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Abstract

The contractionary effect of aggregate technology shocks on hours worked has shrunk
over time in OECD countries. Our estimates suggest that this finding can be attributed
to the increasing share of the variance of technology improvements driven by asymmet-
ric technology shocks across sectors. While technology improvements uniformly dis-
tributed across sectors are found empirically to give rise to a dramatic decline in total
hours worked, asymmetric technology shocks do the opposite. By depreciating non-
traded prices, symmetric technology shocks generate a contractionary effect on non-
traded labor and thus on total hours. In contrast, by appreciating non-traded prices,
technological change concentrated toward traded industries puts upward pressure on
wages which has a strong expansionary effect on total hours worked. A two-sector open
economy model with frictions into the movements of inputs can reproduce the time-
increasing response of both total and sectoral hours worked we estimate empirically
once we allow for factor-biased technological change and we let the share of asymmetric
technology shocks increase over time. A model with endogenous technology decisions
reveals that two-third of the progression of asymmetric technology shocks is driven by
greater exposition of traded industries to the international stock of knowledge.
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1 Introduction

A major question in macroeconomics is whether technology improvements lead to a fall or a

rise in inputs, especially labor. We find empirically that total hours worked decline following

a permanent increase in utilization-adjusted total factor productivity (TFP henceforth).

When estimating the response on rolling sub-samples (with a window of the same length),

our evidence also shows that the response of total hours worked to a technology improvement

is increasing over time, moving from large to small negative values. In this paper, we show

that the time-increasing response of hours worked is driven by the rise in the contribution

of asymmetric technology shocks across sectors to technology improvements in an open

economy.

These findings for a panel of seventeen OECD countries over 1970-2017 corroborate the

evidence by Gaĺı and Gambetti [2009], Cantore et al. [2017], Gaĺı and Van Rens [2021] on

U.S. data who report a time-increasing response of hours worked following a permanent

increase in productivity. In contrast to these papers which put forward the change in the

monetary policy rule, a greater substitutability between capital and labor, or a reduction

in labor market frictions, we offer a new explanation which is based on the open economy

aspect and the multi-sector dimension. Financial openness eases the increase in leisure

and the reduction in hours worked following a technology shock while the dispersion in

technology improvements across industries has an expansionary effect on hours by fostering

labor demand in low productivity growth industries.

As shown in Fig. 1(a) which plots impact responses of hours to a permanent technology

improvement against the averaged current balance (in % of GDP) for seventeen OECD

countries, economies which borrow from abroad also experience a decline in hours worked.1

In contrast, as displayed by Fig. 1(b) which plots impact responses of hours to a technology

shock against the (value added) share of tradables, a greater contribution of exporting

industries to GDP is associated with an increase in hours worked following a permanent

technology improvement. Intuitively, a greater share of tradables implies that the variations

in utilization-adjusted-aggregate-TFP are further driven by technological change in traded

industries. Because technological change is more pronounced in traded than in non-traded

industries, aggregate technological change tends to be more asymmetric across sectors. As

detailed later below, because asymmetric technology shocks have a strong expansionary

effect on total hours worked, the impact response of hours is increasing in the share of

asymmetric technology shocks and thus in the share of tradables.
1Countries with low mobility costs can meet higher demand for traded goods by importing goods from

abroad and meet higher demand for non-traded goods by shifting productive resources away from traded
and toward non-traded industries. According to our model’s predictions detailed in the quantitative part,
when factors’ mobility costs between sectors are too high, imports shrink and leisure increases less. Imports
will further decline and labor supply might increase as home- and foreign-produced traded goods become
imperfect substitutes.
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Figure 1: Impact Responses of Hours Worked to a Permanent Technology Improvement:
Role of Financial Openness and Tradable Share. Notes: Fig. 1(a) and Fig. 1(b) show the impact response
of total hours worked to a 1% permanent increase in utilization-adjusted-aggregate-TFP. We first identify the technology shock by
estimating a VAR which includes utilization-adjusted-aggregate-TFP, real GDP, total hours worked, and the real consumption wage
and by imposing long-run restrictions for each country of our sample. Then in a second step, we estimate the impact response of
hours worked by means of local projections. In Fig. 1(a), we plot impact response of hours worked (on vertical axis) against the
current account balance (as a percentage of GDP) averaged over 1970-2017. Data for the current account balance are taken from Lane
and Milesi-Ferretti [2007]. In Fig. 1(b), we plot impact response of hours worked (on vertical axis) against the value added share of
tradales (as a percentage of GDP) averaged over 1970-2017. Data are taken from EU KLEMS. Sample: 17 OECD countries, annual
data, 1970-2017.

In an open economy with an exporting (i.e., a traded) vs. a non-exporting (i.e., non-

traded) sector, technology improvements are driven by technological change which is both

common to both sectors and concentrated toward traded industries. To decompose ag-

gregate technology improvements into symmetric and asymmetric technology shocks in

an open economy, we adapt the standard long-run SVAR identification of technology

shocks. While both symmetric and asymmetric technology shocks increase utilization-

adjusted-aggregate-TFP, only asymmetric technology improvements increase permanently

the utilization-adjusted-TFP of tradables relative to non-tradables. The dynamic responses

obtained from Jordà’s [2005] local projections reveal that symmetric and asymmetric tech-

nology shocks have very distinct (and opposite) effects on hours worked. We find that

symmetric technology shocks drive down dramatically hours worked on impact (i.e., by

-0.47%) and reallocate labor toward the traded sector. Conversely, asymmetric technology

shocks increase significantly hours (i.e., by 0.31%) in the short-run and reallocate labor

toward the non-traded sector. Estimating the impact labor effects on rolling sub-samples

(of fixed window length), hours worked are found empirically to decline by 0.26% the first

thirty periods and by 0.11% only the last thirty periods of our sample period. During the

same period, the share of the forecast error variance of technology improvements driven by

asymmetric technology shocks has increased from 10% to 40%.

To investigate whether the growing role of asymmetric technology improvements is re-

sponsible for the reduction of the contractionary effects of technology shocks on hours, we

develop an open economy model with tradables and non-tradables by adding several ele-

ments to the setup pioneered by Kehoe and Ruhl [2009]. We find that five key elements are

essential to account for the labor market effects of a permanent technology shock: financial

and trade openness, barriers to factors’ mobility between sectors, imperfect substitutabil-
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ity between home- and foreign-produced traded goods, factor-biased technological change

(FBTC henceforth), and the mix of symmetric and asymmetric technology shocks. In a

RBC model with flexible prices, a permanent technology improvement leads hours worked

to increase if the economy is closed or to fall dramatically if the economy is financially open

(and if home- and foreign-produced traded goods are perfect substitutes).2 Intuitively,

while a closed economy needs more labor to meet additional demand for consumption and

investment goods, a small open economy can work less by importing goods from abroad

and running a current account deficit. A model producing tradables and non-tradables is

halfway between these two extreme cases as the the demand for non-traded goods must be

met by domestic firms.

However, a two-sector open economy model without any mobility costs will overstate

considerably the decline in traded labor and thereby in total hours worked as imports are

perfect substitutes for home-produced traded goods and productive resources shift massively

toward the non-traded sector. When we allow for labor and capital mobility costs, traded

and thus total hours worked fall by a smaller amount because less resources are moved

toward the non-traded sector and thus households must mitigate the increase in leisure to

meet higher demand for non-traded goods. If we further assume imperfect substitutability

between home- and foreign-produced traded goods, the fall in both traded and total hours

worked further shrink because households are now reluctant to substitute foreign- for home-

produced traded goods and thus the economy needs more labor to produce home-produced

traded goods. Even with mobility costs and a price-elastic demand for home-produced

traded goods, the model still overstates the reallocation of labor toward the non-traded

sector and the decline in total hours worked. It is only once we allow for technological

change biased toward labor that the model can account quantitatively for the labor market

effects of a technology shock. Because technological change is more biased toward labor in

the traded than in the non-traded sector, the rise in the demand for labor in the traded

sector neutralizes the incentives to shift resources toward the non-traded sector which leads

the model to generate a decline in hours worked in line with our estimates.

While quantitatively our open economy model with the specific elements mentioned

above generates a decline in hours worked in line with what we estimate empirically, such

a fall is the result of a mix of symmetric and asymmetric technology shocks across sectors.

Both shocks produce distinct effects on the economy, especially on labor. By reducing

sectoral prices and putting downward pressure on sectoral wages, symmetric technology

shocks lower total hours worked. The depreciation in non-traded good prices lowers the
2As shown by Dotsey [1999], a closed economy model with sticky prices with standard monetary policy

rules will produce a rise in hours worked. When we extend our model to sticky prices in the non-traded
goods sector, we also find that the model produces an increase in hours worked instead of a decline because
a technology improvement is associated with a small increase in non-traded productivity which generates
an excess demand for non-traded goods which cannot be eliminated by an appreciation in non-traded good
prices and thus non-traded hours worked must increase.
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share of expenditure spent on non-tradables because traded and non-traded goods are

complements, in line with our estimates and the evidence documented by Mendoza [1992]

and Stockman and Tesar [1995], which has a strong negative impact on non-traded hours

worked. Because home- and foreign-produced traded goods are high substitutes, as evidence

suggests, see e.g., Bajzik et al. [2020], the terms of trade depreciation leads labor to

shift toward traded industries. As a result, the dramatic decline in total hours worked

is concentrated in the non-traded sector. The negative response of hours to a technology

improvement common to both sectors is amplified because symmetric technology shocks

are biased toward capital. Conversely, when technology improvements are asymmetric,

the concentration of productivity growth in traded industries leads non-traded industries

to increase their prices to compensate for their higher marginal cost. Because the price-

elasticity of demand for non-traded goods is lower than one, the non-tradable content of

expenditure increases. While hiring gets more profitable, non-traded firms must pay higher

wages to encourage workers (who experience mobility costs) to switch. By putting upward

pressure on wages, asymmetric technology shocks lead households to supply more labor.

The positive response of hours worked is further amplified as technology improvements

concentrated in traded industries are biased toward labor. Only the baseline model can

generate an initial rise in hours by 0.28% (close to the evidence) when technological change

is asymmetric between sectors and can produce a decline in hours by 0.40% on impact

(close to the evidence) when technological change is uniformly distributed across sectors.

To assess the ability of our baseline model to account for the time-varying effects we

estimate empirically, we let the share of symmetric technology shocks fall from 90% to 60%

in line with our estimates. We find that the increasing importance of asymmetric technol-

ogy shocks can rationalize the time-increasing response of total hours worked to aggregate

technology shocks. By putting upward pressure on wages and making production more

labor intensive, technology improvements concentrated toward traded industries offset the

negative impact of symmetric technology shocks. Our model with barriers to factors’ mo-

bility and imperfect substitutability between home- and foreign-produced traded goods can

generate the shrinking contractionary effects on traded and non-traded hours worked caused

by a permanent technology improvement as long as we allow for FBTC. When we impose

Hicks-neutral technological change, the restricted model generates a time-decreasing impact

response of traded hours worked in contradiction with our evidence. Intuitively, asymmetric

technology shocks have a strong expansionary effect on non-traded hours worked at the ex-

pense of traded hours worked which tend to fall more on impact as the share of asymmetric

shocks increases because more labor shifts toward non-traded industries. We can reproduce

the time-increasing impact response of traded and non-traded hours worked to a permanent

technology improvement only once technological change is significantly biased toward labor.

A model imposing Hicks-neutral technological change generates a time-decreasing impact
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response of traded hours worked, in contradiction with our evidence.

Because technological change concentrated toward traded industries is growing over

time, it is important to understand the key driver behind this phenomenon and its pattern.

By extending our two-sector open economy setup to endogenous technology decisions, we

find that two-third of the progression of asymmetric technology shocks is driven by the

greater exposition of traded industries to the international stock of knowledge. Because

only the estimated value of the elasticity of utilization-adjusted-TFP of tradables w.r.t.

the stock of R&D is substantial and statistically significant, the combined effect of the

increase in the world stock of ideas and the growing intensity of traded technology in

the international stock of knowledge amplifies the dispersion of technology improvements

between the traded and the non-traded sector and further increases the share of the variance

of technological change driven by asymmetric technology improvements. One additional

key finding is that asymmetric technology shocks give rise to an increase in the stock of

R&D but only in traded industries, thus suggesting that such technology improvements

are driven by innovation. Conversely, the stock of R&D remains unchanged in both sectors

after symmetric technology shocks, technology improvement thus reflecting either improved

work organization, better management practices, or adoption of existing technologies.

The article is structured as follows. In section 2, we contrast the effects of symmetric

technology shocks with those caused by asymmetric technology shocks and investigate the

time-varying effects of technology improvements on hours worked. In section 3, we develop

a semi-small open economy model with tradables and non-tradables, frictions into factors’

mobility and sectoral factor-augmenting efficiency with a symmetric and an asymmetric

component. In section 4, we assess numerically the role of each element of our model by

considering restricted versions of our setup and compare the predictions of the baseline

model with the dynamic effects from local projections. In section 5, we extend the baseline

model in two directions. We differentiate between workers’ skills and allow for endogenous

technology decisions to quantify the share of asymmetric technology change driven by the

access to the international stock of ideas. The Online Appendix contains more empirical

results, conducts robustness checks, details the solution method, and shows extensions of

the baseline model.

Related Literature. Our paper fits into several different literature strands, as we

bring several distinct threads in the existing literature together.

Impact response of hours to a technology shocks. There is a vast literature

investigating whether a technology improvement increases or lowers hours worked. While

the response of hours worked to a technology shock is still debatable as the identification of

technology shocks has been subject to criticisms, see e.g., Erceg et al. [2005], Dupaigne et

al. [2007], Chari et al. [2008], the literature has put forward a set of solutions to deal with
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both the lag-truncation and the small sample biases, among others. These solutions include

the number of lags, see e.g., De Graeve and Westermark [2013], the measure of technology,

see e.g., Chaudourne et al. [2014], Dupaigne and Fève [2009], the VAR specification, see

e.g., Fève and Guay [2010], the behavior of hours worked (i.e., stationary or free of low-

frequency movements), see e.g., Christiano et al. [2006], Francis and Ramey [2009], or

econometric methods of identification, see e.g., Francis et al. [2014], Li [2022]. Most of

the aforementioned works find that positive technology shocks, identified with long-run

restrictions, lead to a short-run decrease in hours worked.

Technology shocks and time-varying response of hours worked. Gaĺı and Gam-

betti [2009] attribute the shrinking contractionary effect of technology improvements on

hours worked to the greater effectiveness of monetary policy to stabilize the economy. In-

deed, Dotsey [1999] shows that a sufficiently procyclical monetary policy can induce a pos-

itive correlation between output and employment following a technology shock. Gaĺı and

Van Rens [2021] put forward the decline in labor regulation leading to a greater outward

shift of labor demand. Nucci and Riggi [2013] attribute shrinking contractionary effects

on hours worked of positive technology shocks to an increase in performance-related pay

schemes. Our work is complementary to these studies as we focus on both financial open-

ness and multi-sector aspects of industrialized countries and show that the time-increasing

impact response of hours is not limited to the US.

Closely related to our work, Cantore et al. [2017] base their explanation of the time-

varying pattern of hours on increases in the magnitude of the degree of capital-labor sub-

stitution. Intuitively, when the production function is of the CES type with an elasticity

of substitution between capital and labor lower than one, as evidence suggests, and if tech-

nological change is biased toward capital, technology improvements are associated with a

fall in labor demand which lowers hours worked. As the elasticity of substitution between

capital and labor (smaller than one) takes higher values, technological change turns out to

be less biased toward capital. Like the authors, we allow sectoral goods to be produced by

means of CES production functions and assume FBTC. In contrast to them, we are able to

quantity the extent of technological change biased toward product factors by recovering the

dynamics of FBTC by adapting the methodology pioneered by Caselli and Coleman [2006].

Because asymmetric technology shocks across sectors are biased toward labor, the time-

increasing contribution of asymmetric technology shocks across sectors tend to raise the

labor intensity of production but the trigger mechanism is the growing role of technological

change concentrated toward traded industries.

Drivers of technology improvements and effects of technology shocks on

labor. Shea [1999] and Alexopoulos [2011] find that technology shocks driven by innovation

increase employment. In this paper, we show that symmetric technology shocks lower
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dramatically hours worked while asymmetric technology shocks increase significantly labor.

Since asymmetric technology shocks are driven by innovation, our work can reconcile the

evidence documented by Shea [1999] and Alexopoulos [2011] who focus exclusively on shocks

to innovation and those documented by the literature pioneered by Gali [1999] reporting

negative effects of labor productivity shocks on hours worked.

Multi-Sector setup, labor reallocation, and total hours worked. Like Gar̀ın

et al. [2018], we put forward the increasing contribution of asymmetric technology shocks

across sectors in driving changes in the labor market together with the importance of

barriers to factors’ mobility. In contrast to the authors who focus on the labor productivity

which has switched from strongly procyclical to mildly countercyclical, we are interested in

the response of hours to technology improvements. In this regard, we show that the sectoral

dimension is not sufficient on its own to account for the evidence as the open economy

aspect also plays a crucial role together with the gross substitutability between home- and

foreign produced traded goods and the gross complementarity between traded and non-

traded goods. More specifically, our evidence reveals that the variations in hours worked

on impact mostly originate from the non-traded sector and to account for this aspect, we

have to assume an elasticity of substitution between traded and non-trade goods smaller

than one (in line with our estimates) which echoes the findings documented by the structural

change literature pioneered by Ngai and Pissarides [2007]. The complementarity between

traded and non-traded hoods ensures a decline in non-traded hours worked after symmetric

technology shocks and an increase following asymmetric technology shocks. To generate the

magnitude of the variations in hours we observe in the data, we have to consider an open

economy which can borrow after symmetric technology improvement and lend to abroad

after asymmetric technology shocks.3 In contrast to the structural change literature which

restricts attention to asymmetric technology shocks, we consider a technology improvement

driven by both symmetric and asymmetric technology shocks across sectors. We also show

that mobility costs are crucial to account for our evidence as they put upward pressure on

wages and prevent from a dramatic decline in hours caused by financial openness.

2 Technology and Hours Worked: Evidence

In this section, we document evidence for seventeen OECD countries about the link between

technology and labor by highlighting the sectoral dimensions. Below, we denote the per-

centage deviation from initial steady-state (or the rate of change) with a hat. Robustness

checks related to several aspects of our identification of technology shocks and measures of
3Intuitively, after symmetric technology shocks, the rise in imports more than offsets the increase in

exports thus leading to a current account deficit because the terms of traded depreciation is not large
enough. In contrast, technology improvements concentrated within traded industries give rise to a dramatic
terms of trade depreciation in the terms of trade which increases significantly exports and mitigates the
decline in traded hours worked.
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technology are discussed in section 2.7.

2.1 The Response of Hours Worked across Model Variants

To discipline and guide our empirical investigation, we derive below a formal expression for

the equilibrium total hours worked which enables us to discuss the link between technology

and labor. Since this relationship involves different elements, we build intuition on each

ingredient by considering the simplest model and by adding one ingredient at a time. These

ingredients include: i) financial openness, ii) capital adjustment costs, iii) the production

of tradables and non-tradables, iv) frictions into the movements of inputs by considering

imperfect substitutability between sectoral hours worked and between sectoral capital, v)

imperfect substitutability between home- and foreign-produced traded goods, vi) the rel-

ative risk aversion parameter, vii) FBTC, viii) and sectoral endogenous capital utilization

rates.

Households. To conduct this analysis, we consider the general class of preferences

proposed by Shimer [2009] which imply that utility is non-separable in consumption C and

leisure with functional form

Λ ≡ C(t)1−σV (L(t))σ − 1
1− σ

, if σ 6= 1, V (L(t)) ≡
(

1 + (σ − 1) γ
σL

1 + σL
L(t)

1+σL
σL

)
(1)

and

Λ ≡ log C(t)− γ
σL

1 + σL
L(t)

1+σL
σL , if σ = 1. (2)

where L is total hours worked. These preferences are characterized by two crucial pa-

rameters: σL is the Frisch elasticity of labor supply, and σ > 0 determines the substi-

tutability between consumption and leisure and collapses to relative risk aversion. Denot-

ing by λ(t), PC(t), and W (t) the marginal utility of wealth, the consumption price index,

and the aggregate wage rate, first-order conditions for consumption and labor supply are

ΛC (C(t), L(t)) = λ(t)PC(t) and −ΛL (C(t), L(t)) = λ(t)W (t). Rearranging the FOC for

consumption, i.e., C(t) =
(

ΛC
V σ

)− 1
σ , and plugging the latter equation into the FOC for labor

supply, the optimal decision on total hours worked reads:

γL(t)
1

σL = WC(t)
(ΛC(t))

1
σ

σ
, (3)

where WC(t) = W (t)
PC(t) is the real consumption wage.

Firms. On the production side, perfectly competitive firms produce a final good by

using capital (Kj(t)) and labor (Lj(t)) services i.e., Y j(t) = F j
[
Aj(t)Lj(t), Bj(t)K̃j(t)

]

where Y j(t) is the value added in sector j, Aj(t) and Bj(t) are labor- and capital-augmenting

technological change and K̃j(t) = uK,j(t)Kj(t) where uK,j(t) is the capital utilization rate

chosen by households. Denoting the capital rental rate by Rj(t), and the wage rate by

W j(t), the demand for capital and labor read Rj(t) = ∂F j

∂K̃j
and W j(t) = ∂F j

∂Lj , respectively.
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In Table 3 which is relegated to Online Appendix A, we consider eleven variants of a

RBC model to investigate the role of each element for the link between hours and technology.

In each variant, we assume that aggregate utilization-adjusted aggregate TFP increases by

1% initially and remains permanently to this level. When we consider a two-sector economy,

we assume that traded and non-traded technology improves by 1.7% and 0.6% respectively,

in line with our evidence. When we relax the assumption of Hicks-neutral technological

change (HNTC henceforth), we let technological change to be biased toward labor in the

traded sector (by 1.60%) and the non-traded sector (by 0.29%), in line with our estimates.

Moving from a closed to a small open economy. In order to understand the

role played by each element we first assume that the production function is Cobb-Douglas

and technological change is Hicks-neutral (i.e., Aj(t) = Bj(t) = Zj(t)). We assume that

capital utilization rate is fixed. In a closed economy model where households consume

one unique final good, the consumption price index PC collapses to 1. Assuming that

the parameter σ is equal to one, the equilibrium level for hours worked (3) collapses to:

γL(t)
1

σL = W (t)C(t)−1. By increasing the wage rate, a technology shock encourages agents

to supply more labor through the substitution channel. A technology shock also produces a

positive wealth effect which encourages households to consume more goods and more leisure

and to lower their labor supply. As is well-known, in a closed economy, a technology shock

leads to an increase in hours worked on impact which is necessary to meet higher demand

for consumption and investment goods. As shown in the first row of Table 3, total hours

worked increase by 0.075%.

When we consider a two-sector closed economy model which produces goods and ser-

vices, the relative price of leisure collapses to the real consumption wage denoted WC(t).

As shown in the second row of Table 3, a technology improvement further increases total

hours worked by 0.11%. Intuitively, in line with the evidence, technology improvements are

more pronounced in Manufacturing than in Services which leads the latter sector to charge

higher prices to compensate for its higher marginal cost. Because goods and services are

complements, the appreciation in the relative price of services disproportionately increases

the share of services in total expenditure which leads labor to shift toward the service sector.

Since worker experience mobility costs, firms in the service sector must pay higher wages

which amplifies the substitution effect and further increases labor supply.

Moving from a closed to a small open economy. We now assume that the economy

has perfect access to world capital markets. For pedagogical purposes, we consider first a

one-sector economy with no capital adjustment costs. As shown in the third row of Table

3, total hours worked decline dramatically in a small open economy by -0.492%. Intuitively,

because domestic goods and foreign goods are perfect substitutes, the open economy finds

it optimal to work less and import goods and services from abroad by running a current

9



account deficit. As shown in the last column Table 3, consumption increases less once we

allow for capital adjustment costs (see the fourth row), leading labor supply to fall less (i.e.,

by 0.418%) because domestic capital and foreign bonds are no longer perfect substitutes in

the short-run which mitigates the current account deficit.

Moving from a one-sector to a two sector open economy. We now consider

an economy which produces traded goods that can be exported and non-traded goods for

domestic absorption only. The decline in labor supply 0.348% is less pronounced than in a

one-sector small open economy because the economy must produce non-traded goods which

cannot be imported from abroad. While traded hours worked decline by almost the same

amount as in one-sector economy, labor now shifts toward non-traded industries. Note that

by raising the marginal revenue product of labor, the appreciation in the relative price of

non-tradables increases the wage rate which leads agents to supply more labor.

As shown in the sixth row, when we allow for labor mobility costs. hours worked fall

by a smaller magnitude, i.e., by 0.219%. Intuitively, in a model where workers experience

switching costs, less labor can move toward the non-traded sector. Therefore workers must

reduce their labor supply by a smaller magnitude so that the production of non-traded

goods meets additional demand.

Moving from a small to a semi-small open economy. We now assume that home-

and foreign-produced traded goods are imperfect substitutes. As shown in the seventh

row of Table 3, total hours worked decline less following a technology improvement, i.e.,

L̂(0) = −0.110. Intuitively, households are now reluctant to substitute foreign- for home-

produced traded which in turn leads the traded sector to produce more to meet higher

demand. Because the open economy reduces its imports, the decline in hours worked must

be less pronounced. As displayed by the eight row of Table 3, capital mobility costs slightly

mitigate the magnitude of the decline in total hours worked.

Factor-biased technological change and preferences. We now add a new element

by allowing production to be more intensive in one specific input. Under the assumptions of

perfectly competitive markets and constant returns to scale in production, labor is paid its

marginal product. Denoting the labor income share by sj
L, the marginal revenue product

of labor, sj
L

P jY j

Lj , must equate the wage rate W j . The same logic applies at an aggregate

level, i.e., sL
Y
L = W where sL is the aggregate labor income share (LIS henceforth) and

Y is GDP at current prices. Plugging labor demand sL
Y
L = W into labor supply (3) to

eliminate W and solving leads to the equilibrium level of total hours worked:

γL(t)
1+σL

σL = sL(t)
Y (t)
PC(t)

(ΛC(t))
1
σ

σ
. (4)

If we assume that production functions are of the CES type and technological change

is factor-biased, the aggregate LIS varies following a permanent technology improvement

which in turn influences the equilibrium level of total hours worked. Column 4 in the ninth
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row indicates that technological change biased toward labor mitigates the magnitude of

the decline in hours worked from 0.106% to 0.096%. Formally, technological change biased

toward labor is reflected into an increase in sL which raises the marginal revenue product

of labor, pushes up labor demand and increases wages.

More specifically, technological change biased toward labor implies that production in

both sectors turns out to be more intensive in labor which has an expansionary effect on

hours worked.4 In the tenth row, we assume that consumption and leisure are substitutes

so that the coefficient of relative risk aversion σ collapses to two. The decline in total

hours worked is more pronounced, passing from 0.096% to 0.140%. Because the marginal

utility of consumption declines more rapidly as consumption increases, households allocate

a greater share of their additional wealth to leisure time which amplifies the decline in total

hours worked. In the last row, we allow for an endogenous capital utilization at a sectoral

level. The decline in L slightly shrinks at -0.13%. On one hand, capital utilization falls

substantially in the traded sector because technological change is strongly biased toward

labor which has a negative impact on traded hours worked. On the other hand, capital

utilization increases in the non-traded sector because non-traded prices appreciate which

has a positive effect on non-traded hours worked. The latter effect more than offsets the

former.

2.2 Data Construction

Before presenting evidence on the effects of a permanent technology improvement, we briefly

discuss the dataset we use. Our sample contains annual observations and consists of a panel

of 17 OECD countries. The period runs from 1970 to 2017.

Classification of industries as tradables or non-tradables. Since our primary ob-

jective is to quantify the implications of the dispersion in technology improvements across

sectors, we describe below how we construct time series at a sectoral level. Our sample

covers eleven 1-digit ISIC-rev.3 industries. Following De Gregorio et al. [1994], we define

the tradability of an industry by constructing its openness to international trade given by

the ratio of total trade (imports plus exports) to gross output, see Online Appendix M.2

for more details. Data for trade and output are taken from WIOD [2013], [2016]. ”Agri-

culture, Hunting, Forestry and Fishing”, ”Mining and Quarrying”, ”Total Manufacturing”

and ”Transport, Storage and Communication” exhibit high openness ratios and are thus

classified as tradables. At the other end of the scale, ”Electricity, Gas and Water Supply”,

”Construction”, ”Wholesale and Retail Trade” and ”Community Social and Personal Ser-

vices” are considered as non-tradables since the openness ratio in this group of industries is

low (i.e., less than 10% for most of the countries in our sample). For the three remaining in-
4The effect looks small because an aggregate technology shock is a mix of symmetric and asymmet-

ric technology shocks. Although asymmetric technology improvements are strongly biased toward labor,
symmetric technology shocks which are predominant and biased toward capital.

11



dustries ”Hotels and Restaurants”, ”Financial Intermediation”, ”Real Estate, Renting and

Business Services” the results are less clearcut since the openness ratio averages (across

countries) 14% for the former and 20% for the last two sectors. In the benchmark clas-

sification, we adopt the standard classification of De Gregorio et al. [1994] by treating

”Real Estate, Renting and Business Services” and ”Hotels and Restaurants” as non-traded

industries. Given the dramatic increase in financial openness that OECD countries have

experienced since the end of the eighties, we allocate ”Financial Intermediation” to the

traded sector. This choice is also consistent with the classification of Jensen and Kletzer

[2006] who categorize ”Finance and Insurance” as tradable.5

In Online Appendix G, we detail the source and the construction of time series for

sectoral value added at constant prices, Y j
it, sectoral hours worked, Lj

it, the hours worked

share of sector j, νL,j
it , the value added share at constant prices, νY,j

it . While we mainly

focus on the sectoral hours and sectoral value added effects of technology shocks, we also

build intuition about the transmission mechanism of a technology improvement in a two-

sector open economy by analyzing the movements in relative wages and relative prices.

The relative wage of non-tradables is constructed as the ratio of the non-traded wage to

the aggregate wage, WN
it /Wit, the relative price of non-tradables is computed as the ratio

of the non-traded value added deflator to the traded value added deflator, Pit = PN
t /PH

it ,

and the terms of trade are constructed as the ratio of the traded value added deflator of the

home country i to the geometric average of the traded value added deflator of the seventeen

trade partners of the corresponding country i, the weight being equal to the share αM,k
i of

imports from the trade partner k (averaged over 1970-2017).

Utilization-adjusted sectoral TFPs. Sectoral TFPs are Solow residuals calculated

from constant-price (domestic currency) series of value added, Y j
it, capital stock, Kj

it, and

hours worked, Lj
it, i.e., ˆTFP

j
it = Ŷ j

it − sj
L,iL̂

j
it−

(
1− sj

L,i

)
K̂j

it where sj
L,i is the LIS in sector

j averaged over the period 1970-2017. To obtain series for the capital stock in sector j,

we first compute the overall capital stock by adopting the perpetual inventory approach,

using constant-price investment series taken from the OECD’s Annual National Accounts.

Following Garofalo and Yamarik [2002], we split the gross capital stock into traded and

non-traded industries by using sectoral valued added shares.6 Once we have constructed

the Solow residual for the traded and the non-traded sectors, we construct a measure
5Because ”Financial Intermediation” and ”Real Estate, Renting and Business Services” are made up of

sub-sectors which display a high heterogeneity in terms of tradability, and ”Hotels and Restaurants” has
experienced a large increase in tradability over the last fifty years, we perform a sensitivity analysis with
respect to the classification for the three aforementioned sectors in Online Appendix M.2. Treating ”Finan-
cial Intermediation” as non-tradables or classifying ”Hotels and Restaurants” or ”Real Estate, Renting and
Business Services” as tradables does not affect our main results.

6Due to limited data availability, in the line of Garofalo and Yamarik [2002], we split the aggregate capital
stock into tradables and non-tradables in accordance with their value added share. In Online Appendix M.3,
we use EU KLEMS [2011], [2017] which provide disaggregated capital stock data (at constant prices) at the
1-digit ISIC-rev.3 level for thirteen countries of our sample over the period 1970-2015. Our estimates show
that our empirical findings are robust and unsensitive to the way the sectoral capital stocks are constructed
in the data.
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for technological change by adjusting the Solow residual with the capital utilization rate,

denoted by uK,j
it :

Ẑj
it = ˆTFP

j
it −

(
1− sj

L,i

)
ûK,j

it , (5)

where we follow Imbs [1999] in constructing time series for uK,j
it , see Online Appendix H, as

utilization-adjusted TFP is not available at a sectoral level for most of the OECD countries

of our sample. In Online Appendix N.4, we find that our results are little sensitive to the

use of alternative measures of technology which include i) Basu’s [1996] approach which has

the advantage of controlling for unobserved changes in both capital utilization and labor

effort, ii) and the use of time series for utilization-adjusted-TFP from Huo et al. [2023] and

Basu et al. [2006].

Factor-Biased Technological Change (FBTC). Within each sector, we allow for

labor- and capital-augmenting efficiency to increase at different rates so that technological

change can potentially be factor-biased. To investigate empirically whether technological

change is biased toward capital or labor, we have to constuct time series for FBTC within

sector j = H,N . We draw on Caselli and Coleman [2006] and Caselli [2016] to construct

time series for FBTC which must be adjusted with the capital utilization rate, as explained

in section 2.3. Denoting the elasticity of substitution between capital and labor by σj
i ,

capital- and labor-augmenting efficiency by Bj
it and Aj

it, respectively, our measure of capital-

utilization-adjusted-FBTC, denoted by FTBCj
it, reads (see Online Appendix E for a formal

derivation):

FBTCj
it =

(
Bj

it/B̄j
i

Aj
it/Āj

i

) 1−σ
j
i

σ
j
i

=
Sj

it

S̄j
i

(
kj

it

k̄j
i

)− 1−σ
j
i

σ
j
i

(
uK,j

it

ūK,j
i

)− 1−σ
j
i

σ
j
i

, (6)

where a bar refers to averaged values of the corresponding variable over 1970-2017. To

construct time series for FBTCj
it, we plug time series for the ratio of the labor to the capital

income share, Sj
t = sj

L,it/
(
1− sj

L,it

)
, the capital-labor ratio, kj

it, the capital utilization rate

defined later, uK,j
it . We also plug values for σj

i we have estimated for each country of our

sample, see Online Appendix J.6 for a detailed exposition of our empirical strategy. As

shown in Table 1, we find values for σj
i smaller than one for the whole sample (and most of

countries/sectors), thus corroborating the gross complementarity between capital and labor

documented by Klump et al. [2007], Herrendorf et al. [2015], Oberfield and Raval [2021],

Chirinko and Mallick [2017]. When FBTCj
it increases, technological change is biased toward

labor while a fall indicates that technological change is biased toward capital. To compute

aggregate FBTC, we calculate the labor compensation share weighted sum of sectoral FBTC

adjusted with the capital income share, i.e., ˆFBTC
A
it =

∑
j=H,N αj

L,i

(
1− sj

L,i

)
ˆFBTC

j
it.
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2.3 Identification of Asymmetric vs. Symmetric Technology Shocks

To conduct our empirical study, we compute the responses of selected variables by using

a two-step estimation procedure. We first identify a permanent technology improvement

by adopting the identification pioneered by Gali [1999]. Like Gali, we impose long-run

restrictions in the VAR model to identify permanent technology shocks as shocks that

increase permanently the level of our measure of technology. Because Erceg et al. [2005]

and Chari et al. [2008] have shown that persistent non-technology shocks can disturb the

identification of permanent technology shocks, we adjust TFP with the capital utilization

rate. Chaudourne et al. [2014] demonstrate that the use of ’purified’ TFP to measure

technological change ensures the robustness of the identification of technology shocks. In

the second step, we trace out the dynamic effects of the identified shock to utilization-

adjusted TFP by using Jordà’s [2005] single-equation method.

First step. To explore empirically the dynamic effects of a shock to aggregate produc-

tivity, we consider a vector denoted by Xit which includes utilization-adjusted aggregate

TFP, ZA
it , real GDP, YR,it, total hours worked, Lit, the real consumption wage, WC,it. In

the sequel, all quantities are divided by the working age population and all variables enter

the VAR model in rate of growth. In the first step, we identify the permanent technology

shocks εZ
it by estimating a reduced-form VAR model in panel format on annual data

X̂it = B(L)A0ε
Z
it, (7)

where B(L) = C(L)−1 with C(L) = In −
∑p

k=1 CkL
k a p-order lag polynomial. The

matrices Ck and the variance-covariance matrix Σ are assumed to be invariant across time

and countries and the VAR is estimated with two lags, country fixed effects and time

dummies; we assume a linear relationship between reduced form residuals ηit and structural

technology shocks εZ
it

ηit = A0ε
Z
it, (8)

where A0 the matrix that describes the instantaneous effects of structural shocks on ob-

servables. Let us denote A(L) = B(L)A0 with A(L) =
∑∞

k=0 AkL
k. To identify perma-

nent technology improvements, εZ
it, we use the restriction that the unit root in utilization-

adjusted-TFP originates exclusively from technology shocks which implies that the upper

triangular elements of the long-run cumulative matrix A(1) = B(1)A0 must be zero. Once

the reduced form has been estimated using OLS, structural shocks can then be recovered

from εZ
it = A(1)−1B(1)ηit where the matrix A(1) is computed as the Cholesky decomposi-

tion of B(1)ΣB(1)′.

Second step. Once we have identified technology shocks, in the second step, we esti-

mate the effects on selected variables (detailed later) by using Jordà’s [2005] single-equation

method. The local projection method amounts to running a series of regressions of each
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variable of interest on a structural identified shock for each horizon h = 0, 1, 2, ...:

xi,t+h = αi,h + αt,h + βi,ht + ψh (L) zi,t−1 + γhεZ
i,t + ηi,t+h, (9)

where αi,h are country fixed effects, αt,h are time dummies, and we include country-specific

linear time trends; x is the logarithm of the variable of interest, z is a vector of control

variables (i.e., past values of utilization-adjusted-TFP and of the variable of interest), ψh (L)

is a polynomial (of order two) in the lag operator and εZ
i,t is the identified technology shock.

VAR identification of symmetric vs. asymmetric technology shocks across

sectors. The starting point of the identification of symmetric and asymmetric technology

shocks is the sectoral decomposition of the percentage deviation of utilization-adjusted-

aggregate-TFP (i.e., ZA
it ) relative to its initial steady-state:

ẐA
it = νY,H

i ẐH
it +

(
1− νY,H

i

)
ẐN

it , (10)

where ẐH
it and ẐN

it measure technology improvements in the traded and the non-traded

sector, respectively. Eq. (10) can be rearranged as follows

ẐA
it = ẐN

it + νY,H
i

(
ẐH

it − ẐN
it

)
, (11)

which enables us to decompose technological change into technology improvements which

are common and asymmetric between sectors. When technology improves at the same rate

in the traded and the non-traded sector, i.e., ẐH
it = ẐN

it , then the second term on the

RHS of eq. (11) vanishes and technological change collapses to its symmetric component

(indexed by the the subscript S), i.e., ẐA
S,it = ẐH

S,it = ẐN
S,it. In contrast, the asymmetric

component of aggregate technological change is captured by the second term on the RHS,

i.e., ẐA
D,it = νY,H

i

(
ẐH

D,it − ẐN
D,it

)
, which reflects the excess of technology improvements in

the traded sector over those in the non-traded sector weighted by the value added share of

tradables.

We assume that technology in sector j is made up of a symmetric and an asymmetric

component, i.e., Zj
it =

(
Zj

S,it

)ηi
(
Zj

D,it

)1−ηi

, where we denote by η the share of technological

change which is common across sectors. Log-linearizing this expression of technology in

sector j and plugging the result into eq. (10) leads to the decomposition of aggregate

technological change into a symmetric and an asymmetric component:

ẐA
it = ηiẐ

A
S,it + (1− ηi) ẐA

D,it. (12)

We consider two versions of the VAR model. In the first version, we estimate a VAR

model which includes utilization-adjusted-aggregate-TFP, real GDP, total hours worked

and the real consumption wage where all variables enter the VAR model in growth rates.

We impose long-run restrictions to identify aggregate technology shocks as shocks which

increase permanently ZA
it . In the second version, we augment the VAR model with the
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ratio of traded to non-traded utilization-adjusted-TFP ordered first. Building on our above

discussion based on eq. (11), we impose long-run restrictions such that both symmetric and

asymmetric technology shocks increase permanently ZA
it while only asymmetric technology

shocks increase permanently ZH
it /ZN

it in the long-run. Technically the long-run cum matrix

is lower triangular which implies that only asymmetric technology shocks in the first row

increases both the ratio of traded to non-traded technology and aggregate technology while

symmetric technology shocks leave the relative productivity of tradables unaffected.

