce the con-

sumers’ surplus from wood consumption. Consumers’ surplus are index for consumers’
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net utility from consumption of wood, and they are positive arguments in the social

welfare function. For a quantity QR of wood of high quality, the surplus is 1
2βR(QR)2.

For a quantity Q of wood of low quality, the surplus is 1
2β(Q)2 (see more details and

calculations in Appendix A.1).

All-in-all, the expected social welfare in case of laissez-faire is:

SW
(
QR∗

0, QRH∗
1 , QRNH∗

1

)
= E[Π0(QR∗

0)] +
1

2
βR(QR∗

0)
2 + p

[
1

2
βR

(
QRH∗

1

)2]
+ (1− p)

[
1

2
βR

(
QRNH∗

1

)2] (1)

As a last remark, let us note that in case of a storm of a high magnitude, it cannot

be excluded that PQ(Q,QR0) and/or PQ̄(QR0, Q) fall to zero. In such a case (that we

develop in Appendix A.2), the forester’s revenue fall to zero and the consumers only

demand the quantity of wood for which the price equals zero, even if the market is not

cleared. Such a possibility will be taken into account in our numerical simulations (see

Section 3).

Now that our benchmark is introduced, we turn to present the public policy of storage.

2.3 Storage policy

2.3.1 Private decisions

As said in Introduction, among the policies that can be implemented in case of storm,

providing storage areas is one of the main policies which has been used in the past. With

such a policy, in case of storm, the public agent makes storage areas available to the

forester. This makes the forester possible to “smooth” the quantity Q of windfall across

periods 1 and 2 (instead of having to sell Q in period 1 only).4 Let QS be the quantity

of windfall that will be stored in period 1, to be sold in period 2, with 0 ≤ QS ≤ Q. The

complementary quantity of windfall (Q−QS) is sold in period 1. The unit cost of storing

is kS > 0. So the total cost of storing QS is kSQS . As it was the case when this policy

was implemented in France or in Germany (especially following Lothar and Martin in

1999), this cost is incurred by the public agent. Taking into account the cost of using
4In this section, to ease the exposition of the model, we assume that the market price remains strictly

positive. For the case of a market price falling to zero in case of storm occurring, see Appendix A.4.
Such a possibility will be taken into account in our numerical analysis (see Section 3).
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public funds λ > 0, the total storage cost for the social planner is: (1 + λ)kSQS .

When a public policy is implemented, decisions remain private. And recall that the

representative forester aims at maximizing its own expected profit. We still solve back-

ward. First, we solve for periods 2 and 1. Given that decisions for periods 1 and 2 are

all made in period 1, we only consider period 1 (and we integer in period 1 the payoffs

earned in period 2).

In case where no storm occurs, the forester aims at maximizing:

ΠNH
1 (QRNH

1 ) = PQ(QR0)QR0 − kQRNH
1 + PQ

(
QRNH

1

)
QRNH

1

= (αR − βRQR0)QR0 − kQRNH
1 +

(
αR − βRQRNH

1

)
QRNH

1 (2)

i.e., the sum of the benefit from selling QR0 (decided in period 0), the cost of har-

vesting QRNH
1 , and the benefit from selling QRNH

1 (earned in period 2).

The optimal quantity QRNHs
1 satisfies:

∂ΠNH
1

(
QRNH

1

)
∂QRNH

1

= 0 ⇒ −k + αR − 2βRQRNH
1 = 0

⇒ QRNHs
1 =

αR − k

2βR
(3)

In case of storm occurrence, the forester aims at maximizing:

ΠH
1 (QRH

1 , QS) = PQ(QR0, (Q−QS))QR0 − kQRH
1 + PQ

(
QRH

1 , QS

)
QRH

1 − kQ

+ PQ((Q−QS), QR0).(Q−QS) + PQ

(
QS , QRH

1

)
.QS

That may be rewritten as follows:

ΠH
1

(
QRH

1 , QS

)
= (αR − βRQR0 − δ(Q−QS))QR0 − kQRH

1

+
(
αR − βRQRH

1 − δQS

)
QRH

1 − kQ

+ (α− β(Q−QS)− δQR0).(Q−QS)

+
(
α− βQS − δQRH

1

)
.QS (4)

i.e., the sum of the benefit from selling QR0 (decided in period 0), the cost of har-

vesting QRH
1 , the benefit from selling QRH

1 in period 2, the longshoring cost of windfall

Q in period 1, and the benefits from selling (Q−QS) in period 1 and QS in period 2.
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Contrary to the case where no storm occurred, here the forester has to make two

decisions to maximize its profit: deciding which quantity QS of windfall to store, and

which quantity QRH
1 of standing wood to harvest. The optimal quantities QRHs

1 and Qs
S

simultaneously satisfy:

∂ΠH
1

(
QRH

1 , QS

)
∂QRH

1

= −k + αR − 2βRQRH
1 − 2δQS = 0

∂ΠH
1

(
QRH

1 , QS

)
∂QS

= −2δQRH
1 + 2βQ− 4βQS + 2δQR0 = 0

Proceeding by substitution, we find:

QRHs
1 =

αR − 2δ

[
δαR
βR

− δk
βR

−2βQ−2δQR0

2δ2

βR
−4β

]
− k

2βR
(5)

Qs
S =

δαR
βR

− δk
βR

− 2βQ− 2δQR0

2δ2

βR
− 4β

(6)

We can remark that, contrary to the benchmark case of laissez-faire, under storage pol-

icy the decisions of harvesting in period 1 are different depending on the occurrence of

storm or not (i.e., QRNHs
1 is different from QRHs

1 ). Indeed, under storage, in period 2

there is now a “competition” between wood that is harvested in period 1, QRHs
1 , and the

quantity of windfall that has been stored, Qs
S .

Finally, in period 0, the forester has to decide about the quantity of standing wood

QR0 to harvest, having in mind what happens in case of storm (probability p), and in

the absence of storm (probability (1− p)). So the forester has to maximize:

E [Π0(QR0)] = −kQR0 + pΠH
1

(
QRHs

1 , Qs
S

)
+ (1− p)ΠNH

1

(
QRNHs

1

)
(7)

And so the optimal quantity QRs
0 satisfies:

∂E [Π0(QR0)]

∂QR0
= −k + p

∂ΠH
1

(
QRHs

1 , Qs
S

)
∂QR0

+ (1− p)
∂ΠNH

1

(
QRNHs

1

)
∂QR0

= 0 (8)

More details about this equation are provided in Appendix A.3. This equation cannot

be solved analytically, numerical simulations will be presented in Section 3.

11



2.3.2 Social welfare

Now that private decisions in case of a storage policy are determined, we have to

evaluate the social welfare that derives from implementing such a policy. In that case,

there are now three parties in the economy: the forester, the consumers, and the public

agent.

As regards the forester, the social welfare has to take into account the forester’s

expected profit, E [Π0(QRs
0)]. Second, as in the benchmark case, we have to take into

account the surplus that consumers get from consumption of wood. And finally, we also

have to take into account the cost, for the public agent, to implement the policy. As

described above, in case of storage following a storm, the public agent pays the whole

cost of storage. Taking into account the cost of mobilizing public funds, we obtain an

expected social cost of: p(1 + λ)kSQ
s
S .

All in all, the expected social welfare of implementing a storage policy is:

SW
(
QRs

0, QRHs
1 , QRNHs

1 , Qs
S

)
= E[Π0(QRs

0)] +
1

2
βR(QRs

0)
2

+ p

[
1

2
βR

(
QRHs

1

)2
+

1

2
β(Qs

S)
2 +

1

2
β(Q−Qs

S)
2

]
+ (1− p)

1

2
βR

(
QRNHs

1

)2 − p(1 + λ)kSQ
s
S (9)

This function will made us able to compare the desirability of storage, relative to

making no policy (Eq. (1)). Now, on the basis on this theoretical model, we run numerical

calculations that aim at comparing storage and laissez-faire under different contexts and

scernarii.

3 Results

Because the analytical resolution of the model was not reached, we use a more

tractable way, namely simulations, to look at implications of a storage policy for the

forester, the consumers and society as a whole (social welfare). The value of the different

parameters used to calibrate the model is presented in Table 1.

Given these values, in case where no storm occurs, we obtain: QRNH∗
1 = 2498.75,

which can be seen as the value of an harvest during one period in a normal situation.