2.4 Sectoral Effects of Aggregate Technology Shocks

We first investigate the effects of a 1% permanent increase in utilization-adjusted aggregate

TFP. We generated impulse response functions by means of local projections. The dynamic

adjustment of variables to an exogenous increase in ZA
it by 1% is displayed by the solid blue

line in Fig. 2. The shaded areas indicate 90% confidence bounds. The horizontal axis of each

panel measures the time after the shock in years and the vertical axis measures deviations

from trend. Responses of sectoral value added and sectoral hours worked are re-scaled by

the sample average of sectoral value added to GDP and sectoral labor compensation share,

respectively. As such, the sum of variations in Y j
it and Lj

it collapses to the change in real

GDP and total hours worked, respectively.

Technology. The first row of Fig. 2 shows the effects of a technology improvement

by 1% in the long-run on aggregate TFP, traded relative to non-traded TFP, aggregate

FBTC. As shown in Fig. 2(a), the technology shock is hump-shaped and peaks after one

year. Inspection of Fig. 2(c) indicates that the adjustment of aggregate TFP remains flat

because capital utilization rates fall in the short run in both sectors and display a U-shaped

pattern. Fig. 2(b) reveals that technology improvements are not evenly distributed across

sectors since technology shocks are associated with a significant technology differential

between tradables and non-tradables. Quantitatively, the long-run elasticities of utilization-

adjusted TFP in traded and non-traded industries w.r.t. utilization-adjusted-aggregate-

TFP averages 1.6 and 0.4, respectively.7 Fig. 2(d) shows that utilization-adjusted aggregate

FBTC increases which suggests that technological change is biased toward labor but the

response is not statistically significant.

Total hours and real GDP. We now turn to the aggregate effects of a permanent

technology improvement which are displayed by the first column of Fig. 2. We find that

hours worked decrease by 0.15% on impact and remain below trend, the long-run elasticity

of hours w.r.t. utilization-adjusted-aggregate-TFP averaging −0.12. The contractionary

effect on hours worked of a technology improvement is mitigated as technological change is

(slightly) biased toward labor, see Fig. 2(d). The fall in hours worked leads to a long-run

7To estimate the long-run elasticity of variable X w.r.t. to aggregate technology ZA
t , we consider a ten

year-horizon and calculate
∫ 10
0 X̂tdt∫ 10
0 ẐA

t dt
.
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elasticity of real GDP w.r.t. to ZA
it which averages 0.87.

Sectoral hours and value added. The second and the third row of Fig. 2 shows the

sectoral composition effects of a technology shock. Fig. 2(f) shows that the decline in total

hours worked is concentrated in the non-traded sector in the short-run while the situation

is reversed from t = 4 as labor is reallocated toward the non-traded sector as can be seen

in Fig. 2(g).

The deindustrialization trend movement is driven by the productivity growth differen-

tial between tradables and non-tradales which averages 1.2% as displayed by Fig. 2(b).

As technology improvements are concentrated in the traded sector, non-traded industries

charge higher prices to compensate for the higher marginal cost, as can be seen in Fig. 2(k)

which shows that the relative price of non-tradables appreciates. Because the demand for

non-traded relative to traded goods is little sensitive to the relative price of non-tradables

(see e.g., Mendoza [1992], Stockman and Tesar [1995]), the non-tradable content of expen-

diture increases which causes labor to shift toward the non-traded sector. However, labor

reallocation toward the non-traded sector materializes only in the long-run. As shown later

in section 4.3, there are a number of factors which prevents labor from shifting in the short-

run such as mobility costs, imperfect substitutability between home- and foreign-produced

traded goods and technological change biased toward labor in the traded sector.

More specifically, as displayed by Fig. 2(h), traded output becomes more intensive

in labor as the traded LIS increases above trend in the short-run which neutralizes the

incentives for labor to shift toward non-traded industries. In addition, as can be seen in Fig.

2(l), the terms of trade depreciate because traded value added increases disproportionately

relative to non-traded value added. Because home- and foreign-produced traded goods

are high substitutes, as evidence suggests, e.g., Bajzik et al. [2020]), the terms of trade

depreciation mitigates the decline in the share of tradables by increasing both domestic and

foreign demand for home-produced traded goods.

Because productivity growth is concentrated in traded industries, two-thirds of real

GDP growth originates from the traded sector which accounts for only one-third of GDP.

This leads the value added share of tradables at constant prices to increase permanently

by 0.2 ppt of GDP, as displayed by Fig. 2(j).

2.5 The Time-Varying Response of Hours Worked

Like Gali and Gambetti [2009], Cantore et al. [2017], Li [2022] on U.S. data, our evidence

reveals that a permanent technology improvement has a contractionary effect on total hours

worked in the short-run in OECD countries. We now investigate whether this decline has

changed over the last fifty years. To conduct this analysis, we re-estimate the effect of a

permanent technology improvement on hours worked by running the regression eq. (9) on
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Figure 2: Labor Market Effects of a Technology Shock. Notes: The solid blue line shows the response of
aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses to a technology
shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP,
real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run restrictions,
i.e., technology shocks are driven by the permnanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate
the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage deviation
from trend in GDP units (sectoral value added share, labor income share), percentage deviation from trend in total hours worked units
(sectoral hours worked, labor share), percentage deviation from trend (utilization-adjusted TFPs, utilization-adjusted FBTC). Sample:
17 OECD countries, 1970-2017, annual data.
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rolling windows of fixed length. We focus on the impact effect captured by the estimated

value γ0 and consider a window of thirty years. More specifically, we estimate γ0, starting

from 1970-2000, repeating the estimation by moving the starting date by one year until

we estimate the response over the last thirty years of the sample, i.e., over 1987-2017.8

As shown in Fig. 3(a), a 1% permanent increase in utilization-adjusted aggregate TFP

lowers total hours worked by 0.26% on impact over the period 1970-2000 and by 0.11%

over the last thirty years. As shown in Fig. 3(e), the shrinking impact labor response

is concomitant to the rise in the share of technology improvements driven by asymmetric

technology shocks. When we estimate the VAR model on rolling sub-periods, the FEVD

reveals that the contribution of asymmetric technology shocks to the variance of aggregate

technology improvements has increased substantially over time from 10% the first thirty

years to 40% over the recent period.

Our hypothesis that the time-increasing response of total hours worked to a technology

improvement is driven by the growing share of asymmetric technology shocks is correct

as long as the elasticity of hours worked to symmetric and asymmetric technology shocks

remains stable over time. To clarify this point, we decompose the impact response of total

hours worked to an aggregate technology shock into impact responses of hours to symmetric

and asymmetric technology shocks, i.e.,

γ0 = ηγS,0 + (1− η) γD,0, (13)

where γ0 = L̂0

ẐA
0

and γX,0 = L̂X,0

ẐA
X,0

with X = S,D. According to our hypothesis, the time-

declining share η of symmetric technology shocks leads γ0 to move from larger to smaller

negative values over time while γS,0 and γD,0 are assumed to remain constant over time.

To test this assumption, in column 2 of Fig. 3, we plot the impact responses of hours

worked to symmetric and asymmetric technology shocks which are estimated over rolling

sub-samples. Two conclusions emerge. The first conclusion is that as discussed in the

next subsection, symmetric technology shocks exert a strong negative impact on hours

worked while asymmetric technology shocks increase hours worked on impact. The second

conclusion which emerges from the inspection of Fig. 3(b) is that the elasticity of labor

to symmetric technology shocks is increasing over time which could potentially rationalize

smaller negative values of γ0. However, as displayed by Fig. 3(f), asymmetric technology

shocks tend to produce smaller positive effects on total hours worked which thus lead to

larger negative values of γ0. To quantify the role of time-varying elasticities of hours worked

to symmetric and asymmetric technology shocks in driving γ0, we plug the time-varying

estimated values of γS,0 and γD,0 into (13) and find that the contractionary effect on hours

8When estimating the impact effect of a technology shock on hours worked as captured by the estimated
value of γ0, we run the same regression as in eq. (9), except that we consider overlapping subperiods of a
fixed length, i.e;, T = 30 . More specifically, for T = 30, we estimate eq. (9) over 1970-2000, 1971-2001,
...,1987-2017. We have considered windows of alternative length such as T = 20 and T = 25 and find that
all the conclusions hold.
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shrinks from -0.26 to -0.22 when we keep the share of symmetric technology shocks constant

over time. Therefore these changes in the responses of hours to symmetric and asymmetric

technology shocks cannot rationalize the time-increasing impact response of hours to tech

shocks which thus suggests that the cause should lie in the rise in the share of asymmetric

tech shocks.

Columns 3 and 4 of Fig. 3 show additional evidence which corroborate the role of

the increasing share of asymmetric shocks in driving the time-increasing impact response

of hours worked. In column 3, we plot impact responses of the relative price of non-

tradable and the terms of trade to an aggregate technology shock over rolling windows.

Because technology improvements are not uniformly distributed across sectors and instead

are concentrated toward traded industries, a technology shock produces an excess demand

for non-traded goods which appreciates the relative price of non-tradables as displayed by

Fig. 3(c). Conversely, an excess supply on the traded goods market shows up which leads

to a depreciation in the terms of trade as can be seen in Fig. 3(g). As shown in Fig. 3(c),

the appreciation in the relative price of non-tradables tends to more pronounced while Fig.

3(g) reveals that the terms of trade depreciate more over time. The greater appreciation

in the relative price of non-tradables and the more pronounced depreciation in the terms

of trade suggest that aggregate technology shocks are increasingly driven by asymmetric

technology improvements between sectors.

By increasing the share of expenditure spent on non-tradables, the appreciation in the

relative price of non-tradables has a strong expansionary effect on labor demand in the non-

traded sector. Therefore, by raising the appreciation in the relative price of non-tradables

over time, the rise in the share of asymmetric technology shocks, as displayed by Fig. 3(e),

should increase the impact response of non-traded hours worked to aggregate technology

shocks. Fig. 3(d) which shows that the decline in non-traded hours worked shrinks over time

corroborates this assumption. However, by giving rise to incentives to shift labor toward

the non-traded sector, the greater appreciation in the relative price of non-tradables should

lead to larger negative values for the response of traded hours worked to an aggregate

technology improvement. In contrast, Fig. 3(h) shows that the decline in traded hours

worked also shrinks over time. Such a finding is driven by two factors. First, as detailed

later in section 4.3, the terms of trade depreciation stimulates labor demand in the traded

sector which partly offsets the incentives to shift labor toward the non-traded sector. This

factor is not sufficient on its own to generate the time-increasing impact response of LH .

As shown in section 4.5, it is only once we allow for technological change biased toward

labor that the model can generate the response of traded hours worked displayed by Fig.

3(h).
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Figure 3: Time-Varying Impact Response of Hours Worked to a Technology Shock. Notes: In
Fig. 3(a), we estimate the effects of a 1% permanent increase in utilization-adjusted aggregate TFP on hours worked by using Jordà’s
[2005] single-equation method. We run the regression (9) in rolling sub-samples by considering a fixed window length of thirty years.
Because we are interested in the impact effect of technology on hours worked, we consider an horizon h = 0 into (9). The horizontal axis
shows the end year of the period of the sub-sample and the vertical line displays the point estimate of the impact effect of technology
on total hours worked. In Fig. 3(e), we show the fraction of the (conditional) variance of utilization-adjusted TFP growth which is
attributable to the variance of asymmetric technology shocks across sectors. While in column 1, we focus on aggregate technology
shocks, in column 2 of Fig. 3, we estimate the impact response of total hours worked to a 1% permanent increase in utilization-
adjusted aggregate TFP driven by symmetric technology shocks (Fig. 3(b)) while in Fig. 3(f), we consider a rise in utilization-adjusted
aggregate TFP driven by asymmetric technology shocks. To identify symmetric vs. asymmetric technology shocks, we estimate the

VAR model [ẐH
it − ẐN

it , ẐA
it, ŶR,it, L̂it, ŴC,it]. We impose long-run restrictions such that both symmetric and asymmetric technology

shocks increase permanently ZA
it while only asymmetric technology shocks increase permanently ZH

it /ZN
it in the long-run. In column

3, we show the impact responses estimated on rolling windows (of fixed length of thirty yeas) of the relative price of non-tradables (see
Fig. 3(c)) and the terms of trade (see Fig. 3(g)). In column 4, we show time-varying impact responses of non-traded and traded hours
worked to an aggregate technology shock. Sample: 17 OECD countries, 1970-2017, annual data.
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2.6 Symmetric vs. Asymmetric Technology Shocks across Sectors

We have shown above that an aggregate technology shock produces a contractionary effect

on hours worked which shrinks over time. To rationalize the shrinking contractionary ef-

fect on hours worked, we put forward the increasing contribution of asymmetric technology

shocks. Intuitively, symmetric technology shocks have a strong negative impact on hours

worked while asymmetric technology shocks have an expansionary effect. Because symmet-

ric technology shocks are predominant, permanent technology shocks give rise to a fall in

hours worked on impact. Because the share of asymmetric technology shocks increases over

time, the contractionary effect on hours shrinks over time.

In Fig. 4, we investigate empirically the effects of symmetric technology shocks shown

in the black lines and contrast their impact with those caused by asymmetric technology

shocks displayed by solid blue lines. While both shocks lead to a technology improvement

by 1% in the long-run, see Fig. 4(a), the behavior of sectoral TFPs are distinct. As

can be seen in Fig. 4(b), asymmetric technology shocks generate a significant increase in

utilization-adjusted-TFP of tradables relative to non-tradables while productivity growth

is uniformly distributed across sectors after a symmetric technology shock since the ration

ZH/ZN remains unchanged at all horizons.

Effects of symmetric technology shocks. Importantly, Fig. 4(e) reveals that sym-

metric and asymmetric technology shocks produce distinct effects on labor as hours worked

decline dramatically (by 0.47% on impact) after symmetric technology shocks while hours

increase (by 0.31% on impact) after asymmetric technology shocks. These distinct effects

are the result of the impact of productivity on sectoral prices. As shown in the black lines in

Fig. 4(k) and Fig. 4(l), both non-traded and traded prices depreciate after symmetric tech-

nology shocks which in turn put downward pressure on wages and exert a negative impact

on labor supply. This negative impact is amplified by the fact that technological change

is biased toward capital as the black line in Fig. 4(h) reveals that utilization-adjusted-

FBTC declines in the traded sector, thus leading to an increase in the capital intensity of

production.

As can be seen in the black line Fig. 4(f), the decline in total hours worked is mostly

driven by the fall in hours worked in the non-traded sector. Because the elasticity of

substitution between traded and non-traded goods is low (i.e., less than one), the fall in

non-traded prices drives down the share of expenditure spent on non-traded goods which

reduces labor demand in the non-traded sector. By contrast, because home- and foreign-

produced traded goods are high substitutes, the terms of trade depreciation raises the share

of home-produced traded goods and thus further increases the share of tradables. This has

an expansionary effect on labor demand in the traded sector as can be seen in Fig. 4(g).

By providing more incentives to shift labor toward traded industries, the terms of trade
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depreciation further depresses non-traded labor thus leading the fall in hours worked to be

concentrated in the non-traded sector.

Effects of asymmetric technology shocks. Asymmetric technology shocks produce

very distinct effects. Because technology improvements are concentrated in traded indus-

tries, see the blue line in Fig. 4(b), the value added share of tradables (at constant prices)

increases disproportionately, as can be seen in Fig. 4(j). It gives rise to an excess supply

for home-produced traded goods and an excess demand for non-traded goods. As shown in

the blue line in Fig. 4(k), the excess demand puts upward pressure on non-traded goods

prices. Because traded and non-traded goods are gross complements, the appreciation

in non-traded prices increases the share of non-tradables which has a positive impact on

non-traded hours worked, as displayed by the blue line in Fig. 4(f).

The rise in LN is amplified by the shift of labor toward the non-traded sector. As shown

in the blue line of Fig. 4(g), the hours worked share of tradables declines dramatically on

impact by 0.1 ppt of total hours worked before recovering gradually. The first four years,

the reallocation of labor toward the non-traded sector accounts for one-third of the rise

in non-traded hours worked. To encourage workers to shift, non-traded firms must pay

higher wages which put upward pressure on non-traded wages and thus on the aggregate

wage which has a strong expansionary effect on total hours worked as shown in the blue

line of Fig. 4(e). On impact, the rise in total hours worked mostly originates from non-

traded industries and is amplified by the fact that asymmetric technology improvements

are significantly biased toward labor, as displayed by the blue line of Fig. 4(d).

Both the terms of trade deterioration displayed by the blue line in Fig. 4(l) and the rise

in the labor intensity of traded production prevents traded hours worked from decreasing

although the decline in the capital utilization rate shown in Fig. 4(c) partially offsets the

positive impact of technological change biased toward labor in the traded sector.

Do asymmetric technology shocks increase innovation? Asymmetric technology

shocks are technology improvements which are concentrated within traded industries. As

shown in Online Appendix M.5, only these shocks give rise to a significant and positive

increase in the stock of R&D which reflects cumulated investment devoted to innovative

activity. In Online Appendix R.4, we run the regression of utilization-adjusted-TFP in

sector j on the stock of R&D at constant prices in sector j by using cointregation techniques.

The FMOLS estimated value reveals that the elasticity of traded technology w.r.t. to the

stock of R&D in the traded sector amounts to 0.23 while it is virtually zero in the non-

traded sector. These evidence thus underlines that asymmetric technology improvements

are shocks which are associated with innovation. In this regard, in Online Appendix M.5,

we detect a positive cross-country relationship between the share of the FEV of aggregate

technology shocks driven by asymmetric technology improvements and the ratio of R&D
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Figure 4: Labor Market Effects of a Asymmetric vs. Symmetric Technology Shocks. Notes:
The solid lines shows the responses to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. The blue
line shows responses when the technology shock is asymmetric and increases the ratio of utilization-adjusted TFP of tradables relative
to non-tradables by 1%. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate
the dynamic responses to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes
utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by
imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In
the second step, we estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes
measure percentage deviation from trend in GDP units (sectoral value added share, labor income share), percentage deviation from
trend in total hours worked units (sectoral hours worked, labor share), percentage deviation from trend (utilization-adjusted TFPs,
utilization-adjusted FBTC). Sample: 17 OECD countries, 1970-2017, annual data.
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investment to value added in the traded sector. In contrast, symmetric technology shocks

do not increase the stock of R&D significantly and should capture better management

practices and improvements in firm’s organization.

2.7 Robustness checks

We have conducted several robustness checks detailed in Online Appendices M and N

w.r.t. the SVAR identification of technology shocks, and the measure of technology. We

summarize the main results below.

SVAR critique and remedies. Gaĺı’s [1999] has pioneered the identification of perma-

nent technology improvement through long-run restrictions. Because the SVAR estimation

allows for a limited number of lags (2 lags on annual data), the SVAR critique has formu-

lated some reservations with regard to the ability of the SVAR model to disentangle pure

technology shocks from other shocks (which have long-lasting effects on productivity) when

capital adjusts sluggishly, see e.g., Erceg et al. [2005], Dupaigne et al. [2007], Chari et al.

[2008].

The literature has proposed different methods to mitigate the lag-truncation bias and

avoid persistent non-technology shocks disturbing the identification of permanent technol-

ogy shocks. Chari et al. [2008] recommend to increase the number of lags. To avoid a

potential contamination of technology shocks by country-specific non-technology shocks,

Dupaigne and Fève [2009] suggest the use of the world component of TFP while Fève and

Guay [2010] propose to adopt a two-step SVARs-based procedure where hours worked is re-

moved for the identification of technology shocks in the first step. Chaudourne et al. [2014]

demonstrate that the use of ’purified’ TFP to measure technology ensures the robustness

of the identification of technology shocks.

SVAR identification and exogeneity test. The identified technology shocks should

not in principle be correlated with other exogenous non-technology shifts nor with lagged

endogenous variables. A mean to test whether the identified shocks are really technology

improvements is to test whether non-technology variables are correlated with the identified

shocks to technology. We consider three types of non-technology variables: government

spending shocks, monetary policy shocks and tax shocks. Long-lasting non-technology

shocks can potentially contaminate the SVAR identification of permanent technology shocks

as they impinge on hours worked and thus on (labor) productivity. Since we use the TFP

and also control for capital utilization, a potential contamination is less likely. To run the

exogeneity test, we identify government spending shocks and tax shocks by assuming that

the implementation of fiscal policy is subject to lags, in the lines of Blanchard and Perotti

[2002]. Like Christiano et al. [2005], we identify monetary policy shocks as the innovation

to the federal funds rate under a recursive ordering, with the policy rate ordered last. See

Online Appendix N.2 for further details. Following Francis and Ramey [2005], we run the
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regression of identified technology shocks to utilization-adjusted-TFP on shocks to govern-

ment spending, monetary policy and taxation. To identify technology shocks, we consider

three measures of technology: utilization-adjusted-TFP (like Chaudourne et al. [2014]),

TFP (like Chang and Hong [2006]), and labor productivity (like Gaĺı [1999]). We test the

null hypothesis that all of the coefficients on explanatory variables are jointly equal to zero.

The p-value for the F -test shows that none of the variables is significant in explaining our

identified technology shocks only once we use utilization-adjusted-TFP to measure technol-

ogy. Technology shocks identified on the basis of the Solow residual and labor productivity

are instead correlated with the demand shocks. Because we estimate a VAR model in-

cluding utilization-adjusted-TFP, real GDP, hours worked, the real consumption wage and

technology shocks are shocks which increase permanently the first variable, shocks to real

GDP are more likely to be correlated with persistent demand shocks. Indeed, the p-value

for the F-test shows that non-technology shocks are correlated with demand shocks and tax

shocks.

Lags. Erceg et al. [2005], Chari et al. [2008] have shown that persistent non-technology

shocks can disturb the identification of permanent technology shocks if they account for a

large fraction of output fluctuations. De Graeve and Westermark [2013] find that raising

the number of lags may be a viable strategy to achieve identification when long-run restric-

tions are imposed on the VAR model. In Online Appendix N.2, we increase the lags from

two to eight and find that all of our conclusions stand, in particular a permanent technol-

ogy improvement lowers hours worked and shifts gradually labor toward the non-traded

industries.

World technology. Because world permanent technology shocks are not affected by

country-specific persistent non-technology shocks, identifying technology shocks by using

technological change common to all countries can eliminate the problem of identification

raised by Erceg et al. [2005], Dupaigne et al. [2007], Chari et al. [2008]. As detailed

in Online Appendix N.5, we adapt the method of Dupaigne and Fève [2009], and replace

the country-level-utilization-adjusted-TFP with two alternative measures of world TFP in

the VAR. Assuming that ideas diffuse through international trade, we construct a stock of

world technology specific to country i as an import-share-weighed-average of utilization-

adjusted-TFPs of trade partners of country i denoted by ZW
it . Because this measure varies

across countries, it allows us to estimate the VAR model in panel format. Replacing ẐA
it

with the world utilization-adjusted-TFP growth rate in the VAR model, we find that the

response of hours worked is muted on impact and declines after one year below trend but

lies within the confidence bounds of the point estimate of the baseline VAR model. World

technology shocks do not drive hours below trend on impact because they are further

driven by asymmetric technology shocks compared with shocks to country-level utilization-

adjusted-TFP. The reason to this is intuitive as world technology shocks capture increases
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in technology which diffuse across borders and are common across countries and therefore

mostly originate from the traded sector. Because technology improvements originating

from traded industries are more pronounced than in the non-traded sector, world technology

improvements are characterized by a greater dispersion in technology improvements between

the traded and the non-traded sector.

Two-step method. On the basis of evidence documented by Christiano et al. [2006],

Fève and Guay [2010] propose to identify technology shocks by adopting a two-step ap-

proach so that a VAR model with a finite number of lags can more easily approximate the

true underlying dynamics of the data. In the first step, the rate of growth of hours worked

must be excluded from the SVAR and replaced by the (logged) ratio of (private and public)

consumption to GDP. Since we consider open economies, we augment consumption with

net exports, the sum being divided by nominal GDP. In Online Appendix N.7, we estimate

a VAR model which includes the rate of change in utilization-adjusted-TFP and the log

ratio of consumption plus net exports to GDP. Then in the second step, we estimate the

dynamic effects by using local projections. We find empirically that the difference between

ours and the point estimate obtained from Fève and Guay’s [2010] approach is negligible

and the latter estimates lie within the confidence bounds of the baseline estimate.

Measure of technology. Chang and Hong [2006] have shown that labor productivity

is not the correct measure from which to identify technology shocks. The reason to this

is that labor productivity reflects both improved efficiency and changes in the input mix

(i.e., in the capital-labor ratio). In support of their argument, the authors show that labor

productivity and TFP are not cointegrated, therefore the long-run component of labor

productivity does not truly identify technology shocks. By using three different measures

of productivity (used for long-run identification): labor productivity, TFP, adjusted-TFP,

Chaudourne, Fève and Guay [2014] estimate the short-run responses of hours worked in

various (bivariate) SVARs on (actual) U.S. data. It is found that when technological change

is properly measured, i.e., by using TFP or adjusted-TFP, consistent VAR estimates are

obtained. In Online Appendix, we use three alternative measures of technology to our

measure based on Imbs [1999]. We construct time series of utilization-adjusted-TFP at

a sectoral level by adopting Basu’s [1996] approach and alternatively use directly time

series from Huo et al. [2023] and Basu et al. [2006] which are available for sixteen OECD

countries over a limited period of time. We find that all of our conclusions hold after

aggregate, symmetric and asymmetric technology shocks for all measures of technology.

Max share identification. Erceg, Gust and Guerrieri [2005], Chari et al. [2008] argue

that allowing for a limited number of lags causes a lag-truncation bias which lead estimated

IRFs to be biased, in magnitude for the former and in sign for the latter. Francis et al. [2014]

offer an alternative approach to the identification of technology shocks with the intent of
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addressing the shortcoming associated with long-run restriction in small-sample estimation.

The Maximum Forecast Error Variance (Max FEV) approach extracts the shock that best

explains the FEV at a long but finite horizon of the measure of technology. Because we

focus on the labor market effects, we re-estimate the baseline VAR model together with a

VAR model which includes the utilization-adjusted-aggregate-TFP, traded and non-traded

hours worked. We contrast the responses when imposing long-run restrictions, all variables

entering the VAR model in rate of growth, with those obtained when we adopt the Max

FEV identification of technology shocks, all variables entering the VAR model in log-level.

We find that all responses lie within the confidence bounds of the point estimate of the

baseline identification, except for Austria, Belgium and Denmark. When we compare the

response from the panel VAR model with LR restriction and the median of estimates from

Max FEV, we find that the difference between the two is not statistically different.

3 A Semi-Small Open Economy Model with Tradables and
Non-Tradables

We consider a semi-small open economy that is populated by a constant number of identical

households and firms that have perfect foresight and live forever. Like Kehoe and Ruhl

[2009], Chodorow-Reich et al. [2021], the country is assumed to be semi-small in the sense

that it is a price-taker in international capital markets, and thus faces a given world interest

rate, r?, but is large enough on world good markets to influence the price of its export goods.

The open economy produces a traded good which can be exported, consumed or invested

and imports consumption and investment goods. While the home-produced traded good,

denoted by the superscript H, faces both a domestic and a foreign demand, a non-traded

sector produces a good, denoted by the superscript N , for domestic absorption only. The

foreign good is chosen as the numeraire. Time is continuous and indexed by t. More details

about the model can be found on Online Appendices O and P.

3.1 Firms

We denote value added in sector j by Y j . Both the traded and non-traded sectors use

physical capital (inclusive of capital utilization chosen by households), denoted by K̃j(t) =

uK,j(t)Kj(t), and labor, Lj , according to a constant returns-to-scale technology described

by a CES production function:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (14)

where 0 < γj < 1 is the weight of labor in the production technology and σj is the elasticity

of substitution between capital and labor in sector j = H,N . We allow for labor- and

capital-augmenting efficiency denoted by Aj(t) and Bj(t). Factor-augmenting productivity
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is made up of a symmetric component (across sectors) denoted by the subscript S and an

asymmetric component denoted by the subscript D:

Aj(t) =
(
Aj

S(t)
)η (

Aj
D(t)

)1−η
, Bj(t) =

(
Bj

S(t)
)η (

Bj
D(t)

)1−η
, (15)

where the elasticity of factor-augmenting productivity w.r.t. to its symmetric component is

denoted by η which is assumed to be symmetric across sectors. This parameter determines

the share of technology improvements which are symmetric across sectors.

Firms rent capital K̃j(t) and labor Lj(t) services from households. We assume that

the movements in capital and labor across sectors are subject to frictions which imply that

the capital rental cost equal to Rj(t), and the wage rate W j(t), are sector-specific. Both

sectors are assumed to be perfectly competitive and thus choose capital services and labor

by taking prices P j as given. Because markets are perfectly competitive, marginal revenue

products of labor and capital equate the corresponding factor’s cost:

P j(t)γj
(
Aj(t)

)σj−1

σj
(
Lj(t)

)− 1

σj
(
Y j(t)

) 1

σj ≡ W j(t), (16a)

P j(t)
(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj = Rj(t). (16b)

Demand for inputs can be rewritten in terms of their respective cost in value added;

for labor, we have sj
L(t) = γj

(
Aj(t)/yj(t)

)σj−1

σj . Applying the same logic for capital and

denoting the ratio of labor to capital income share by Sj(t) ≡ sj
L(t)

1−sj
L(t)

, we have:

Sj(t) ≡ sj
L(t)

1− sj
L(t)

=
γj

1− γj
FBTCj(t)

(
uK,j(t)Kj(t)

Lj(t)

) 1−σj

σj

, (17)

where FBTCj(t) =
(
Bj(t)/Aj(t)

) 1−σj

σj is utilization-adjusted factor-biased technological

change. According the evidence documented in the literature, e.g., Klump et al. [2007],

Herrendorf et al. [2015], Oberfield and Raval [2021], Chirinko and Mallick [2017]), capital

and labor are gross complements in production, i.e., σj < 1. Under this assumption, a

rise in Bj(t)/Aj(t) generates technological change biased toward labor (as captured by an

increase in FBTCj) which has an expansionary on the LIS in sector j.

3.2 Technology Frontier

Firms within each sector j = H, N decide about the split of capital-utilization-adjusted-

TFP, denoted by Zj(t), between labor- and capital-augmenting efficiency. Following Caselli

and Coleman [2006] and Caselli [2016], we assume that firms choose a mix of Aj(t) and

Bj(t) along a technology frontier (which is assumed to take a CES form):


γj

Z

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γj

Z

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (18)
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where Zj(t) > 0 is the height of the technology frontier, 0 < γj
Z < 1 is the weight of

labor efficiency in utilization-adjusted-TFP and σj
Z > 0 corresponds to the elasticity of

substitution between labor- and capital-augmenting productivity. Firms choose labor and

capital efficiency, Aj and Bj , along the technology frontier described by eq. (18) that

minimizes the unit cost function. The unit cost minimization requires that the contribution

of labor-augmenting productivity to technological change collapses to the LIS (see Online

Appendix C)

sj
L = γj

Z

(
Aj(t)
Zj(t)

)σ
j
Z
−1

σ
j
Z . (19)

Inserting this equality into the log-linearized version of the technology frontier (18) shows

that technological change in sector j is a factor-income-share-weighted sum of changes in

factor-augmenting efficiency:

Ẑj(t) = sj
LÂj(t) +

(
1− sj

L

)
B̂j(t). (20)

While the technological frontier imposes a structure on the mapping between the utilization-

adjusted-TFP and factor-augmenting efficiency, as described by (20), it has the advantage

of ensuring a consistency between the theoretical and the empirical approach where we used

the utilization-adjusted-Solow residual to measure technological change whilst allowing for

technological change to be factor-biased at the same time. Adding the change in the capital

utilization rate weighted by the capital income share leads to the rate of change in sectoral

TFP:

ˆTFP
j
(t) = sj

LÂj(t) +
(
1− sj

L

)(
B̂j(t) + ûK,j(t)

)
. (21)

Totally differentiating (15), plugging the outcome into (20) and using the fact that ag-

gregate technology improvement is a weighted average of sectoral technology improvements,

i.e. ẐA(t) = νY,HẐH(t) +
(
1− νY,H

)
ẐN (t), shows that utilization-adjusted TFP growth

can be decomposed into symmetric and asymmetric components across sectors:

ẐA(t) = ηẐA
S (t) + (1− η) ẐA

D(t), (22)

where ẐA
S (t) = ẐH

S (t) = ẐN
S (t) and ẐA

D(t) = νY,HẐH
D (t) +

(
1− νY,H

)
ẐN

D (t). In the quan-

titative analysis, we will explore the effect of an increase in the asymmetric component

captures by higher values of 1− η. The decomposition of technological change into a sym-

metric and an asymmetric component implies that the movements in the capital technology

utilization rate must have both a symmetric and asymmetric component, i.e.,

uK,j(t) =
(
uK,j

S (t)
)η (

uK,j
D (t)

)1−η
. (23)

Plugging (23) into (15), i.e., uK,j(t)Bj(t) =
(
uK,j

S (t)Bj
S(t)

)η (
uK,j

D (t)Bj
D(t)

)1−η
, totally

differentiating and inserting the outcome into (21) allows us to decompose sectoral TFP

growth into a symmetric and an asymmetric component, i.e.,

ˆTFP
j
(t) = η ˆTFP

j
S(t) + (1− η) ˆTFP

j
D(t). (24)
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3.3 Households

At each instant the representative household consumes traded and non-traded goods de-

noted by CT (t) and CN (t), respectively, which are aggregated by means of a CES function:

C(t) =
[
ϕ

1
φ

(
CT (t)

)φ−1
φ + (1− ϕ)

1
φ

(
CN (t)

)φ−1
φ

] φ
φ−1

, (25)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ

corresponds to the elasticity of substitution between traded goods and non-traded goods.

The traded consumption index CT (t) is defined as a CES aggregator of home-produced

traded goods, CH(t), and foreign-produced traded goods, CF (t):

CT (t) =
[(

ϕH
) 1

ρ
(
CH(t)

) ρ−1
ρ +

(
1− ϕH

) 1
ρ

(
CF (t)

) ρ−1
ρ

] ρ
ρ−1

, (26)

where 0 < ϕH < 1 is the weight of the home-produced traded good and ρ corresponds to

the elasticity of substitution between home- and foreign-produced traded goods.

The representative household supplies labor to the traded and non-traded sectors, de-

noted by LH(t) and LN (t), respectively. To put frictions into the movement of labor

between the traded sector and the non-traded sector, we assume that sectoral hours worked

are imperfect substitutes, in lines with Horvath [2000]:

L(t) =
[
ϑ
−1/εL

L

(
LH(t)

) εL+1

εL + (1− ϑL)−1/εL
(
LN (t)

) εL+1

εL

] εL
εL+1

, (27)

where 0 < ϑL < 1 parametrizes the weight attached to the supply of hours worked in

the traded sector and ε is the elasticity of substitution between sectoral hours worked.

Like labor, we generate imperfect capital mobility by assuming that traded KH(t) and

non-traded KN (t) capital stock are imperfect substitutes:

K(t) =
[
ϑ
−1/εK

K

(
KH(t)

) εK+1

εK + (1− ϑK)−1/εK
(
KN (t)

) εK+1

ε

] εK
εK+1

, (28)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate

capital index K(.) and εK measures the ease with which sectoral capital can be substituted

for each other and thereby captures the degree of capital mobility across sectors.

The representative agent is endowed with one unit of time, supplies a fraction L(t) as

labor, and consumes the remainder 1− L(t) as leisure. At any instant of time, households

derive utility from their consumption and experience disutility from working and maximizes

the following objective function:

U =
∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (29)

where β > 0 is the discount rate and we consider the utility specification proposed by

Shimer [2009]:

Λ (C, L) ≡ C1−σV (L)σ − 1
1− σ

, if σ 6= 1, V (L) ≡
(

1 + (σ − 1) γ
σL

1 + σL
L

1+σL
σL

)
. (30)
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These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of

labor supply, and σ > 0 determines the substitutability between consumption and leisure;

if σ > 1, the marginal utility of consumption is increasing in hours worked. The inverse of

σ collapses to the intertemporal elasticity of substitution for consumption. When we let σ

equal to one, the felicity function is additively separable in consumption and labor,

Households supply labor L(t) and capital services K(t) and, in exchange, receive a wage

rate W (t) and a capital rental rate RK(t). Households choose the level of capital utilization

in sector j, which includes both a symmetric and an asymmetric component, see eq. (23),

i.e., uK,j
S (t) and uK,j

D (t). Both components of the capital utilization rate collapse to one at

the steady-state. The capital utilization adjustment costs are assumed to be an increasing

and convex function of the capital utilization rate:

CK,j
S (t) = ξj

1,S

(
uK,j

S (t)− 1
)
+

ξj
2,S

2

(
uK,j

S (t)− 1
)2

, CK,j
D (t) = ξj

1,S

(
uK,j

D (t)− 1
)
+

ξj
2,D

2

(
uK,j

D (t)− 1
)2

,

(31)

where ξj
2,S > 0, ξj

2,D > 0, are free parameters. When we let ξj
2,c →∞, capital utilization is

fixed at unity and TFP growth collapses to technological change.

Households can accumulate internationally traded bonds (expressed in foreign good

units), N(t), that yield net interest rate earnings of r?N(t). Denoting lump-sum taxes by

T (t), the household’s flow budget constraint states that real disposable income can be saved

by accumulating traded bonds, Ṅ(t), can be consumed, PC(t)C(t), invested, PJ(t)J(t), or

cover utilization adjustment costs:

Ṅ(t) +PC(t)C(t) + PJ(t)J(t) +
∑

j=H,N

P j(t)
(
CK,j

S (t) + CK,j
D (t)

)
νK,j(t)K(t)

= r?N(t) + W (t)L(t) + RK(t)K(t)
∑

j=H,N

αj
K(t)

(
uK,j

S (t)
)η (

uK,j
D (t)

)1−η
− T (t), (32)

where we denote the share of sectoral capital in the aggregate capital stock by νK,j(t) =

Kj(t)/K(t) and the capital compensation share in sector j = H, N by αj
K(t) = Rj(t)Kj(t)

RK(t)K(t)
.

The investment good is (costlessly) produced using inputs of the traded good and the

non-traded good by means of a CES technology:

J(t) =
[
ϕ

1
φJ
J

(
JT (t)

)φJ−1

φJ + (1− ϕJ)
1

φJ

(
JN (t)

)φJ−1

φJ

] φJ
φJ−1

, (33)

where 0 < ϕJ < 1 is the weight of the investment traded input and φJ corresponds to

the elasticity of substitution between investment traded goods and investment non-traded

goods. The index JT (t) is defined as a CES aggregator of home-produced traded inputs,

JH(t), and foreign-produced traded inputs, JF (t):

JT (t) =
[(

ιH
) 1

ρJ
(
JH(t)

) ρJ−1

ρJ +
(
1− ιH

) 1
ρJ

(
JF (t)

) ρJ−1

ρJ

] ρJ
ρJ−1

, (34)

where 0 < ιH < 1 is the weight of the home-produced traded input and ρJ corresponds to

the elasticity of substitution between home- and foreign-produced traded inputs.
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Installation of new investment goods involves convex costs, assumed to be quadratic.

Thus, total investment J(t) differs from effectively installed new capital:

J(t) = I(t) +
κ

2

(
I(t)
K(t)

− δK

)2

K(t), (35)

where the parameter κ > 0 governs the magnitude of adjustment costs to capital accumu-

lation. Denoting the fixed capital depreciation rate by 0 ≤ δK < 1, aggregate investment,

I(t), gives rise to capital accumulation according to the dynamic equation:

K̇(t) = I(t)− δKK(t). (36)

Households choose consumption, worked hours, capital and technology utilization rates,

investment in physical capital by maximizing lifetime utility (29) subject to (32) and (36).

Denoting by λ and Q′ the co-state variables associated with the budget constraint and lax

of motion of physical capital, the first-order conditions characterizing the representative

household’s optimal plans are:

C(t)−σV (t)σ = PC(t)λ(t), (37a)

C(t)1−σV (t)σγL(t)
1

σL = λ(t)W (t), (37b)

Q(t) = PJ(t)
[
1 + κ

(
I(t)
K(t)

− δK

)]
, (37c)

λ̇(t) = λ (β − r?) , (37d)

Q̇(t) = (r? + δK) Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)
(
CK,j

S (t) + CK,j
D (t)

)
νK,j(t)− PJ(t)

∂J(t)
∂K(t)

}
, (37e)

Rj(t)
P j(t)

η
uK,j(t)

uK,j
S (t)

= ξj
1,S + ξj

2,S

(
uK,j

S (t)− 1
)

, j = H, N, (37f)

Rj(t)
P j(t)

(1− η)
uK,j(t)

uK,j
D (t)

= ξj
1,D + ξj

2,D

(
uK,j

D (t)− 1
)

, j = H, N, (37g)

and the transversality conditions limt→∞ λ̄N(t)e−βt = 0 and limt→∞Q(t)K(t)e−βt = 0. To

derive (37c) and (37e), we used the fact that Q(t) = Q′(t)/λ(t). In an open economy model

with a representative agent having perfect foresight, a constant rate of time preference and

perfect access to world capital markets, we impose β = r? in order to generate an interior

solution. Setting β = r? into (37d) implies that the shadow value of wealth is constant over

time, i.e., λ(t) = λ. When new information about the fiscal shock arrives, λ jumps (to fulfill

the intertemporal solvency condition determined later) and remains constant afterwards.