As a consequence, in the following simulations a storm of magnitude Q = 5000 could be
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Table 1: Values of the parameters for the simulations.

Parameter Description Values Assumptions
k̄ Unit cost of harvesting standing wood 1
k Unit cost of longshoring windfall 1.5 k > k̄
ks Unit costs of storing 1.3
λ Cost of using public funds 1.2 λ > 0
δ Degree of substitution between the two kinds of wood .1 0 < δ < 1
βR Price-elasticity of demand - Wood of high quality .4
β Price-elasticity of demand - Wood of low quality .8 βR < β
αR Ordinate of the demand function - Wood of high quality 2000
α Ordinate of the demand function - Wood of low quality 1600 αR > α

seen as a storm for which the windfall is equivalent to 2 periods of harvest in a normal

situation. As an example, in France, the forest damage due to storms Lothar and Martin

in 1999 correspond roughly to three years of harvesting (IFN, 2003).

Keep in mind that without any public policy, the producer and the consumer are

sharing the surplus. But in case of implementing storage, the public agent has to bear

the cost of the public policy.

3.1 Benchmark: no public policy (laissez-faire)

We present three graphs for this benchmark case: the social welfare (Fig. 2), the

consumer surplus (Fig. 3) and the forester’s profit (Fig. 4).
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Figure 2: Social welfare without any public policy.

In Figure 2 we can see that, when no policy is implemented, the impact of the

magnitude of a storm (i.e., the value of Q) on the social welfare is not linear. For low

magnitude (Q < 1150 for p = 0.2), there is an increase in social welfare with the value

of Q. Then, for higher values of Q, the social welfare is decreasing with Q. A look at the
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evolution of consumers’ surplus and forester’s profit helps to disentangle the effects.
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Figure 4: Forester profit (share of social welfare) without any public policy.

Figures 3 and 4 represent, respectively, the share of the consumers’ surplus and the

share of the forester’s profit, in the social welfare, when no policy is applied, depending

on the probability and the magnitude of the storm. In this case of laissez-faire, these two

shares complete to one. From these figures we can see that, for low magnitudes of storm

(Q < 1700 for p = 0.2), an increase in the magnitude of storm increases the share of

social welfare which is captured by the consumers: windfall leads both to an increase in

the global quantity of wood that is available, and a decrease in prices. In that case the

consumers’ surplus increases more rapidly than the profit.5 But for higher magnitudes of
5Note that for very small magnitude of storm (i.e., 0 < Q < 500), the consumers’ surplus is decreasing

in relative terms (while, in absolute value, it decreases for 0 < Q < 300 and then increases for Q > 300).
This is so because for the lowest values of Q, the price of windfall is high while the forester yet decreases
the quantities of harvested wood (in a way to maintain high prices). The resulting consumers’ surplus
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storm (Q > 1700), the market of windfall collapses, so that the consumers’ demand for

that kind of wood is saturated. Any increase in the value of Q will not be consumed by

consumers, and leads to a reduction in the quantity of harvested wood by the forester in

the aim of keeping a high level of price for that kind of wood: this leads to a reduction

in consumers’ surplus. As regards the evolution of profit, in value, the profit is always

decreasing in the value of Q. However, for high values of Q (Q > 1700 for p = 0.2),

the decrease of profit with Q is lower than the decrease of consumers’ surplus, since the

forester attempts to reduce the decrease in price by reducing the quantity of harvested

wood.6 So, in relative terms, the share of profit increases, but both profit and consumers’

surplus are decreasing, as illustrated by the reduction in the expected social welfare (Fig.

2). Finally, due to the monopoly position of the forester, the allocation of social welfare

is more profitable to him.

3.2 A comparison between the storage policy and the benchmark

We present the graphs for the social welfare (Fig. 5), consumer surplus (Fig. 6) and

forester’s profit (Fig. 7) when implementing a storage policy, as compared to the absence

of policy (laissez-faire). On these graphs, a global surplus of 1.1 means a surplus 10%

over the surplus in the no policy benchmark case.
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Figure 5: Social welfare of storage policy, as compared to the absence of policy.

This first graph shows that the storage policy increases the total surplus as compared

gets down.
6Despite the reduction of the quantity of harvested wood (QR0), the decrease in its price PQ̄(QR0, Q),

following the impact of a high quantity Q of windfall on the market, and the cost of longshoring Q, lead
both to the decrease in profit.
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to the absence of policy. However, we can observe on Fig. 6 and 7 that, for each economic

agent, the situation may be different. Indeed, the consumer is not always a winner with

this policy (see Fig. 6). In details, three situations appear depending on the magnitude

of the storm.

For storm with a low magnitude (Q < 1700), the forester captures most of the surplus

and the consumer is the looser. This is explained by the fact that the forester smooths the

quantity of windfall over periods 1 and 2, thanks to the possibility of storage. This leads,

for each period, to a reduction in the available quantities of wood for the consumer,

and to an increase in price (relatively to the no-policy case), which explains that the

consumer is disadvantaged by the policy.

From a windfall of Q = 1700, the situation becomes more favorable to the consumer:

the quantity of windfall is sufficiently high, over both periods 1 and 2, to provide wood

in high quantity at a relatively low price for the consumers. The consumers’ surplus

increases, the profit decreases (see Fig. 6 and 7).

The catch-up is done from Q = 3400. For even higher values of Q, relatively to the no-

policy case, the situation of the forester is unchanged (he earns no revenue from windfall,

the market of which has collapsed), but the situation of the consumer is better off since

the storage increases the global quantity of wood made available (over all periods).
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Figure 6: Consumer surplus with storage, as compared to the absence of policy.

Result 1 A storage policy is always socially desirable, from a global point of view.

However, it is detrimental for consumers in case of storm of low magnitude.
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Figure 7: Profit with storage, as compared to the absence of policy.

3.3 Sensitivity analysis

In Appendix B, we develop a sensitivity analysis to check how our results are sensitive

to a change in the context, and especially to a change in: (i) the elasticity of substitu-

tion between the two kinds of wood (δ) (Appendix B.1), and (ii) the price-elasticity of

demands for each kind of wood (β and βR) (Appendix B.2).

Concerning the sensitivity to the degree of substitution δ, our analysis shows that

an increase or a decrease in δ does not question the social desirability of the storage

policy: it always leads to a strictly higher social welfare than no policy. However, it has

to be noted that the relative desirability of storage is decreasing with δ, especially in

cases where storms are characterized by a high probability p and a high magnitude Q.

This is so because an increase in the degree of substitution δ means a lower distinction,

for the consumer, between the two kinds of woods: they may use one type or the other,

in a more similar manner. Hence, the virtues of storage for the forester, in terms of

smoothing the supply of windfall over periods, are reduced since the harvested wood can

be consumed as well, thus “contaminating” the market of windfall. As a consequence, the

forester reduces the quantity of harvested wood in order to try to maintain prices at a

high level. This reduction in the global quantity of wood reduces the level of consumers’

surplus, and so the social desirability of the policy. Conversely, in case of a low value of δ,

the duality of the market of wood (in case of storm) is maximum: the two kinds of wood

are dedicated for different kinds of use by the consumers. So the efficiency of storage in

smoothing the supply over periods is maximum for the forester. So, the forester has no

need to restrict the quantity of harvested wood, and the consumer may benefit from a
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relatively large supply of wood, ensuring a high level of surplus.

Result 2

The degree of substituability between high-quality wood (harvested) and low-quality

wood (windfall) does not question the social desirability of the storage policy. However,

in case of a high degree of substituability, the desirability of storage is reduced when a

storm of high magnitude is highly expected (high values of p and Q).

As regards the sensitivity to the degrees of price-elasticities of demand (β and βR),

again a variation in theses parameters does not question the social desirability of the

storage policy. However, the relative desirability of storage is positively correlated to

the values of price-elasticities of demand: the higher (the lower) the price-elasticities

of demand, the stronger (the lower) the relative desirability of storage. This is a pure

relative effect: in fact, our simulations shows that the absolute benefit from storage

remains roughly stable when varying the values of price-elasticites of demand (other

parameters holding constant), while a decrease in price-elasticities of demand lead to an

increase in profits, consumers’ surplus and social welfare, both when storage or no policy

is implemented.7

Result 3

The values of the price-elasticities of demand do not question the social desirability

of the storage policy. However, the relative desirability of storage is positively correlated

with the strenght of the price-elasticities of demand for wood.