Once households have determined aggregate consumption, they allocate consumption

expenditure between traded and non-traded goods according to the following optimal rule:

1− αC(t) =
PN (t)CN (t)
PC(t)C(t)

= (1− ϕ)
(

PN (t)
PC(t)

)1−φ

. (38)
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According to (38), a depreciation in non-traded goods prices PN (t) drives down the share of

expenditure allocated to non-traded goods while an appreciation in PN (t) increases 1−αC

as long as φ < 1, as evidence suggests. This assumption ensures that symmetric technology

shocks have a negative impact on LN (t) while asymmetric technology improvements has a

strong expansionary effect on non-traded hours worked. However, the assumption φ < 1

alone without frictions leads the model to considerably overstate the shift of labor between

sectors. The first friction comes from capital adjustment costs which mitigate the invest-

ment boom in the non-traded sector following a technology shock. The second source of

frictions comes from labor and capital mobility costs across sectors as captured by finite

values (in line with our estimates) of the elasticity of labor supply (εL) and capital supply

(εK):

Lj = ϑj
L

(
W j

W

)εL

L, Kj = ϑj
K

(
Rj

RK

)εK

K. (39)

The third source of friction which hampers the movement of productive resources across sec-

tors is captured by the assumption of imperfect substitutability between home- and foreign-

produced traded goods as reflected into price-elasticities of demand for home-produced

traded goods ρ and ρJ which also take finite values. In line with the evidence documented

by the literature, see e.g., Bajzik et al. [2020], home- and foreign-produced traded goods

are assumed to be gross substitutes, i.e., ρ and ρJ are larger than one. One key implication

of this assumption is that the terms of trade depreciation following a technology shock

stimulates the demand fore home-produced traded goods which mitigates the decline in the

share of tradables αC(t) and αJ(t) when the relative price of non-tradables appreciates. To

see it formally, we log-linearize the demand for home-produced traded consumption goods:

α̂C(t) = − (1− φ) (1− αC)
[
P̂ (t) +

(
1− αH

)
P̂H(t)

]
. (40)

While an appreciation in the relative price of non-traded goods, P (t) ≡ PN (t)/PH(t) lowers

αC(t) because φ < 1, a decrease in the terms of trade PH(t) mitigates the fall in αC(t) and

thus the shift of labor toward the non-traded sector.

3.4 Government

The final agent in the economy is the government. Government spending includes expen-

diture on non-traded goods, GN , home- and foreign-produced traded goods, GH and GF ,

respectively. The government finances public spending, G, by raising lump-sum taxes, T ,

and assume without loss of generality that government budget is balanced at each instant:

G(t) ≡ PN (t)GN (t) + PH(t)GH(t) + GF (t) = T (t). (41)
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3.5 Model Closure and Equilibrium

To fully describe the equilibrium, we impose goods market clearing conditions for non-

traded and home-produced traded goods:

Y N (t) = CN (t) + JN (t) + GN (t) +
(
CK,N

S (t) + CK,N
D (t)

)
KN (t), (42a)

Y H(t) = CH(t) + JH(t) + GH(t) + XH(t) +
(
CK,H

S (t) + CK,H
D (t)

)
KH(t), (42b)

where XH stands for exports of home-produced goods; exports are assumed to be a de-

creasing function of terms of trade, PH :9

XH(t) = ϕX

(
PH(t)

)−φX
, (43)

where ϕX > 0 is a scaling parameter, and φX is the elasticity of exports w.r.t. PH .

Using the properties of constant returns to scale in production, identities PC(t)C(t) =
∑

g P g(t)Cg(t) and PJ(t)J(t) =
∑

g P g(t)Jg(t) (with g = F,H, N) along with market

clearing conditions (42), the current account equation (16a) can be rewritten as a function

of the trade balance:

Ṅ(t) = r?N(t) + PH(t)XH(t)−MF (t), (44)

where MF (t) = CF (t)+GF (t)+JF (t) stands for imports of foreign-produced consumption

and investment goods.

Setting the dynamics of factor-augmenting productivity. We drop the time

index below to denote steady-state values. Eq. (20) shows that sectoral TFPs dynam-

ics are driven by the dynamics of labor- and capital-augmenting efficiency, i.e., Ẑj(t) =

sj
LÂj(t) +

(
1− sj

L

)
B̂j(t). Like Gaĺı [1999], we abstract from trend growth and consider a

technology shock that increases permanently utilization-adjusted-aggregate-TFP.10 Because

we consider symmetric and asymmetric technology shocks, we have to set the dynamics of

labor- and capital-augmenting efficient for both technology shocks. Denoting the factor-

augmenting efficiency by XS = AS , BS and XD = AD, BD for symmetric and asymmetric

technology shocks, respectively, the adjustment of Xj
S(t) and Xj

D(t) toward their long-run

(higher) level expressed in percentage deviation from initial steady-state is governed by the
9Domestic exports are the sum of foreign demand for the domestically produced tradable consumption

goods and investment inputs denoted by CF,? and JF,?, and we assume that the rest of the world have
similar preferences. Since we abstract from trend labor-augmenting technological change, foreign prices
remain fixed so that domestic exports are decreasing in the terms of trade, P H(t).

10We assume that the economy starts from an initial steady-state and is hit by a permanent technology
improvement just like in the empirical part where we estimate the dynamic adjustment following a permanent
increase in utilization-adjusted-TFP. In the same spirit as Gaĺı [1999], the accumulation of permanent
technology shocks gives rise to a unit root in the time series for utilization-adjusted-aggregate TFP, an
assumption we use implicitly to identify a permanent technology shock in the empirical part. We do not
characterize the convergence of the economy toward a balanced growth path which is supposed to exist,
in line with the theoretical findings by Kehoe et al. [2018] who allow labor income shares to vary across
sectors.
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following continuous time process:

X̂j
S(t) = X̂j

S + e−ξj
X,St −

(
1− xj

S

)
e−χj

X,St, (45a)

X̂j
D(t) = X̂j

D + e−ξj
X,Dt −

(
1− xj

D

)
e−χj

X,Dt, (45b)

where xj
S and xj

D are parameters, and ξj
X,S > 0, ξj

X,D > 0, χj
X,S > 0, χj

X,D > 0, measures

the speed at which productivity closes the gap with its long-run level. When ξj
X,c 6= χj

X,c

(with c = S, D), the above law of motion allows us to generate hump-shaped adjustment of

factor-augmenting productivity. Once Xj
S(t) and Xj

D(t) have completed their adjustment,

they increase permanently to a new higher level, i.e., letting time tend toward infinity

into (45a)-(45b) leads to X̂j
S(∞) = X̂j

S and X̂j
D(∞) = X̂j

D where X̂j
S and X̂j

D are steady-

state (permanent) changes in factor-augmenting efficiency in percentage. Inserting (45)

into the log-linearized version of the technology frontier allows us to recover the dynamics

of utilization-adjusted TFP in sector j Ẑj
c (t) = sj

LÂj
c(t) +

(
1− sj

L

)
B̂j

c(t) which converges

toward its new higher steady-state level.

Solving the model. The adjustment of the open economy toward the steady state

is described by a dynamic system which comprises four equations that are functions of K(t),

Q(t), and the vector of factor-augmenting productivity VS(t) =
(
AH

S (t), BH
S (t), AN

S (t), BN
s (t)

)

and VD(t) =
(
AH

D(t), BH
D (t), AN

D(t), BN
D (t)

)
:

K̇(t) = Υ (K(t), Q(t), VS(t), VD(t)) , (46a)

Q̇(t) = Σ (K(t), Q(t), VS(t), VD(t)) . (46b)

Linearizing the dynamic equations (46a)-(46b) in the neighborhood of the steady-state and

inserting the law of motion of symmetric and asymmetric components of factor-augmenting

efficiency (45a)-(45b) leads to a system of first-order linear differential equations which can

be solved by applying standard methods. See Online Appendix Q which details the solution

method by Buiter [1984] for continuous time models adapted to our case.

4 Quantitative Analysis

In this section, we take the model to the data. For this purpose we solve the model

numerically.11 Therefore, first we discuss parameter values before turning to the effects of

a technology shock biased toward the traded sector.

4.1 Calibration

Calibration strategy. At the steady-state, capital utilization rates, uK,j , collapse to one

so that K̃j = Kj . We consider an initial steady-state with Hicks-neutral technological
11Technically, the assumption β = r? requires the joint determination of the transition and the steady

state since the constancy of the marginal utility of wealth implies that the intertemporal solvency condition
depends on eigenvalues’ and eigenvectors’ elements, see e.g., Turnovsky [1997].
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change and normalize Aj = Bj = Zj to 1. To ensure that the initial steady-state with

CES production functions is invariant when σj is changed, we normalize CES production

functions by choosing the initial steady-state in a model with Cobb-Douglas production

functions as the normalization point. Once we have calibrated the initial steady-state

with Cobb-Douglas production functions, we assign values to σj in accordance with our

estimates and the CES economy is endogenously calibrated to reproduce the ratios of the

Cobb-Douglas economy, including the sectoral LISs.

To calibrate the reference model that we use to normalize the CES economy, we have

estimated a set of ratios and parameters for the eighteen OECD economies in our dataset,

see Table 7 relegated to Online Appendix J.1. Our reference period for the calibration

corresponds to the period 1970-2017. Because we calibrate the reference model to a rep-

resentative OECD economy, we take unweighted average values of ratios and parameters

which are summarized in Table 1. Among the 25 parameters that the model contains, 13

have empirical counterparts while the remaining 12 parameters plus initial conditions must

be endogenously calibrated to match ratios.

Twelve parameters plus initial conditions must be set to target ratios. Pa-

rameters including ϕ, ι, ϕH , ιH , ϑL, ϑK , δK , G, GN , GH and initial conditions (N0 and

K0), must be set to target a tradable content of consumption and investment expenditure

of αC = 43% and αJ = 32%, respectively, a home content of consumption and investment

expenditure in tradables of αH = 66% and αH
J = 42%, respectively, a weight of labor

supply and capital supply to the traded sector of LH/L = 36%, KH/K = 39%, respec-

tively, an investment-to-GDP ratio of ωJ = 23%, a ratio of government spending to GDP

of ωG = 20% (= G/Y ), a tradable and home-tradable share of government spending of

ωGT = 16% (= 1− (PNGN/G)), and ωGH = 12% (= PHGH/G), and we choose initial con-

ditions so as trade is balanced, i.e., υNX = NX
P HY H = 0 with NX = PHXH−CF −IF −GF .

Because uK,j = 1 at the steady-state, two parameters related to adjustment cost functions

of capital utilization, i.e., ξH
1 and ξN

1 , are set to be equal to real capital rental rates in the

traded and the non-traded sector, i.e., RH

P H and RN

P N , respectively.

Six parameters are assigned values which are taken directly or estimated

from our own data. We choose the model period to be one year. In accordance with the

last column of Table 1, the world interest rate, r?, which is equal to the subjective time

discount rate, β, is set to 2.7%. In line with mean values shown in columns 11 and 12 of

Table 1, the shares of labor income in traded and non-traded value added, sH
L and sN

L , are

set to 0.63 and 0.69, respectively, which leads to an aggregate LIS of 66%.

Because barriers to factors’ mobility play a key role in our model and estimates for

OECD countries are not available, we have estimated empirically the elasticity of labor

supply across sectors, εL, for each OECD economy. As shown in Online Appendix J.2,
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we pin down εL from a testable equation obtained by combining labor supply and labor

demand and run the regression in panel format on annual data of the percentage change

in the labor share of sector j on the percentage change in the relative share of value added

paid to workers in sector j over 1970-2017. Building on our estimates, the degree of labor

mobility across sectors is set to 0.8, in line with the average of our estimates (see the last

line of column 15 of Table 1). Note that this value is close to the value of 1 estimated

by Horvath [2000] on U.S. data over 1948-1985 and commonly chosen in the literature

allowing for imperfect mobility of labor. We have also estimated the degree of mobility

of capital across sectors by running the regression of the percentage change in Kj
it/Kit on

the percentage change in the relative share of value added paid to capital in sector j over

1970-2017. Building on our estimates, the degree of capital mobility across sectors is set to

0.15, in line with the average of our estimates (see the last line of column 16 of Table 1).

While there is a consensus in the open-economy macroeconomics literature that CT and

CN are gross complements and thus φ should take a value lower than one, precise estimates

for OECD countries are still lacking. To pin down φ, we use the first-order condition for CN

and run the regression of the logged share of non-tradables 1−αC(t) on logged PN (t)/PC(t).

Time series for 1 − αC(t) are constructed by using the market clearing condition for non-

tradables. Building on our panel data estimates, the elasticity of substitution φ between

traded and non-traded goods is set to 0.35, since this value corresponds to our panel data

estimates, see Online Appendix J.5. It is worth mentioning that our value is close to the

estimated elasticity by Stockman and Tesar [1995] who report a value of 0.44 by using

cross-section data for the year 1975.

Seven parameters are taken from external research works. In Shimer [2009]

preferences, the relative risk aversion coefficient collapses to the coefficient which parame-

terizes the substitutability between consumption and leisure. We choose a value of σ = 2

which implies that consumption and leisure are substitutes and the intertemporal elasticity

of substitution for consumption is equal to 0.5.12 In line with the estimates recently doc-

umented Peterman [2016], we set the Frisch elasticity of labor supply σL to 3. We choose

the value of parameter κ which captures the magnitude of capital adjustment costs so that

the elasticity of I/K with respect to Tobin’s q, i.e., Q/PJ , is equal to the value implied by

estimates in Eberly et al. [2008]. The resulting value of κ is equal to 17.

In line with the empirical findings documented by Bems [2008] who finds that the

non-tradable content of investment expenditure is stable in OECD countries, we set the

elasticity of substitution, φJ , between JT and JN to 1. We set the elasticity of substitution

in consumption (investment), ρ (ρJ), between home- and foreign-produced traded goods
12As pointed out recently by Best et al. [2020], there exists no consensus on a reasonable value for the

intertemporal elasticity of substitution for consumption as estimates in the literature range between 0 and
2.
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Table 1: Data to Calibrate the Two Open Economy Sector Model

Tradable share Home share Labor Share

GDP Cons. Inv. Gov. Labor Capital XH CH IH GH LISH LISN

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
0.36 0.43 0.32 0.20 0.36 0.39 0.13 0.66 0.42 0.12 0.63 0.69

Elasticities Aggregate ratios

φ ρ εL εK σH σN σH
L σN

L LIS I/Y G/Y r
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
0.35 1.30 0.80 0.15 0.81 0.87 0.77 0.69 0.66 0.23 0.20 0.027

Notes: Columns 1-5 show the GDP share of non-tradables, the non-tradable content of consumption, investment and government expenditure, the
share of non-tradables in labor. Column 6 gives the ratio of exports of final goods and services to GDP; columns 7 and 8 show the home share of
consumption and investment expenditure in tradables and column 9 shows the content of government spending in home-produced traded goods; φ
is the elasticity of substitution between traded and non-traded goods in consumption; estimates of the elasticity of substitution between home- and
foreign-produced traded goods ρ (with ρ = ρJ = φX ) is taken from Bertinelli et al. [2022]; εL is the elasticity of labor supply across sectors; εK is

the elasticity of capital supply across sectors; σj is the elasticity of substitution between capital and labor in sector j = H, N ; σ
j
L

is the elasticity of

substitution between skilled labor and unskilled labor in production in sector j = H, N . LISj stands for the labor income share in sector j = H, N
while LIS refers to the aggregate LIS; I/Y is the investment-to-GDP ratio and G/Y is government spending as a share of GDP. The real interest rate
is the real long-term interest rate calculated as the nominal interest rate on 10 years government bonds minus the rate of inflation which is the rate of
change of the Consumption Price Index.

(inputs) to 1.3 which fits estimates by Bertinelli et al. [2022] who find a vale of 1.3 for

ρ = ρJ from a panel of seventeen OECD countries which is close to the value of 1.5 chosen

by Backus et al. [1994]. Assuming that all countries have the same elasticities, since

the price elasticity of exports is a weighted average of ρ and ρJ , we set φX = 1.3. A value

larger than one fits well the structural estimates of the price elasticities of aggregate exports

documented by Imbs and Mejean [2015].

Calibrating the CES economy. To calibrate the CES economy, we proceed as

follows. First, we choose the same values for the thirteen parameters which have empirical

counterparts as above, except for the labor income shares which are now endogenously

calibrated. Thus in addition to σ, σL, κ, φJ , ρ, ρJ , φX , r?, εL, εK , φ, we have to choose

values for the elasticity of substitution between capital and labor for tradables and non-

tradables, σH and σN . We estimate σH and σN over 1970-2017 on panel data so as to have

consistent estimates in accordance with our classification of industries as tradables and

non-tradables and sample composition. Drawing on Antràs [2004], we run the regression

of value added per hours worked on the real wage in sector j by adopting cointegration

methods. In line with our panel data estimates, we choose σH = 0.81 and σN = 0.88 (see

the last line of columns 17 and 18 of Table 1).

Given the set of elasticities above, the remaining parameters are set so as to maintain the

steady-state of the CES economy equal to the normalization point. Therefore, we calibrate

the model with CES production functions so that fifteen parameters ϕ, ι, ϕH , ιH , ϑL, ϑK ,

δK , G, GN , GH , N0, K0, ZH , ZN , γH , γN are endogenously set to target 1−ᾱC , 1−ᾱJ , ᾱH ,

ᾱH
J , L̄N/L̄, ω̄J , ω̄G, ω̄GN , ω̄GH , ῡNX , K̄, ȳH , ȳN , s̄H

L = θH , s̄N
L = θN , respectively, where a

bar indicates that the ratio is obtained from the Cobb-Douglas economy. In addition, we

have to set the dynamic processes of technology improvements, capital utilization rates and

factor-augmenting-efficiency and the share of symmetric technology shocks across sectors.
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4.2 Factor-Augmenting Efficiency and Sectoral Technology Improvements
Dynamics

In this subsection, we detail how we calibrate the endogenous responses of Aj(t), Bj(t),

uK,j(t), to a technology improvement. We proceed as follows. Once we have identified

symmetric and asymmetric technology shocks across sectors empirically, we calibrate the

dynamic processes of factor-augmenting-efficiency and capital utilization rates so as to re-

produce their empirical counterpart for both their symmetric and asymmetric components.

Share of symmetric technology shocks across sectors. Before calibrating the

dynamic processes of technology variables, we have to calibrate the share η of symmetric

technology shocks across sectors. By using the fact that ẐA(t) = ηẐA
S (t) + (1− η) ẐA

D(t),

we pin down the value of η which minimizes the discrepancy between the response of ZA(t)

after an aggregate technology shock and its response calculated as a weighted average of

the responses of symmetric and asymmetric utilization-adjusted-aggregate-TFP. We find

that η = 0.6 and thus 60% of technology improvements are driven by technology shocks

which are symmetric across sectors, see Online Appendix J.8 for more details.

Factor-augmenting efficiency. As detailed in section 3.1 (see eq. (15)), factor-

augmenting productivity is made up of a symmetric and an asymmetric component across

sectors. To set the adjustment of factor-augmenting efficiency, we first recover their dy-

namics in the data in the same spirit as Caselli and Coleman [2006]. Log-linearizing the

demand for labor relative to the demand for capital (17), this equation together with the

log-linearized version of the technology frontier (20) can be solved for deviations of Aj
c(t)

and Bj
c(t) relative to their initial values (where the subscript c = S, D refers to either the

symmetric or asymmetric component):

Âj
c(t) = Âj

c(t)−
(
1− sj

L

)[(
σj

1− σj

)
Ŝj(t)− k̂j(t)− ûK,j

c (t)
]

, (47a)

B̂j
c(t) = B̂j

c(t) + sj
L

[(
σj

1− σj

)
Ŝj(t)− k̂j(t)− ûK,j

c (t)
]

. (47b)

Plugging estimated values for σj and empirically estimated responses for sj
L(t), kj(t), uK,j

S (t)

following a symmetric technology shock across sectors into above equations enables us

to recover the dynamics for Aj
S(t) and Bj

S(t) consistent with the demand for factors of

production (17) and the technology frontier (20). The same logic applies to asymmetric

technology shocks across sectors as we insert empirically estimated responses for sj
L(t), kj(t),

uK,j
D (t) into (47a) and (47b) to recover the dynamics for Aj

D(t) and Bj
D(t). Then we choose

values for exogenous parameters xj
c (for x = a, b, c = S, D), ξj

X,c and χj
X,c (for X = A,B,

c = S,D) of the continuous time paths (45) within sector j = H,N , which are consistent

with the estimated paths (47a)-(47b) for Aj
c(t) and Bj

c(t). Once we have recovered the

dynamics of Aj
c(t) and Bj

c(t), we can infer the dynamics of utilization-adjusted-TFP in

sector j by using the technology frontier, i.e., Ẑj
c (t) = sj

LÂj
c(t) +

(
1− sj

L

)
B̂j

c(t) (see eq.
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(20)).

Capital utilization adjustment costs. We also calibrate the parameters for the

adjustment costs function of capital utilization. Log-linearizing (37f)-(38) shows that it is

profitable to increase uK,j(t) when the real capital rental rate goes up

ûK,j
c (t) =

ξj
1,c

ξj
2,c

(
R̂j(t)− P̂ j(t)

)
, (48)

The parameter ξj
2,c determines the magnitude of the adjustment in the capital utilization

rate in sector j following a symmetric (c = S) or an asymmetric (c = D) technology shock

across sectors. We set ξH
2,S = 0.5 and ξN

2,S = 0.6, and ξH
2,D = 0.03 and ξN

2,S = 0.5, so

as to account for empirical responses of uK,j
S (t) and uK,j

D (t), respectively, conditional on

symmetric and asymmetric technology shocks across sectors.

4.3 Decomposition of Model’s Performance

In this subsection, we analyze the role of the model’s ingredients in driving the labor effects

of a permanent technology improvement. We show that both the two-sector dimension

and the open economy aspect of our model matter in determining the dynamic effects of a

technology shock on hours worked.

Our baseline model includes four sets of elements. The first set is related to the biased-

ness of technology improvements toward traded industries together with the gross comple-

mentarity between traded and non-traded goods (i.e., φ < 1). The second set of elements

is related to barriers to factors’ mobility which include labor mobility costs and costs of

switching capital from one sector to another (i.e., 0 < εL < ∞ and 0 < εK < ∞). The

third set of factors are related to trade openness, as reflected into imperfect substitutabil-

ity between home- and foreign-produced traded goods (i.e., 0 < ρ < ∞, 0 < ρJ < ∞,

0 < φX < ∞) which influences the extent of foreign borrowing. The fourth set of elements

is related to an endogenous intensity in the use of physical capital (i.e., 0 < ξj
2,c < ∞), and

technology improvements which are factor-biased at a sector level (i.e., Âj
c(t) 6= B̂j

c(t)).

To understand (and quantify) the role of each element, we first consider the simplest

version of our model and add one ingredient at a time. This restricted version shown in

colum 7 of Table 2 collapses to the international RBC model by Fernández de Córdoba and

Kehoe [2000] (FK henceforth) who consider a small open economy setup with tradables and

non-tradables together with capital adjustment costs. In column 6, we allow for both labor

and capital mobility costs across sectors. In column 5, we assume that home- and foreign-

produced traded goods are imperfect substitutes. In column 2, we allow for CES production

functions, FBTC and endogenous capital utilization. This model collapses to our baseline

setup. We will discuss later the effects of symmetric and asymmetric technology shocks

which are displayed by columns 3 and 4.
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Table 2: Impact Labor Effects of a Technology Improvement: Baseline vs. Restricted
Models

Data CES: FBTC and uK CD: IM & TOT CD: IML& IMK CD: PM

LP AGG SYM ASYM AGG AGG AGG

(1) (2) (3) (4) (5) (6) (7)

A.Technology

Aggregate technology, dZA(t) 0.93 0.94 1.19 0.58 0.95 0.95 0.95

T technology, dZH(t) 1.53 1.66 1.06 2.57 1.66 1.66 1.66

NT technology, dZN (t) 0.55 0.56 1.26 -0.50 0.56 0.56 0.56

T capital utilization, duK,H(t) -0.24 -0.11 0.09 -1.81 0.00 0.00 0.00

NT capital utilization, duK,N (t) 0.12 0.03 0.11 0.00 0.00 0.00 0.00

B.Hours

Hours, dL(t) -0.15 -0.07 -0.40 0.28 -0.26 -0.42 -0.70

Traded Hours, dLH(t) -0.04 -0.03 -0.11 -0.02 -0.15 -0.28 -0.57

Non-Traded Hours, dLN (t) -0.11 -0.05 -0.30 0.29 -0.12 -0.14 -0.13

Hours Share of Tradables, dνL,H(t) 0.01 -0.00 0.03 -0.11 -0.06 -0.14 -0.33

C.Relative Prices

Relative price of NT, d(P N/P H)(t) 1.05 1.63 -0.43 4.69 1.56 2.11 1.15

Terms of trade, dP H(t) -1.15 -1.09 -0.44 -1.99 -0.93 0.00 0.00

D.VA Shares

VA share of T (constant prices) dνY,H(t) 0.18 0.23 -0.02 0.47 0.22 0.14 -0.08

VA share of N (current prices) dωY,N (t) n.a. 0.13 -0.07 0.57 0.13 0.34 0.34

E.Current Account

Current Account, dCA(t) n.a. -0.02 -0.06 0.04 -0.02 -0.18 -0.38
Notes: This table shows impact effects of a 1% permanent increase in government consumption in the baseline model (columns 2-4) and in restricted

versions of the model (columns 5-13). ’T’ refers to traded industries while ’NT’ refers to non-tradables. Panel A shows the impact effects for technology

variables, panel B displays the impact effects for hours worked, panel C shows the relative price effects while panel D reports the change on impact in

the current account (in percentage point of GDP). Across all scenarios, we consider a 1% permanent increase in utilization-adjusted-aggregate-TFP. In

column 1, we show impact responses of the corresponding variables. Columns 2, 5, 6, 7 show numerical results following a technology improvement which

increases the utilization-adjusted-aggregate-TFP by 1% in the long-run. Columns 3 shows numerical results following a symmetric technology shock

across sectors which increases the utilization-adjusted-aggregate-TFP by 1% in the long-run. Column 4 shows numerical results following an asymmetric

technology shock across sectors which increases the utilization-adjusted-aggregate-TFP by 1% in the long-run. column 7 shows numerical results for

an open economy model with tradables and non-tradables with capital adjustment costs, perfect mobility of labor and capital, perfect substitutability

between home- and foreign-produced traded goods. In column 6, we augment the previous model with imperfect mobility of labor and capital. In

column 5, we augment the previous model with imperfect substitutability between home- and foreign-produced traded goods so that terms of trade are

endogenous. In columns 2-4, we consider the baseline model which allows for endogenous capital utilization rate and assumes that sectoral goods are

produced by means of CES production functions and we let technological change to be factor-biased.

Table 2 reports the impact effect of selected variables, including total hours worked,

L(t), traded and non-traded hours worked, LH(t) and LN (t), the hours worked share of

tradables, νL,H(t), the relative price of non-tradables and the terms of trade, P (t) and

PH(t), and the current account CA(t). To further illustrate the transmission mechanism,

we also show the adjustment in the real value added share of tradables, dνY,H(t), and the

value added share of non-tradables, dωY,N (t). For comparison purposes, the first column

displays the impact response of the corresponding variable which is estimated empirically

by means of local projections which should be contrasted with the responses computed

numerically shown in columns 2,5,6,7.

While we normalize the technology improvement to 1% in the long-run, panel A of

Table 2 shows the adjustment of aggregate, traded and non-traded utilization-adjusted-

TFP on impact. As shown in columns 2, 5, 6, 7, all model variants generate an increase in

utilization-adjusted-aggregate-TFP by 0.94% on impact in line with the evidence and gives

rise to a technology improvement of 1.66% and 0.56% close to our estimates.

First ingredient: Barriers to factors’ mobility. In column 7 of Table 2, we report
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results from a restricted version of the baseline model where we consider a two-sector small

open economy model with capital adjustment costs which collapses to the FK model. In

this model’s version, home- and foreign-produced traded goods are perfect substitutes so

that terms of trade are exogenous (and constant over time). Labor and capital can move

freely across sectors. Production functions are Cobb-Douglas so that technological change

is Hicks-neutral. We also abstract from endogenous capital utilization rates. Contrasting

the model’s predictions shown in column 7 with empirically estimated values reported in

column 1, the restricted version of the model substantially overstates the decline in total

hours worked.

As long as home- and foreign-produced goods are perfect substitutes, it is optimal

to import traded goods and reallocate labor (and capital) toward the non-traded sector.

Because labor and capital are not subject to mobility costs, the hours worked share of

tradables falls dramatically by 0.33 percentage point of total hours worked, thus leading

the restricted model to generate a decline in traded hours worked by 0.57 ppt of total hours

worked while we find empirically a fall by 0.03 ppt. The corollary of the shift of resources

toward the non-traded sector and the surge of imports is that the open economy runs a

large current deficit (see panel E). Under these assumptions, households find it optimal to

lower hours worked (see the first line of panel B) by 0.7% which considerably overstates the

decline estimated in the data (i.e., -0.15%).

In column 6, we consider the same model as in column 7 except that we allow for both

labor and capital mobility costs. The frictions into the movements of factors substantially

mitigate the shift of productive resources toward the non-traded sector. In particular, as

shown in the last line of panel B, the decline in the hours worked share of tradables shrinks

from -0.33 ppt of total hours worked (column 7) to -0.14 ppt (column 6). Because less

productive resources move toward the non-traded sector, households must cut the rise in

leisure, thus resulting in a shrinking decline in total hours worked to meet the demand

for non-traded goods. The fall in L(0) by 0.42% is still too large compared with what we

estimate empirically (i.e., -0.15%).

Second ingredient: Imperfect substitutability between home- and foreign-

produced traded goods. While putting frictions into the movements of labor and capital

between sectors improves the fit of the model to the data, the model still overstates the

decline in total hours worked and the fall in the hours worked share of tradables. As

shown in column 5, the ability of the model to account for the evidence improves once

we allow for imperfect substitutability between home- and foreign-produced traded goods.

More specifically, as households are getting more reluctant to substitute imported goods

for domestic goods, there is a shift toward home-produced traded goods which leads traded

firms to produce more. The reallocation of labor toward non-traded industries further
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shrinks from 0.14 ppt to 0.06 ppt of total hours worked (see the fourth row of panel B).

Therefore traded hours worked fall less because as shown in the second row of panel C,

the terms of trade depreciate by 1.15% (close to what we estimate empirically) which

stimulates the demand for home-produced traded goods. Imports increase less which results

in a smaller current account deficit as can be seen in panel E. Because the economy must

meet the demand for home-produced traded goods, the decline in total hours worked further

shrinks from -0.42% to -0.26% but the magnitude is still larger what we estimate empirically.

Third ingredient: Factor-biased technological change. The model’s predictions

square well with our evidences once we let technological change to be factor-biased and

allow physical capital to be used more intensively. As shown in panel B, labor no longer

shifts toward the non-traded sector (see the fourth row) while the decline in total hours

worked is much less pronounced than in restricted versions of the model. Intuitively, once

we let sectoral goods to be produced by means of CES production functions and because

technological change is biased toward labor in the traded sector, traded production becomes

more labor intensive which prevents labor from shifting toward non-traded industries and

thus mitigates the decline in traded hours worked. The baseline model generates a fall in

LH(t) by -0.03 ppt of total hours worked close to what we estimate empirically (i.e., -0.04

ppt). Although our model slightly understates the fall in total hours (-0.07% vs. -0.15%

in the data) because it understates the decline in non-traded hours on impact, the model

reproduces well the dynamics of hours worked as shown later.

Fourth ingredient: Aggregate technology shocks are a mix of symmetric and

asymmetric technology shocks. So far, we have seen that the model must include

frictions into the movement of inputs across sectors to account for the labor effects of a

permanent technology improvement. We now highlight the necessity to consider a mix of

symmetric and asymmetric technology shocks. To stress this aspect, columns 3 and 4 of

Table 2 shows the impact effects of symmetric and asymmetric technology shocks separately.

We first focus on the effects of a symmetric technology shock displayed by column

3. As shown in panel A, technology improvements are uniformly distributed between the

traded and the non-traded sector. As can be seen in the first row of panel B, a symmetric

technology shock generates a decline in hours worked by -0.40% close to to what we estimate

empirically (-0.47% in the data). Intuitively, a symmetric technology shock across sectors

lowers the marginal cost in both sectors which leads both traded and non-traded firms to

cut prices. Lower prices put downward pressure on wages which generates a dramatic fall

in hours worked. As shown in panel E, a symmetric technology shock gives rise to a current

deficit which amplifies the decline in total hours worked.

In line with the evidence, the fall in total hours worked mostly originates from the

non-traded sector. Because the elasticity of substitution between traded and non-traded
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goods is smaller than one (i.e., φ < 1), the decline in non-traded prices lowers the share of

expenditure allocated to non-traded goods (see the second row of panel D) and depresses

labor demand in the non-traded sector. The terms of trade depreciation further tilts the

demand toward traded goods which leads to a shift of labor toward the traded sector, as

reflected by dνL,H(0) = 0.03 ppt. While traded hours worked fall (see the second line of

panel B), the decline in hours is concentrated in the non-traded sector which experiences a

labor outflow.

Asymmetric technology shocks generate opposite effects. As shown in the first line of

panel B in column 4, an asymmetric shock produces an increase in hours by 0.28% close

to what we estimate empirically (i.e., 0.31% in the data). In contrast to a symmetric

technology shock, panel A shows that technology improvements are concentrated in the

traded sector. To compensate for the rise in the marginal cost, non-traded firms set higher

prices (see the first row of panel C). The share of non-tradables increases (see the second

row of panel D) which has an expansionary effect on labor demand in the non-traded sector

and leads to a shift of labor away from traded industries. This results in a decline in traded

hours worked which is mitigated by technological change biased toward labor in the traded

sector.

Relegated to Online Appendix K for reasons of space, we show impact responses com-

puted numerically for symmetric and asymmetric technology shocks across restricted ver-

sions of the baseline model. Numerical estimates reveal that it is only once we allow for

FBTC and endogenous capital utilization at a sectoral level that the open economy model

can account for the magnitude of the rise in hours worked we estimate after asymmetric

technology shocks.13 By making the production in the traded sector more labor intensive,

technological change biased toward labor in the traded sector mitigates the shift of labor to-

ward non-traded industries and thus prevents LH from declining dramatically which allows

the model to generate a rise in total hours worked. However, by increasing labor demand in

the traded relative to the non-traded sector, the model understates the reallocation of labor

toward the non-traded sector. To account for the decline in νL,H and reproduce the rise in

total hours worked we estimate, we have to assume endogenous capital utilization. More

specifically, if endogenous capital utilization rates were shut down, technological change

biased toward labor would increase total hours worked by 0.50% (far beyond what we es-

timate empirically) and importantly, the hours worked share of tradables would decline

by only 0.025 ppt which is four times below what we find empirically. By reducing the

traded wage rate, the dramatic decline in the capital utilization rate of tradables on impact
13Restricted versions imposing perfect substitutability between home- and foreign-produced traded goods

generate a decline in hours worked on impact instead of an increase because under this assumption, it is
optimal to shift productive resources toward the non-traded sector to meet higher demand for non-traded
goods and import traded goods by running a (large) current account deficit. Once home- and foreign-
produced traded goods are assumed to be imperfect substitutes, the model can generate an increase in
hours worked but its magnitude is six times smaller what we estimate empirically.
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amplifies the shift of labor toward the non-traded sector and generates an increase in labor

supply by 0.28% close to our evidence. In line with the evidence, labor growth originates

from the non-traded sector (see the third row of panel B).

Because technology shocks uniformly distributed across sectors produce a dramatic de-

cline in L(0) and technology shocks concentrated toward the traded sector have an expan-

sionary effect on hours worked, they cannot account separately for the moderate decline in

hours worked we estimate after an aggregate technology shock. Therefore, it is only one

we consider a mix of symmetric and asymmetric technology shocks that we can account for

the labor market effects of an aggregate technology shock.

4.4 Dynamic Effects of a Permanent Technology Improvement

While in Table 2, we restrict our attention to impact effects, in Fig. 5, we contrast theo-

retical (displayed by solid black lines with squares) with empirical (displayed by solid blue

lines) dynamic responses with the shaded area indicating the 90% confidence bounds.14

We also contrast theoretical responses from the baseline model with the predictions of a

restricted model which imposes HNTC shown in dashed red lines. As shown in Fig. 5(a),

models experience the same technology improvement.

Dynamics. As displayed by Fig. 5(c), both models generate a decline in hours worked

but only the baseline model with technological change biased toward labor can account for

the dynamics of total hours worked. The reason for this is that as shown in Fig. 5(e),

the model imposing HNTC overstates the decline in traded hours worked by generating

a strong reallocation of labor away from traded industries displayed by Fig. 5(k). More

specifically, as can be seen in Fig. 5(l), technological change is concentrated within traded

industries which in turn leads non-traded industries to set higher prices. As the appreciation

in the relative price of non-tradables builds up over time, as displayed by Fig. 5(m), more

labor shifts toward non-traded industries as households allocate a greater share of their

expenditure to non-traded goods.

However, the so-called deindustrialization movement reflected into the decline in the

labor share of tradables is gradual and shows up only in the long-run. The reason is that

the reallocation of productive resources across sectors is subject to frictions. First, the

terms of trade depreciation displayed by Fig. 5(n) mitigates the rise in the share of non-

tradables. Second, as shown in Fig. 5(o), the technology improvement increases non-traded

relative to aggregate wage which points at the presence of labor labor mobility costs which

further hampers the reallocation of labor. Third, as shown in Fig. 5(f) and Fig. 5(i), traded

output becomes more labor intensive than non-traded output, especially in the short-run,

which hampers the shift of labor away from traded industries. By imposing HNTC, the
14For reasons of space, we relegate to Online Appendix J.10 the dynamics of utilization-adjusted-TFP,

capital utilization rates and FBTC for tradables and non-tradables following a symmetric and an asymmetric
technology shock together with an aggregate technology shock.
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Figure 5: Theoretical vs. Empirical Responses Following a Technology Shock: Hours and
Value Added Effects. Notes: The solid blue line which displays point estimate from local projections with
shaded areas indicating 90% confidence bounds; the thick solid black line with squares displays model predictions in
the baseline scenario with capital utilization rates together with FBTC, while the dashed red line shows predictions
of a model with Cobb-Douglas production functions (which amount to shutting down FBTC) and abstracting from
endogenous capital utilization. The relative wage of non-tradables is constructed as the ratio of the non-traded wage
to the aggregate wage, the relative price of non-tradables is computed as the ratio of the non-traded value added
deflator to the traded value added deflator, and the terms of trade are constructed as the ratio of the traded value
added deflator of the home country i to the geometric average of the traded value added deflator of the seventeen
trade partners of the corresponding country i, the weight being equal to the share of imports from the trade partner
k (averaged over 1970-2017).
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model assuming Cobb-Douglas production functions overstates the decline in traded hours

worked in the short-run, see Fig. 5(e), and therefore in total hours worked, see Fig. 5(c).

Finally, inspection of Fig. 5(b) reveals that real GDP growth mimics the hump-shaped

adjustment in utilization-adjusted-TFP. As displayed by Fig. 5(d) and Fig. 5(g), both

the baseline model and its variant reproduce well the dynamics of traded and non-traded

value added. While both labor and capital shift toward the non-traded sector, the model

generates an increase in the value added share of tradables (which slightly overstates what

we estimate empirically) as can be seen in Fig. 5(j), as a result of the positive productivity

growth differential between tradables and non-tradables.

4.5 Time-Varying Impact Effects of a Permanent Technology Shock

Time-increasing response of hours worked. The main objective of our paper is to

rationalize the time-increasing impact response of hours worked to a 1% permanent tech-

nology improvement we document empirically as shown in the blue line in Fig. 6(a). The

explanation we put forward is the growing contribution of asymmetric of technology shocks

to the variations in utilization-adjusted-aggregate-TFP.

To assess the ability of our open economy model with tradables and non-tradables to

account for the time-increasing response of hours worked we estimate empirically, we keep

the same calibration and estimate the impact response of hours worked to a 1% permanent

technology improvement by letting the share of symmetric technology shocks η increase

over time in line with our empirical estimates over rolling windows (see Fig. 3(e)). As

shown in the black line in Fig. 6(a), as we lower the share of technology shocks uniformly

distributed across sectors from 90% to 60%, the baseline model can generate the shrinking

contractionary effect of technology improvements on hours we estimate empirically shown

in the blue line.15

Sectoral decomposition of the time-varying response of hours worked. In Fig.