Finally, we can note that our Result 1 is robust to variations in the degree of sub-

stitution (δ) and to variation in the values of price-elasticites of demand (β, βR): in all

our simulations, we find storage to be detrimental to consumers in case of storm of low

magnitude8. Also, variations (in a reasonable extent) in the unit cost of storage (ks) and

in the cost of using public funds (λ) do not question the social desirability of the policy.

7In details, since a decrease in price-elasticities of demand allows the forester to increase its offering
quantities without “too rapidly” decreasing prices, the forester is able to increase harvesting quantities
(at a given price), and this increases its profits. Since a decrease in price-elasticities of demand means
the consumers to have a strong demand, they enjoy surplus from the additionnal quantities offered onto
the market.

8As in Figure 6, in all our simulations the consumers surplus in case of storage (relatively to those
of no policy) is below 1 for Q < 3400, i.e. a storm the magnitude of which equals roughly 1.5 period of
harvest in a normal situation. Graphs are available upon request.
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4 Discussion and conclusion

Storage policy is the main tool used to manage price risk after a storm. It had been

used in several countries to try to avoid market collapse, with varying degrees of success.

In this article, we provide a tractable theoretical model that takes into account the welfare

losses and gains of all agents in society (forester, consumers, public agent). This model

complements the few existing works on the subject, as it gains in generality by freeing

itself from the study of very specific cases (such as the 1999 storms in France or the

Klaus storm in south-west France in 2009), and it allows to fully represent the problem

by considering all the agents involved. Simulations of this model allow us to conclude

that a storage policy is always socially desirable, from a global point of view, even if

it is detrimental to consumers in the event of a low-magnitude storm. Furthermore, we

show that this result is robust to variations in the degree of substitutability between

high-quality wood (harvested) and low-quality wood (windfall), as well as to the values

of the price-elasticities of demand. As regards the literature, Costa and Ibanez (2005)

providing a cost analysis, has shown that the storage was neither interesting for the

forest owner nor for the public authority. It seems that our article, by considering the

benefits, in addition to the costs, and the consumers, in addition to the forest owner and

the public authority, goes one step further and to show that storage may be a relevant

option.

The proposed theoretical model assumes a risk-neutral forester, whereas in the liter-

ature, the risk aversion of forest owners has been proven and quantified (Musshoff and

Maart-Noelck, 2014; Sauter et al., 2016; Brunette et al., 2017, 2020). However, whether

or not the forest owner’s risk aversion has an impact on the risk management decision is

not a matter of unanimity. Indeed, Sauter et al. (2016) showed that forest owner’s risk

aversion has no impact on the willingness to pay for forest insurance, while Brunette

et al. (2020) showed that risk aversion has a significant and negative impact on private

forest owner’s incentives to adopt adaptation strategies to cope with climate change.

How risk aversion impacts our result is clearly the next step of this article. From this

perspective, the question of which theoretical approach to adopt will be central. Indeed,

the question of whether forest owner’s behaviors are more in line with expected utility

theory or other alternative models such as prospect theory is still topical.9

9An article by Reynaud and Couture (2012) proved that, among their sample of French farmers,
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Furthermore, we assume the the forester is in a monopoly situation, whereas other

market configurations (duopoly, oligopoly) may be relevant, depending on the considered

country. Indeed, in some countries (France, Sweden, Finland, Austria, etc.), the forest is

mainly private and then associated to numerous private forest owners with none of which

has the power to influence the market price. Atomicity assumption characterized such a

market. Conversely, in other countries (Switzerland, Canada, Russia, Poland, Bulgaria,

etc.) the forest is mainly public. At the extreme, in Central Asia, all the forest area is

publicly owned (Pulla et al., 2013; UNECE, 2020). Monopoly assumption is better suited

for these countries.

To date, the market risk arising from storms has mainly been managed by the public

authorities through storage policies. However, other public policy tools are also con-

ceivable, such as the implementation of a floor price. Such a policy was discussed in

France after Lothar and Martin in 1999, but never implemented. We can imagine that

the floor price will be decided by the public authorities, and that the difference between

the market price and the floor price would be subsidized by the public authorities. Fur-

ther research in this direction may be interesting. In addition, there are other individual

tools, such as supply contracts, which enable forest owners to sell their timber at a price

fixed bilaterally in the contract. This means that they do not suffer from a fall in prices,

but conversely, they cannot benefit from a rise in prices. This tool is better suited to

dealing with price volatility than with price shock such as after storm.