6(b) and Fig. 6(c), we investigate the ability of the baseline model shown in the black line to

account for the shrinking contractionary effect (on impact) of a 1% permanent technology

improvement on both traded and non-traded hours worked. As it stands out, the model

reproduces well the time-increasing impact response of traded hours worked as it generates

a shrinking decline from -0.086 ppt (-0.086 ppt in the data) the first thirty years to -0.025

ppt (-0.024 ppt in the data) the last thirty years. The performance of the model lies in

FBTC.

Relegated to Online Appendix K.2 for reasons of space, a model imposing HNTC would

produce a time-decreasing impact response of LH , traded hours worked declining on impact
15Quantitatively, we find numerically that increasing the contribution of asymmetric technology shocks

from 10% to 40% reduces the magnitude of the decline in hours worked from -0.32% to -0.07% which slightly
overstates what we estimate empirically as the decline in hours worked shown in the blue line increase from
-0.26% to -0.11%.
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Figure 6: Time-Varying Impact Effects of a Technology Shock. Notes: The figure shows impact responses
of total, traded and non-traded hours worked to a 1% permanent increase in utilization-adjusted aggregate TFP. The solid blue line
shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005] single-equation method. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black line shows the impact response we
compute numerically by letting the share of technology improvements driven by asymmetric technology shocks vary across sub-periods,
i.e., we set the share of asymmetric technology shocks one minus the value estimated empirical by means of FEVD as shown in Fig.
3(e). Note that we have normalized the rise in utilization-adjusted aggregate TFP to 1% on impact as we focus on The horizontal axis
shows the end year of the period of the sub-sample and the vertical line displays the point estimate of the impact effect of technology
on total hours worked.

by -0.12 ppt over 70-00 and by -0.15 ppt over 87-17 because asymmetric technology shocks

reallocate labor toward non-traded industries and exert a strong negative impact on LH .

By allowing for technological change strongly biased toward labor in the traded sector

which neutralizes the incentives to shift labor away from traded industries in the short-

run, the baseline model can account for the shrinking contractionary effect of a technology

improvement on LH .

We may notice that our model can also generate the time-increasing impact response of

LN in line with the data as the black line lies within the confidence bounds of the empirical

point estimate It is worth noting that our model predicts that on average, the decline in

non-traded hours worked contributes 75% to the fall in total hours worked while in the

data, the contribution is slightly lower as it averages 71%.

5 Extensions

In this section, we extend our analysis in two directions to answer two questions:

• So far, we have considered that workers’ skills were homogenous across sectors. One

key question is whether the decline in total hours worked is uniformly distributed

across workers’ skills and if not, how does the skill composition effect drive the time-

increasing response of hours?

• We have shown that the growing contribution of asymmetric technology shocks across

sectors to technology improvements is responsible for the time-increasing response of

total hours worked. One important question is: why technology improvements are

increasingly driven by asymmetric technology shocks across sectors over time?
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5.1 Skill Composition Effect of a Permanent Technology Improvement

In this subsection, we analyze the hours worked effects of a permanent technology im-

provement by differentiating between skilled and unskilled labor. Our objective is twofold.

First, we assess the ability of our model to account for the labor composition effects across

workers’ skills of a permanent technology improvement. Second, we investigate whether

the model can generate the rise in impact responses of skilled and unskilled hours worked

on rolling sub-periods.

Framework. The framework we have in mind which is detailed in Online Appendix S

is a model where a representative household supplies both skilled and unskilled labor. We

assume that skilled and unskilled hours worked are imperfect substitutes, thus giving rise

to a costly transition from unskilled to skilled labor. Both skilled and unskilled workers

experience costs of switching sectors. As described by eq. (14), we assume that sectoral

goods are produced with labor and capital by means of a CES production function. We

relax the assumption that labor is homogenous and suppose that efficient labor is a CES

aggregator of skilled and unskilled labor. In addition to assuming that firms within each

sector j = H, N decide about the split of capital-utilization-adjusted-TFP Zj(t) between

labor- and capital-augmenting efficiency, we also assume that firms choose a mix of skilled-

and unskilled-labor-augmenting productivity AS,j(t) and AU,j(t) along a technology frontier

whose height is measured by labor efficiency Aj(t).

Data and Calibration. The calibration strategy is identical to that described in

section 4.1. To disentangle the labor effects of a technology improvement across workers’

skills, we use time series from EU KLEMS [2008] which are available for eleven OECD

countries over a maximum period of time 1970-2017. We aggregate high- and medium-

skilled labor as their responses are similar and distinct from those of low-skilled workers,

see Online Appendix L. In accordance with the evidence documented by Kambourov and

Manovskii [2009] which reveals that industry (and occupational) mobility declines with

education, our empirical findings indicate that the elasticity of labor supply across sectors

is twice larger for unskilled than skilled workers. More specifically, we set εS = 0.63 and

εU = 1.13, in line with our panel data estimates, see Online Appendix J.4 for further details

about the data and the empirical strategy. As detailed in Online Appendix J.7, we estimate

an elasticity of substitution in production between skilled and unskilled labor of σH
L = 0.77

for tradables and an elasticity of σN
L = 0.69 for non-tradables. While there is a debate

about whether the elasticity of substitution between skilled and unskilled labor is smaller

or larger than one, our evidence corroborates the findings by Bazcik et al. [2020] who are

conducting a meta-analysis on the subject. By using the fact that technology improvements

are a weighted average of symmetric and asymmetric technology shocks, we find that a

value of η = 80% minimizes the discrepancy between the empirical response of ZA(t)
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following a permanent technology improvement and its response computed from ẐA(t) =

ηẐA
S (t) + (1− η) ẐA

D(t). In line with the evidence for the eleven countries of our sample,

we let ξj
2,S , ξj

2,D tend toward infinity so that the capital utilization rates are muted in both

sectors. Finally, we allow for skill-biased technological change (SBTC henceforth) in our

model and construct time series for SBTC at a sectoral level by adapting the methodology

pioneered by Caselli and Coleman [2006], more details can be found in Online Appendix

S.3.

Labor composition effects across workers’ skills. In Fig. 7, we contrast the

dynamic effects of a 1% permanent technology improvement we estimate empirically (shown

in the solid blue line) with the responses we compute numerically in the baseline model

(shown in black line with squares). To give a sense of the role of FBTC and SBTC in

driving the effects of a permanent technology improvement, we also consider a restricted

version of our model shown in dashed red lines where we shut down these two elements.

A permanent increase in utilization-adjusted-aggregate-TFP shown in Fig. 7(a) leads

agents to work less as displayed by Fig. 7(e). Quantitatively, hours worked decline by

0.45% on impact (in accordance with the evidence) and such a dramatic decline comes

from the dominance of symmetric technology shocks which account for 80% of technology

improvements. As mentioned above, when technological change is uniformly distributed

across sectors, higher productivity puts downward pressure on sectoral prices which curbs

the increase in sectoral wages. In addition, symmetric technology shocks are strongly biased

toward capital, especially in the traded sector.

Skilled and unskilled labor are not impacted uniformly by a technology improvement.

More specifically, as displayed by Fig. 7(b), a permanent technology improvement signifi-

cantly lowers the ratio of skilled labor compensation to total labor compensation over time.

The gradual decline in the skilled labor income share is driven by the decrease in the skilled

labor income shares in both the traded and the non-traded sector (see Fig. 7(c) and Fig.

7(d)) which reveal that the demand for labor is tilted toward unskilled workers in both

sectors. Intuitively, the combined effect of the rise in the skilled workers efficiency and the

complementarity between skilled and unskilled labor leads to an increase in the demand for

unskilled labor and therefore causes a decrease in the skilled labor intensity of production

of both sectors. As shown in the dashed red lines, a model abstracting from SBTC predicts

a flat skilled labor income share in contrast to our evidence. As displayed by Fig. 7(f),

the restricted model tends to understate the fall in skilled labor. In contrast, a model with

FBTC and SBTC reproduces well the adjustment in skilled labor. Importantly, the decline

in skilled labor (by -0.31 ppt of total hours in the model) contributes 70% to the fall in

total hours worked. On its own, the decline in non-traded skilled labor by 0.21 ppt (see

Fig. 7(g) accounts for almost half of the decline in total hours worked.
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Figure 7: Theoretical vs. Empirical Responses Following a Technology Shock: Labor Com-
position Effects across Workers’ Skills. Notes: The solid blue line which displays point estimate from
local projections with shaded areas indicating 90% confidence bounds; the thick solid black line with squares displays
model predictions in the baseline scenario with FBTC and SBTC, while the dashed red line shows predictions of a
model with Cobb-Douglas production functions (which amount to shutting down FBTC and SBTC).
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Figure 8: Time-Varying Impact Effects of a Technology Shock. Notes: Fig. 8(a)-8(c) show the impact
responses on total hours worked together with its skilled vs. unskilled components to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005]
single-equation method. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black
line shows the impact response we compute numerically by calibrating the contribution of symmetric technology shocks to variations
in utilization-adjusted-aggregate-TFP to what we estimate empirically. Note that we have normalized the rise in utilization-adjusted
aggregate TFP to 1% at time t = 0 as we focus on impact effect. The horizontal axis shows the end year of the period of the sub-sample
and the vertical line displays the of the impact effect of technology expressed n ppt of total hours worked. Sample: 11 OECD countries,
1970-2017
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Time-increasing impact response of hours worked across workers’ skills. As

in section 4.5, we assess the ability of the model to account for the time-increasing response

of hours worked by letting the share of asymmetric technology shocks increase over time.

For the eleven countries of our sample, the share of asymmetric technology shocks increases

from 19% to 39% in line with our empirical estimates for the sample of eleven OECD coun-

tries. As displayed by Fig. 8(a), the model reproduces well the shrinking contractionary

effect of a permanent technology improvement on total hours worked. Fig. 8(b) and Fig.

8(c) reveal that both skilled labor and unskilled labor experience a time-increasing impact

response to an aggregate technology shock and our model predictions shown in the black

lines can account for these time-varying effects. More specifically, we find that 59% of the

rise in the impact response of hours worked is driven by skilled hours worked which is close

to the contribution of 61% we estimate empirically. Intuitively, asymmetric technology

shocks have a strong expansionary effect on non-traded hours worked. Although techno-

logical change is biased toward unskilled labor, technological change biased toward labor

together with a high intensity of non-traded industries in skilled labor leads skilled labor

to contribute significantly to the time-increasing impact response of total hours worked.

In Online Appendix K.3, we relax the assumptions of FBTC and SBTC. By abstracting

from technological change biased toward capital, a model imposing HNTC significantly

understates the decline in total hours worked.16

5.2 Why Technology Shocks are More Asymmetric across Sectors

We have shown that hours worked decline less over time because technology improvements

are increasingly driven by asymmetric technology shocks across sectors over time. In this

subsection, we put forward the greater exposition of traded industries to the international

stock of knowledge to rationalize the growing contribution of asymmetric technological

change to the variance of aggregate technology improvements.

To conduct a decomposition of the (unconditional) variance of aggregate technological

change, we first rearrange eq. (10) so that the productivity growth differential shows up,

i.e., ẐA(t) = ẐN (t) + νY,H
(
ẐH(t)− ẐN (t)

)
. When technology increases by the same

amount across sectors, i.e., ẐN (t) = ẐH(t), the second term on the RHS vanishes so

that the rate of change of utilization-adjusted-aggregate TFP collapses to its symmetric

component, i.e., ẐA(t) = ẐA
S (t). The second term on the RHS thus reflects the technology

dispersion between sectors. Taking the variance of both sides, subtracting the covariance

between symmetric and asymmetric technological change from the variance of aggregate

technology improvements and denoting the adjusted variance by Var′
(
ẐA(t)

)
, we find a

formal expression for the share of the variance of the rate of growth of utilization-adjusted-
16For the eleven countries which have time series for skilled and unskilled labor, aggregate technology

improvements are biased toward capital instead of being biased toward labor.
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Figure 9: Technology Effects of a Permanent Increase in the International Stock of R&D.
Notes: Fig. 9(a) and Fig. 9(b) show the adjustment of utilization-adjusted-TFP to a permanent increase in the international stock of
R&D which increases the international component of utilization-adjusted-TFP by 1% in the long-run. Fig. 9(a) displays the endogenous

adjustment of the world component of the utilization-adjusted-aggregate-TFP to a permanent. The IRF for TFPadjW (t) is obtained
when we estimate a VAR model which includes the world utilization-adjusted-TFP, real GDP, total hours worked, the real consumption

wage. Fig. 9(b) displays the response of utilization-adjusted-TFP in sector j, i.e., TFP
j
adj

(t), following a 1% permanent increase

in TFPadjW (t). The blue lines in Fig. 9(b) show the responses of technology of tradables while the red lines show the responses
of technology of non-tradables. The dashed blue line and the dashed red line display the responses when the domestic component of

TFPH
adj(t) and TFPN

adj(t) stands at 63.4% and 65.5% over the period 1970-1992, respectively. The solid blue line and the dashed-dotted

red line with a cross display the responses when the domestic component of TFPH
adj(t) and TFPN

adj(t) stands at 51% and 67.3% over

the period 1993-2017, respectively.

aggregate-TFP driven by asymmetric technology improvements across sectors:

Var
(
ẐA

D(t)
)

Var′
(
ẐA(t)

) =
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) , (49)

where ẐA
D(t) = νY,H

(
ẐH(t)− ẐN (t)

)
. Using the fact that Var

(
X̂(t)

)
=

[
X̂(t)− X̂

]2

where X = ZA, ZA
S , ZA

D, Zj , eq. (49) says that the contribution of asymmetric technology

shocks to the variance of technological change is increasing in both the value added share

of tradables, νH,H , and the dispersion in technology improvement between the traded and

the non-traded sector. As shown below, by amplifying the asymmetry in technological

change between tradables and non-tradables, the growing exposition of traded industries

to innovation abroad can rationalize a (significant) fraction of the rise in the share of the

variance of technological change driven by asymmetric technology shocks between sectors.

To guide our analysis, we have to specify the production function and the factors driv-

ing technological change. Because we are interested in estimating the impact of an increase

in the international stock of R&D on utilization-adjusted-sectoral-TFP, we abstract from

FBTC and thus assume a Cobb-Douglas production technology by augmenting the produc-

tion function with the stock of knowledge Zj(t) which has an impact measured by νj on

the utilization-adjusted-TFP in sector j, i.e., Y j(t) =
(Zj(t)

)νj (
Lj(t)

)θj
(
K̃j(t)

)1−θj

. The

stock of knowledge that sector j uses to improve technology is made up of the domestic

stock of R&D, Zj(t), and an international stock of R&D, ZW (t). Formally, the aggre-

gate stock of knowledge is a geometric weighted average of the domestic and international

stock of knowledge, as described by Zj(t) =
(
Zj(t)

)ζj (
ZW (t)

)1−ζj

where ζj captures the

country-specific content of the stock of knowledge while 1 − ζj captures its international

component. In Online Appendix R.1-R.3, we detail the steps to extend the model laid out

in section 3 to endogenous technology decisions in the same spirit as Corhay et al. [2020]

where households decide about investment in tangible and intangible assets. In contrast to
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the authors, we consider a two-sector model where the stocks of physical capital and R&D

are allocated across sectors in accordance to their return.

In this regard, one key parameter is νj which measures the impact of 1% increase in

the stock of R&D in sector j on utilization-adjusted-TFP in sector j. We have run the

regression of the logged utilization-adjusted-TFP in sector j on the logged stock of R&D

at constant prices by using cointegration techniques. We find a FMOLS estimate of the

long-term relationship of 0.1499 for the traded sector and 0.0007 for the non-traded sector.

Both are significant at 5% and 10% level, respectively. Using data from Stehrer et al. [2019]

(EU KLEMS database) we construct time series for both gross fixed capital formation and

capital stock in R&D in the traded and non-traded sectors. Data are available for thirteen

countries over 1995-2017. In estimating νj , we implicitly assume that the domestic and the

international stock of R&D both produce the same effect on utilization-adjusted-TFP.17

In Fig. 9(b), we plot the dynamic adjustment of utilization-adjusted-TFP of tradables

(displayed by the blue line) and non-tradables (displayed by the red line) following a shock to

the international stock of knowledge ZW (t) which increases the world utilization-adjusted-

TFP by 1% in the long-run. Because νN is close to zero, a shock to ZW (t) has no effect

on utilization-adjusted-TFP of non-tradables. In contrast, a shock to ZW (t) increases

utilization-adjusted-TFP of tradables by 0.92% at horizon t = 10 (dashed blue line) when

we set the international component of traded technology to 37% which corresponds to its

value over 1970-1992 and by 1.24% at horizon t = 10 (solid blue line) when 1− ηH = 49%

when we consider the sub-period 1993-2017. As traded industries are more exposed to

the international stock of knowledge ZW (t), a permanent rise in the stock of ideas leads

to greater technology improvements in traded industries and importantly amplifies the

productivity growth differential between the traded and the non-traded sector.

Once we have estimated by how much utilization-adjusted-TFP increases in sector j

when the world utilization-adjusted-TFP increases by 1% in the long-run, we construct

artificial time series for utilization-adjusted-TFP predicted by the progression in the world

utilization-adjusted-TFP. By using eq. (49), the share of the variance of aggregate techno-

logical change driven by asymmetric technological change has increased from 18.7% (over

70-92) to 38.9% in the post-1992 period. As detailed in Online Appendix R.4, we derive a

formula to disentangle the share attributable to asymmetric technology improvements into

a country-specific and an international components. We find that the share of the variance
17Because this assumption may be viewed as strong, we have constructed an international stock of knowl-

edge as a (geometric) import-share-weighted-average of trade parters’ stock of R&D at constant prices. We
find an elasticity of utilization-adjusted-TFP which is smaller at 0.077 for the traded sector and negative for
the non-traded sector at -0.002. If we assumed that the domestic and the international stocks of R&D were
producing distinct effects on utilization-adjusted-TFP of sector j, then the production function would be

modified as follows: Y j(t) =
(
Zj(t)

)νjζj (
ZW (t)

)ν
j
W (1−ζj) (

Lj(t)
)θj (

K̃j(t)
)1−θj

. To find the value for νH
W ,

we have to divide the estimated value of the coefficient 0.077 by 1− ηH = 0.369 which leads to νH
W = 0.209

which is close to νj = 0.238.
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of technological change driven by the access to the international stock of ideas has almost

tripled, passing from 7.7% before 1992 to 22.1% in the post-1992 period. More specifically,

by amplifying the dispersion of technology improvements between the traded and the non-

traded sector, the progression of the international stock of ideas and the greater exposition

of traded industries to these ideas has led the share of technological change driven by asym-

metric technology improvements which are attributable to the progression of the stock of

knowledge to increase from 41% to 57%. While the greater exposition to the international

stock of ideas does not fully explain the increase in the share of asymmetric technology by

20 ppt, it can account for two-third of this progression, i.e., 14 ppt.

6 Conclusion

In this paper, we investigate the effects of technology improvements on hours worked across

time. More specifically, we find that a 1% permanent increase in utilization-adjusted-

aggregate-TFP produces a decline in total hours worked which tends to vanishes over time.

To rationalize the time-increasing impact response of hours to an improvement in technol-

ogy, we put forward the contribution of asymmetric technology shocks in driving the vari-

ations in utilization-adjusted-aggregate-TFP. We identify asymmetric technology shocks

as shocks which increase both utilization-adjusted-aggregate-TFP and utilization-adjusted-

TFP of tradables relative to non-tradables while symmetric technology shocks leave the

ratio of sectoral technology unaffected. Our evidence reveals that technology shocks which

are symmetric across sectors give rise to a dramatic decline in hours worked on impact

while asymmetric technology shocks across sectors do the opposite as they significantly

increase hours worked. The forecast error variance decomposition on rolling sub-periods

shows a gradual increase over time in the share of asymmetric technology shocks in driving

technology improvements from 10% to almost 40% over the last thirty years. The grow-

ing importance of technology improvements concentrated within traded industries suggests

that structural change is responsible for the shrinking contractionary effect of technological

change on hours.

To rationalize these evidence, we put forward an open economy model with tradables

and non-tradables and shows that four sets of elements are key to generating the magni-

tude of the decline in hours worked, including barriers to factors’ mobility, imperfect sub-

stitutability between home- and foreign-produced traded goods, factor-biased technological

change and a combination of symmetric and asymmetric technology shocks across sectors.

In a model with no frictions to factors’ mobility and where home- and foreign-produced

traded goods are perfect substitutes, it is optimal to enjoy leisure and consume more by

importing more goods from abroad and running a large current account deficit. This re-

sults in a dramatic decline in hours worked which considerably overstates the magnitude
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that we estimate empirically. Because technology improvements are more pronounced in

traded industries, labor (and capital) shifts toward non-traded industries. In a model with

factors’ mobility frictions, non-traded firms must pay higher wages to encourage workers to

shift which puts upward pressure on aggregate wages and thus leads households to mitigate

the decline in labor supply. When home- and foreign-produced traded goods are imperfect

substitutes, households are more reluctant to substitute foreign- for home-produced traded

goods which has a positive impact on the demand for labor in the traded sector and miti-

gates the decline in hours worked. It is only once we allow for technological change biased

toward labor in traded industries (in line with our evidence) that our model can account

for the magnitude of the decline in hours worked we estimate empirically.

A fourth key ingredient is that technology improvements are not uniformly distributed

across sectors but instead are concentrated within exporting industries. If technological

change were evenly spread out across sectors, hours worked would decline by a magnitude

which is beyond our SVAR estimates. Intuitively, when technology improves at the same

rate across sectors, both sectors cut prices which put downward pressure on wages and

results in a dramatic decline in hours worked. Such a decline is concentrated in non-traded

industries because non-traded and traded goods are gross complements in consumption and

the fall in non-traded good prices shifts labor toward traded industries by driving down the

share of non-tradables. On the contrary, when technology improvements are concentrated

toward traded industries, non-traded prices appreciate which has an expansionary effect on

labor demand in the non-traded sector and puts upward pressure on wages. The positive

impact on hours is amplified by technological change biased toward labor. While neither

symmetric nor asymmetric technology shocks considered separately can account for the

labor effects we estimate empirically, the model can account for the magnitude of the

decline in hours once we allow for a mix of both shocks.

When we increase the contribution of asymmetric shocks to technology improvements

from 10% to almost 40%, the model can generate the shrinking contractionary effect of

a permanent technology improvement on hours we estimate empirically. The baseline

model can also account for the time-increasing impact responses of traded and non-traded

hours worked and this performance lies in the assumption of FBTC. If we impose Hicks-

neutral technological change, the model generates a time-decreasing response of traded

hours worked as asymmetric technology shocks have a strong expansionary impact on non-

traded labor. It is only once we allow for technological change biased toward labor in the

traded sector which neutralizes the incentives to shift labor toward the non-traded sector

that the model can account for the time-varying labor effects of a technology shock.

One key question is why technology improvements are increasingly driven by asymmet-

ric technology shocks across sectors over time? By extending our model to endogenous
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technology decisions, we find quantitatively that two-thirds of the rise in the variance of

aggregate technological change attributable to asymmetric technology improvements be-

tween sectors are driven by the greater exposition of traded industries to the international

stock of knowledge in the post-1992 period.
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A Response of Total Hours Worked to a Technology Shock
across Variants of the RBC Model

In order to have a better understanding of the contribution of each element of our model to the
impact response of total hours worked to a permanent technology improvement, we consider several
variants of the RBC model, both in closed and open economy, and with one or two sectors.

Households. We assume non-separable preferences between consumption and leisure in the
lines of Shimer [2009]:

Λ ≡ C1−σV (L)σ − 1
1− σ

, if σ 6= 1, V (L) ≡
(

1 + (σ − 1) γ
σL

1 + σL
L

1+σL
σL

)
(50)

and
Λ ≡ log C − γ

σL

1 + σL
L

1+σL
σL , if σ = 1. (51)

These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of labor
supply, and σ > 0 determines the substitutability between consumption and leisure; it is worthwhile
noticing that if σ > 1, the marginal utility of consumption is increasing in hours worked. Such
preferences imply that the Frisch elasticity of labor supply is constant.

Households can accumulate internationally traded bonds (expressed in foreign good units), Nt,
that yield net interest rate earnings of r?Nt. Denoting lump-sum taxes by Tt, household’s flow budget
constraint states that real disposable income (on the RHS of the equation below) can be saved by
accumulating traded bonds, consumed, PC,tCt, invested, PJ,tJt or is used to cover adjustment costs
of capital utilization:

Ṅt +PC,tCt + PJ,tJt +
∑

j=H,N

P j
t CK,j

t νK,j
t Kt

= r?Nt + WtLt − Tt + RK
t Kt

∑

j=H,N

αj
K,tu

K,j
t , (52)

where we denote the share of sectoral capital in the aggregate capital stock by νK,j
t = Kj

t /Kt and

the capital compensation share in sector j = H, N by αj
K,t = Rj

tKj
t

RK
t Kt

.
Partial derivatives of (50) w.r.t. C and L read:

ΛC = C−σV (L)σ, (53a)

ΛL = −C1−σσV (L)σ−1γL
1

σL , (53b)

ΛCL = −ΛL (σ − 1)
C

, (53c)

where ΛC = ∂Λ
∂C and ΛL = ∂Λ

∂L . According to eq. (53c), the marginal utility of consumption is
increasing in labor supply as long as σ > 1, i.e., if consumption and leisure are gross substitutes.

The representative household chooses Ct and Lt so as to maximize his/her lifetime utility with
an instantaneous utility given by (50) subject to (52) and K̇t = It − δKKt. Because we are only
interested in investigating the role of each ingredient in influencing the impact response of total
hours worked, we will restrict ourselves to optimal decisions about consumption and labor supply:

ΛC (Ct, Lt) = PC,tλt, (54a)
−ΛL (Ct, Lt) = Wλt, (54b)

where ΛC = C−σV (L)σ and −ΛL = C1−σσγL1/σLV (L)σ−1.
First, eliminating the marginal utility of wealth λ from (54b) by using (54a), i.e., λ = λC

PC
, leads

to
−ΛL

ΛC
=

σ

σ − 1
CVL

V
=

W

PC
,

where VL = ∂V (L)
∂L = γL

1
σL . Rearranging the FOC for consumption (54a), i.e., Ct =

(
ΛC

V σ

)− 1
σ ,

and plugging the latter equation into the above equation leads allows us to rearrange the optimal
decision on total hours worked (54b) as follows:

γL
1

σL
t =

Wt

PC,t

(ΛC,t)
1
σ

σ
. (55)

Firms. Both the traded and non-traded sectors use physical capital (inclusive of capital utiliza-
tion), denoted by K̃j

t = uK,j
t Kj

t , and labor, Lj , according to a constant returns-to-scale technology
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described by a CES production function:

Y j
t =

[
γj

(
Aj

tL
j
t

)σj−1
σj

+
(
1− γj

) (
Bj

t K̃
j
t

)σj−1
σj

] σj

σj−1

, (56)

where 0 < γj < 1 is the weight of labor in the production technology, respectively, σj is the
elasticity of substitution between capital and labor in sector j = H, N , and Aj

t and Bj
t are labor-

and capital-augmenting efficiency.
We denote the wage rate and capital rental rate by W j and Rj which are sector-specific as we

allow for labor and capital mobility costs. Because goods and factor markets are perfect competitive
and the production function displays constant returns to scale, these assumptions imply that the
elasticity of value added w.r.t. labor and capital is equal to the cost of these factors in value added:

∂Y j

∂Lj

Lj

Y j
= sj

L,
∂Y j

∂Kj

Kj

Y j
= 1− sj

L, (57)

where sj
L = W jLj

P jY j is the labor income share. Dividing the demand for labor by the demand for
capital leads to a relationship between the labor income share in sector j and technological change
biased toward labor (last term on the RHS):

sj
L,t

1− sj
L,t

=
γj

1− γj

(
uK,j

t kj
t

) 1−σj

σj

(
Bj

t

Aj
t

) 1−σj

σj

. (58)

When the term
(

Bj
t

Aj
t

) 1−σj

σj

increases, firms tilt their demand toward labor, thus leading to a rise in
the labor income share.

Equilibrium total hours worked. Using the fact W jLj = sj
LP jY j and summing across

sectors leads to
∑

j W jLj =
∑

j sj
LP jY j = WL. Denoting the aggregate labor income share by

sL, by definition, we have WL = sLY where Y is nominal GDP. Making use of this expression to
eliminate the wage rate from the labor supply decision and solving leads to the equilibrium level for
total hours worked:

γL
1+σL

σL
t = sL,t

Yt

PC,t

(ΛC,t)
1
σ

σ
. (59)

Eq. (59) corresponds to eq. (8) in the main text. Column 4 of Table 3 shows the impact
response of total hours worked for the baseline model (11th row) which is contrasted with the
responses for ten versions. Across all variants, we consider a permanent increase in utilization-
adjusted-aggregate-TFP by 1% and we assume that technology adjusts instantaneously to its new
long-run level.

B Unit Cost for Producing

In this section, we derive the expression for the unit cost for producing.
Both sectors are assumed to be perfectly competitive and thus choose capital and labor by

taking prices as given:
max
K̃j

t ,Lj
t

Πj
t = max

Kj
t ,Lj

t

{
P j

t Y j
t −W j

t Lj
t −Rj

tK̃
j
t

}
. (60)

Because we assume labor and capital mobility costs, the value of marginal products in the traded
and non-traded sectors equalizes while costly labor mobility implies a differential in wage rates and
capital rental rates across sectors:

P j
t γj

(
Aj

t

)σj−1
σj

(
Lj

t

)− 1
σj

(
Y j

t

) 1
σj ≡ W j

t , (61a)

P j
t

(
1− γj

) (
Bj

t

)σj−1
σj

(
k̃j

t

)− 1
σj

(
yj

t

) 1
σj ≡ Rj

t , (61b)

where we denote by k̃j
t ≡ K̃j

t /Lj
t the capital-labor ratio for sector j = H, N , and yj

t ≡ Y j
t /Lj

t value
added per hours worked described by

yj
t =

[
γj

(
Aj

t

)σj−1
σj

+
(
1− γj

) (
Bj

t k̃
j
t

)σj−1
σj

] σj

σj−1

. (62)
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Dividing (87) by (88) leads to a positive relationship between the relative cost of labor and the
capital-labor ratio in sector j:

W j

R
=

γj

1− γj

(
Bj

Aj

) 1−σj

σj

(
K̃j

Lj

) 1
σj

, (63)

where K̃j = uK,jKj . We manipulate (63) To to determine the conditional demands for both inputs:

Lj = K̃j

(
γj

1− γj

)σj (
Bj

Aj

)1−σj (
W j

R

)−σj

, (64a)

K̃j = Lj

(
1− γj

γj

)σj (
Bj

Aj

)σj−1 (
W j

R

)σj

. (64b)

Inserting eq. (64a) (eq. (64a) resp.) in the CES production function (56) and solving for Lj (K̃j

resp.) leads to the conditional demand for labor (capital resp.):

γj
(
AjLj

)σj−1
σj =

(
Y j

)σj−1
σj

(
γj

)σj
(

W j

Aj

)1−σj (
Xj

)−1
, (65a)

(
1− γj

) (
BjK̃j

)σj−1
σj

=
(
Y j

)σj−1
σj

(
R

Bj

)σj (
Xj

) σj

1−σj , (65b)

where Xj is given by:

Xj =
(
γj

)σj (
Aj

)σj−1 (
W j

)1−σj

+
(
1− γj

)σj (
Bj

)σj−1
R1−σj

. (66)

Total cost is equal to the sum of the labor and capital cost:

Cj = W jLj + RK̃j . (67)

Inserting conditional demand for inputs (65) into total cost (67), we find that Cj is homogenous of
degree one with respect to value added:

Cj = cjY j , with cj =
(
Xj

) 1
1−σj , (68)

where the unit cost for producing is:

cj =

[
(
γj

)σj
(

W j

Aj

)1−σj

+
(
1− γj

)σj
(

R

Bj

)1−σj ] 1
1−σj

. (69)

C Technology Frontier and FBTC

Following Caselli and Coleman [2006] and Caselli [2016], the menu of possible choices of produc-
tion functions is represented by a set of possible (Aj , Bj) pairs. These pairs are chosen along the
technology frontier which is assumed to take a CES form:


γj

Z

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γj

Z

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (70)

where Zj > 0 is the height of the technology frontier, 0 < γj
Z < 1 is the weight of labor efficiency

along the technology frontier and σj
Z > 0 corresponds to the elasticity of substitution between labor

and capital efficiency. Log-linearizing (70) leads to

0 = γj
Z

(
Aj(t)

)σ
j
Z
−1

σ
j
Z Âj(t) +

(
1− γj

Z

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z B̂j(t),

B̂j(t)
Âj(t)

= − γj
Z

1− γj
Z

(
Bj(t)
Aj(t)

) 1−σ
j
Z

σ
j
Z

. (71)

Firms choose Aj and Bj along the technology frontier so that minimizes the unit cost function
described by (69) subject to (70) which holds as an equality. Differentiating (69) w.r.t. Aj and Bj

(while keeping W j and Rj fixed) leads to:

ĉj(t) = − (
γj

)σj
(

W j(t)
Aj(t)

)1−σj (
cj(t)

)σj−1
Âj(t)−(

1− γj
)σj

(
Rj(t)
Bj(t)

)1−σj (
cj(t)

)σj−1
B̂j(t). (72)
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Using the fact that
(
γj

)σj (
W j(t)
Aj(t)

)1−σj (
cj(t)

)σj−1 = sj
L(t), eq. (72) can be rewritten as −sj

LÂj(t)−(
1− sj

L

)
B̂j(t) = ĉj(t). Setting this equality to zero and inserting (71) leads to:

γj
Z

1− γj
Z

(
Bj(t)
Aj(t)

) 1−σ
j
Z

σ
j
Z =

sj
L(t)

1− sj
L(t)

≡ Sj(t). (73)

Solving (73) for sj
L leads to:

sj
L = γj

Z

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z

. (74)

Inserting (74) into (71) allows us to rewrite the log-linearized version of the technology frontier as
follows:

Ẑj
t = sLÂj

t +
(
1− sj

L

)
B̂j

t . (75)

Eq. (75) corresponds to eq. (8) in the main text.

D Sectoral Decomposition of Aggregate TFP

We consider an open economy which produces domestic traded goods, denoted by a superscript
H, and non-traded goods, denoted by a superscript N . The foreign-produced traded good is the
numeraire and its price is normalized to 1. We consider an initial steady-state where prices are those
at the base year so that initially real GDP, denoted by YR, and the value added share at constant
prices, denoted by νY,j , collapse to nominal GDP (i.e., Y ) and the value added share at current
prices, respectively.

Summing value added at constant prices across sectors gives real GDP:

YR,t = PHY H
t + PNY N

t , (76)

where PH and PN stand for the price of home-produced traded goods and non-traded goods,
respectively, which are kept fixed since we consider value added at constant prices.

Log-linearizing (76), and denoting the percentage deviation from initial steady-state by a hat
leads to:

ŶR,t = νY,H Ŷ H
t +

(
1− νY,H

)
Ŷ N

t , (77)

where νY,H = P HY H

Y is the value added share of home-produced traded goods evaluated at the
initial steady-state. We drop the time index below as long as it does not cause confusion.

Sectoral goods are produced from CES production functions (56). Log-linearizing (56) and in-
voking the property of constant returns to scale together with the assumptions of perfect competition
in goods and factor market are perfectly competitive, i.e., inserting eq. (57), leads to:

Ŷ j
t = sL

(
Âj

t + L̂j
t

)
+

(
1− sj

L

) (
B̂j

t + ûK,j
t + K̂j

t

)
. (78)

We assume that firms choose a mix of labor- and capital-augmenting efficiency, Aj and Bj , along
a technology frontier whose height is measured by capital-utilization-TFP. The technology frontier
is described by eq. (70). Inserting the log-linearized version of the technology frontier (75) implies
that the log-linearized version of the CES production function (78) now reads:

Ŷ j
t = Ẑj

t + sLL̂j
t +

(
1− sj

L

)(
ûK,j

t + K̂j
t

)
. (79)

Since TFP growth, ˆTFP
j

t , includes both technology improvement Ẑj
t and the adjustment in capital

utilization
(
1− sj

L

)
ûK,j

t , the change in value added can be rewritten as follows:

Ŷ j
t = ˆTFP

j

t + sj
LL̂j

t +
(
1− sj

L

)
K̂j

t . (80)

Summing capital income and labor income across sectors and denoting the aggregate capital
rental rate by R and the aggregate wage rate by W implies:

∑

j

W j
t Lj

t = WtLt, (81a)

∑

j

Rj
tK

j
t = RtKt,

∑

j

Rj
tK̃

j
t = RtK̃t, (81b)
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where K̃j = uK,jKj and K̃ = uKK. Log-linearizing (81a)-(81b) while keeping factor prices constant
and dividing by nominal GDP leads to:

sLL̂t =
∑

j

νY,jsj
LL̂j

t , (82a)

(1− sL) K̂t =
∑

j

νY,j
(
1− sj

L

)
K̂j

t . (82b)

Inserting (80) into (77) allows us to rewrite the percentage deviation of real GDP as follows:

ŶR,t =
∑

j

νY,j
[

ˆTFP
j

t + sj
LL̂j

t +
(
1− sj

L

)
K̂j

t

]
. (83)

Making use of (82a) and (82b), eq. (83) can be rewritten in the following form:

ŶR,t = ˆTFP
A

t + sLL̂t +
(
1− sj

L

)
K̂j

t , (84)

where
ˆTFP

A

t = νY,H ˆTFP
H

+
(
1− νY,H

) ˆTFP
N

. (85)

Log-linearizing
∑

j Rj
t K̃

j
t = RtK̃t w.r.t. uK,j and divided by nominal GDP leads to:

(1− sL) ûK
t =

∑

j

(
1− sj

L

)
νY,j ûK,j

t . (86)

Inserting the definition of TFP growth

ˆTFP
j

t = Ẑj +
(
1− sj

L

)
ûK,j

t , (87)

and using (86) allows us to rewrite (85) as follows:

ẐA = νY,H ẐH +
(
1− νY,H

)
ẐN . (88)

E Construction of Time Series for FBTC

In this section, we detail the methodology to construct time series for capital-utilization-adjusted-
FBTC in sector j = H,N . We choose the initial steady-state in a model with Cobb-Douglas
production functions as the normalization point. When we calibrate the model with Cobb-Douglas
production functions to the data, the ratios we target are averaged values over 1970-2017.

The starting point is the ratio of the labor to the capital income share in sector j given by eq.
(17) which can be solved for capital-utilization-adjusted-FBTC in sector j:

FTBCj
t ≡

(
Bj

t

Aj
t

) 1−σj

σj

= Sj
t

1− γj

γj

(
kj

t

)− 1−σj

σj
(
uK,j

t

)− 1−σj

σj

, (89)

where uK,j
t is constructed by using the formula (106).

Since we normalize CES production functions so that the relative weight of labor and capital is
consistent with the labor and capital income share in the data, solving for γj leads to:

γj =
(

Āj

ȳj

) 1−σj

σj

s̄j
L, (90a)

1− γj =
(

B̄j ūK,j k̄j

ȳj

) 1−σj

σj (
1− s̄j

L

)
. (90b)

Dividing (90a) by (90b) leads to:

S̄j =
γj

1− γj

(
B̄j ūK,j k̄j

Āj

) 1−σj

σj

, (91)

where variables with a bar are averaged values of the corresponding variables over 1970-2017.
The methodology adopted to calculate γj amounts to using averaged values as the normalization

point to compute time series for FBTC. Dividing (89) by (91) yields:

(
Bj

t /B̄j

Aj
t/Āj

) 1−σj

σj

=
Sj

t

S̄j

(
kj

t

k̄j

)− 1−σj

σj
(

uK,j
t

ūK,j

)− 1−σj

σj

. (92)
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Eq. (92) corresponds to eq. (6) in the main text. To construct time series for FTBCj
t , we

plug estimates for the elasticity of substitution between capital and labor, σj , and time series for
the ratio of the labor to the capital income share, Sj

t , the capital-labor ratio, kj
t , and the capital

utilization rate, uK,j
t , in sector j = H, N . Next we divide yearly data by averaged values of the

corresponding variable over 1970-2017.
To get estimates of σj at a sectoral level, following Antràs [2004], we run the regression of logged

real value added per hours worked on the logged real wage in this sector with country-specific linear
trends over 1970-2017. Since all variables display unit root process, we use the fully modified OLS
(FMOLS) procedure for cointegrated panel proposed by Pedroni [2000] to estimate the cointegrating
relationship. Columns 17 and 18 of Table 7 report estimates for σH and σN we use to recover FBTC
from (92). FMOLS estimated values for the whole sample, i.e., σH = 0.81 and σN = 0.87, reveal
that capital and labor are gross complements in both sectors.18 Once we have values for σj , we plug
time series for kj and sj

L into the RHS of eq. (92) to recover time series for FBTC in sector j.

F Identification of Technology Shocks

In this section we detail the identification strategy of technology shocks.
Empirical identification of technology shocks. To identify a permanent technology im-

provement, we consider a vector of n observables X̂it = [Ẑit, V̂it] where Ẑit consists of the first
difference of the (logarithm of the) utilization-adjusted TFP (as defined in eq. (5)) and V̂it denotes
the n− 1 variables of interest (in growth rate) detailed later. Let us consider the following reduced
form of the VAR(p) model:

C(L)X̂it = ηit, (93)

where C(L) = In −
∑p

k=1 CkLk is a p-order lag polynomial and ηit is a vector of reduced-form
innovations with a variance-covariance matrix given by Σ. We estimate the reduced form of the
VAR model by panel OLS regression with country and time fixed effects which are omitted in (98)
for expositional convenience. The matrices Ck and Σ are assumed to be invariant across time and
countries and all VARs have two lags. The vector of orthogonal structural shocks εit = [εZ

it, ε
V
it ] is

related to the vector of reduced form residuals ηit through:

ηit = A0εit, (94)

which implies Σ = A0A
′
0 with A0 the matrix that describes the instantaneous effects of structural

shocks on observables. The linear mapping between the reduced-form innovations and structural
shocks leads to the structural moving average representation of the VAR model:

X̂it = B(L)A0εit, (95)

where B(L) = C(L)−1. Let us denote A(L) = B(L)A0 with A(L) =
∑∞

k=0 AkLk. To identify a
permanent technology improvement, εZ

it, we use the restriction that the unit root in utilization-
adjusted TFP originates exclusively from technology shocks which implies that the upper triangular
elements of the long-run cumulative matrix A(1) = B(1)A0 must be zero. Once the reduced form
has been estimated using OLS, structural shocks can then be recovered from εit = A(1)−1B(1)ηit

where the matrix A(1) is computed as the Cholesky decomposition of B(1)ΣB(1)′.

G Data Description for Empirical Analysis

Sources: Our primary sources for sectoral data are the OECD and EU KLEMS databases. We
use data from EU KLEMS ([2011], [2017]) March 2011 and July 2017 releases. The EU KLEMS
dataset covers all countries of our sample, with the exceptions of Canada and Norway. For these
two countries, sectoral data are taken from the Structural Analysis (STAN) database provided by
the OECD ([2011], [2017]). For both EU KLEMS and STAN databases, the March 2011 release
provides data for eleven 1-digit ISIC-rev.3 industries over the period 1970-2007 while the July 2017
release provides data for thirteen 1-digit-rev.4 industries over the period 1995-2017.

The construction of time series for sectoral variables over the period 1970-2017 involves two
steps. First, we identify tradable and non-tradable sectors. We adopt the classification proposed by
De Gregorio et al. [1994]. Following Jensen and Kletzer [2006], we have updated this classification
by treating the financial sector as a traded industry. We map the ISIC-rev.4 classification into the

18Online Appendices J.6 provide more details about our empirical strategy to estimate σj . All FMOLS
estimated coefficients are positive and statistically significant except the estimated value for σH for Ireland
which is negative. As in Antràs [2004], we alternatively run the regression of the ratio of value added to
capital stock at constant prices on the real capital cost R/P j in sector j and replace the inconsistent estimate
for σH obtained from labor demand with that obtained from the demand of capital.
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Table 4: Sample Range for Empirical and Numerical Analysis

Country Code Period Obs.
Australia (AUS) 1970 - 2017 48
Austria (AUT) 1970 - 2017 48
Belgium (BEL) 1970 - 2017 48
Canada (CAN) 1970 - 2017 48
Germany (DEU) 1970 - 2017 48
Denmark (DNK) 1970 - 2017 48
Spain (ESP) 1970 - 2017 48
Finland (FIN) 1970 - 2017 48
France (FRA) 1970 - 2017 48
Great Britain (GBR) 1970 - 2017 48
Ireland (IRL) 1970 - 2017 48
Italy (ITA) 1970 - 2017 48
Japan (JPN) 1974 - 2017 44
Netherlands (NLD) 1970 - 2017 48
Norway (NOR) 1970 - 2017 48
Sweden (SWE) 1970 - 2017 48
United States (USA) 1970 - 2017 48
Total number of obs. 812
Main data sources EU KLEMS & OECD STAN
Notes: Column ’period’ gives the first and last observa-
tion available. Obs. refers to the number of observations
available for each country.

ISIC-rev.3 classification in accordance with the concordance Table 5. Once industries have been
classified as traded or non-traded, for any macroeconomic variable X, its sectoral counterpart Xj

for j = H,N is constructed by adding the Xk of all sub-industries k classified in sector j = H,N as
follows Xj =

∑
k∈j Xk. Second, series for tradables and non-tradables variables from EU KLEMS

[2011] and OECD [2011] databases (available over the period 1970-2007) are extended forward up to
2017 using annual growth rate estimated from EU KLEMS [2017] and OECD [2017] series (available
over the period 1995-2017).

Table 5: Summary of Sectoral Classifications

Sector ISIC-rev.4 Classification ISIC-rev.3 Classification
(sources: EU KLEMS [2017] and OECD ([2017]) (sources: EU KLEMS [2011] and OECD ([2011])

Industry Code Industry Code
Agriculture, Forestry and Fishing A Agriculture, Hunting, Forestry and Fishing AtB
Mining and Quarrying B Mining and Quarrying C

Tradables Total Manufacturing C Total Manufacturing D
(H) Transport and Storage H Transport, Storage and Communication I

Information and Communication J
Financial and Insurance Activities K Financial Intermediation J
Electricity, Gas and Water Supply D-E Electricity, Gas and Water Supply E
Construction F Construction F
Wholesale and Retail Trade, Repair

Non of Motor Vehicles and Motorcycles G Wholesale and Retail Trade G
Tradables Accommodation and Food Service Activities I Hotels and Restaurants H
(N) Real Estate Activities L Real Estate, Renting and Business Services K

Professional, Scientific, Technical,
Administrative and Support Service Activities M-N
Community Social and Personal Services O-U Community Social and Personal Services LtQ

Construction of sectoral variables. Once industries have been classified as traded or non-
traded, we construct sectoral variables by taking time series from EU KLEMS ([2011], [2017]) and
OECD STAN ([2011], [2017]) databases. These two databases provide data, for each industry
and year, on value added at current and constant prices, permitting the construction of sectoral
deflators of value added, as well as details on labor compensation and hours worked data, allowing
the construction of sectoral wage rates. Time and countries are indexed by subscripts i and t below
while the sector is indexed by the superscript j = H, N .

All quantity variables are scaled by the working age population (15-64 years old). Source: OECD
ALFS Database for the working age population (data coverage: 1970-2017). We describe below the
construction for the sectoral data employed in the main text (mnemonics are given in parentheses):

• Sectoral value added, Y j
it: sectoral value added at constant prices in sector j = H,N

(VA QI). Series for sectoral value added in current (constant) prices are constructed by adding
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value added in current (constant) prices for all sub-industries k in sector j = H,N , i.e.,
P j

itY
j
it =

∑
k P j

k,itY
j
k,it (P̄ j

itY
j
it =

∑
k P̄ j

k,itY
j
k,it where the bar indicates that prices P j are those

of the base year), from which we construct price indices (or sectoral value added deflators),
P j

it. Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Sectoral value added share, νY,j
it , is constructed as the ratio of value added at constant

prices in sector j to GDP at constant prices, i.e., Y j
it/(Y H

it + Y N
it ) for j = H,N .

• Relative price of non-tradables, Pit. Normalizing base year price indices P̄ j to 1, the
relative price of non-tradables, Pit, is constructed as the ratio of the non-traded value added
deflator to the traded value added deflator (i.e., Pit = PN

it /PH
it ). The sectoral value added

deflator P j
it for sector j = H, N is calculated by dividing value added at current prices (VA)

by value added at constant prices (VA QI) in sector j. Sources: EU KLEMS ([2011], [2017])
and OECD STAN ([2011], [2017]) databases.

• Terms of trade, TOTit = PH
it /PH,?

it , is computed as the ratio of the traded value added
deflator of the home country i, PH

it , to the geometric average of the traded value added deflator
of the seventeen trade partners of the corresponding country i, PH,?

it , the weight being equal to
the share αM,k

i of imports from the trade partner k. We use the traded value added deflator to
approximate foreign prices as it corresponds to a value-added concept. The Direction of Trade
Statistics (DOTS, IMF) gives the share of imports αM,k

i of country i by trade partner k for
all countries of our sample over 1970-2017. The traded value added deflator PH

it is calculated
by dividing value added at current prices (VA) by value added at constant prices (VA QI)
in sector H. Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) for

PH . Prices of foreign goods and services are calculated as follows: PH,?
it = Πk 6=i

(
PH,k

t

)αM,k
i

.
While the seventeen trade partners of a representative home country do not fully account for
the totality of trade between country i and its trade partners k 6= i, it covers 58% of total
trade on average for a representative OECD country of our sample. Source: Direction of
Trade Statistics [2017]. Period: 1970-2017 for all countries except for Belgium (1997-2017).

• Sectoral hours worked, Lj
it, correspond to hours worked by persons engaged in sector j

(H EMP). Likewise sectoral value added, sectoral hours worked are constructed by adding
hours worked for all sub-industries k in sector j = H,N , i.e., Lj

it =
∑

k Lj
k,it. Sources: EU

KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Sectoral labor share, νL,j
it , is constructed as the ratio of hours worked in sector j to total

hours worked, i.e., Lj
it/(LH

it + LN
it ) for j = H, N .

• Sectoral nominal wage, W j
it is calculated as the ratio of the labor compensation (com-

pensation of employees plus compensation of self-employed) in sector j = H, N (LAB) to
total hours worked by persons engaged (H EMP) in that sector. ources: EU KLEMS ([2011],
[2017]) and OECD STAN ([2011], [2017]) databases.

• Relative wage, W j
it/Wit, is constructed as the ratio of the nominal wage in the sector j to

the aggregate nominal wage W .

• Labor income share (LIS), sj
L,it, is constructed as the ratio of labor compensation (com-

pensation of employees plus compensation of self-employed) in sector j = H, N (LAB) to
value added at current prices (VA) of that sector. Sources: EU KLEMS ([2011], [2017]) and
OECD STAN ([2011], [2017]) databases.

We detail below the data construction for aggregate variables (mnemonics are in parentheses).
For all variables, the reference period is running from 1970 to 2017:

• Real gross domestic product, YR,it, is the sum of traded and non-traded value added
at constant prices. Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017])
databases.

• Total hours worked, Lit, are total hours worked by persons engaged (H EMP). By con-
struction, total hours worked is the sum of traded and non-traded hours worked. Sources:
EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Real consumption wage, WC,it = Wit/PC,it, is constructed as the nominal aggregate
wage divided by the consumer price index (CPI). Source: OECD Prices and Purchasing
Power Parities Database [2017] for the consumer price index. The nominal aggregate wage is
calculated by dividing labor compensation (LAB) by total hours worked by persons engaged
(H EMP). Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

69



• Aggregate total factor productivity, TFPit, is constructed as the Solow residual from
constant-price domestic currency series of GDP, capital, LIS sL,i, and total hours worked. In
Appendix D, we detail the procedure to construct time series for the aggregate capital stock.
The aggregate LIS, sL, i, is the ratio of labor compensation (compensation of employees plus
compensation of self-employed) (LAB) to GDP at current prices (VA) in sector averaged over
the period 1970-2017 (except Japan: 1974-2017). Sources: EU KLEMS ([2011], [2017]) and
OECD STAN ([2011], [2017]) databases.

H Construction of Utilization-Adjusted-TFP Time Series at
a Sectoral Level

We construct time-varying capital utilization series using the procedure discussed in Imbs [1999] to
construct our own series of utilization-adjusted TFP. We assume perfectly competitive factor and
product markets; We also abstract from capital adjustment costs and capital mobility costs across
sectors. Both the traded and non-traded sectors use physical capital, Kj , and labor, Lj , according
to constant returns to scale production functions which are assumed to take a CES form:

Y j
t =

[
γj

(
Aj

tL
j
t

)σj−1
σj

+
(
1− γj

) (
Bj

t u
K,j
t Kj

t

)σj−1
σj

] σj

σj−1

. (96)

We denote the capital utilization rate by uK,j
t . Because more intensive capital use depreciates the

capital more rapidly, we assume the following relationship between capital use and depreciation:

δj
K,t = δK

(
uK,j

t

)φK

, (97)

where δK is the capital depreciation rate and φK is the parameter which must be determined. At
the steady-state, we have uK,j = 1 and thus capital depreciation collapses to δK which is assumed
to be symmetric across sectors. Firms also choose Aj and Bj along the technology frontier that we
assume to be Cobb-Douglas without loss of generality:

Zj
t =

(
Aj

t

)sj
L,t

(
Bj

t

)1−sj
L,t

. (98)

While in the main text, we assume that the technology frontier is CES and above we assume it is
Cobb-Doublas, it leads to the same outcome, i.e., Ẑj

t = sj
LÂj

t +
(
1− sj

L

)
B̂j

t .

Denoting the capital rental cost by Rt = PJ,t (δK,t + r?) , and the labor cost by W j
t , firms choose

the capital stock, capital utilization and labor so as the maximize profit:

Πj
t = P j

t Y j
t −W j

t Lj
t −RtK

j
t . (99)

Profit maximization leads to first order conditions on Kj , uK,j , Lj :

P j
t

(
1− γj

) (
Bj

t u
K,j
t

)σj−1
σj

(
Kj

t

)− 1
σj

(
Y j

t

) 1
σj

= Rt, (100a)

P j
t

(
1− γj

) (
Bj

t K
j
t

)σj−1
σj

(
uK,j

t

)− 1
σj

(
Y j

t

) 1
σj

= PJ,tδKφK

(
uK,j

t

)φK−1

Kj , (100b)

P j
t γj

(
Aj

t

)σj−1
σj

(
Lj

t

)− 1
σj

(
Y j

t

) 1
σj

= W j
t . (100c)

Multiplying both sides of the first equality by Kj and dividing by sectoral value added leads to the
capital income share:

1− sj
L,t =

(
1− γj

)
(

Bj
t u

K,j
t Kj

t

Y j
t

)σj−1
σj

. (101)

By using the definition of the capital income share above and inserting the expression for the
capital rental cost, first-order conditions can be rewritten as follows:

(
1− sj

L

) P j
t Y j

t

PJ,tK
j
t

= (δK,t + r?) , (102a)

(
1− sj

L

) P j
t Y j

t

PJ,tK
j
t

= δK,tφK , (102b)

sj
L,t

P j
t Y j

t

Lj
t

= W j
t . (102c)
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Evaluating (102a) and (102b) at the steady-state and rearranging terms leads to:

(r? + δK) = δKφK , (103)

which allows us to pin down φK . We let the capital depreciation rate δK and the real interest rate
r? (long-run interest rate minus CPI inflation rate) vary across countries to compute φK .

In the line of Garofalo and Yamarik [2002], we use the value added share at current prices to
allocate the aggregate capital stock to sector j:

Kj
t = ωY,j

t Kt, (104)

where Kt is the aggregate capital stock at constant prices and ωY,j
t = P j

t Y j
t

PtYR,t
is the value added

share of sector j = H, N at current prices. The methodology by Garofalo and Yamarik [2002] is
based on the assumption of perfect mobility of capital across sectors and a small discrepancy in the
LIS across sectors, i.e., sH

L ' sN
L . Inserting (104) into (102a)-(102b), first order conditions on Kj

and uK,j now read as follows:
(
1− sj

L,t

) PtYR,t

PJ,tKt
= (δK,t + r?) , (105a)

(
1− sj

L,t

) PtYR,t

PJ,tKt
= δK,tφK . (105b)

Solving (105b) for uK,j
t leads to:

uK,j
t =




(
1− sj

L,t

)

δKφK

PtYR,t

PJ,tKt




1
φK

, (106)

where φK = r?+δK

δK
(see eq. (103)). Dropping the time index to denote the steady-state value, the

capital utilization rate is:

uK,j =




(
1− sj

L

)

δKφK

PYR

PJK




1
φK

. (107)

Dividing (106) by (107) leads to the capital utilization rate relative to its steady-state:

uK,j
t

uK,j
=

[(
1− sj

L,t

1− sj
L

)
PtYR,t

PYR

PJK

PJ,tKt

] 1
φK

, (108)

We denote total factor productivity in sector j = H, N by TFPj which is defined as follows:

TFPj
t =

Y j
t

[
γj

(
Lj

t

)σj−1
σj

+ (1− γj)
(
Kj

t

)σj−1
σj

] σj

σj−1

. (109)

Log-linearizing (109), the Solow residual is:

ˆTFP
j

t = Ŷ j
t − sj

LL̂j
t −

(
1− sj

L

)
K̂j

t . (110)

Log-linearizing the production function (96) shows that the Solow residual can alternatively be
decomposed into utilization-adjusted TFP and capital utilization correction:

ˆTFP
j

t = Ẑj
t +

(
1− sj

L

)
ûK,j

t , (111)

where utilization-adjusted TFP denoted by Zj is equal to:

Ẑj
t = sj

LÂj
t +

(
1− sj

L

)
B̂j

t . (112)

Construction of time series for sectoral capital stock, Kj
t . To construct the series for

the sectoral capital stock, we proceed as follows. We first construct time series for the aggregate
capital stock for each country in our sample. To construct Kt, we adopt the perpetual inventory
approach. The inputs necessary to construct the capital stock series are a i) capital stock at the
beginning of the investment series, K1970, ii) a value for the constant depreciation rate, δK , iii) real
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gross capital formation series, It. Real gross capital formation is obtained from OECD National
Accounts Database [2017] (data in millions of national currency, constant prices). We construct the
series for the capital stock using the law of motion for capital in the model:

Kt+1 = It + (1− δK)Kt. (113)

for t = 1971, ..., 2017. The value of δK is chosen to be consistent with the ratio of capital depreciation
to GDP observed in the data and averaged over 1970-2017:

1
46

2017∑
t=1970

δKPJ,tKt

Yt
=

CFC

Y
, (114)

where PJ,t is the deflator of gross capital formation series, Yt is GDP at current prices, and CFC/Y
is the ratio of consumption of fixed capital at current prices to nominal GDP averaged over 1970-
2017. Deflator of gross capital formation, GDP at current prices and consumption of fixed capital are
taken from the OECD National Account Database [2017]. The second column of Table 6 shows the
value of the capital depreciation rate obtained by using the formula (114). The capital depreciation
rate averages to 5%.

To have data on the capital stock at the beginning of the investment series, we use the following
formula:

K1970 =
I1970

gI + δK
, (115)

where I1970 corresponds to the real gross capital formation in the base year 1970, gI is the average
growth rate from 1970 to 2017 of the real gross capital formation series. The system of equations
(113), (114) and (115) allows us to use data on investment to solve for the sequence of capital stocks
and for the depreciation rate, δK . There are 47 unknowns: K1970, δK , K1971, ..., and K2017, in
47 equations: 45 equations (113), where t = 1971, ..., 2017, (114), and (115). Solving this system
of equations, we obtain the sequence of capital stocks and a calibrated value for depreciation, δK .
Following Garofalo and Yamarik [2002], the gross capital stock is then allocated to traded and
non-traded industries by using the sectoral value added share, see eq. (104).

Construction of time series for sectoral TFPs. Sectoral TFPs, TFPj
t , at time t are

constructed as Solow residuals from constant-price (domestic currency) series of value added, Y j
t ,

capital stock, Kj
t , and hours worked, Lj

t , by using eq. (110). The LIS in sector j, sj
L, is the ratio

labor compensation (compensation of employees plus compensation of self-employed) to nominal
value added in sector j = H, N , averaged over the period 1970-2017 (except Japan: 1974-2017).
Data for the series of constant price value added (VA QI), current price value added (VA), hours
worked (H EMP) and labor compensation (LAB) are taken from the EU KLEMS ([2011], [2017])
and OECD STAN ([2011], [2017]) databases.

Construction of time series for real interest rate, r?. The real interest rate is computed
as the real long-term interest rate which is the nominal interest rate on 10 years government bonds
minus the rate of inflation which is the rate of change of the Consumption Price Index (CPI).
Sources: OECD Economic Outlook Database [2017] for the long-term interest rate on government
bonds and OECD Prices and Purchasing Power Parities Database [2017] for the CPI. Data coverage:
1970-2017 except for IRL (1990-2017) and KOR (1983-2017). The first column of Table 6 shows the
value of the real interest rate which averages 3% over the period 1970-2017.

Construction of time series for capital utilization, uK,j
t . To construct time series for the

capital utilization rate, uK,j
t , we proceed as follows. We use time series for the real interest rate,

r? and for the capital depreciation rate, δK to compute φ = r?+δK

δK
(see eq. (103)). Once we have

calculated φ for each country, we use time series for the LIS in sector j, sj
L,t, GDP at current prices,

PtYR,t = Yt, the deflator for investment, PJ,t, and times series for the aggregate capital stock, Kt

to compute time series for uK,j
t by using the formula (106).

Construction of time series for utilization-adjusted TFP, Zj
t . According to (111), capital

utilization-adjusted sectoral TFP expressed in percentage deviation relative to the steady-state
reads:

Ẑj
t = ˆTFP

j

t −
(
1− sj

L

)
ûK,j

t ,

ln Zj
t − ln Z̄j

t =
(
lnTFPj

t − ln ¯TFPj
t

)
−

(
1− sj

L

)(
ln uK,j

t − ln ūK,j
t

)
. (116)

The percentage deviation of variable Xt from initial steady-state is denoted by X̂t = ln Xt − ln X̄t

where we let the steady-state varies over time; the time-varying trend ln X̄t is obtained by applying
a HP filter with a smoothing parameter of 100 to logged time series. To compute ˆTFP

j

t , we take the
log of TFPj

t and subtract the trend component extracted from a HP filter applied to logged TFPj
t ,
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Table 6: Data on Real Interest Rate (r?) and Fixed Capital Depreciation Rate (δK)

Country r? δK

AUS 0.028 0.058
AUT 0.029 0.040
BEL 0.031 0.041
CAN 0.031 0.100
DEU 0.022 0.062
DNK 0.044 0.036
ESP 0.020 0.048
FIN 0.024 0.043
FRA 0.031 0.031
GBR 0.023 0.042
IRL 0.033 0.029
ITA 0.025 0.050
JPN 0.017 0.061
NLD 0.028 0.035
NOR 0.025 0.102
SWE 0.029 0.038
USA 0.025 0.026

OECD 0.027 0.050

i.e., ln TFPj
t − ln ¯TFPj

t . The same logic applies to uK,j
t . Once we have computed the percentage

deviation lnZj
t − ln Z̄j

t , we reconstruct time series for ln Zj
t :

ln Zj
t =

(
ln Zj

t − ln Z̄j
t

)
+ ln Z̄j

t . (117)

The construction of time series of logged sectoral TFP, ln TFPj
t , capital utilization-adjusted sectoral

TFP, ln Zj
t , is consistent with the movement of capital utilization along the business cycle.

I Construction of Non-Traded Demand Components

In this section, we detail the construction of time series for non-traded government consumption,
GN

t , non-traded consumption, CN
t , and non-traded investment, JN

t . We use the World Input-Output
Databases ([2013], [2016]). The 2013 release provides data for eleven 1-digit ISIC-rev.3 industries
over the period 1995-2011 while the 2016 release provides data for thirteen 1-digit-rev.4 industries
over the period 2000-2014. As sectoral data are classified using identical ISIC revisions in both
the EU KLEMS and WIOD datasets, we map the WIOD ISIC-rev.4 classification (the 2016 release)
into the WIOD ISIC-rev.3 classification (the 2013 release) in accordance with the concordance Table
5. Consistent with the methodology we used to extend series taken from the EU KLEMS ([2011],
[2017]), time series for traded and non-traded variables from the WIOD [2013] dataset (available
over the period 1995-2011) are extended forward up to 2014 using annual growth rate estimated
from WIOD [2016] series (available over the period 2000-2014). Coverage: 1995-2014 except for
NOR (2000-2014).

To compute non-traded demand components, we have to overcome two difficulties. While the
input-output WIOD dataset gives purchases of non-traded goods and services from the private
sector, data also includes purchases of imported goods and services. Whereas consumption and
investment expenditure can be split into traded and non-traded expenditure, this split does not
exist for government spending for most of the countries in our sample. We detail below how we
overcome the two aforementioned difficulties.

To begin with, the non traded and the home-produced traded goods markets must clear such
that:

Y N = CN + JN + GN + XN −MN , (118a)

Y H = CH + JH + GH + XH −MH , (118b)

where Y j is value added at constant prices in sector j = H,N , Cj consumption in good j, Jj

investment in good j, Gj government consumption in good j and Xj stands for exports. Imports
(by households, firms, and the government) in good j denoted by M j can be broken into three
components:

MN = CN,F + JN,F + GN,F , (119a)

MH = CH,F + JH,F + GH,F , (119b)
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where CH,F , JH,F and GH,F are foreign-produced traded good for consumption, investment and
government spending respectively, and CN,F , JN,F and GN,F denote consumption, investment and
government spending domestic demand for non-traded goods produced by the rest of the world
respectively. Next, each demand component Cj , Jj , Gj of sector j = H, N can be split into a
domestic demand for home-produced good (denoted by Cj,D, Jj,D, Gj,D) and a domestic demand
for foreign-produced good (denoted by Cj,F , Jj,F , Gj,F ) by the rest of the world. This decomposition
yields the following identities:

CN = CN,D + CN,F , (120a)

JN = JN,D + JN,F , (120b)

GN = GN,D + GN,F , (120c)

CH = CH,D + CH,F , (120d)

JH = JH,D + JH,F , (120e)

GH = GH,D + GH,F . (120f)

We denote total imports by M which consist of imports of consumption goods by households and
the government and imports of capital goods by firms:

M = MN + MH . (121)

Total exports to the rest of the world include exports of non-traded and traded goods:

X = XN + XH . (122)

Obviously, we are aware that non-traded goods are not subject to international trade but we use
this terminology to avoid confusion between the model’s annotations and the data.

Combining (118a) and (118b) and using (121)-(122) leads to the standard accounting identity
between the sum of sectoral value added and final expenditure:

PHY H + PNY N = PCC + PJJ + G + PXX − PMM,

Y = PCC + PJJ + G + NX, (123)

where we normalize PG to one in (123) to be consistent with the model’s annotations. Dividing (123)
by GDP implies that consumption expenditure, investment expenditure, government spending, and
net exports as a share of GDP must sum to one:

1 = ωC + ωJ + ωG + ωNX . (124)

We focus first on components of government spending. We use the accounting identity (118a)
to compute times series for GN :

PNGN = PNY N − PNCN − PNJN − PNXN + PNMN (125)

We divide both sides by nominal GDP, i.e., PHY H + PNY N = Y . The LHS of eq. (125) divided
by nominal GDP reads:

PNGN

Y
=

PNGN

G

G

Y
,

= ωGN ωG. (126)

Making use of (125)-(126), we can calculate time series for ωGN as follows:

ωGN =
1

ωG

[
PNY N

Y
− PNCN − PNJN − PNXN + PNMN

Y

]
. (127)

While in the model, we assume that non-traded industries do not trade with the rest of the
world, the definition of a non-traded industry in the data is based on an arbitrary rule. Industries
whose the sum of exports plus imports in percentage of GDP is lower than 20% are treated as non-
tradables; since these industries trade, we have to split GN into GN,D and GN,F so as to calculate
time series for ωGN,D . According to (119a), total imports of non-traded goods and services include
imports by households, firms and the government, i.e., MN = CN,F + JN,F + GN,F . Thus, GN,F =
MN −CN,F −JN,F , from which we get ωGN,F = GN,F /G. By using (120c), GN,D can be computed
as GN,D = GN −GN,F . This allows us to recover the share of non-traded government consumption
which excludes imports: ωGN,D = ωGN − ωGN,F . Next, government spending on foreign-produced
traded goods GH,F can be calculated by using the definition of imports of final traded goods and
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services: MF = CH,F + JH,F + GH,F , where CH,F and JH,F are consumption and investment in
home-produced traded goods. Rearranging the last equation give GH,F = MH − CH,F − JH,F . It
follows that ωGH,F = GH,F /G. Once we have time series for GN,D, GN,F , GH,F , we can recover
time series for government spending in home-produced traded goods, GH,D by using the accounting
identity which says that total government spending is equal to the sum of four components: G =
GN,D + GN,F + GH,D + GH,F . Dividing both sides by G gives:

1 = ωGN,D + ωGN,F + ωGH,F + ωGH,D ,

1 = ωGN,D + ωGF + ωGH,D ,

ωGH,D = 1− ωGN,D − ωGF , (128)

where ωGN,F + ωGH,F = ωGF is the import content of government spending
Since data taken from WIOD allows to differentiate between domestic demand for home- and

foreign-produced goods, we are able to construct time series for the home content of consumption
and investment in traded goods as follows:

αH =
PHCH,D

PT CT
=

(
PT CT − CH,F

)

PT CT
, (129a)

αH
J =

PHJH,D

PT
J JT

=

(
PT

J JT − JH,F
)

PT
J JT

. (129b)

To compute time series for non-traded consumption, CN,D, and non-traded investment, JN,D, we
make use of imports of final consumption and investment goods, and then we divide by total con-
sumption and investment expenditure, respectively, to obtain their non-tradable content:

1− αC =
PNCN,D

PCC
=

PN
(
CN − CN,F

)

PCC
, (130a)

1− αJ =
PNJN,D

PJJ
=

PN
(
JN − JN,F

)

PJJ
. (130b)

We obtain data on GDP and its demand components (consumption, investment, government
spending, exports and imports) from the World Input-Output Databases ([2013], [2016]) for all years
between 1995 and 2014 and all 1-digit ISIC rev.3 and rev.4 industries. Indexing the sector with a
superscript j = H, N and indexing the origin of demand of goods and services with a superscript
k = D, F where D refers to domestic demand of home-produced goods and services and F refers
to domestic demand of foreign-produced goods and services, we provide below details about data
construction:

• Consumption Cj,k for j = H,N and k = D,F : total consumption expenditure (at current
prices) by households and by non-profit organizations serving households on good j produced
by firms from country k. Data coverage: 1995-2014 except for NOR (2000-2014).

• Investment Ij,k for j = H, N and k = D, F : total gross fixed capital formation plus changes
in inventories and valuables (at current prices) on good j produced by firms from country k.
Data coverage: 1995-2014 except for NOR (2000-2014).

• Government spending Gj,k for j = H,N and k = D,F : total consumption expenditure (at
current prices) by government on good j produced by firms from country k. Data coverage:
1995-2014 except for NOR (2000-2014).

• Exports Xj,k for j = H,N and k = D, F : total exports (at current prices) of final and
intermediate good j produced by firms from country k. Data coverage: 1995-2014 except for
NOR (2000-2014).

• Imports M j,k for j = H,N and k = D, F : total imports (at current prices) of final and
intermediate good j produced by firms from country k. Data coverage: 1995-2014 except for
NOR (2000-2014).

Finally, when we use (125) to obtain the time series for GN , the valuation of output Y N and imports
MN include taxes and subsidies on products and trade and transport margins respectively. These
adjustments are necessary to achieve consistency and to balance resources and uses.

J Data for Calibration

J.1 Non-Tradable Content of GDP and its Demand Components

Table 7 shows the non-tradable content of GDP, consumption, investment, government spending,
labor and labor compensation (columns 1 to 6). The home content of consumption and investment
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expenditure in tradables and the home content of government spending are reported in columns 8
to 10. Column 7 shows the ratio of exports to GDP. Columns 11 and 12 shows the labor income
share in the traded and non-traded sector. Columns 13-14 display the investment-to-GDP ratio
and government spending in % of GDP, respectively. Our sample covers the 17 OECD countries
displayed by Table 4. The reference period for the calibration of labor variables is 1970-2017 while
the reference period for demand components is 1995-2014 due to data availability, as detailed below.
When we calibrate the model to a representative economy, we use the last line which shows the
(unweighted) average of the corresponding variable.

Aggregate ratios. Columns 13-14 show the investment-to-GDP ratio, ωJ and government
spending as a share of GDP, ωG. To calculate ωJ , we use time series for gross capital formation
at current prices and GDP at current prices, both obtained from the OECD National Accounts
Database [2017]. Data coverage: 1970-2017 for all countries. To calculate ωG, we use time series for
final consumption expenditure of general government (at current prices) and GDP (at current prices).
Source: OECD National Accounts Database [2017]. Data coverage: 1970-2017 for all countries. We
consider a steady-state where trade is initially balanced and we calculate the consumption-to-GDP
ratio, ωC by using the accounting identity between GDP and final expenditure:

ωC = 1− ωJ − ωG. (131)

As displayed by the last line of Table 7, investment expenditure (see column 13) and government
spending (see column 14) as a share of GDP average to 23% and 20%.

Non-traded demand components. Columns 2 to 4 show non-tradable content of consump-
tion (i.e., 1−αC), investment (i.e., 1−αJ), and government spending (i.e., ωGN ), respectively. These
demand components have been calculated by adopting the methodology described in eqs. (130a)-
(130b), and eq. (127). Sources: World Input-Output Databases ([2013], [2016]). Data coverage:
1995-2014 except for NOR (2000-2014). The non-tradable content of consumption, investment and
government spending shown in column 2 to 4 of Table 7 averages to 57%, 69% and 84%, respectively.

In the empirical analysis, we use data from EU KLEMS ([2011], [2017]) and OECD STAN
([2011], [2017]) databases for constructing sectoral value added over the period running from 1970
to 2017. Since the demand components for non-tradables are computed over 1995-2014 by using the
WIOD dataset, to ensure that the value added is equal to the sum of its demand components, we
have calculated the non-tradable content of value added shown in column 1 of Table 7 as follows:

ωY,N = =
PNY N

Y
,

= ωC (1− αC) + ωJ (1− αJ ) + ωGN ωG, (132)

where 1− αC and 1− αJ are the non-tradable content of consumption and investment expenditure
shown in columns 2 and 3, ωGN is the non-tradable content of government spending shown in column
4, ωC and ωJ are consumption- and investment-to-GDP ratios, and ωG is government spending as
a share of GDP.

Non-tradable content of hours worked and labor compensation. To calculate the non-
tradable share of labor shown in column 5 and labor compensation shown in column 6, we split the
eleven industries into traded and non-traded sectors by adopting the classification detailed in section
M.2. Details about data construction for sectoral output and sectoral labor are provided above. We
calculate the non-tradable share of labor compensation as the ratio of labor compensation in the
non-traded sector (i.e., WNLN ) to overall labor compensation (i.e., WL). Sources: EU KLEMS
([2011], [2017]) and OECD STAN ([2011], [2017]) databases. Data coverage: 1970-2017 for all
countries (except Japan: 1974-2017). The non-tradable content of labor and labor compensation,
shown in columns 5 and 6 of Table 7, average to 64% and 63% respectively.

Home content of consumption and investment expenditure in tradables. Columns 8
to 9 of Table 7 show the home content of consumption and investment in tradables, denoted by αH

and αH
J in the model. These shares are obtained from time series calculated by using the formulas

(129a)-(129b). Sources: World Input-Output Databases [2013], [2016]. Data coverage: 1995-2014
except for NOR (2000-2014). Column 10 shows the content of government spending in home-
produced traded goods. Taking data from the WIOD dataset, time series for ωGH are constructed
by using the formula (128). Data coverage: 1995-2014 except for NOR (2000-2014). As shown in
the last line of columns 8 and 9, the home content of consumption and investment expenditure
in traded goods averages to 66% and 42%, respectively, while the share of home-produced traded
goods in government spending averages 12%. Since the non-tradable content of government spending
averages 84% (see column 4), the import content of government spending is 4% only.

Since we set initial conditions so that the economy starts with balanced trade, export as a share
of GDP, ωX , shown in column 7 of Table 7 is endogenously determined by the import content of
consumption, 1− αH , investment expenditure, 1− αH

J , and government spending, ωGF , along with
the consumption-to-GDP ratio, ωC , the investment-to-GDP ratio, ωJ , and government spending as

76



a share of GDP, ωG. More precisely, dividing the current account equation at the steady-state by
GDP, Y , leads to an expression that allows us to calculate the GDP share of exports of final goods
and services produced by the home country:

ωX =
PHXH

Y
= ωCαC

(
1− αH

)
+ ωJαJ

(
1− αH

J

)
+ ωGωGF , (133)

ωGF = 1−ωGN,D −ωGH,D . The last line of column 7 of Table 7 shows that the export to GDP ratio
averages 13%.

Sectoral labor income shares. The labor income share for the traded and non-traded sector,
denoted by sH

L and sN
L , respectively, are calculated as the ratio of labor compensation of sector j to

value added of sector j at current prices. Sources: EU KLEMS ([2011], [2017]) and OECD STAN
([2011], [2017]) databases. Data coverage: 1970-2017 for all countries (except Japan: 1974-2017).
As shown in columns 11 and 12 of Table 7, sH

L and sN
L averages 0.63 and 0.68, respectively.

Estimated elasticities. Columns from 15 to 20 of Table 7 display estimates of the elasticity of
substitution between tradables and non-tradables in consumption, φ, the elasticity of labor supply
across sectors, εL, the elasticity of capital supply across sectors, εK , the elasticity of substitution
between capital and labor in the traded and the non-traded sector, i.e., σH and σN , and the elasticity
of substitution between skilled and unskilled labor in the traded and the non-traded sector, i.e., σH

L

and σN
L ,

J.2 Estimates of εL Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each producing
a different good. Along the lines of Horvath [2000], the aggregate labor index is assumed to take
the form:

L =

[∫ M

0

(
ϑj

)− 1
ε
(
Lj

) ε+1
ε dj

] ε
ε+1

, (134)

The agent seeks to maximize her labor income

∫ M

0

W jLjdj = X, (135)

for given utility loss; Lj is labor supply to sector j, W j the wage rate in sector j and X total labor
income. The form of the aggregate labor index (134) implies that there exists an aggregate wage
index W (.), whose expression will be determined later. Thus equation (135) can be rewritten as
follows: ∫ M

0

W jLjdj = WL. (136)

Writing down the Lagrangian and denoting by µ the Lagrangian multiplier to the constraint, the
first-order reads as: (

ϑj
)− 1

ε
(
Lj

) 1
ε L−

1
ε = µW j . (137)

Left-multiplying both sides of eq. (137) by Lj , summing over the M sectors and using eqs. (134)
and (136) implies that µ = 1

W . Plugging the expression for the Lagrangian multiplier into (137)
and rearranging terms leads to optimal labor supply Lj to sector j:

Lj = ϑj

(
W j

W

)ε

L. (138)

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital, Kj , according to a constant returns to scale technology described by a CES production
function. The representative firm faces two cost components: a capital rental cost equal to Rj , and
a wage rate equal to W j , respectively. Since each sector is assumed to be perfectly competitive, the
representative firm chooses capital and labor by taking prices as given:

max
Kj ,Lj

Πj = max
Kj ,Lj

{
P jY j −W jLj −RjKj

}
. (139)

First-order conditions lead to the demand for labor and capital which read as follows:

sj
L

P jY j

Lj
= W j , (140a)

(
1− sj

L

) P jY j

Kj
= Rj . (140b)
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Table 9: Calibration of Dynamics of Symmetric and Asymmetric Technology Shocks

Parameters Symmetric Technology shock Asymmetric Technology Shock
Tradables Non-Tradables Tradables Non-Tradables

AH
S (t) BH

S (t) AN
S (t) BN

S (t) AH
D(t) BH

D (t) AN
D(t) BN

D (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Exogenous technology shock, xj
c -0.03 -0.70 -0.78 3.18 -8.20 14.46 -0.42 -1.12

Impact effect, X̂j
c (0) 1.68 0.00 1.84 0.00 -4.64 14.79 -1.20 1.00

Long-run effect, X̂j
c 1.71 0.70 2.62 -3.18 3.56 0.33 -0.78 2.12

Persistence and shape of X̂j(t), ξj
X,c 0.38 0.38 0.50 0.50 0.19 0.20 0.10 0.10

Persistence and shape of X̂j(t), χj
X,c 0.41 0.35 0.51 0.50 0.18 0.24 0.10 0.10

Notes: Denoting the factor-augmenting efficiency by Xj
c = Aj

c, Bj
c for technology shock c = S, D in sector j, the adjustment of Xj

c (t) toward its long-run level

expressed in percentage deviation from initial steady-state is governed by the following continuous time process: X̂j
c (t) = X̂j

c +e
−ξ

j
X,c

t−
(
1− xj

c

)
e
−χ

j
X,c

t
.

The first row is an exogenous parameter which determines the magnitude of the change in Xj
c (t) on impact (see the second row) given its rate of change

in the long-run X̂j
c (see the third row). The last two rows display the values of parameters ξ

j
X,c

and χ
j
X,c

which determines the shape and the persistence

of the technology shock.