In conclusion, in this article we consider the storage policy for disturbed wood after

a storm. However, the model is more generic and could be applied to other resources for

which storage is a relevant option to avoid falling prices and ensure a constant supply of

the market: cereals, water, etc.

almost half behave in line with expected utility and the other half in line with prospect theory.
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A Appendix related to the theoretical part of the article

A.1 Details and calculations about the consumers’ surplus

As said in the body of the paper, the utility from consuming wood leads to demand

functions, PQ(QR) in case of no storm, and PQ(QR,Q) and PQ(Q,QR) in case of storm.

These demand functions provide, for each given quantity n of wood under consider-

ation, how much, in monetary terms, the consumers are willing to pay to buy this nth

quantity. It is the maximum willingness to pay for the marginal quantity. The selling

price is set for the quantity which equals both the marginal willingness to pay and the

marginal (expected) profit of the forester. This price is the same for all the n quantities

which are sold, even if the consumers have not the same willingness to pay for all quan-

tities. Especially, for quantities “before” the nth, the willingness to pay are higher.10 It

follows that for the quantities before the nth, the consumers get a surplus of satisfaction,

which is represented by the difference in their demand function (i.e., their willingness to

pay) and the selling price, as represented in Figure 8.

Figure 8: Consumers’ surplus: example for wood of high quality

NB: on this figure, quantities are z, and quantities for the substitute good are u.

For a quantity QR of wood of high quality, the surplus is 1
2βR(QR)2. For a quantity

Q of wood of low quality, the surplus is 1
2β(Q)2.

♦

10Indeed, the principle of saturation implies the decreasing marginal utility from consumption: the util-
ity derived from consumption is decreasing with the quantities. It follows that the maximum willingness
to pay is also decreasing in quantities.
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A.2 Policy of laissez-faire: when prices fall to zero

As said in the body of the paper, in case of a storm of a high magnitude, it cannot

be excluded that both PQ(Q,QR0) and/or PQ̄(QR0, Q) fall to zero. What happens in

such a case?

Answering this question requires, first, to recall how PQ̄(QR0, Q) and PQ(Q,QR0)

behaves when QR0 and/or Q vary. Recall that we have: PQ̄(QR0, Q) = αR−βRQR0 − δQ

and PQ(Q,QR0) = α − βQ − δQR0, with αR > α > 0 and 0 < βR < β. As a result,

the value of PQ(Q,QR0) reaches zero “more quickly” (i.e., for lower values of (QR0, Q))

than the value of PQ̄(QR0, Q). As a consequence, for a given value of QR0, an increase

in Q can, first, lead to a situation in which PQ(Q,QR0) falls to zero but PQ̄(QR0, Q)

remains strictly positive; and a further increase in Q can lead to both PQ(Q,QR0)

and PQ̄(QR0, Q) falling to zero. We will call the former situation (i.e, Q such that

PQ(Q,QR0) = 0 and PQ̄(QR0, Q) > 0, QR0 given) being Universe 2 and the latter

situation (i.e, Q such that PQ(Q,QR0) = 0 and PQ̄(QR0, Q) = 0, QR0 given) being

Universe 3.

When a price falls to zero, two consequences have to be distinguished. First, for the

forester, the corresponding earnings falls to zero (e.g., if the price of the windfall Q

falls to zero, the forester enjoys no earning from that kind of wood). Second, for the

consumers, they only demand the quantity of wood for which the price falls to zero. For

instance, considering the quantity Q of windfall, it is possible that the price PQ(Q,QR0)

reaches the value of zero before the market is cleared. As a consequence, the consumers

only demand the quantity for which the function PQ(Q,QR0) equals zero, and there

remains a quantity which is not bought (this is waste). So we can define:

Q|PQ=0 =
α− δQR∗

0

β
(10)

as the demanded quantity of wood of low quality for which PQ(Q,QR∗
0) = 0, given QR∗

0.

QR0|PQ=0 =
α− βQ

δ
(11)

as the quantity of harvested wood for which PQ(Q,QR0) = 0, for a given Q.