Inserting labor demand (140a) into labor supply to sector j (138) and solving leads the share of
sector j in aggregate labor:

Lj

L
=

(
ϑj

) 1
ε+1

(
sj

LP jY j

∫ M

0
sj

LP jY jdj

) ε
ε+1

, (141)

where we combined (136) and (140a) to rewrite the aggregate wage as follows:

W =

∫ M

0
sj

LP jsj
Ldj

L
. (142)

We denote by βj the fraction of labor’s share of value added accumulating to labor in sector j:

βj =
sj

LP jY j

∑M
j=1 sj

LP jY j
. (143)

Using (143), the labor share in sector j (141) can be rewritten as follows:

Lj

L
=

(
ϑj

) 1
ε+1

(
βj

) ε
ε+1 . (144)

Introducing a time subscript and taking logarithm, eq. (144) reads as:

ln
(

Lj

L

)

t

=
1

ε + 1
ln ϑj +

ε

ε + 1
ln βj

t . (145)

Totally differentiating (145), denoting the rate of growth of the variable with a hat, including
country fixed effects captured by country dummies, fi, sector dummies, fj , and common macroeco-
nomic shocks by year dummies, ft, leads to:

L̂j
it − L̂it = fi + ft + γiβ̂

j
it + νj

it, (146)

where

L̂it =
M∑

j=1

βj
i,t−1L̂

j
i,t. (147)

and

βj
it =

sj
L,iP

jY j
it∑M

j=1 sj
L,iP

j
itY

j
it

, (148)

where sj
L,i is the labor income share in sector j in country i which is averaged over 1970-2017. Y j

is value added.
Elasticity of labor supply across sectors. We use panel data to estimate (146) where

γi = εi

εi+1 and βj
it is given by (143). The LHS term of (146) is calculated as the difference between

changes (in percentage) in hours worked in sector j, L̂j
i,t, and in total hours worked, L̂i,t. The

RHS term βj corresponds to the fraction of labor’s share of value added accumulating to labor
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Table 10: Estimates of Elasticity of Labor Supply across Sectors (ε)

Country Elasticity of labor supply
across Sectors (ε)

AUS 0.480a

(3.84)

AUT 1.096a

(3.08)

BEL 0.599a

(3.66)

CAN 0.362a

(4.24)

DEU 0.998a

(3.62)

DNK 0.273b

(2.55)

ESP 0.950a

(3.84)

FIN 0.417a

(4.52)

FRA 1.309a

(3.03)

GBR 0.616a

(4.14)

IRL 0.105a

(3.17)

ITA 1.628a

(3.14)

JPN 0.961a

(3.67)

NLD 0.221b

(2.25)

NOR 0.166a

(2.77)

SWE 0.547a

(4.57)

USA 2.889b

(2.03)

Countries 17
Observations 794
Data coverage 1971-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance at 1%, 5% and 10% levels.
Heteroskedasticity and autocorrelation consistent t-statistics
are reported in parentheses.

in sector j. Denoting by P j
t Y j

t value added at current prices in sector j = H,N at time t, βj
t

is computed as sj
LP j

t Y j
t∑N

j=H sj
LP j

t Y j
t

where sj
L is the LIS in sector j = H, N defined as the ratio of the

compensation of employees to value added in the jth sector, averaged over the period 1970-2017.
Because hours worked are aggregated by means of a CES function, percentage change in total hours
worked, L̂i,t, is calculated as a weighted average of sectoral hours worked percentage changes, i.e.,
L̂t =

∑N
j=H βj

t−1L̂
j
t . The parameter we are interested in, say the degree of substitutability of hours

worked across sectors, is given by εi = γi/(1− γi). In the regressions that follow, the parameter γi

is assumed to be different across countries when estimating εi for each economy (γi 6= γi′ for i 6= i′).
To construct L̂j and β̂j we combine raw data on hours worked Lj , nominal value added P jY j

and labor compensation W jLj . All required data are taken from the EU KLEMS ([2011], [2017])
and OECD STAN ([2011], [2017]) databases. The sample includes the 17 OECD countries mentioned
above over the period 1971-2017 (except for Japan: 1975-2017).

Table 10 reports empirical estimates that are consistent with ε > 0. All values are statistically
significant at 10%. Since the estimated value for ε is not statistically significant for Norway, we run
the same regression as in eq. (146) but use the output instead of value added to construct β̂j . We
find a value of 0.17, as reported in column 17 of Table 10, and this estimated value is statistically
significant. Overall, we find that ε ranges from a low of 0.1 of Ireland and 0.2 for Norway to a high
of 2.89 for USA.

J.3 Estimates of εK Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each producing
a different good. Along the lines of Horvath [2000], the aggregate capital index is assumed to take
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the form:

K =

[∫ M

0

(
ϑj

K

)− 1
εK (

Kj
) εK+1

εK dj

] εK

εK+1

, (149)

The agent seeks to maximize capital income
∫ M

0

RjKjdj = XK , (150)

for given utility level K(.); Kj is capital supply to sector j, Rj the capital rental rate in sector j and
XK total capital income. The form of the aggregate capital index (149) implies that there exists an
aggregate capital rental rate index RK (.), whose expression will be determined later. Thus equation
(150) can be rewritten as follows: ∫ M

0

RjKjdj = RKK. (151)

Writing down the Lagrangian and denoting by µK the Lagrangian multiplier to the constraint, the
optimal decision for capital supply to sector j reads as follows:

(
ϑj

K

)− 1
εK (

Kj
) 1

εK K− 1
εK = µKRj . (152)

Left-multiplying both sides of eq. (152) by Kj , summing over the M sectors and using eqs. (149)
and (151) implies that µK = 1

RK . Plugging the expression for the Lagrangian multiplier into (152)
and rearranging terms leads to optimal labor supply Kj to sector j:

Kj = ϑj
K

(
Rj

RK

)εK

K. (153)

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital, Kj , according to a constant returns to scale technology described by a CES production
function. The representative firm faces two cost components: a capital rental cost equal to Rj , and
a wage rate equal to W j , respectively. Since each sector is assumed to be perfectly competitive, the
representative firm chooses capital and labor by taking prices as given:

max
Lj ,Kj

Πj = max
Lj ,Kj

{
P jY j −W jLj −RjKj

}
. (154)

First-order conditions lead to the demand for labor and capital which can be rewritten as follows:

sj
L

P jY j

Lj
= W j , (155a)

(
1− sj

L

) P jY j

Kj
= Rj . (155b)

Inserting labor demand (155a) into capital supply to sector j (153) and solving leads the share
of sector j in aggregate labor:

Kj

K
=

(
ϑj

K

) 1
εK+1




(
1− sj

L

)
P jY j

∫ M

0

(
1− sj

L

)
P jY jdj




εK

εK+1

, (156)

where we combined (151) and (155a) to rewrite the aggregate capital rental rate as follows:

RK =

∫ M

0

(
1− sj

L

)
P jY jdj

K
. (157)

We denote by βK,j the ratio of capital income in sector j to overall capital income:

βK,j =

(
1− sj

L

)
P jY j

∑M
j=1

(
1− sj

L

)
P jY j

. (158)

Using (158), the share of capital in sector j (156) can be rewritten as follows:

Kj

K
=

(
ϑj

K

) 1
1+εK (

βK,j
) εK

εK+1 . (159)
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Introducing a time subscript and taking logarithm, eq. (159) reads as:

ln
(

Kj

K

)

t

=
1

εK + 1
ln ϑj

K +
εK

εK + 1
ln βK,j

t . (160)

We denote the rate of growth of the variable with a hat. We totally differentiate (160) and
include country fixed effects captured by country dummies, gi, sector dummies, gj , and common
macroeconomic shocks captured by year dummies, gt:

K̂j
it − K̂it = gi + gt + gj + γK

i β̂K,j
it + νK,j

it , (161)

We use panel data to estimate (161). We run the regression of the percentage change in the share
of capital in sector j on the percentage change in the capital income share of sector j relative to the
aggregate economy. Intuitively, when the demand for capital rises in sector j, βK,j increases which
provides incentives for households to shift capital toward this sector. To calculate βK,j

it for sector j,
in country i at time t, we proceed as follows:

K̂it =
M∑

j=1

βK,j
i,t−1K̂

j
i,t. (162)

and

βK,j
it =

(
1− sj

L,i

)
P j

itY
j
it

∑M
j=1

(
1− sj

L,i

)
P j

itY
j
it

, (163)

where
(
1− sj

L,i

)
is the capital income share in sector j in country i which is averaged over 1970-2017.

Y j is value added and P j is the value added deflator.
Data: Source and Construction. We take capital stock series from the EU KLEMS [2011]

and [2017] databases which provide disaggregated capital stock data (at constant prices) at the
1-digit ISIC-rev.3 level for up to 11 industries, but only for thirteen countries of our sample which
include Australia, Canada, Denmark, Finland, Italy, Spain, the United Kingdom, the Netherlands
over the entire period 1970-2017, plus Austria (1976-2017), France (1978-2017), Japan (1973-2006),
Korea (1970-2014). In efforts to have time series of a reasonable length, we exclude Belgium (1995-
2017) and Sweden (1993-2017) because the period is too short while Ireland, and Norway do not
provide disaggregated capital stock series. To construct K̂j

it and β̂K,j
it we combine raw data on

capital stock Kj , nominal value added P jY j and labor compensation W jLj to calculate 1− sj
L.

Degree of capital mobility across sectors. We use panel data to estimate (162) where
γK

i = εK,i

εK,i+1 and βK,j
it is given by (158). Table 11 reports empirical estimates that are consistent

with εK > 0. We average positive values for εK and exclude negative values as they are inconsistent.
We find an average value for εK of 0.15 which suggests high capital mobility costs across sectors in
OECD countries.

J.4 Estimates of εS and εU : Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each producing
a different good. Along the lines of Horvath [2000], the aggregate skilled labor index is assumed to
take the form:

S =

[∫ M

0

(
ϑj

S

)− 1
εS (

Lj
) εS+1

εS dj

] εS

εS+1

, (164)

The agent seeks to maximize her labor income
∫ M

0

WS,jSjdj = XS , (165)

for given utility loss; Sj is the supply of skilled labor to sector j, WS,j the wage rate paid in exchange
for each hour of skilled labor services in sector j and XS stands for total skilled labor income. The
form of the aggregate skilled labor index (164) implies that there exists an aggregate wage index
WS (.), whose expression will be determined later. Thus equation (165) can be rewritten as follows:

∫ M

0

WS,jSjdj = WSS. (166)

Writing down the Lagrangian and denoting by µS the Lagrangian multiplier to the constraint, the
first-order reads as: (

ϑj
S

)− 1
εS (

Sj
) 1

εS S−
1

εS = µSWS,j . (167)
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Table 11: Elasticity of Capital Supply across Sectors (εK)

Country Elasticity of capital supply
across Sectors (εK)

AUS 0.065
(1.10)

AUT 0.178c

(1.71)

BEL 0.229c

(1.69)

CAN 0.107b

(2.50)

DEU 0.041
(0.62)

DNK −0.145a

(−3.88)

ESP −0.045
(−1.01)

FIN 0.101b

(2.38)

FRA 0.090
(1.07)

GBR 0.087c

(1.72)

IRL −0.156a

(−9.54)

ITA −0.028
(−0.54)

JPN 0.597a

(4.59)

NLD 0.034
(0.62)

NOR −0.007
(−0.32)

SWE −0.038
(−0.59)

USA 0.128
(1.43)

Countries 17
Observations 699
Data coverage 1970-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported in
parentheses.
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Left-multiplying both sides of eq. (167) by Sj , summing over the M sectors and using eqs. (164)
and (166) implies that µS = 1

W S . Plugging the expression for the Lagrangian multiplier into (167)
and rearranging terms leads to optimal labor supply Sj to sector j:

Sj = ϑj
S

(
WS,j

WS

)εS

S. (168)

We assume that within each sector, there is a large number of identical firms which produces
Y j by using labor Lj and capital Kj according to constant returns to scale in production. Labor is
made up of skilled Sj and unskilled U j workers. The representative firm faces two cost components:
a capital rental cost equal to Rj , a skilled labor wage rate WS,j , and an unskilled labor wage rate
WU,j . Since each sector is assumed to be perfectly competitive, the representative firm chooses
capital and labor by taking prices as given:

max
Kj ,Sj ,Uj

Πj = max
Kj ,Sj ,Uj

{
P jY j −WS,jSj −WU,jU j −RjKj

}
. (169)

Since the production function displays constant returns to scale and using the fact that factors
are paid their marginal product, the demand for labor and capital are: ∂Y j/∂Lj = W j/P j and
∂Y j/∂Kj = R/P j , respectively; denoting the LIS in sector j by sj

L, the demand for capital and
labor can be rewritten as follows:

sj
LP j ∂Y j

∂Lj

∂Lj

∂Sj
= WS,j , (170a)

sj
LP j ∂Y j

∂Lj

∂Lj

∂U j
= WU,j , (170b)

(
1− sj

L

) P jY j

Kj
= Rj , (170c)

where sj
LP j ∂Y j

∂Lj = W j . By inserting the latter equation into eqs. (170a)-(170b), multiplying both
sides of eq. (170a) by Sj/Lj and both sides of eq. (170b) by U j/Lj leads to:

∂Lj

∂Sj

Sj

Lj
= sj

S =
WS,jSj

W jSj
, (171a)

∂Lj

∂U j

U j

Lj
= 1− sj

S =
WU,jU j

W jLj
. (171b)

Inserting labor demand for skilled labor, i.e., using (171a) to replace WS,j with sj
S

W jLj

Sj , into
skilled labor supply to sector j (168) and solving leads to the share of sector j in aggregate skilled
labor:

Sj

S
= ϑj

S

(
S

Sj

sj
Ssj

LP jY j

∫ M

0
sj

Ssj
LP jY jdj

)εS

,

Sj

S
=

(
ϑj

S

) 1
εS+1

(
sj

Ssj
LP jY j

∫ M

0
sj

Ssj
LP jY jdj

) εS

εS+1

, (172)

where we combined (166) and used the fact that WSS =
∫ M

0
WS,jSjdj =

∫ M

0
sj

Ssj
LP jY jdj to rewrite

the aggregate skilled labor wage rate as follows:

WS =

∫ M

0
sj

Ssj
LP jY jdj

S
. (173)

We denote by βS,j the fraction of skilled labor income in sector j relative to aggregate skilled labor
income:

βS,j =
sj

Ssj
LP jY j

∑M
j=1 sj

Ssj
LP jY j

. (174)

Using (174), the skilled hours worked share in sector j (172) can be rewritten as follows:

Sj

S
=

(
ϑj

S

) 1
εS+1 (

βS,j
) εS

εS+1 . (175)

Introducing a time subscript and taking logarithm, eq. (175) reads as:

ln
(

Sj

S

)

t

=
1

εS + 1
ln ϑj

S +
εS

εS + 1
ln βS,j

t . (176)
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Totally differentiating (176) and denoting the rate of change of the variable with a hat, we find that
the change in skilled hours worked in sector j caused by labor reallocation across sectors is driven
by the change in the skilled labor income share in sector j:

Ŝj
t − Ŝt = γS β̂S,j

t , (177)

where γS = εS

εS+1
.

We use panel data to estimate (177). Including country fixed effects captured by country
dummies, hi, common macroeconomic shocks by year dummies, ht, sector dummies, hj , (177) can
be rewritten as follows:

Ŝj
it − Ŝit = hi + hj + ht + γS

i β̂S,j
it + νS,j

it , (178)

where γS
i = εS

i

εS
i +1

and βS,j
it is given by (174); j indexes the sector, i the country, and t indexes time

(i.e., years). The LHS and RHS variables are defined as follows:

Ŝit =
M∑

j=1

βS,j
i,t−1Ŝ

j
i,t. (179)

and

βS,j
it =

sj
S,is

j
L,iP

j
itY

j
it∑M

j=1 sj
S,is

j
L,iP

j
itY

j
it

, (180)

where sj
S,i is the share of skilled labor compensation in labor compensation in sector j, in country

i averaged over 1970-2017, sj
L,i is the labor income share in sector j in country i which is averaged

over 1970-2017. When exploring empirically (178), the coefficient γS is alternatively assumed to be
identical, i.e., γS

i = γS , or to vary across countries. The LHS term of (178), i.e., Ŝj
it − Ŝit, gives

the percentage change in skilled hours worked in sector j driven by the pure reallocation of skilled
labor across sectors.

The same logic applies to derive the empirical strategy for estimating the degree of labor mobility
of unskilled labor. Including country fixed effects and year dummies:

Û j
it − Ûit = ni + nj + nt + γU

i β̂U,j
it + νU,j

it , (181)

where γU
i = εU

i

εU
i +1

and βU,j
it is given by (183); j indexes the sector, i the country, and t indexes time

(i.e., years). The LHS and RHS variables are defined as follows:

Ûit =
M∑

j=1

βU,j
i,t−1Û

j
i,t. (182)

and

βU,j
it =

sj
U,is

j
L,iP

j
itY

j
it∑M

j=1 sj
U,is

j
L,iP

j
itY

j
it

, (183)

where sj
U,i is the share of unskilled labor compensation in labor compensation in sector j, in country

i averaged over 1970-2017. When exploring empirically (181), the coefficient γU is alternatively
assumed to be identical, i.e., γU

i = γU , or to vary across countries. The LHS term of (181), i.e.,
Û j

it − Ûit, gives the percentage change in unskilled hours worked in sector j driven by the pure
reallocation of unskilled labor across sectors.

Source and Coverage. Time series about high- (denoted by the superscript S), medium-
(denoted by the superscript M), and low-skilled labor (denoted by the superscript U) are taken from
EU KLEMS Database, Timmer et al. [2008]. Data are available for all countries except Norway.
The baseline period is running from 1970 to 2017 but is different and shorter for several countries
as indicated in braces for the corresponding countries: Austria (1980-2017), Belgium (1980-2017),
Canada (1970-2005), Denmark (1980-2017), Finland (1970-2017), Ireland (2008-2017), Italy (1970-
2017), Japan (1973-2017), the Netherlands (1979-2017), Spain (1980-2017), the United Kingdom
(1970-2017), and the United States (1970-2005). We calculate the share of labor compensation in
industry j for skilled labor as the ratio of the sum of labor compensation of high- and medium-skilled
labor to total labor compensation in sector j, i.e., sj

S = W S,jSj+W M,jMj

W jLj .
Estimates. We average consistent positive values which are statistically significant. We find

εS = 0.63 and εU = 1.13. In accordance with the evidence documented by Kambourov and
Manovskii [2009] which reveals that industry (and occupational) mobility declines with education,
our empirical findings reveal that the elasticity of labor supply across sectors is twice larger for
unskilled than skilled workers.
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Table 12: Elasticity of Labor Supply across Sectors for Skilled Workers (εS) and for Un-
skilled Workers (εU )

Country Skilled Workers (εS) Unskilled Workers (εU )

AUT 0.975b

(2.55)
1.783
(1.52)

BEL 0.202c

(1.82)
0.551c

(1.86)

CAN 0.386a

(3.65)
0.249c

(1.83)

DNK 0.122
(1.47)

0.250
(1.57)

ESP 0.344a

(2.98)
0.928b

(2.52)

FIN 0.337a

(4.39)
0.506a

(3.38)

GBR 0.553a

(4.33)
0.655a

(2.95)

ITA 0.821a

(3.59)
1.440b

(2.28)

JPN 0.627a

(3.82)
0.892a

(2.57)

NLD 0.065
(0.89)

0.302c

(1.73)

USA 2.546b

(2.11)
4.825
(0.95)

Countries 11 11
Observations 438 438
Data coverage 1970-2017 1970-2017
Country fixed effects yes yes
Time dummies yes yes
Time trend no no

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported in
parentheses.

J.5 Elasticity φ of Substitution in Consumption between Traded and
Non-Traded goods : Empirical Strategy and Estimates

Derivation of the testable equation. To estimate the elasticity of substitution in consumption,
φ, between traded and non-traded goods, we derive a testable equation by rearranging the optimal

rule for optimal demand for non-traded goods, i.e., CN
t = (1− ϕ)

(
P N

t

PC,t

)−φ

Ct, since time series for
consumption in non-traded goods are too short. More specifically, we derive an expression for the
non-tradable content of consumption expenditure by using the market clearing condition for non-
tradables and construct time series for 1−αC,t by using time series for non-traded value added and
demand components of GDP while keeping the non-tradable content of investment and government
expenditure fixed, in line with the evidence documented by Bems [2008] for the share of non-traded
goods in investment and building on our own evidence for the non-tradable content of government
spending. After verifying that the (logged) share of non-tradables and the (logged) ratio of non-
traded prices to the consumption price index are both integrated of order one and cointegrated,
we run the regression by adding country and time fixed effects by using a FMOLS estimator. We
consider two variants, one including a country-specific time trend and one without the time trend.
We provide more details below.

Multiplying both sides of CN
t = (1− ϕ)

(
P N

t

PC,t

)−φ

Ct by PN/PC leads to the non-tradable
content of consumption expenditure:

1− αC,t =
PN

t CN
t

PC,tCt
= (1− ϕ)

(
PN

t

PC,t

)1−φ

. (184)

Because time series for non-traded consumption display a short time horizon for most of the countries
of our sample while data for sectoral value added and GDP demand components are available for all
of the countries of our sample over the period running from 1970 to 2017, we construct time series
for the share of non-tradables by using the market clearing condition for non-tradables:

PN
t CN

t

PC,tCt
=

1
ωC,t

[
PN

t Y N
t

Yt
− (1− αJ) ωJ,t − ωGN ωG,t

]
. (185)

Since the time horizon is too short at a disaggregated level (for Ij and Gj) for most of the countries,
we draw on the evidence documented by Bems [2008] which reveals that 1−αJ = P N JN

P JJ
is constant
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Table 13: Elasticity of Substitution between Tradables and Non-Tradables (φ)

eq. (186)

Whole Sample 0.347a

(6.03)

Countries 17
Observations 810
Data coverage 1970-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance
at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation
consistent t-statistics are reported
in parentheses.

over time; we further assume that P N GN

G = ωGN is constant as well in line with our evidence. We
thus recover time series for the share of non-tradables by using time series for the non-traded value
added at current prices, PN

t Y N
t , GDP at current prices, Yt, consumption expenditure, gross fixed

capital formation, It, government spending, Gt while keeping the non-tradable content of investment
and government expenditure, 1− αJ , and ωGN , fixed.

Empirical strategy. Once we have constructed time series for 1 − αC,t = P N
t CN

t

PC,tCt
by using

(184), we take the logarithm of both sides of (184) and run the regression of the logged share of
non-tradables on the logged ratio of non-traded prices to the consumption price index:

ln (1− αC,it) = fi + ft + αi .t + (1− φ) ln
(
PN/PC

)
it

+ µit, (186)

where fi captures the country fixed effects, ft are time dummies, and µit are the i.i.d. error terms.
Because parameter ϕ in (184) may display a trend over time, we add country-specific trends, as
captured by αit. It is worth mentioning that PN is the value added deflator of non-tradables.

Data source and construction. Data for non-traded value added at current prices, PN
t Y N

t

and GDP at current prices, Yt, are taken from EU KLEMS ([2011], [2017]) and OECD STAN
([2011], [2017]) databases (data coverage: 1970-2017 for all countries, except Japan: 1974-2017). To
construct time series for consumption, investment and government expenditure as a percentage of
nominal GDP, i.e., ωC,t, ωJ,t and ωG,t, respectively, we use data at current prices obtained from the
OECD Economic Outlook [2017] Database (data coverage: 1970-2017). Sources, construction and
data coverage of time series for the share of non-tradables in investment (1−αJ) and in government
spending (ωGN ) are described in depth above; PN is the value added deflator of non-tradables.
Data are taken from EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases (data
coverage: 1970-2017 for all countries, except for Japan: 1974-2017). Finally, data for the consumer
price index PC,t are obtained from the OECD Prices and Purchasing Power Parities [2017] database
(data coverage: 1970-2017).

Results. Since both sides of (186) display trends, we ran unit root and then cointegration tests.
Having verified that these two assumptions are empirically supported, we estimate the cointegrating
relationships by using the fully modified OLS (FMOLS) procedure for cointegrated panel proposed
by Pedroni [2000], [2001]. FMOLS estimate of (186) is reported in Table 13. We find a value for
the elasticity of substitution between traded and non-traded goods in consumption of 0.35 which is
close to the estimated value documented by Stockman and Tesar [1995].

J.6 Estimates of Elasticity of Substitution between Capital and Labor in
Production, σj: Empirical strategy

To estimate the elasticity of substitution between capital and labor, σj , we draw on Antràs [2004].
We let labor- and capital-augmenting technological change grow at a constant rate:

Aj
t = Aj

0e
ajt, (187a)

Bj
t = Bj

0e
bjt, (187b)

where aj and bj denote the constant growth rate of labor- and capital-augmenting technical progress
and Aj

0 and Bj
0 are initial levels of technology. Inserting first (187a) and (187b) into the demand
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for labor and capital, taking logarithm and rearranging gives:

ln(Y j
t /Lj

t ) = α1 +
(
1− σj

)
ajt + σj ln(W j

t /P j
t ), (188a)

ln(Y j
t /Kj

t ) = α2 +
(
1− σj

)
bjt + σj ln(Rt/P j

t ), (188b)

where α1 =
[
(1− σj) ln Aj

0 − σj ln γj
]

and α2 =
[
(1− σj) ln Bj

0 − σj ln(1− γj)
]

are constants.
Above equations describe firms’ demand for labor and capital respectively.

We estimate the elasticity of substitution between capital and labor in sector j = H, N from
first-order conditions (188a)-(188b) in panel format on annual data. Adding an error term and
controlling for country fixed effects, we explore empirically the following equations:

ln(Y j
it/Lj

it) = α1i + λ1it + σj
i ln(W j

it/P j
it) + uit, (189a)

ln(Y j
it/Kj

it) = α2i + λ2it + σj
i ln(Rit/P j

it) + vit, (189b)

where i and t index country and time and uit and vit are i.i.d. error terms. Country fixed effects
are represented by dummies α1i and α2i, and country-specific trends are captured by λ1i and λ2i.
Since all variables display unit root process, we estimate cointegrating relationships by using the
fully modified OLS (FMOLS) procedure for cointegrated panel proposed by Pedroni [2000].

Estimation of (189a) and (193b) requires data for each sector j = H,N on sectoral value added
at constant prices Y j , sectoral hours worked Lj , sectoral capital stock Kj , sectoral value added
deflator P j , sectoral wage rate W j and capital rental cost R. Data for sectoral value added Y H

and Y N , hours worked LH and LN , value added price deflators PH and PN , and, nominal wages
WH and WN are taken form the EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017])
databases. To construct the national stock of capital K, we use the perpetual inventory method with
a fixed depreciation rate taken from Table 6 and the time series of constant prices investment from the
OECD Economic Outlook [2017] Database. Next, following Garofalo and Yamarik [2002], the capital
stock is allocated to traded and non-traded industries by using sectoral output shares. Finally,
we measure the aggregate rental price of capital R as the ratio of capital income to capital stock.
Capital income is derived as nominal value added minus labor compensation. For all aforementioned
variables, the sample includes the 17 OECD countries over the period 1970-2017 (except for Japan:
1974-2017).

Employing Monte Carlo experiments, León-Ledesma et al. [2010] compare different approaches
for estimating the elasticity of substitution between capital and labor (single equation based on
FOCs, system, linear, non-linear and normalization). Their evidence suggests that estimates of
both the elasticity of substitution and technical change are close to their true values when the FOC
with respect to labor is used. While we take the demand for labor as our baseline model (i.e.
eq. (189a)), Table 14 provides FMOLS estimates of σj for the demand of both labor and capital.
All estimates are positive and statistically significant exception σH for Ireland. We replace the
inconsistent estimate for σj obtained from labor demand with that obtained from the demand of
capital. Columns 17-18 of Table 7 report estimates for σH and σN .

J.7 Estimates of Elasticity of Substitution between Skilled and Unskilled
Labor in Production, σj

L: Empirical Strategy

To estimate the elasticity of substitution σj
L between skilled labor (denoted by Sj

it), and
unskilled labor (denoted by U j

it), we adapt the approach proposed by Antràs [2004]. We
let skilled labor- and unskilled labor-augmenting technological change grow at a constant
rate:

Aj
S,t = Aj

S,0e
aj

St, (190a)

Aj
U,t = Aj

U,0e
aj

U t, (190b)

where aj
S and aj

U denote the constant growth rate of skilled-labor- and unskilled-labor-
augmenting technical progress and Aj

S,0 and AU,0 are initial levels of technology.
The demand for skilled and unskilled labor read:

∂Lj
t

∂Sj
t

= γj
L

(
Aj

S,t

Aj
t

)σ
j
L
−1

σ
j
L (

Sj
)− 1

σ
j
L

(
Lj

)− 1

σ
j
L =

WS,j
t

Wt
, (191a)

∂Lj
t

∂U j
t

= γj
L

(
Aj

U,t

Aj
t

)σ
j
L
−1

σ
j
L (

U j
)− 1

σ
j
L

(
Lj

)− 1

σ
j
L =

WU,j
t

Wt
, (191b)
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Table 14: FMOLS Estimates of the Sectoral Elasticity of Substitution between Capital and
Labor (σj)

1

1
Tradables (σH) Non-Tradables (σN )

Dependent var.
1

1
ln(Y H/KH) ln(Y H/LH) ln(Y N/KN ) ln(Y N/LN )

Explanatory var. ln(R/P H) ln(W H/P H) ln(R/P N ) ln(W N/P N )
AUS 0.214c

(1.89)
0.516a

(7.29)
0.499a

(3.78)
0.825a

(12.30)

AUT 0.526b

(2.25)
0.954a

(10.70)
0.206
(1.39)

1.213a

(15.03)

BEL −0.078
(−0.52)

0.748a

(11.77)
0.039
(0.49)

1.145a

(11.87)

CAN 0.159
(1.11)

0.888a

(4.83)
0.691a

(6.28)
0.950a

(14.10)

DEU 0.175c

(1.79)
0.720a

(8.64)
0.549a

(9.18)
1.088a

(17.95)

DNK −0.005
(−0.04)

0.555a

(5.82)
0.457a

(6.41)
0.938a

(9.30)

ESP 0.342b

(2.49)
0.979a

(10.59)
0.179c

(1.70)
0.535a

(3.11)

FIN 0.222
(1.26)

0.730a

(3.29)
0.374a

(4.98)
0.837a

(12.21)

FRA 0.215
(1.26)

0.867a

(8.54)
0.119a

(3.21)
1.329a

(6.96)

GBR 0.055
(0.28)

0.611a

(6.96)
0.097
(0.95)

0.580a

(4.77)

IRL 0.652
(13.40)

−0.154
(−0.91)

0.557a

(4.27)
0.819a

(3.94)

ITA 0.440b

(2.30)
0.934a

(13.38)
0.321
(1.50)

0.714a

(6.37)

JPN 0.765a

(10.17)
0.948a

(5.92)
0.553a

(8.61)
0.400b

(2.23)

NLD 0.498a

(4.26)
1.136a

(9.86)
0.230a

(8.29)
0.831a

(7.08)

NOR 0.399a

(3.15)
0.938a

(4.92)
0.547a

(8.87)
0.723a

(7.80)

SWE 0.260
(0.92)

0.643a

(12.91)
0.033
(0.34)

0.801a

(5.89)

USA 0.166
(1.32)

0.923a

(5.61)
0.324a

(5.72)
0.970a

(5.91)

Whole sample 0.294a

(11.47)
0.761a

(31.56)
0.340a

(18.42)
0.865a

(35.61)

Countries 17 17 17 17
Observations 810 810 810 810
Data coverage 1970-2017 1970-2017 1970-2017 1970-2017
Fixed effects yes yes yes yes
Time dummies yes yes yes yes
Time trend yes yes yes yes

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Heteroskedas-
ticity and autocorrelation consistent t-statistics are reported in parentheses.
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Table 15: FMOLS Estimates of the Sectoral Elasticity of Substitution between Skilled
Labor and Unskilled Labor (σj

L)

Country Tradables (σH
L ) Non-Tradables (σN

L )

AUT 0.249b

(2.36)
0.293
(1.36)

BEL 0.901a

(3.24)
0.576b

(2.36)

CAN 1.074a

(17.77)
0.783a

(14.54)

DNK 1.531a

(19.87)
0.599a

(23.15)

ESP 0.986a

(23.86)
0.702a

(18.94)

FIN 0.860a

(11.03)
0.770a

(13.66)

GBR n.a. 0.695a

(2.93)

ITA 0.354a

(5.21)
0.359a

(3.76)

JPN 0.631a

(9.53)
0.645a

(27.17)

NLD 0.789a

(8.08)
1.281a

(11.14)

USA 1.110a

(11.16)
0.914a

(14.18)

Countries 11 11
Observations 449 449
Data coverage 1970-2017 1970-2017
Country fixed effects yes yes
Time dummies yes yes
Time trend yes yes

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported in
parentheses.

Inserting first (190a) and (190b) into the demand for labor and capital, taking logarithm
and rearranging gives:

ln
(

Sj

Lj

)
= σj

L ln γj
S +

(
σj

L − 1
)(

aj
S − aj

)
t− σj

L ln

(
W j

S

W j

)
, (192a)

ln
(

U j

Lj

)
= σj

L ln
(
1− γj

S

)
+

(
σj

L − 1
)(

aj
U − aj

)
t− σj

L ln

(
W j

U

W j

)
. (192b)

Adding an error term, controlling for country fixed effects and year effects, and introducing
country-specific time trend to capture the trend caused by skill-biased technological change,
we explore empirically the following equations:

ln(Sj
it/Lj

it) = ei + et + fit + σj
L,i ln(WS,j

it /W j
it) + uit, (193a)

ln(U j
it/Lj

it) = gi + gt + hit + σj
L,i ln(WU,j

it /W j
it) + vit, (193b)

where i and t index country and time and uit and vit are i.i.d. error terms. Country
fixed effects are represented by dummies ei and gi, year effects by et and gt, and country-
specific trends are captured by fi and hi. Since all variables display unit root process, we
estimate cointegrating relationships by using the fully modified OLS (FMOLS) procedure
for cointegrated panel proposed by Pedroni [2000]. Table 15 provides FMOLS estimates of
σj

L. All estimates are positive and statistically significant exception σH for Denmark for
the traded sector and for Great Britain for both sectors. We replace inconsistent estimates
with those when we ignore time dummies in the regression for Denmark for the traded
traded and for Great Britain for the non-traded sector only.

J.8 Forecast Error Variance Decomposition

Definition of the FEVD. The IRF is just the VMA representation. The structural form
of the VAR system is A(L)Yt = Bεt. Setting C(L) = A(L)−1B, leads to Yt = C(L)εt.
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The forecast error of a variable at time t is the change in the variable that couldn’t have
been forecast between t − 1 and t. This is due to the realization of the structural shocks
in the system, εt. We can compute the forecast error over many different horizons, h. The
forecast error variance at horizon h = 0 for one variable xt of the 2 variable VAR model is:

EtXt −Et−1xt = dxt = C1,1(0)ε1,t + C1,2(0)ε2,t. (194)

The forecast error variances are just the squares of the forecast errors (since the mean
forecast error is zero). Using the fact that V ar(axt) = a2V ar(xt), we have:

V ar(dxt) = (C1,1(0))2 V ar(ε1,t) + (C1,2(0))2 V ar(ε2,t) + 2C1,1(0)C1,2(0)Cov(ε1,tε2,t),
= (C1,1(0))2 V ar(ε1,t) + (C1,2(0))2 V ar(ε2,t),

Ω1 = (C1,1(0))2 + (C1,2(0))2 , (195)

where we used the fact that the the shocks have unit variance V ar(ε1,t) = 1 and shocks are
uncorrelated so that the covariance of structural shocks is zero.

The fraction of the forecast error variance of variable x due to shock k at horizon h,
denoted φk,h, is then the above divided by the total forecast error variance:

φk(h) =
∑

h(Ck(h))2V ar(εk,t)∑
k

∑
h(Ck(h))2V ar(εk,t)

. (196)

Therefore, in our case, φk,h is the share of the deviation of utilization-adjusted-TFP caused
by an symmetric technology shock. As shown below, the deviation of utilization-adjusted
TFP collapses to η.

Mapping between η and conditional variance share of symmetric technology
shocks. In the model. We define the variance V ar(xt) = E [xt −E(xt)]

2 or V ar
1
2 = σx =

E [xt −E(xt)]. In the model, we have:

ZA
t =

(
ZA,S

t

)η (
ZA,D

t

)1−η
. (197)

The expected value is the mean of the variable which collapses to its steady-state. We
denote the steady-state (i.e., the mean) value by dropping the time index. Log-linearizing
(197) and subtracting the mean leads to:

ẐA
t − ẐA = η

(
ẐA,S

t − ẐA,S
)

+ (1− η)
(
ẐA,D

t − ẐA,D
)

. (198)

Dividing both sides by ẐA
t − ẐA, denoting the standard deviation of aggregate technology

shocks by σZ , the standard deviation of symmetric technology shocks by σZ,S , and the
standard deviation of asymmetric technology shocks by σZ,D, we get:

1 = η

(
ẐA,S

t − ẐA,S
)

(
ẐA

t − ẐA
) + (1− η)

(
ẐA,D

t − ẐA,D
)

(
ẐA

t − ẐA
) ,

1 =


η1/2

(
ẐA,S

t − ẐA,S
)

(
ẐA

t − ẐA
)




2 (
ẐA

t − ẐA
)

(
ẐA,S

t − ẐA,S
) +


(1− η)1/2

(
ẐA,D

t − ẐA,D
)

(
ẐA

t − ẐA
)




2 (
ẐA

t − ẐA
)

(
ẐA,S

t − ẐA,S
) ,

1 =
[
η1/2 σZ,S

σZ

]2

+
[
(1− η)1/2 σZ,D

σZ

]2

,

1 = η + (1− η) , (199)

where the last line is obtained by assuming that the persistence of technology shocks does
not vary across technology shocks. More specifically aggregate technology shocks, symmet-
ric and asymmetric technology shocks across sectors are governed by the following dynamic
processes

ẐA
t − ẐA =

[
e−ξZt − (

1− zA
)
e−χZt

]
, (200a)

ẐA,S
t − ẐA,S =

[
e−ξZ,St − (

1− zA,S
)
e−χZ,St

]
, (200b)

ẐA,D
t − ẐA,D =

[
e−ξZ,Dt − (

1− zA,D
)
e−χZ,Dt

]
. (200c)
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Assuming that the magnitude of the shock (on impact) as captured by zA,S ' zA and
zA,D ' zA and its persistence as captured by ξZ,S ' ξZ , χZ,S ' χZ , and ξZ,D ' ξZ , ξZ,D '
ξZ , χZ,D ' χZ , are similar whether technology improvements are symmetric or asymmetric
across sectors, then the dynamic processes of symmetric and asymmetric technology shocks
are similar to the dynamic process of aggregate TFP shock

(
ẐA,S

t − ẐA,S
)

(
ẐA

t − ẐA
) ' 1,

(
ẐA,D

t − ẐA,D
)

(
ẐA

t − ẐA
) ' 1. (201)

Under the assumption that the underlying dynamic process of technology shocks are similar
in first approximation, then η collapses to the share of the variance of aggregate technology
improvements on impact (i.e., at time t = 0) driven by shocks to symmetric technology
shocks across sectors as measured by φZ,S(0)

φZ,S(0) =
(CZ,S(0))2V ar(εZ,S(0))

(CZ,S(0))2V ar(εZ,S(0)) + (CZ,D(0))2V ar(εZ,D(0))
,

=
(CS,0)2

(CS,0)2 + (CZ,D(0))2

=
(
η1/2

)2
= η. (202)

In the data, we have:

VAR
(
εZ
it

)
=

(
η1/2

)2
VAR

(
εZ,S
it

)
+

(
1− η1/2

)2
VAR

(
εZ,D
it

)
. (203)

Or alternatively:

1 = η

(
σZ,S

σZ

)2

+ (1− η)
(

σZ,D

σZ

)2

. (204)

To calibrate our model, we compute the share of technology improvements driven by
asymmetric technological change by using eq. (22) that we repeat for convenience, i.e.,
ẐA(t) = ηẐA

S (t)+(1− η) ẐA
D(t). More specifically, we calculate the share 1−η of asymmet-

ric technology shocks so that response of utilization-adjusted-aggregate-TFP we estimate
empirically following a 1% permanent increase in ZA(t) in the long-run collapses to the
weighted average of its symmetric and asymmetric components ηẐA

S (t) + (1− η) ẐA
D(t)

where ẐA
S (t) and ẐA

D(t) are the responses
Estimated share of the conditional FEV of aggregate TFP growth attributable

to asymmetric technology shocks vs. inferred share. In Fig. 10(a), we contrast two
different measures of the share of aggregate technology improvements driven by asymmetric
technology shocks. A standard method to quantify the share of technology shocks driven
by the shock to one of its component is to conduct a forecast error variance decomposition
(FEVD). We have performed a FEVD for one country of at a time (17 OECD countries)
by estimating the VAR model which includes utilization-adjusted-TFP of tradables relative
to non-tradables, ZH

t /ZN
t , utilization-adjusted-aggregate-TFP, ZA

t , real GDP, YR,t, total
hours worked, Li, the real consumption wage, WC,t. Note that we average the share com-
puted on impact (i.e., at t = 0) and in the long-run (i.e., at t = 10). We show the share of
the variance of aggregate technology improvements driven by asymmetric technology shocks
on the vertical axis of Fig. 10(a). We compare these findings with those that we obtain
when we infer the share of asymmetric technology shocks in driving aggregate technology
improvements by calculating 1−η so that the weighted average of technology improvements
driven by symmetric and asymmetric technology shocks, ηẐA

S (t) + (1− η) ẐA
D(t), collapses

to the endogenous response of ZA(t) to an aggregate technology shock. We have performed
this exercise for one country at a time. Results are shown on the horizontal axis. Overall,
both measures are very close and we find a strong cross country relationship. We number
only four countries out of 17 countries where the difference (between the inferred and the
estimated share) exceeds plus or minus 20% including Austria (+30%), Canada (-23%),
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Figure 10: Share of Variance of Technology Improvements Driven by Asymmetric Techno-
logical Change: Conditional vs. Inferred vs. Unconditional Variance Decomposition. Notes:
In Fig. 10(a), we contrast two different measures of the share of aggregate technology improvements driven by asymmetric technology
shocks. A standard method to quantify the share of technology shocks driven by the shock to one of its component is to conduct a
forecast error variance decomposition (FEVD). We performed a FEVD for each country of our sample (17 OECD countries) and show
results on the vertical axis. We compare these findings with those we obtain by calculating the share of asymmetric technology shocks
so that response of utilization-adjusted-aggregate-TFP collapses to the weighted average of its symmetric and asymmetric components,

1 − η, see eq. (22) that we repeat for convenience, i.e., ẐA(t) = ηẐA
S (t) + (1− η) ẐA

D(t). In Fig. 10(b), we contrast the share of
aggregate technological change driven by asymmetric technology improvements which estimated from conditional shocks to utilization-
adjusted-TFP and we contrast the conditional share of asymmetric technology shocks with the unconditional share we estimate directly
from time series by using eq. (206). Sample: 17 OECD countries, annual data, 1970-2017.

Table 16: The Share of the FEV of Aggregate TFP Growth Attributable to Asymmetric
Technology Shocks: 1970-2017 vs. Sub-Periods

t = 0 t = 10
1970 - 2017 0.252 0.232
1970 - 1992 0.074 0.067
1993 - 2017 0.438 0.410

Notes: FEVD: Forecast Error Variance Decomposition. The number
in columns denotes the fraction of the total forecast error variance of
aggregate TFP growth ZA attributable to identified asymmetric tech-
nology shocks across sectors (ZH/ZN ). We consider a forecast horizon
of 1 and 10 years and compute the FEVs in the five-variable VAR model
which includes ZH/ZN , ZA, YR, L and WC , all in growth rate. Sample:
17 OECD countries, 1970-2017, annual data.

Great Britain (+41%), and the Netherlands (-24%). The cross-country average of the in-
ferred share of asymmetric technology shocks stands at 26% while the cross-country average
of the estimated share of asymmetric technology shocks amounts to 24%.

Estimated share of the conditional FEV of aggregate TFP growth attributable
to asymmetric technology shocks: Whole period vs. sub-periods and whole sam-
ple vs. cross-country analysis. The first row of Table 16 reveals that the conditional
FEV of aggregate TFP growth attributable to asymmetric technology shocks amounts to
25% on impact and stands at 23% in the long-run. Importantly, as shown in the second
and the third row, when we consider two different sub-periods 1970-1992 and 1993-2017,
we find that the conditional FEV of aggregate TFP growth attributable to asymmetric
technology shocks has increased dramatically from 7% to 42.5%. In Table 17, we perform
the same exercise except that we estimate the share of asymmetric technology shocks driv-
ing the FEV of aggregate TFP growth for one country a time. Denmark, Italy and to a
lesser extent Japan display a low share of asymmetric technology shocks. At the opposite,
Austria, Sweden, Norway display a higher share of asymmetric technology shocks.

J.9 Unconditional Variance Decomposition

The deviation of utilization-adjusted-aggregate-TFP relative to the initial steady-state is
a weighted average of the deviation of utilization-adjusted-sectoral-TFP, i.e., ẐA(t) =
νY,HẐH(t) +

(
1− νY,H

)
ẐN (t). This equation can be rearranged so that the productivity
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Table 17: The Share of the FEV of Aggregate TFP Growth Attributable to Asymmetric
Technology Shocks: Cross-Country Analysis

1970 - 2017 1970 - 1992 1993 - 2017
t = 0 t = 10 t = 0 t = 10 t = 0 t = 10

AUS 0.229 0.179 0.020 0.238 0.247 0.194
AUT 0.534 0.501 0.060 0.315 0.454 0.344
BEL 0.050 0.071 0.435 0.173 0.131 0.147
CAN 0.259 0.274 0.255 0.360 0.415 0.356
DEU 0.387 0.291 0.212 0.268 0.220 0.203
DNK 0.098 0.089 0.047 0.070 0.124 0.114
ESP 0.130 0.234 0.274 0.183 0.102 0.129
FIN 0.016 0.074 0.190 0.356 0.028 0.418
FRA 0.059 0.125 0.017 0.216 0.455 0.403
GBR 0.231 0.259 0.206 0.166 0.390 0.423
IRL 0.058 0.045 0.139 0.222 0.282 0.222
ITA 0.000 0.066 0.117 0.264 0.002 0.033
JPN 0.020 0.146 0.097 0.209 0.004 0.393
NLD 0.289 0.224 0.590 0.614 0.230 0.259
NOR 0.814 0.718 0.540 0.350 0.572 0.401
SWE 0.578 0.556 0.128 0.709 0.924 0.833
USA 0.380 0.326 0.735 0.457 0.351 0.402
Panel 0.252 0.232 0.074 0.067 0.438 0.410

Notes: FEVD: Forecast Error Variance Decomposition. The number in columns de-
notes the fraction of the total forecast error variance of aggregate TFP growth ZA

attributable to identified asymmetric technology shocks across sectors (ZH/ZN ). We
consider a forecast horizon of 1 and 10 years and compute the FEVs in the five-
variable VAR model which includes ZH/ZN , ZA, YR, L and WC , all in growth rate.
Sample: 17 OECD countries, 1970-2017, annual data.

growth differential shows up, i.e., ẐA(t) = ẐN (t) + νY,H
(
ẐH(t)− ẐN (t)

)
. When technol-

ogy increases by the same amount across sectors, the second term on the RHS vanishes
which leads to the following equality have ẐA(t) = ẐN (t) = ẐH(t) where utilization-
adjusted-TFP collapses to its symmetric component, i.e., ẐA(t) = ẐA

S (t).
Plugging the latter equality into the sectoral decomposition of aggregate technology

improvement, taking the variance leads to the unconditional variance decomposition of
technological change:

Var
(
ẐA(t)

)
= Var

(
ẐA

S (t)
)

+
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)
+ 2Cov

(
ẐA

S (t), ẐA
D(t)

)
,

Var′
(
ẐA(t)

)
= Var

(
ẐA

S (t)
)

+
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)
,

1 =
Var

(
ẐA

S (t)
)

Var
(
ẐA(t)

) +
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) , (205)

where Var′ is the variance of aggregate technological change adjusted with the covariance,
i.e.,

Var′
(
ẐA(t)

)
= Var

(
ẐA(t)

)
− 2Cov

(
ẐA

S (t), ẐA
D(t)

)
. (206)

Using the fact that Var
(
X̂(t)

)
=

[
X̂(t)− X̂

]2
where X = ZA, ZA

S , Zj , the second term on
the RHS of eq. (205) says that the contribution of the variance of asymmetric technology
shocks to the variance of technological change is increasing in both the value added share
of tradables, νH,H , and the dispersion in technology improvement between the traded and
the non-traded sector

By using time series for utilization-adjusted-TFP of tradables and non-tradables, ZH(t)
and ZN (t), and utilization-adjusted-aggregate-TFP, ZA(t), we can compute the share of the
variance of aggregate technological change (adjusted with the covariance), Var′

(
ẐA(t)

)
,
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driven by the the variance asymmetric technological change, Var
(
ẐH(t)− ẐN (t)

)
:

Unconditional Share of Asym. Tech. Change =
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) , (207)

where νY,H is the value added share of tradables averaged over 1970-2017.
In Fig. 10(b), we plot the share of asymmetric technological change based on an uncondi-

tional decomposition of the variance of the rate of change of utilization-adjusted-aggregate-
TFP (vertical axis) against the share of technology improvements driven by asymmetric
technology shocks based on the FEVD (horizontal axis). We find a high correlation of the
conditional share of asymmetric technology shocks estimated empirically and the uncon-
ditional share of asymmetric technological change. Overall, both measures are very close
and we find a strong cross country relationship. We quantify some significant differences
for seven countries out of 17 countries. More specifically, the difference (between the cal-
culated and the estimated share) exceeds plus or minus 20% for the following countries:
Australia (+26%), Austria (-27%), Canada (+30%), Denmark (+21%), Finland (+27%),
Ireland (+25%), Great Britain (+41%), and Italy (+24%). The cross-country average of the
unconditional share of asymmetric technology shocks stands at 34% while the cross-country
average of the estimated share of asymmetric technology shocks amounts to 24%.

J.10 Calibration to the Data

In Table 9, we show the values we choose to set the dynamics of symmetric and asymmetric
technology shocks. In this subsection, we contrast the dynamics of technology variables
estimated empirically with those computed numerically. The first two rows of Fig. 11 show
responses following a symmetric technology shock. Rows 3-4 show responses following an
asymmetric technology shock. We attribute a value of 0.6 to the share of symmetric technol-
ogy shocks and generate the dynamics of technology variables for an aggregate technology
improvement which is a combination of symmetric and asymmetric technology shocks, as
shown in the last two rows. While the blue line displays responses we estimate empirically,
black lines with squares plots theoretical responses we generate by assuming that labor-
and capital-augmenting technological change is governed by dynamic equation (45a)-(45b)
while the log-linearized version of the technology frontier allows us to recover the law of
motion of utilization-adjusted-TFP. The first column shows that the model reproduces well
the adjustment of technology improvements in the traded and the non-traded sector.

The second column of Fig. 11 plots empirical responses of the capital utilization rate
for the traded and the non-traded sector shown in blue lines. Black lines with squares
plots theoretical responses for uK,H

t and uK,N
t . The confidence bounds indicate that none

of the responses are statistically significant, except for uK,H(t) after an asymmetric tech-
nology shock.19 Inspection of the second column reveals that our model reproduces well the
dynamics of the capital utilization rate. First, as shown in the first two rows, the capital
utilization rates increase slightly following a symmetric technology shock (but the responses
are not statistically significant) because technological change is biased toward capital which
increases the return on capital and thus rental rate. By contrast, an asymmetric technology
shock leads to a dramatic fall in uK,H(t) because technological change is strongly biased
toward labor in the traded sector which drives down the return on capital. As shown in Fig.
11(q), our model reproduces well the adynamic adjustment of the capital utilization rate
for non-tradables while Fig. 11(n) indicates that the model tends to somewhat overstate
the response of uK,H , especially in the short-term.

The last column of Fig. 11 plots empirical responses of FBTC in the traded and the
non-traded sector. As mentioned above, symmetric technology shocks are biased toward
capital while asymmetric technology shocks are biased toward labor. As shown in the
last two rows, our model reproduces well the dynamics of FBTC following an aggregate
technology improvement.

19The reason is that there exists a wide cross-country dispersion in the movement of the capital utilization
rates across countries in terms of both direction and magnitude.
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Fig. 12 shows utilization-adjusted-TFP for tradables and non-tradables, utilization-
adjusted-FBTC for tradables and non-tradables, and SBTC for tradables and non-tradables
when we differentiate the labor effects of a permanent technology shock across workers’
skills. Across all variables, the model (shown in black lines with squares) reproduces well
the adjustment of technology variables we estimate empirically (blue lines).

K More Numerical Results

For reasons of space, we relegate to the online appendix a number of numerical results we
refer to in the main text. These results include the effects of symmetric and asymmetric
technology shocks across restricted variants of the baseline model.

K.1 Impact Effects across Restricted Versions of the Baseline Model:
Symmetric vs. Asymmetric Technology Shocks

For reasons of space, in the main text, we restrict the discussion to the effects of symmetric
and asymmetric technology shocks in the baseline model. In this section, we discuss the ef-
fects of symmetric and asymmetric technology shocks by considering the restricted versions
of the baseline model and show that all variants fail to account for the effects we estimate
empirically.

Symmetric technology improvements across sectors. When home- and foreign-
produced traded goods are perfect substitutes, as considered in columns 9 and 12, a tech-
nology improvement which is evenly spread across sectors leads to a dramatic decline in
total hours worked. Intuitively, a technology improvement produces a positive wealth effect
which increases consumption in both traded and non-traded goods. Because home- and
foreign-produced traded goods are perfect substitutes, households find it optimal to borrow
from abroad (see panel E) to consume more foreign goods and increase leisure. As shown in
panel B, total hours fall dramatically by -0.88% when we assume perfect mobility of inputs
(see column 12) and by -0.67% under the assumption of imperfect mobility of inputs (see
column 9). While the technology improvement drives down both traded and non-traded
hours worked (see the second and the third row of panel B), the hours worked share of
tradables falls (see the last row of panel B) which enters in contradiction with our empirical
results which show that labor shifts away from non-traded industries and toward traded
industries on impact.

In contrast, when home- and foreign-produced traded goods are assumed to be imperfect
substitutes which is the scenario considered in columns 3 and 6, a symmetric technology
improvement shifts labor away from non-traded and toward traded industries in accordance
with the evidence we document in the empirical section 2. Intuitively, a symmetric technol-
ogy shock across sectors lowers the marginal cost in both sectors which leads both traded
and non-traded firms to cut prices. By increasing exports and mitigating the rise in im-
ports, the terms of trade depreciation reduces considerably the current account deficit as
shown in panel E. In addition, because traded and non-traded goods are gross complements
(i.e., φ < 1), the excess supply on the non-traded goods market lowers the non-tradable
content of expenditure (see the second row of panel D) which leads labor to shift toward
the traded sector in line with our evidence. As can be seen in panel E, since households
are reluctant to substitute foreign for domestic goods, the current account deficit shrinks
from -0.43 ppt of GDP in the restricted model to -0.06 ppt of GDP in the baseline model.
To meet higher demand for home-produced traded goods, households must mitigate their
appetite for leisure which curbs the fall in hours worked. As shown in columns 3 and 6,
a model assuming endogenous terms of trade produces a decline in hours worked ranging
from 0.40% to 0.46% which squares well with the decline in hours worked by 0.47% we
estimate empirically. The reallocation of labor toward the traded sector and the reduction
in the consumption of leisure mitigates substantially the fall in traded hours worked, i.e.,
from -0.49 ppt of total hours worked (see column 12) to -0.11 ppt (see column 3), and leaves
the value added share of tradables at constant prices, νY,H essentially unchanged (see the
first row of panel D).
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Figure 11: Dynamics of Technology Shocks: Theoretical vs. Empirical Responses. Notes: The
solid blue line displays point estimate from local projections with shaded areas indicating 90% confidence bounds.
The thick solid black line with squares displays model predictions in the baseline scenario with capital and technology
utilization together with FBTC, while the dashed red line shows predictions of a model with Cobb-Douglas production
functions and abstracting from capital and technology utilization. Fig. ?? plots the dynamic effects of a 1% permanent
technology improvement on utilization-adjusted-TFP, the capital utilization rate and utilization-adjusted-FBTC for
tradables and non-tradables. The fist two rows show the effects of a symmetric technology shock across sectors while
rows 3-4 display the effects of an asymmetric technology shock. The last two rows shows the effects following a
technology shock.
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Figure 12: Dynamics of Technology Shocks: Theoretical vs. Empirical Responses. Notes: The
solid blue line displays point estimate from local projections with shaded areas indicating 90% confidence bounds.
The thick solid black line with squares displays model predictions in the baseline scenario with capital and technology
utilization together with FBTC. Fig. 12 plots the dynamic effects of a 1% permanent technology improvement on
utilization-adjusted-TFP, FBTC, and SBTC for tradables and non-tradables. Note that the dynamic effects are a
combination of symmetric and asymmetric technology shocks

Asymmetric technology improvements across sectors. While symmetric technol-
ogy improvements drive down hours worked in the data, we find empirically that asymmetric
technology shocks across sectors do the opposite and increase total hours worked by 0.31%.
Importantly, only the baseline model can account for the magnitude of the response of
hours worked to a technology improvement. If we consider a restricted version of the model
shown in column 13, the model generates a decline in hours worked by 0.38% instead of
an increase. Intuitively, when technology improvements are concentrated toward traded
industries, non-traded firms set higher prices to compensate for lower productivity gains.
Because traded and non-traded goods have low substitutability, the tradable content of ex-
penditure declines (see the second row of panel D). Labor thus shifts away from the traded
sector which leads the traded goods-sector share of total hours worked by 0.51 ppt of total
hours worked (see the last row of panel B). Because home- and foreign-produced traded
goods are perfect substitutes, households import goods from abroad and increase leisure
time. While labor supply falls, the rise in the hours worked share of non-tradables is large
enough to produce additional units of non-traded goods. As shown in column 10, when we
put frictions into the movement of inputs, the reallocation of labor toward the non-traded
sector is less and and total hours worked is almost unchanged. The reason is that labor
mobility costs lead non-traded firms to pay higher wages to encourage workers to shift away
from traded industries. Because the non-tradable content of the labor compensation share
of non-tradables is two-third, higher non-traded wages push the aggregate wage index up.
The higher wage rate produces a substitution effect which almost offsets the positive wealth
effect.

While labor mobility costs has a positive impact on hours worked by putting upward
pressure on wages, adding imperfect substitutability between home- and foreign-produced
traded goods allows the model to produce an increase in hours worked by 0.05% (see the first
row of panel B in column 7). Intuitively, when technology improvements are concentrated
in traded industries and traded goods are price-elastic, traded firms find it optimal to lower
their prices which leads to a current account surplus (see panel E). Because imports increase
less than if terms of trade were exogenous, households must increase their labor supply to
produce home-produced traded goods units. However, the rise in total hours worked by
0.05% remains significantly below what we estimate. It is only once we allow for FBTC
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Figure 13: Time-Varying Impact Effects of a Technology Shock on Sectoral Hours Worked.
Notes: The figure shows impact responses of traded and non-traded hours worked to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005]
single-equation method. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black
line shows the impact response we compute numerically by considering a restricted version of our baseline model where we shut down

FBTC by assuming σj = 1 and we abstract from endogenous capital utilization by letting ξ
j
2 tend toward infinity. Note that we have

normalized the rise in utilization-adjusted aggregate TFP to 1% on impact as we focus on The horizontal axis shows the end year of
the period of the sub-sample and the vertical line displays the point estimate of the impact effect of technology on total hours worked.

and endogenous capital utilization at a sectoral level that the open economy model can
account for the magnitude of the rise in hours worked we estimate. Intuitively, our empirical
evidence reveals that technology improvements in the traded sector are associated with
technological change biased toward labor. By making the production in the traded sector
more labor intensive, technological change biased toward labor increases wages and further
increases labor supply. However, by increasing labor demand in the traded relative to the
non-traded sector, the positive FBTC differential between traadables and non-tradables
reduces the magnitude of the decline in the hours worked share of tradables. To account
for the impact response of hours worked to asymmetric technology shocks and the shift of
labor toward the non-traded sector, we have to allow for endogenous capital utilization.
Because technological change biased toward labor lowers the demand for capital in the
traded sector, it is profitable to reduce in the intensity in the use of physical capital in
this sector. The fall in the capital utilization rate of tradables lowers the traded wage rate
which amplifies the shift of labor toward the traded sector and generates an increase in
labor supply by 0.28% close to what we estimate empirically.

K.2 Time-Varying Effects on Hours Worked in a Model Imposing Hicks-
Neutral Technological Change (HNTC)

As highlighted in the main text, one key ingredient of our model is FBTC. Without this
ingredient, the model cannot generate an increase in total hours worked which is in line with
the evidence after an asymmetric technology shock. In addition, as mentioned in section 4.5,
technological change is key to giving rise to a time-increasing impact response of traded and
non-traded hours worked. As can be seen in Fig. 13, abstracting from technological change
biased toward labor by assuming Cobb-Douglas production functions leads the model to
fail to account for the evidence. First, as shown in Fig. 13(a), a model imposing HNTC
produces a time-decreasing impact response of traded hours worked (see the black line)
while according to the evidence, the contractionary effect of a technology improvement on
traded hours shrinks over time. The inability of a model abstracting from FBTC to produce
the time-increasing impact response of LH(t) is that asymmetric technology shocks have
a strong expansionary effect on non-traded hours worked at the expense of traded hours
worked because such shocks strongly appreciate non-traded goods prices and increase the
share of non-tradables. In contrast, by assuming that technological change is significantly
biased toward labor in the traded sector in line with the evidence, the baseline model with
FBTC can reproduce very well the time-increasing impact responses of LH(t). Second,
when technological change biased toward labor is absent, the model overstates the decline
in hours worked.
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Figure 14: Time-Varying Impact Effects of a Technology Shock. Notes: Fig. 8(a)-8(c) show the impact
responses on total hours worked together with its skilled vs. unskilled components to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005]
single-equation method. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black
line in Fig. 14(a) shows the impact response we compute numerically by abstracting from FBTC and SBTC. To isolate and quantify

the role of SBTC alone, we allow for FBTC but abstract from SBTC (by setting σ
j
L

= 1) in Fig. 14(b) and Fig. 14(c). Note that

we have normalized the rise in utilization-adjusted aggregate TFP to 1% on impact. The horizontal axis shows the end year of the
period of the sub-sample and the vertical line displays the impact effect of technology in ppt of total hours worked. Sample: 11 OECD
countries, 1970-2017

K.3 Time-Varying Effects on Hours Worked across Workers’ Skills in a
Model Imposing Hicks-Neutral Technological Change

In the main text, we highlight both FBTC and SBTC as key drivers of the labor market
effects of a technology improvement. While Fig. 8 in the main text shows that the baseline
model with FBTC and SBTC can reproduce very well the time-increasing impact responses
of total hours worked and its skill components of a technology improvement, in Fig. 14
we quantify the role of FBTC and SBTC in driving the results. More specifically, in Fig.
14(a), we shut down both FBTC and SBTC (by setting both σj = 1 and σj

L = 1). Because
technological change is significantly biased toward capital and the model imposing HNTC
abstracts from this feature, it substantially understate the decline in total hours worked at
all horizons. To isolate and quantify the role of SBTC alone, we allow for FBTC but abstract
from SBTC (by setting σj

L = 1) in Fig. 14(b) and Fig. 14(c). While the restricted model
with FBTC and no SBTC can account for the time-increasing response of skilled labor, it
somewhat overstates the negative responses of unskilled labor as the model abstracts from
technological change biased toward unskilled labor.

L More Empirical Results: High-, Medium-, and Low-Skilled
Workers

In this section, we show empirical results when we consider three types for labor: high-,
medium-, and low-skilled workers. Inspection of Fig. 15 and Fig. 16 reveal that adjustments
in high- and medium-skilled labor are similar and quite distinct from the dynamics of low-
skilled labor. In particular, a permanent increase in utilization-adjusted-aggregate-TFP
leads to significant and persistent decline in hours of high- and medium-skilled workers
while it gives rise to an increase in hours of low-skilled workers in the medium- and long-
run. We also find that adjustments in high- and medium-skilled labor are similar after
symmetric and asymmetric technology shocks (available from the authors upon request).

M More Empirical Results and Robustness Checks

In this section, we conduct some robustness checks. Our identification of aggregate technol-
ogy shocks and their decomposition into symmetric and asymmetric technology shocks is
based on the assumption that time series for utilization-adjusted-aggregate-TFP together
with the utilization-adjusted-TFP of tradables relative to non-tradables follow a unit root
process. Because in the main text, all variables enter the VAR model in growth rate,
subsection M.1 shows panel unit tests for all variables considered in the empirical analysis.

Due to data availability, we use annual data for eleven 1-digit ISIC-rev.3 industries that
we classify as tradables or non-tradables. At this level of disaggregation, the classification
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Figure 15: Effects of a Technology Shock across Workers’ Skills Notes: The solid blue line shows the
response of labor hours across workers’ skills to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run.
Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses
to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted
aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run
restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we
estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage
deviation from trend in total hours worked units (sectoral hours worked). Sample: 11 OECD countries, 1970-2017, annual data.
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Figure 16: Effects of a Technology Shock on Labor Income Shares across Workers’ Skills
Notes: The solid blue line shows the response of labor hours across workers’ skills to an exogenous increase in utilization-adjusted
aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors.
To estimate the dynamic responses to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model
that includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock
is identified by imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted
aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate
years. Vertical axes measure percentage deviation from trend in labor compensation units. Sample: 11 OECD countries, 1970-2017,
annual data.

is somewhat ambiguous because some broad sectors are made-up of heterogenous sub-
industries, a fraction being tradables and the remaining industries being non-tradables.
Since we consider a sample of 17 OECD countries over a period running from 1970 to 2017,
the classification of some sectors may vary across time and countries. Industries such as
’Transport and Communication’, ’Finance Intermediation’ classified as tradables, ’Hotels
and Restaurants’ classified as non-tradables display intermediate levels of tradedness which
may vary considerably across countries but also across time. Subsection M.2 deals with this
issue and conducts a robustness check to investigate the sensitivity of our empirical results
to the classification of industries as tradables or non-tradables.

Since we split the gross capital stock into traded and non-traded industries by using
sectoral valued added shares, in subsection M.3, we conduct a robustness check by con-
sidering time series for capital stock per industry from KLEMS which are available for a
limited number of countries.

Our dataset covers eleven industries which are classified as tradables or non tradables.
The traded sector is made up of five industries and the non-traded sector of six industries.
In subsection M.4, we conduct our empirical analysis at a more disaggregated level. The
objective is twofold. First, we investigate whether all industries classified as tradables or
non-tradables behave homogeneously or heterogeneously. Second, we explore empirically
which industry drives the responses of broad sectors following a rise in government spending
by 1% of GDP.

In subsection M.5, we document evidence about the drivers of asymmetric technology
shocks. We find that only asymmetric technology shocks increase significantly the stock
of R&D and only in the traded sector. We find that the share of asymmetric technology
shocks is larger in countries where the R&D intensity of traded output is higher.

M.1 Panel Unit Root Tests

When estimating alternative VAR specifications, all variables enter in growth rates. In order
to support our assumption of I(1) variables, we ran panel unit root tests displayed in Table
19. We consider four panel unit root tests among the most commonly used in the literature:
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Levin, Lin and Chu ([2002], hereafter LLC), Breitung [2000], Im, Pesaran and Shin ([2003],
hereafter IPS), and Hadri [2000]. All tests, with the exception of Hadri [2000], consider
the null hypothesis of a unit root against the alternative that some members of the panel
are stationary. Additionally, they are designed for cross sectionally independent panels.
LLC and IPS are based on the use of the Augmented Dickey-Fuller test (ADF hereafter) to
each individual series of the form ∆xi,t = αi + ρixi,t−1 +

∑qi
j=1 θi,j∆xi,t−j + εi,t, where εi,t

are assumed to be i.i.d. (the lag length qi is permitted to vary across individual members
of the panel). Under the homogenous alternative the coefficient ρi in LLC is required to
be identical across all units (ρi = ρ, ∀i). IPS relax this assumption and allow for ρi to
be individual specific under the alternative hypothesis. We also apply the pooled panel
unit root test developed by Breitung [2000] which does not require bias correction factors
when individual specific trends are included in the ADF type regression. This is achieved
by an appropriate variable transformation. As a sensitivity analysis, we also employ the
test developed by Hadri [2000] which proposes a panel extension of the Kwiatkowski et al.
[1992] test of the null that the time series for each cross section is stationary against the
alternative of a unit root in the panel data. Breitung’ and Hadri’s tests, like LLC’s test,
are pooled tests against the homogenous alternative.20

As noted above, IPS test allows for heterogeneity of the autoregressive root, accordingly,
we will focus intensively on these tests when testing for unit roots. Across all variables
the null hypothesis of a unit root against the alternative of trend stationarity cannot be
rejected at conventional significance levels, suggesting that the set of variables of interest
are integrated of order one. When considering the Hadri’s test for which the null hypothesis
implies stationary against the alternative of a unit root in the panel data, we reach the same
conclusion and conclude again that all series are nonstationary. Taken together, unit root
tests applied to our variables of interest show that non stationarity is pervasive, suggesting
that all variables should enter in the VAR models in growth rate.

M.2 Classification of Industries as Tradables vs. Non-Tradables

This section explores the robustness of our findings to the classification of the eleven 1-digit
ISIC-rev.3 industries as tradables or non tradables.

Following De Gregorio et al. [1994], we define the tradability of an industry by con-
structing its openness to international trade given by the ratio of total trade (imports + ex-
ports) to gross output. Data for trade and output are provided by the World Input-Output
Databases ([2013], [2016]). Table 20 gives the openness ratio (averaged over 1995-2014)
for each industry in all countries of our sample. Unsurprisingly, ”Agriculture, Hunting,
Forestry and Fishing”, ”Mining and Quarrying”, ”Total Manufacturing” and ”Transport,
Storage and Communication” exhibit high openness ratios (0.54 in average if ”Mining and
Quarrying”, due to its relatively low weight in GDP, is not considered). These four sectors
are consequently classified as tradables. At the opposite, ”Electricity, Gas and Water Sup-
ply”, ”Construction”, ”Wholesale and Retail Trade” and ”Community Social and Personal
Services” are considered as non tradables since the openness ratio in this group of industries
is low (0.07 on average). For the three remaining industries ”Hotels and Restaurants”, ”Fi-
nancial Intermediation”, ”Real Estate, Renting and Business Services” the results are less
clearcut since the average openness ratio amounts to 0.18 which is halfway between the two
aforementioned averages. In the benchmark classification, we adopt the standard classifica-
tion of De Gregorio et al. [1994] by treating ”Real Estate, Renting and Business Services”
and ”Hotels and Restaurants” as non traded industries. Given the dramatic increase in
financial openness that OECD countries have experienced since the end of the eighties, we
allocate ”Financial Intermediation” to the traded sector. This choice is also consistent with
the classification of Jensen and Kletzer [2006] who categorize ”Finance and Insurance” as
tradable. They use locational Gini coefficients to measure the geographical concentration
of different sectors and classify sectors with a Gini coefficient below 0.1 as non-tradable
and all others as tradable (the authors classify activities that are traded domestically as

20In all aforementioned tests and for all variables of interest, we allow for individual deterministic trends
and country-fixed effects. Conclusions of unit root tests are robust whether there are individual trends in
regressions or not. Appropriate lag length qi is determined according to the Akaike criterion.
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Table 19: Panel Unit Root Tests

LLC Breitung IPS Hadri
Stat. p-value Stat. p-value Stat. p-value Stat. p-value

ZA
adjK 2.584 0.995 3.782 1.000 1.368 0.914 49.802 0.000

ZH
adjK/ZN

adjK 5.075 1.000 2.721 0.997 1.677 0.953 38.462 0.000
ZH

adjK 5.512 1.000 3.069 0.999 3.288 0.999 46.085 0.000
ZN

adjK 3.542 1.000 2.105 0.982 -1.784 0.037 40.995 0.000
ZA 2.770 0.997 2.555 0.995 3.650 1.000 51.528 0.000
ZH 5.580 1.000 2.626 0.996 5.725 1.000 50.884 0.000
ZN 3.259 0.999 1.533 0.937 1.180 0.881 43.072 0.000
ZH/ZN 3.773 1.000 2.375 0.991 1.237 0.892 38.231 0.000
YR 5.999 1.000 4.783 1.000 0.831 0.797 32.188 0.000
I 8.106 1.000 3.977 1.000 -1.657 0.049 27.022 0.000
NX/Y 7.388 1.000 -1.317 0.094 -1.892 0.029 26.619 0.000
L 1.895 0.971 -2.132 0.016 -0.624 0.266 42.163 0.000
WC 5.027 1.000 3.921 1.000 1.367 0.914 46.474 0.000
Y H 5.760 1.000 4.343 1.000 1.369 0.915 34.095 0.000
Y N 4.652 1.000 5.276 1.000 -0.491 0.312 34.677 0.000
Y H/Y 4.116 1.000 0.950 0.829 0.778 0.782 35.765 0.000
Y N/Y 4.206 1.000 0.951 0.829 0.854 0.804 36.350 0.000
LH 3.777 1.000 3.102 0.999 -0.405 0.343 39.294 0.000
LN 2.652 0.996 3.223 0.999 -1.481 0.069 35.428 0.000
LH/L 6.378 1.000 3.411 1.000 0.197 0.578 29.488 0.000
LN/L 3.173 0.999 3.069 0.999 3.110 0.999 49.082 0.000
W H

C 5.511 1.000 3.957 1.000 2.361 0.991 48.366 0.000
W N

C 4.372 1.000 4.375 1.000 -0.323 0.373 40.834 0.000
W H/W 5.655 1.000 1.159 0.877 0.035 0.514 34.592 0.000
W N/W 5.605 1.000 1.186 0.882 -0.393 0.347 40.573 0.000
W N/W H 5.911 1.000 1.195 0.884 0.200 0.579 38.036 0.000
P N/P H 4.711 1.000 3.281 0.999 1.036 0.850 37.766 0.000
P H/P H∗ 3.697 0.000 -0.015 0.494 -2.845 0.002 49.728 0.000
P N/P H∗ 0.930 0.824 0.971 0.834 0.835 0.798 47.444 0.000
sA

L 7.545 1.000 0.733 0.768 0.479 0.684 29.691 0.000
sH

L 7.845 1.000 1.280 0.900 -0.778 0.218 28.716 0.000
sN

L 5.371 1.000 0.302 0.619 0.003 0.501 37.364 0.000
kA 2.744 0.997 4.505 1.000 -0.965 0.167 36.339 0.000
kH 4.212 1.000 4.162 1.000 0.200 0.579 34.524 0.000
kN 3.384 1.000 5.396 1.000 -1.099 0.136 33.419 0.000
FBTCH 7.896 1.000 3.048 0.999 -0.571 0.284 30.124 0.000
FBTCN 4.960 1.000 1.718 0.957 0.661 0.746 37.112 0.000
FBTCH

adjK 8.227 1.000 2.862 0.998 -0.610 0.271 28.090 0.000
FBTCN

adjK 5.723 1.000 1.612 0.947 0.283 0.612 37.668 0.000
Notes: For LLC, Breitung and IPS, the null of a unit root is not rejected if p-value ≥ 0.05 at
a 5% significance level. For Hadri, the null of stationarity is rejected if p-value ≤ 0.05 at a
5% significance level. All tests (with the exception of Breitung) include a linear trend and,
for LLC, Breitung and IPS, four lags in the Augmented Dickey-Fuller regressions.
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potentially tradable internationally).

Table 20: Openness Ratios per Industry: 1995-2014 Averages

Agri. Minig Manuf. Elect. Const. Trade Hotels Trans. Finance Real Est. Public
AUS 0.242 0.721 0.643 0.007 0.005 0.025 0.255 0.247 0.054 0.051 0.054
AUT 0.344 2.070 1.152 0.178 0.075 0.135 0.241 0.491 0.302 0.221 0.043
BEL 1.198 13.374 1.414 0.739 0.067 0.186 0.389 0.536 0.265 0.251 0.042
CAN 0.304 0.821 0.966 0.098 0.002 0.030 0.338 0.211 0.169 0.121 0.038
DEU 0.553 2.594 0.868 0.115 0.037 0.072 0.139 0.266 0.101 0.086 0.017
DNK 0.470 0.786 1.329 0.214 0.014 0.092 0.021 0.832 0.138 0.131 0.027
ESP 0.386 4.699 0.680 0.021 0.003 0.044 0.008 0.206 0.130 0.149 0.022
FIN 0.228 2.899 0.796 0.117 0.006 0.094 0.131 0.280 0.153 0.256 0.021
FRA 0.280 3.632 0.815 0.049 0.004 0.048 0.001 0.224 0.068 0.070 0.014
GBR 0.360 0.853 0.958 0.017 0.010 0.024 0.148 0.209 0.233 0.147 0.041
IRL 0.298 1.384 1.127 0.154 0.013 0.652 0.772 0.285 1.014 0.988 0.049
ITA 0.300 4.130 0.603 0.041 0.013 0.087 0.035 0.150 0.095 0.082 0.012
JPN 0.158 3.923 0.293 0.004 0.000 0.067 0.021 0.159 0.034 0.020 0.005
NLD 0.988 1.496 1.259 0.082 0.076 0.106 0.011 0.562 0.245 0.405 0.114
NOR 0.391 0.837 0.995 0.146 0.024 0.097 0.009 0.354 0.146 0.143 0.058
SWE 0.294 2.263 0.969 0.119 0.020 0.163 0.019 0.392 0.274 0.256 0.026
USA 0.207 0.541 0.428 0.012 0.001 0.055 0.003 0.109 0.066 0.052 0.008
OECD 0.412 2.766 0.900 0.124 0.022 0.116 0.150 0.324 0.205 0.202 0.035
H/N H H H N N N N H H N N

Notes: the complete designations for each industry are as follows (EU KLEMS codes are given in parentheses). ”Agri.”:
”Agriculture, Hunting, Forestry and Fishing” (AtB), ”Minig”: ”Mining and Quarrying” (C), ”Manuf.”: ”Total Manu-
facturing” (D), ”Elect.”: ”Electricity, Gas and Water Supply” (E), ”Const.”: ”Construction” (F), ”Trade”: ”Wholesale
and Retail Trade” (G), ”Hotels”: ”Hotels and Restaurants” (H), ”Trans.”: ”Transport, Storage and Communication”
(I), ”Finance”: ”Financial Intermediation” (J), ”Real Est.”: ”Real Estate, Renting and Business Services” (K), ”Public”:
”Community Social and Personal Services” (LtQ). The openness ratio is the ratio of total trade (imports + exports) to
gross output (source: World Input-Output Databases ([2013], [2016]).

We conduct below a sensitivity analysis with respect to the three industries (”Real
Estate, Renting and Business Services”, ”Hotels and Restaurants” and ”Financial Interme-
diation”) which display some ambiguity in terms of tradedness to ensure that the benchmark
classification does not drive the results. In order to address this issue, we re-estimate the
dynamic responses to a permanent tchnology shock for the main variables of interest using
local projections for different classifications in which one of the three above industries ini-
tially marked as tradable (non tradable resp.) is classified as non-tradable (tradable resp.),
all other industries staying in their original sector. In doing so, the classification of only
one industry is altered, allowing us to see if the results are sensitive to the inclusion of a
particular industry in the traded or the non-traded sector.

As an additional robustness check, we also exclude the industry ”Community Social
and Personal Services” from the non-tradable industries’ set. This robustness analysis
is based on the presumption that among the industries provided by the EU KLEMS and
STAN databases, this industry is government-dominated and its removal allows us to assess
whether it influences or not our results related to the effects of a permanent technology
improvement. The baseline and the four alternative classifications considered in this exercise
are shown in Table 21. The last line provides the matching between the color line (when
displaying IRFs below) and the classification between tradables and non tradables.

Fig. 17 reports the effects of a permanent technology improvement by 1% in the long-
run on selected variables shown in Fig. 2 in the main text. The green line and the red
line show results when ’Hotels and restaurants’ and ’Real Estate, Renting and Business
Services’ are treated as tradables, respectively. The black line shows results when ’Financial
intermediation’ is classified as non-tradables. Finally, the yellow line displays results when
Public services (’Community Social and Personal Services’) is excluded.