Q|PQ̄=0 =
αR − βRQR∗

0

δ
(12)
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as the demanded quantity of wood of low quality for which PQ̄(QR∗
0, Q) = 0, given QR∗

0.

QR0|PQ̄=0 =
αR − δQ

βR
(13)

as the quantity of harvested wood for which PQ̄(QR0, Q) = 0, for a given Q

From this possibility for prices to reach the value of zero in case of storm, we obtain

a forester’s profit equal to:

ΠH
1 (QRH

1 ) = PQ̄(QR0, Q)QR0 − k̄QRH
1 − kQ+ PQ̄(QRH

1 )QRH
1 (14)

in the case of Universe 2, where the value of PQ(Q,QR0) is fallen to zero, and

ΠH
1 (QRH

1 ) = −k̄QRH
1 − kQ+ PQ̄(QRH

1 )QRH
1 (15)

in the case of Universe 3, where the value of both PQ(Q,QR0) and PQ̄(QR0, Q) are fallen

to zero.

As regards the values of consumers’ surplus (CS, see details about calculation of

consumers’ surplus in Appendix A.1), we obtain:

CS =
1

2
βR(QR∗

0)
2 + p

[
1

2
βR

(
QRH∗

1

)2
+

1

2
βR(Q|PQ=0)

2

]
+(1− p)

1

2
βR

(
QRNH∗

1

)2 (16)

since, in Universe 2, the price PQ(Q,QR0) reaches zero for a quantity Q|PQ=0 of windfall

(in case of storm). Consumers only demand (and enjoys surplus on) a quantity Q|PQ=0

of windfall, and the remaining quantity Q−Q|PQ=0 is not bought (waste).

When Universe 3 holds, we obtain:

CS = p

[
1

2
βR(QR0|PQ̄=0)

2 +
1

2
βR

(
QRH∗

1

)2
+

1

2
βR(Q|PQ=0)

2

]
+(1− p)

[
1

2
βR(QR∗

0)
2 +

1

2
βR

(
QRNH∗

1

)2] (17)

since, in Universe 3, in addition to PQ(Q,QR0), the price PQ̄(QR0, Q) also falls to zero
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in case of storm. As a consequence, the consumers only demand a quantity QR0|PQ̄=0 <

QR∗
0 of wood of high quality, and the remaining quantity QR∗

0 −QR0|PQ̄=0 is waste.

Social welfare is the sum of the forester’s expected profit E[Π0(QR0)] and of the

consumers’ surplus CS, knowing that in this case of laissez-faire, Universe 2 is reached

when Q > Q|PQ=0 (leading to PQ(Q,QR0) = 0), and Universe 3 holds when both Q >

Q|PQ̄=0 and/or QR0 > QR0|PQ̄=0 (leading both to PQ(Q,QR0) = 0 and PQ̄(QR0, Q) =

0).
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A.3 Solving QRs
0 in case of a storage policy

In case of storage policy, the optimal quantity of wood harvested in period 0, QR∗
0,

satisfies condition (8), that is:

∂E[Π0(QR0)]

∂QR0
= −k + p

∂ΠH
1

(
QRHs

1 , Qs
S

)
∂QR0

+ (1− p)
∂ΠNH

1

(
QRNHs

1

)
∂QR0

= 0

with:

∂ΠNH
1

(
QRNHs

1

)
∂QR0

= αR − 2βRQR0

and:

∂ΠH
1

(
QRHs

1 , Qs
S

)
∂QR0

=
PQ(QR0, (Q−QS))

∂QR0
QR0 + 1.PQ(QR0, (Q−QS))− k

dQRHs
1

dQR0

+
PQ

(
QRH

1 , QS

)
∂QR0

QRHs
1 +

dQRHs
1

dQR0
PQ(QRH

1 , QS)

+
PQ((Q−QS), QR0)

∂QR0
(Q−Qs

S) +
d(Q−Qs

S)

dQR0
PQ((Q−QS), QR0)

+
PQ

(
QS , QRH

1

)
∂QR0

Qs
S +

dQs
S

dQR0
PQ(QS , QRH

1 )

with:

dQRHs
1

dQR0
=

2δ2

βR
2δ2

βR
− 4β

dQs
S

dQR0
=

−2δ
2δ2

βR
− 4β

d(Q−Qs
S)

dQR0
= −

dQs
S

dQR0

PQ(QR0, (Q−QS))

∂QR0
= −βR − −2δ2

2δ2

βR
− 4β

PQ(QRH
1 , QS)

∂QR0
= − 2δ2

2δ2

βR
− 4β

+
2δ2

2δ2

βR
− 4β

= 0

PQ((Q−QS), QR0)

∂QR0
=

−2δβ
2δ2

βR
− 4β

− δ

PQ(QS , QRH
1 )

∂QR0
=

2δβ
2δ2

βR
− 4β

− 2δ3

βR

[
2δ2

βR
− 4β

]
♦
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A.4 Storage: case of market price falling to zero

The rationale of storage is similar to those that was introduced in the body of the

paper: in case of storm (in period 1), the forester has the possibility to collect, from the

windfall Q, a quantity QS , in order to sell it in the future (period 2).

However, in case of a strong storm (i.e., a high value of Q), it could be possible

that some market prices fall to zero (despite the possibility to “smooth” the quantity of

windfall over periods). Such a possibility is excluded in the body of the paper, but this

part of Appendix aims at showing what happens in such a case.

When the price of windfall that is sold in period 1 (Q−QS , i.e., the remaining quantity

of windfall after having collected QS for storage) falls to zero, then the consumers will

demand:

(Q−QS)|PQ=0 =
α− δQR0

β

which satisfies: PQ(Q−QS , QR0) = 0, given QR0, Q and QS .

Moreover, given the substitutability between the windfall (Q − QS) and the harvested

wood (QR0) in period 1, the price of harvested wood can also fall to zero. In that case,

the quantity of harvested wood which is demanded by consumers is:

QR0|PQ̄=0 =
αR − δ(Q−QS)

βR

given a quantity (Q−QS) of windfall available in period 1.

As a consequence, in period 1, if the market of windfall collapses then only (Q −

QS)|PQ=0 is consumed and (Q−QS)−(Q−QS)|PQ=0 is waste. If the market of harvested

wood collapses in period 1, then only QR0|PQ̄=0 is consumed and QR0 − QR0|PQ̄=0 is
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waste. The forester’s profit in period 1 is:

ΠH
1

(
QRH

1 , QS

)
= max

{
0;PQ(QR0, (Q−QS))

}
min

{
QR0|PQ̄=0;QR0

}
− kQRH

1 + PQ(QRH
1 , QS)QRH

1 − kQ

+ max
{
0;PQ((Q−QS), QR0)

}
min

{
(Q−QS)|PQ=0; (Q−QS)

}
+ PQ(QS , QRH

1 ).QS

And the consumers’ surplus in case of storm is:

CSH =
1

2
βR

(
QRH

1

)2
+

1

2
β(QS)

2 +
1

2
β
(
min

{
((Q−QS)|PQ=0); (Q−Q∗

S)
})2

+
1

2
βR

(
min

{
QR0|PQ̄=0;QR0

})2

The cost of policy remains similar, and the social welfare is still the sum of expected

profit, expected consumer surplus, minus the expected cost of public policy.
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B Sensitivity analysis

In this section, we present the results of sensitivity analysis realized on several pa-

rameters : δ, β and βR.

B.1 Substitutability: sensitivity analysis on δ

In the benchmark, δ = 0.1. We look at the impact of changing δ with δ = 0.05; δ =

0.3 on the social welfare for each case.

Figure 9: Social welfare relative to no public policy, with δ = 0.05.

Figure 10: Social welfare relative to no public policy, with δ = 0.30.
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B.2 Price-elasticity of the demand for wood

In the benchmark, β = 0.8 and βR = 0.4. We look at the impact of changing β and

βR with β = 1 and βR = 0.5; β = 0.7 and βR = 0.3; β = 0.6 and βR = 0.2 on the social

welfare for each case.

Figure 11: Social welfare relative to no public policy, with β = 1 and βR = 0.5.

Figure 12: Social welfare relative to no public policy, with β = 0.7 and βR = 0.3.
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Figure 13: Social welfare relative to no public policy, with β = 0.6 and βR = 0.2.
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