In each panel, the shaded area corresponds to the 90% confidence bounds for the base-
line. For aggregate variables shown in the first column, including aggregate utilization-
adjusted-aggregate-TFP, total hours worked and real GDP, the responses are remarkably
similar a cross the baseline and alternative classifications. As shown in the yellow line which
displays the response for the market sector only, the response of total hours worked is little
sensitive to the inclusion or not of the pubic services. Inspection of the first row reveals
that the classification of industries as tradables or non-tradables has an impact on the
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Table 21: Robustness check: Classification of Industries as Tradables or Non Tradables

KLEMS Classification
code Baseline #1 #2 #3 #4

Agriculture, Hunting, Forestry and Fishing AtB H H H H H
Mining and Quarrying C H H H H H
Total Manufacturing D H H H H H
Electricity, Gas and Water Supply E N N N N N
Construction F N N N N N
Wholesale and Retail Trade G N N N N N
Hotels and Restaurants H N N N H N
Transport, Storage and Communication I H H H H H
Financial Intermediation J H N H H H
Real Estate, Renting and Business Services K N N H N N
Community Social and Personal Services LtQ N N N N neither H or N
Color line in Figure 17 blue red black green yellow

Notes: H stands for the Traded sector and N for the Non traded sector.
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Figure 17: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. the
Classification of Industries as Tradable or Non-Tradable. Notes: The solid blue line shows the response of
aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses to a technology
shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP,
real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e.,
technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the
effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage deviation from
trend. The green line and the red line show results when ’Hotels and restaurants’ and ’Real Estate, renting and business services’ are
treated as tradables, respectively. The black line shows results when ’Financial intermediation’ is classified as non-tradables. Finally,
the yellow line displays results when Public services (’Community Social and Personal Services’) is excluded. Sample: 17 OECD
countries, 1970-2017, annual data.

utilization-adjusted-TFP of tradables relative to non-tradables. In particular, the removal
of the non-market sector (classification #4 and shown in the yellow line) mitigates the rise
in traded relative to non-traded technology. But the shape of the dynamic adjustment is
similar to the benchmark classification and the alternative IRF lies within the confidence
bounds of the baseline classification. Aggregate TFP and FBTC are not sensitive to the
classification.

The second row of Fig. 17 contrasts the responses of total hours worked, non-traded
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hours worked (i.e., LN ), the hours worked share of tradables (i.e., νL,H), and the labor
income share of tradables (i.e., sH

L ). Moving ’Real Estate, Renting and Business Services’
in the traded sector results in a decline in non-traded hours worked which is less pronounced
which in turn amplifies the deindustrialization trend, as displayed by Fig. 17(g). Across
all scenarios, the traded LIS exhibits a similar dynamic adjustment following a technology
improvement.

The third row of Fig. 17 contrasts the responses of real GDP, the value added share
of tradables (νY,H), the relative price of non-tradables (PN/PH), and the terms of trade
(PH/PH,?) for the baseline classification with those obtained for alternative classifications
of industries as tradables or non-tradables. Alternative responses are fairly close to those
estimated for the baseline classification as they lie within the confidence interval (for the
baseline classification) for all the selected horizons. The dynamic adjustment of the relative
price of non-tradables displays some differences across the baseline and the four alternative
classifications: the appreciation is less pronounced when the public sector is excluded (clas-
sification #4 and the yellow line) because ZH/ZN increases less which mitigates the excess
demand for non-traded goods. We also note some differences for the terms of trade which
depreciate more when ’Financial intermediation” is moved to the non-traded sector (classi-
fication #2 and the black line) because technology improvements are more pronounced in
the traded sector which results in a larger excess supply of traded goods. One can notice
that the discrepancy in the estimated effect between the benchmark and the alternative
classifications are not statistically significant

In conclusion, our main findings hold and remain unsensitive to the classification of
one specific industry as tradable or non-tradable. In this regard, the specific treatment
of ”Hotels and Restaurants”, ”Real Estate, Renting and Business Services”, ”Financial
Intermediation” or ”Community Social and Personal Services” does not drive the results.

M.3 Robustness Check to the Construction of Sectoral Physical Capital
Time Series

In the main text, due to data availability, we construct time series for sectoral capital by
computing the overall capital stock by adopting the perpetual inventory approach and then
by splitting the gross capital stock into traded and non-traded industries by using sectoral
valued added shares. In this Appendix, we investigate whether the effects on utilization-
adjusted-TFP and utilization-adjusted-FBTC we estimate empirically are driven by our
assumption about the construction of time series for sectoral capital stock. To conduct this
robustness check, we contrast below empirical responses when sectoral capital stocks are
measured by adopting the Garofalo and Yamarik’s [2002] methodology (our benchmark)
with those obtained by using sectoral data on Kj provided by EU KLEMS [2011], [2017]
databases. Due to data availability, our results in the latter case include a sample of thirteen
OECD countries which provide time series on sectoral capital of reasonable length. In this
regard, Belgium, Germany, Ireland and Sweden are removed from the sample due to a lack
of data over a reasonable time length to construct KH and KN/ To be consistent, our
benchmark excludes these four countries and thus focuses on thirteen countries only.

The methodology by Garofalo and Yamarik’s [2002] is based on the assumption of
perfect mobility of capital across sectors and a small discrepancy in the LIS across sectors,
i.e., sH

L ' sN
L . The assumption of perfect capital mobility implies that the marginal revenue

product of capital must equalize across sectors:

PH
t

(
1− sH

L

) Y H
t

KH
t

= PN
t

(
1− sN

L

) Y N
t

KN
t

. (208)

Using the resource constraint for capital, K = KH + KN , dividing the numerator and the

denominator in the LHS of (208) by GDP, Y , and denoting by ωY,j
t = P j

t Y j
t

Yt
the share of

value added of sector j in GDP at current prices (at time t), eq. (208) can be solved for
the KH/K:
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Assuming that sH
L ' sN

L leads to the rule we apply to split the aggregate stock of capital
into tradables and non tradables:

KH
t

Kt
= ωY,H

t . (210)

In the baseline, we adopt the methodology of Garofalo and Yamarik [2002] to split the
national gross capital stock into traded and non-traded industries by using sectoral value
added shares at current prices. Let ωY,j be the share of sector j’s value added (at current
prices) P jY j for j = H, N in overall output (at current prices) Y ≡ PHY H + PNY N , the
allocation of the national capital stock to sector j is given by the rule:

Kj
GY = ωY,jK =

P jY j

Y
K, (211)

where we denote the sectoral stock of capital obtained with the decomposition by Garofalo
and Yamarik [2002] by Kj

GY . National capital stocks are estimated from the perpetual
inventory approach. Following Garofalo and Yamarik [2002], the gross capital stock is then
allocated to traded and non-traded industries by using sectoral value added shares according
to eq. (211). Once the series for Kj

GY are obtained, we can construct the sectoral capital-
labor ratios, kj

GY = Kj
GY /Lj , sectoral capital utilization rates, uK,j

GY , sectoral utilization-
adjusted-TFPs, Zj

GY , and sectoral utilization-adjusted-FBTC (see section E).
Sample. As a robustness check, we alternatively take capital stock series from the

EU KLEMS [2011] and [2017] and STAN [2017] and [2017] databases which provide dis-
aggregated capital stock data (at constant prices) at the 1-digit ISIC-rev.3 level for up
to 11 industries, but only for thirteen countries of our sample which include Australia
(1970-2007), Austria (1976-2017), Canada (1970-2016), Denmark (1970-2017), Spain (1970-
2016), Finland (1970-2017), France (1978-2017), the United Kingdom (1970-2015), Italy
(1970-2017), Japan (1973-2015), the Netherlands (1970-2017), Norway (1970-2017) and the
United States (1970-2016). In efforts to have time series of a reasonable length, we exclude
Belgium (1995-2017), Germany (1991-2017), Ireland (1985-2017) and Sweden (1993-2016)
because the period is too short.

Results. In Fig. 18, we compare the responses of selected variables displayed by
Fig. 2 in the main text. Note that because we consider new time series for Kj , we have
reconstructed time series for sectoral TFPs and the capital utilization rates. The blue line
shows the dynamic effects of a 1% permanent increase in utilization-adjusted-aggregate-
TFP when the sectoral capital stock is measured by adopting the methodology by Garofalo
and Yamarik [2002] while the black line shows the dynamic effects when the capital stock
is obtained directly from KLEMS (black line). For comparison purposes and to ensure
consistency, we compare the results by considering the same sample, i.e. the restricted
sample that includes 13 OECD countries over the period 1970-2017. As it stands out, the
construction of capital stocks does not affect the results as we cannot detect any difference,
even for the utilization-adjusted-TFP, TFP, or FBTC. In conclusion, our main findings
are robust and unsensitive to the way the sectoral capital stocks are constructed in the
data. While the responses of capital-labor ratios are not reproduced, one can observe that
a discrepancy in the results in the short-run only. To conclude, the dynamic effects of a
technology improvement are similar across the two methods as they are both qualitatively
and quantitatively similar since the solid black line lies within the original confidence bounds
of those obtained when Kj is constructed with the use of the methodology of Garofalo and
Yamarik [2002]. In particular, one can observe that the discrepancy in the results is small
and not statistically significant at conventional level.

M.4 How Technology at Industry Level Responds to Aggregate Technol-
ogy Improvements: A Disaggregated Approach

Empirical analysis at a disaggregate sectoral level. Our dataset covers eleven in-
dustries which are classified as tradables or non-tradables. The traded sector is made up
of five industries and the non-traded sector of six industries. To conduct a decomposition
of the sectoral effects at a sub-sector level, we estimate the responses of sub-sectors to the
same identified government spending shock by adopting the two-step approach detailed in
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Figure 18: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. the
Construction of Sectoral Capital Stocks Notes: The solid blue line shows the response of aggregate and sectoral
variables to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent
confidence bounds based on Newey-West standard errors. To estimate the dynamic responses to a technology shock, we adopt a two-step
method. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP, real GDP, total hours worked,
the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e., technology shocks are driven
by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005]
single-equation method. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. The black line reports

responses when we use the EU KLEMS [2011] and [2017] databases to construct sectoral capital stocks series Kj . Sample: 13 OECD
countries, 1970-2017, annual data.

the main text. More specifically, indexing countries with i, time with t, sectors with j,
and sub-sectors with k, we first identify the permanent technology shock, by estimating a
VAR model which includes utilization-adjusted-aggregate-TFP, ZA

it , real GDP, total hours
worked, the real consumption wage (all quantities are divided by the working age popula-
tion and all variables are in rate of growth) and next we estimate the dynamic effects by
using the Jordà’s [2005] single-equation method. The local projection method amounts to
running a series of regression of each variable of interest on the structural identified shock
for each horizon h = 0, 1, 2, ...:

xk,j
i,t+h = αk,j

i,h + αk,j
t,h + ψk,j

h (L) zi,t−1 + γk,j
h .εZA

i,t + ηk,j
i,t+h, (212)

where x = TFPk,j
i,t , Lk,j

i,t . To express the results in meaningful units, i.e., we multiply the
responses of TFP of sub-sector k by the share of industry k in the value added of the broad
sector j (at current prices), i.e., ωY,k,j = P k,jY k,j

P jY j . We multiply the responses of hours
worked within the broad sector j by its labor compensation share, i.e., αL,k,j = W k,jLk,j

W jLj .
We detail below the mapping between the responses of broad sector’s variables and responses
of variables in sub-sector k of one broad sector j.

The response of Lk,j to a technology shock is the percentage deviation of hours worked

in sub-sector k ∈ j relative to initial steady-state: lnLk,j
t −lnLk,j ' dLk,j

t

Lk,j = L̂k,H
t where Lk,j

is the initial steady-state. We assume that hours worked of the broad sector is an aggregate
of sub-sector hours worked which are imperfect substitutes. Therefore, the response of
hours worked in the broad sector L̂j

t is a weighted average of the responses of hours worked
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W k,jLk,j

W jLj L̂k,j
t where W k,jLk,j

W jLj is the share of labor compensation of sub-sector k in labor
compensation of the broad sector j:

L̂j
t =

∑

k∈j

W k,jLk,j

W jLj
L̂k,j

t ,

W jLj

WL
L̂j

t =
∑

k∈j

W k,jLk,j

WL
L̂j

t ,

αL,jL̂j
t =

∑

k∈j

αL,kL̂k,j
t , (213)

where
∑

j

∑
k αL,k = 1. Above equation breaks down the response of hours worked in broad

sector j into the responses of hours worked in sub-sectors k ∈ j weighted by their labor
compensation share αL,k = W k,jLk,j

W jLj averaged over 1970-2017. In multiplying L̂k,j
t by αL,k,

we express the response of hours worked in sub-sector k ∈ j in percentage point of hours
worked in the broad sector j = H, N .

The response of TFP in the broad sector j is a weighted average of responses TFPk,j
t of

TFP in sub-sector k ∈ j where the weight collapses to the value added share of sub-sector
k:

TFPk,j
t =

∑

k∈j

P k,jY k,j

P jY j
ˆTFP

k,j
t ,

TFPj
t =

∑

k∈j

P k,jY k,j

P jY j
ˆTFP

k,j
t ,

TFPj
t =

∑

k∈j

ωY,k,j ˆTFP
k,j
t , (214)

where ωY,k,j = P k,jY k,j

P jY j averaged over 1970-2017 is the value added share at current prices
of sub-sector k ∈ j which collapses (at the initial steady-state) to the value added share at
constant prices as prices at the base year are prices at the initial steady-state. Note that∑

k

∑
k∈j ωY,k,j = 1.

Aggregate technology shock. The first column of Fig. 19 shows responses of TFP
and hours worked of sub-sectors classified in the traded sector and the non-traded sector
to a permanent technology improvement of 1% in the long-run. When we consider an
aggregate technology shock, all industries behave as the broad sector as they all experience
a permanent technology improvement, except ’Mining’ shown in the black line for which
the rise in TFP vanishes in the long-run. More interestingly, the rise in traded TFP is
driven by technology improvement in ’Manufacturing’ because this sector accounts for the
greatest value added share of the traded sector and also experiences significant increases in
TFP. With regard to non-traded industries, ’Real Estate, Renting, and Business Services’
drives the rise in non-traded TFP followed by ’Wholesale and Retail Trade’ and ’Community
Social and Personal Services’ (i.e., the public sector which also includes health and education
services). When we focus on traded and non-traded hours worked, we find that all industries
experience a decline in hours worked except ’Construction’. One explanation to this lies
in the shift of labor away from traded and toward non-traded industries. As we shall see,
this sector experiences a dramatic increase in its hours worked following an asymmetric
technology shock.

Symmetric technology shock. The second column of Fig. 19 shows responses of
TFP and hours worked of sub-sectors classified in the traded sector and the non-traded
sector to a permanent technology improvement of 1% which is evenly spread between the
traded and non-traded sectors. Like for an aggregate technology shock, the rise in traded
TFP is driven by technology improvement in ’Manufacturing’ while ’Real Estate, Renting,
and Business Services’ drives the rise in non-traded TFP. All traded industries experience a
decline in hours worked on impact while only ’Agriculture’ and ’Manufacturing’ experience
a fall in the long-run. All non-traded industries experience a decline in hours worked on
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impact while only ’Real Estate, Renting, and Business Services’ experiences a persistent
decline in its hours worked below trend.

Asymmetric technology shock. The third column of Fig. 19 shows responses of
TFP and hours worked of sub-sectors classified in the traded sector and the non-traded
sector to a permanent technology improvement of 1% which is concentrated toward traded
industries. As it stands out, the rise in traded TFP is driven by a technology improvement
in ’Manufacturing’ and the gap with other sectors is even more pronounced than after an
aggregate technology shock. We can notice that the contribution of ’Mining’ is substantial
given is small weight in the traded sector. When we turn to the non-traded TFP, we find
that ’Real Estate, Renting, and Business Services’ together with ’Community Social and
Personal Services’ (i.e., the public sector which also includes health and education services)
drive the fall in non-traded TFP. Traded industries such as ’Manufacturing’, ’Financial
Intermediation’, ’Transport and Communication’ drive the rise in traded hours worked fol-
lowing an asymmetric technology shock. All non-traded industries experience an experience
an increase in hours worked. The rise in non-traded hours worked is driven by the rise in
labor in ’Construction’ and ’Community Social and Personal Services’ followed by ’Real
Estate, Renting, and Business Services’ and ’Wholesale and Retail Trade’. The diversity of
industries which experience a rise in labor can explain why both skilled and unskilled labor
shift away from traded industries and toward non-traded industries following an asymmetric
technology shock.

M.5 Do both Symmetric and Asymmetric Technology Shocks Stimulate
Innovation

In this subsection, we further investigate the drivers behind symmetric and asymmetric
technology shocks and if these two shocks are different. We must acknowledge that the
literature on technology shocks is silent about the factors driving technology improvements
except Shea [1999] and Alexopoulos [2011]. Shea [1999] employs direct measures of techno-
logical change based on research and R&D expenditure and patent activities in a VAR to
identify technology shocks. Using annual panel data for 19 U.S. manufacturing industries
from 1959 to 1991, the author estimates VARs to determine the dynamic impact of shocks
to two observable indicators of technological change: R&D spending (measures the amount
of input devoted to innovative activity), and patent applications (measure innovation). The
author finds that favorable technology shocks tend to increase input use, especially labor, in
the short run, but to reduce inputs in the long run. Alexopoulos [2011] presents new mea-
sures of technical change based on new book titles in the field of technology from 1955-1997.
Results show that technology shocks driven by book publications in the area of technology
increases R&D and employment.

Effects of symmetric and asymmetric technology shocks on R&D. First, we
identify asymmetric and symmetric technology shocks by estimating a VAR model which
includes the ratio of traded to non-traded technology measure, aggregate technology mea-
sure, real GDP, total hours worked and real consumption wage and then we estimate the
dynamics effects of aggregate, symmetric and asymmetric technology improvements on the
stock of R&D of tradables and non-tradables at constant prices. Table 22 and Table 23
present the point estimate at horizons t = 0...8 which measures the increase in percentage in
the stock of R&D in the traded and the non-traded sectors after an aggregate, asymmetric
and symmetric technology shocks, respectively. Our sample includes 13 OECD countries
over 1995-2017. The evidence reveals that only asymmetric technology shocks has a positive
and a statistically significant impact in the stock of R&D and only in the traded sector.

Do asymmetric technology shocks increase innovation? Asymmetric technology
shocks are technology improvements which are concentrated toward traded industries. As
discussed above, only these shocks give rise to a significant and positive increase in the stock
of R&D which reflects cumulated investment devoted to innovative activity. As shown in
section R.4, the stock of R&D has a significant impact on utilization-adjusted-TFP of trad-
ables while it has virtually no impact on non-traded technology. Therefore, accumulation
of R&D investment can generate innovation since according to our FMOLS estimates, an
increase in the stock of R&D in the traded sector by 1% improves technology of tradables
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Figure 19: Effects Technology Shocks on Eleven Sub-Sectors. Notes: Because the traded and
non-traded sector are made up of industries, we conduct a decomposition of the sectoral effects at a sub-sector
level following a an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses
to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes
utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology
shock is identified by imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in
utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005] single-equation
method. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. To express the results
in meaningful units, i.e., total hours worked units, we multiply the responses of hours worked sub-sector k by its labor
compensation share (in the traded sector of traded industries or in the non-traded sector for non-traded industries),

i.e., W k,jLj,j

W jLj . Column 1-3 display the responses of technology and hours in traded and non-traded industries to
aggregate, symmetric and asymmetric technology shocks across sectors, respectively. For tradable industries: the blue
line shows results for ’Agriculture’, the black line for ’Mining and Quarrying’, the red line for ’Manufacturing’, the
green line for ’Transport and Communication’, and the purple line for ’Financial Intermediation’. The second/fourth
columns show results for sub-sectors classified in the non-traded sector. For non-tradable industries: the blue line
shows results for ’Electricity, Gas and Water Supply’, the black line for ’Construction’, the red line for ’Wholesale
and Retail Trade’, the green line for ’Hotels and Restaurants’, and the cyan line for ’Community Social and Personal
Services’. Sample: 17 OECD countries, 11 industries, 1970-2017, annual data.

by 0.23%. This evidence thus underlines that technology improvements concentrated in
traded industries, i.e., asymmetric technology shocks, are shocks which increase innovation.
In contrast, symmetric technology shocks do not increase the stock of R&D significantly and
may capture improvements in work organization within the firm and/or better management
practices.
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Table 22: IRF of the Stock of R&D in the Traded Sector After Technology Shocks

Horizon AGG ASYM SYM
0 −0.025 0.148 −0.163
2 0.381 0.511b 0.187
4 0.328 0.639b 0.009
6 −0.015 0.461 −0.416
8 0.332 1.213a −0.349

Notes: a, b and c denote significance at 1%, 5% and 10% levels. The
number in columns denotes the impulse response function (estimated
with local projections) of the stock of R&D in the traded sector after an
aggregate technology shock (column AGG), an asymmetric technology
shock (column ASYM) and an symmetric technology shock (column
SYM). Sample: 12 OECD countries, 1995-2017, annual data.

Table 23: IRF of the Stock of R&D in the Non Traded Sector After Technology Shocks

Horizon AGG ASYM SYM
0 0.086 0.134 0.029
2 0.310 0.388 0.173
4 0.224 0.109 0.273
6 −0.103 −0.006 −0.161
8 0.085 0.291 −0.120

Notes: a, b and c denote significance at 1%, 5% and 10% levels. The
number in columns denotes the impulse response function (estimated
with local projections) of the stock of R&D in the non traded sector
after an aggregate technology shock (column AGG), an asymmetric
technology shock (column ASYM) and an symmetric technology shock
(column SYM). Sample: 12 OECD countries, 1995-2017, annual data.

Effects of technology shocks on labor: shocks to the stock of R&D vs. shocks
to utilization-adjusted-TFP. Shea [1999] and Alexopoulos [2011] find that technology
shocks driven by innovation increase employment. In this paper, we show that symmetric
technology shocks lower dramatically hours worked while asymmetric technology shocks
increase significantly labor. Since asymmetric technology shocks are driven by innovation,
our work can reconcile the labor effects of technology shocks reported by the literature and
the evidence documented by Shea [1999] and Alexopoulos [2011] who focus on shocks to
innovation and find that innovation-driven technology shocks increase employment.

To further investigate the discrepancy in the effects on hours caused by shocks to in-
novation or driven by technology shocks reflecting mainly technology adoption of better
worker organizations, we estimate a SVAR which includes the aggregate stock of R&D
at constant prices, utilization-adjusted-aggregate-TFP, real GDP, total hours worked and
the real consumption wage, all variables entering the VAR model in growth rates. Our
identification strategy lies in long-run restrictions. We identify innovation shocks as shocks
which increase permanently the stock of R&D while we identify technology improvements
not driven by innovative activities as technology shocks which increase permanently the
utilization-adjusted-aggregate-TFP. We find that innovation shocks does not drive down
hours on impact and instead increase labor in the long-run. In contrast, technology shocks
which are not driven by innovative industries lower persistently hours worked.

N Addressing the SVAR Critique

The SVAR methodology allows researchers to estimate the adjustment of macroeconomic
variables conditional on a shock. We run VARs on the actual data and impose identification
assumptions to identify a specific shock and trace out the dynamic responses of variables
to this shock. Then we calibrate the macroeconomic model and compare the theoretical
responses with empirical responses in order to determine which model is more suited to
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Figure 20: Cross-Country Relationship between Investment in R&D (% of Value Added in
the Traded Sector) and the Share of FEV of Technological Change Driven by Asymmetric
Technology Improvements. Notes: The horizontal axis shows the R&D investment to value added ratio for the traded
sector. To measure the intensity of the traded sector in investment in R&D, we take data from EU KLEMS, Stehrer et al. [2019],
see Table 28 for data coverage in section R.4. Sample: 12 OECD countries, 1995-2017. On the vertical axis, we show the FEV of
technological change attributed to asymmetric technology shocks over the period 1993-2017 to fit the period over which data on R&D is
available. The share of asymmetric technology shocks is an average of the share at time t = 0 and t = 10. Sample: 12 OECD countries,
1993-2017.

rationalize the SVAR evidence.
The identification of technology shocks by adopting the SVAR methodology has been

subject to criticism. As summarized by Dupaigne, Fève, and Matheron [2007], the distor-
tions in a DSVAR may originate from several sources: (i) hours are over-differenced (Erceg,
Gust and Guerrieri [2005]) (ii) average labor productivity is a poor proxy for total factor
productivity at business cycle frequencies (Chang and Hong [2006]); (iii) the estimation of
DSVARs is subject to small-sample biases, especially with long-run restrictions (see Faust
and Leeper [1997]); (iv) a structural VAR with a finite number of lags may poorly approxi-
mate the dynamics of DSGE models (Chari, Kehoe and McGrattan [2008]). Whilst SVAR
models might be subject to potential biases, nevertheless, the information they produce can
effectively complement analyses conducted with dynamic macroeconomic models, help to
point out the dimensions where these models fail, and provide stylized facts and predictions
which can improve the realism of macroeconomic models.

In this section, we address the SVAR critique. In section N.2, we investigate if our iden-
tification of asymmetric technology shocks across sectors is contaminated by non-technology
shocks. In section N.3, we conduct a robustness check w.r.t. to the number of lags. In sec-
tion N.4, we adjust sectoral TFPs with sectoral capital utilization rates and identify shocks
to traded relative to non-traded utilization-adjusted-TFP. In section N.5, we replace the
country-level traded relative to non-traded TFP with its world counterpart. In section N.6,
we employ the Max Share approach. In section N.7, we use a two-step procedure proposed
by Fève and Guay [2010] to identify technology shocks so that a VAR model with a finite
number of lags can more easily approximate the true underlying dynamics of the data.

N.1 Short Review of the Issues about SVAR Identification of Technology
Shocks

Small sample bias. Faust and Leeper [1997] argue that structural VARs with long-run re-
striction do not enable precise inference due to small sample bias. Erceg, Gust and Guerrieri
[2005] find that most of the small-sample bias is attributable to the difficulty in precisely
estimating the long-run response of variables to the structural shocks in the VAR model.
Such a difficulty is caused by the slow adjustment of capital which complicates the estima-
tion of the long-run impact of the technology shock on labor productivity and also makes
it hard to disentangle technology shocks from highly persistent non-technology shocks. By
using utilization-adjusted-TFP, we overcome this difficulty. Chari, Kehoe and McGrattan
[2008] have shown that the small sample bias remains limited and that the lag truncation
bias might cause a more significant bias. Our Panel SVAR estimates very accurately the
responses of variables as it circumvents the small sample bias at a country level by con-
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sidering 17 countries. The confidence bands are tight enough to allow us to discriminate
between competing flexible price models. Christiano, Eichenbaum, and Vigfusson [2006]
make the case that even if the VAR point estimates of the structural impulse responses are
inaccurate in small samples, after accounting for sampling uncertainty, researchers would
rarely reject a DSGE model incorrectly. Although the confidence bands may be wide, they
are not so wide as to be consistent with any possible DSGE model.

Finite number of lags: lag-truncation bias. Whilst estimation of VAR models
necessitates only a small number of lags (commonly 4 lags on quarterly data and 2 lags
on annual data), the VAR representation of many theoretical models includes an infinite
number of lags. Chari, Kehoe and McGrattan [2008], Erceg, Guerrieri and Gust [2005])
and Dupaigne, Fève and Matheron [2007] show that persistent non-technology shocks dis-
turb the identification of permanent technology shocks. When non-technology shocks are
persistent and they account for a large share of GDP fluctuations, the SVAR estimations
are biased. Conversely, when demand shocks are not too persistent or if they account for a
trivial fraction of output fluctuations, the means of the SVAR impulse responses are close
to the model’s theoretical impulse responses.

Their common intuition is that, under decreasing returns to labor input, every shock
with long-lasting negative effects on labor input stimulates average labor productivity, even
in the medium-run. Such shocks contaminate the estimated response of labor input to
permanent productivity shocks. CKM argue that the need for a large number of lags when
running the VAR stems from the presence of capital. As shown by Chaudourne, Fève and
Guay [2014], the use of average labor productivity as a proxy for technology is responsible
for the lag-truncation bias as persistent non-technology shocks have long-lasting effects
on the capital stock which contaminates the identification of true technology shocks. In
addition, shocks to labor tax or capital tax have permanent effects on labor productivity.

TFP is a better proxy of technological change than labor productivity.
Most of the literature investigating the effects of technology shocks uses labor produc-
tivity to approximate technological change. The use of average labor productivity (i.e.,
yj = tfpj + sj

Lkj) as a proxy for technology imposes a long-run identification which implies
that any shock which has a persistent effect on the capital-labor ratio might contaminate the
estimated responses to technology shocks which explains why Chari, Kehoe and McGrattan
[2008] find that an economy without capital will not be subject to the bias identified by
the authors. On the contrary, the use of TFP is less prone to be influenced by persistent
non-technology shocks.

Chang and Hong [2006] have shown that labor productivity is not the correct measure
from which to identify technology shocks. The reason to this is that labor productivity
reflects both improved efficiency and changes in the input mix (i.e., in the capital-labor
ratio). In support of their argument, the authors show that labor productivity and TFP
are not cointegrated, therefore the long-run component of labor productivity does not truly
identify technology shocks. Chaudourne, Fève and Guay [2014] estimate the short-run
responses of hours worked in various (bivariate) SVARs estimated on (actual) U.S. data
by using three different measures of productivity (used for long-run identification): labor
productivity, TFP, adjusted-TFP. When the Solow residual and the adjusted measure of
TFP are considered, the specification of hours (in level or in first difference) does not
matter. On impact, the authors find that hours worked decrease and after two years the
response becomes persistently positive. This finding means that when technological change
is properly measured, i.e., by using TFP or adjusted-TFP, consistent VAR estimates are
obtained. In contrast, VAR estimates are significantly biased when labor productivity is
used to approximate technological change. The reason why labor productivity might lead
the SVAR identification to be subject to biases is that as claimed by Erceg, Gust and
Guerrieri [2005], the slow adjustment of capital makes it hard to gauge the long-run impact
of a technology shock on labor productivity, contributing to downward bias in the estimated
impulse responses.
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N.2 Are Utilization-Adjusted Technology Shocks Contaminated by Non-
Technology Shocks?

In the lines of Francis and Ramey [2005], we assess below the validity of the technology
shocks identified using long-run restrictions by subjecting the model to exogeneity tests.

Mertens and Ravn [2011] find that permanent changes in income tax rates induce per-
manent changes in hours worked as well as in labor productivity which leads to a violation
of the standard long-run identification strategy for technology shocks. The importance of
controlling for tax changes was raised earlier by Uhlig [2004] who points out that changes
in capital income tax rates may give rise to long-lasting changes in labor productivity, thus
leading to a violation of the identifying assumption for technology shocks. Because Gali
[1999] uses labor productivity, the shocks identified could include capital income tax rate
shocks. As stressed by Francis and Ramey [2005], permanent shifts in government spend-
ing have permanent effects on wages, and hours, but not on labor productivity (because
the capital-labor ratio remains unaffected). However, as shown by Chaudourne, Fève and
Guay [2014], permanent or long-lasting non-technology shocks can contaminate the SVAR
identification of technology shocks as they impinge on hours worked and thus on labor
productivity.

Because our measure of productivity is utilization-adjusted-TFP, the technology shocks
we identified in the main text should not be contaminated by non-technology shocks. The
reason is twofold. One advantage of using TFP is that labor productivity is presumably
affected in more important ways by business cycle fluctuations than TFP. More specifically,
total factor productivity is a measure of technological change purified from changes in the
capital labor-ratio. Second, we consider a ’purified’ measure of technology as recommended
by BKF [2006] and Chaudourne, Fève and Guay [2014] which ensures that technology shocks
are less likely to be contaminated by non-technology shocks, such as shocks to taxation,
monetary policy and government spending. To confirm this assumption, we closely follow
Francis and Ramey [2005].

Exogeneity tests. The identified technology shock should not in principle be corre-
lated with other exogenous non-technology shifts nor with lagged endogenous variables.
To investigate whether the identified shows are really technology shocks is to test whether
non-technology variables are correlated with the shocks. We consider three types of non-
technology shocks: unanticipated temporary changes in taxation, in government spending,
and in monetary policy. We identify three types of shocks by considering two different VAR
models. Our identification of government spending shocks follows Blanchard and Perotti
[2002] and our identification of monetary policy shocks follows from Christiano et al. [2005].
We estimate a Vector Autoregression (VAR) which includes government consumption, real
GDP, total hours worked, the real consumption wage, utilization-adjusted aggregate total
factor productivity, and the short-term interest rate. For consistency reasons, we adjust the
nominal interest rate with foreign prices as foreign goods and services are the numeraire
in our model. All quantities are divided by the working age population. All variables en-
ter the VAR model in log level except the interest rate which is in level. Like Blanchard
and Perotti [2002], we base the identification scheme on the assumption that there are
some delays inherent to the legislative system which prevents government spending from
responding endogenously to contemporaneous output developments. We thus order gov-
ernment consumption before the other variables which amounts to adopting the standard
Cholesky decomposition pioneered by Blanchard and Perotti [2002]. Like Christiano et
al. [2005], we identify monetary policy shocks as the innovation to the federal funds rate
under a recursive ordering, with the policy rate ordered last. The ordering of the variables
embodies the key identifying assumptions according to which the variables do not respond
contemporaneously to a monetary policy shock.

Source: Government final consumption expenditure (CGV), OECD Economic Outlook
Database [2017]. The short-term interest rate based on three-month money market rates
taken from OECD Economic Outlook Database. The nominal interest rate deflated by the
price of foreign goods which is the numeraire in our model and thus we subtract the rate
of change of the weighted average of the traded value added deflators of trade partners of
the country i from the nominal interest rate denoted by Rit.
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To identify shocks to tax rates, denoted by εT
it, we estimate a VAR model which in-

cludes net taxes defined as taxes minus security social benefits paid by general government
(deflated using the GDP deflator), real GDP, total hours worked, the real consumption
wage, and utilization-adjusted aggregate TFP. Following Blanchard and Perotti [2002], we
identify shocks to taxation by assuming that net taxes do not respond within the year to
the other variables includes in the VAR model.

Empirical strategy and results. As in the main text, we identify technology shocks
by estimating a VAR which includes utilization-adjusted-aggregate-TFP, real GDP, total
hours worked, the real consumption wage and identify technology shocks as shocks which
increase permanently utilization-adjusted aggregate TFP. We run the regression, in panel
format on annual data, of identified technology shocks, εZA

it , on three different structural
shocks:

εZ
it = di + dt + βGεG

it + βRεR
it + βT εT

it + νit. (215)

where νit is an i.i.d. error term; country fixed effects are captured by country dummies,
di, and common macroeconomic shocks by year dummies, dt. Note that in estimating
eq. (215), we add lagged values (we consider four lags) on non-technology shocks which
allow us to take into account for the persistence of non-technology shocks. As detailed in
the next section, we consider a ’purified’ measure of technology as recommended by BKF
[2006] and Chaudourne, Fève and Guay [2014] which ensures that technology shocks are
less likely to be contaminated by non-technology shocks. To show this point, we re-estimate
the VAR model by replacing utilization-adjusted aggregate TFP with the Solow residual
and identify technology shocks as shocks which increase permanent aggregate TFP. As
pointed out above, TFP is a better measure than labor productivity to identify technology
shocks. To test this statement, we estimate a VAR model which includes labor productivity
(calculated as the ratio of real GDP to total hours worked), total hours worked, and the real
consumption wage. We omit real GDP which collapses to the product of labor productivity
with total hours worked.

If our identification is correct, we should observe that non-technology shocks are corre-
lated with demand shocks or tax shocks. To test this assumption, we run the regression of
non-technology shocks which are shocks to real GDP denoted by εY R

it on the set of three
shocks shown on the RHS of eq. (215) and thus replace εZ

it with εY R
it .

Panel data estimations are shown in Table 24. We test the null hypothesis that all
of the coefficients on explanatory variables are jointly equal to zero. If p-value ≥ 0.05
at a 5% significance level, the variables are not significant in explaining the identified
technology shock εZ

it or the identified non-technology shock εY R
it . The first row of Table 24

runs the regression (215) by considering our baseline measure of technology shocks and two
alternative measures based on the Solow residual and labor productivity on the three sets of
shocks. The p-value of 0.136 for the F -test show that none of the variables is significant in
explaining our identified technology shocks. By contrast, the p-value is lower than 0.05 for
both technology shocks identified on the basis of the Solow residual and labor productivity.

In contrast, we expect non-technology shocks we identify by estimating the VAR model
with long-run restrictions to be correlated with the set of non-technology variables. To
test this assumption, we run the same regression as above, i.e., eq. (215) where εZ

it is
replaced with the shock denoted by εY R

it which increases permanently real GDP but have
no permanent effect on utilization-adjusted TFP. As shown in the second row of Table 24,
the p-value is lower than 0.05 which thus reveals that non-technology shocks are correlated
with demand shocks and tax shocks.

N.3 Robustness Check w.r.t. lags

Erceg, Gust and Guerrieri [2005] find that a four-variable SVAR with four lags (as the
authors use quarterly data) performs well in recovering the true responses from DGP. More
specifically, the SVAR predicts correctly the sign and the pattern of responses but some
empirical IRFs are biased as the SVAR tends to understate the rise in labor productivity
and real GDP. The source of bias, called the lag-truncation bias arises because the VAR
allows for a limited number of lags which provides an approximation of the true dynamics
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Table 24: Identified Shocks: Exogeneity Tests

TFP variable used in the VAR

p-value for Exogeneity Test adjusted TFP Solow residual Labor productivity

Identified Aggregate Technology Shocks (εZ
it) 0.136 0.009 0.023

Identified Non-Technology Shocks (εYR
it ) 0.000 0.000 -

Notes: The exogeneity F-test is based on a regression of the identified aggregate technology shock εZ
it

(shown in the first row) or non-technology shocks εY R
it shown in the second row, on fixed effects, time

dummies and current and four lags of government spending shocks (εG
it), monetary shocks (εR

it) and tax
shocks (εT

it). The null hypothesis is that all of the coefficients on explanatory variables are jointly equal
to zero. If p-value ≥ 0.05 at a 5% significance level, the variables are not significant in explaining the
identified technology shock εZ

it or the identified non-technology shock εY R
it .

implied by the model which considers an infinite number of lags. Erceg, Gust and Guerrieri
[2005] find that the truncation bias appears negligible for each variable considered by the
authors. Thus a short-ordered VAR provides a good approximation of the true dynamics.

In the baseline VAR model, we consider 2 lags. Because Chari et al. [2008] find that
increasing the number of lags implies that empirical IRF is a good approximation of theo-
retical IRF, as a robustness check, we increase the number of lags from 2 to 8 to estimate
all VAR models.21 Chaudourne, Fève and Gay [2014] also indicate that the bias can be
reduced by increasing the number of lags in the DSVAR. De Graeve and Westermark [2013]
perform Monte Carlo experiments and find that raising the number of lags may be a viable
strategy to reduce the severity of the problem. We document below that the results are
robust with respect to using a smaller number of lags.

In Fig. 21, we re-estimate the VAR model of the main text and generate impulse
response functions by increasing the number of lags (for both the SVAR and local projec-
tions). Note that the SVAR critique focuses on the identification of technology shocks and
thus only the number of lags in the VAR model should affect estimation of the response of
hours worked. For consistency purposes, we set the same number of lags to estimate local
projections.

The baseline VAR model which allows for two lags as we use annual data is displayed
by the solid blue line. Whilst in the red line we allow for one lag, in the green line, we allow
for three lags; in the cyan line, we allow for four lags, in the magenta line, we allow for five
lags and in the yellow line, we allow for six lags; in the solid black line, we allow for seven
lags and in the dashed black line, we allow for eight lags. Overall, all responses lie within
the 90% confidence bounds of the original VAR model. We may notice some quantitative
differences. First, as we increase the number of lags, the rise in the relative productivity
of tradables is softened in the short-run but quantitatively, the difference with the baseline
is small. Second, with regard to aggregate variables, whilst the decline in hours worked is
somewhat amplified, the rise in GDP demand components are strongly mitigated, including
investment, consumption, and next exports. Most importantly, the dynamic adjustment of
sectoral variables remains little sensitive to the increase in the number of lags.

N.4 Utilization-Adjusted TFP: Basu [1996], BKF [2006], HLPN [2023]
vs. Imbs [1999]

’Purified’ TFP eliminates biases in estimating the effects of technology shocks.
Chaudourne, Fève and Guay [2014] analyze the properties of estimators and IRF to a
permanent technology shock when technological change is measured by means of labor
productivity, TFP, ’purified’ TFP. The authors show that the estimated responses from
the DSVAR model are biased in a finite sample if technological change is measured by
labor productivity. This bias comes from the fact that both the technology and the non-
technology shocks have a permanent effect on labor productivity when hours worked follow
a persistent process. The authors also demonstrate that the bias is considerably reduced

21The simulations in Chari et al. [2008] (see Figure 3), which represent the least favorable DSGE model
example discussed in this literature, show that with four autoregressive lags, the approximation to the true
impulse response is poor, but with 40 lags the bias appears reasonably small.
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Figure 21: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags Notes:
The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate
TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate
the dynamic responses to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes
utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by
imposing long-run restrictions, i.e., technology shocks are driven by the permnanent increase in utilization-adjusted aggregate TFP. In
the second step, we estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes
measure percentage deviation from trend. The baseline VAR model which allows for two lags is displayed by the solid blue line. Whilst
in the red line we allow for one lag, in the green line we allow for three lags; in the cyan line, we allow for four lags; in the magenta
line, we allow for five lags and in the yellow line, we allow for six lags; in the solid black line, we allow for seven lags and in the dashed
black line, we allow for eight lags. Sample. Sample: 17 OECD countries, 1970-2017, annual data.
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when the econometrician uses the TFP to measure technological change and the bias is
completely eliminated when TFP is purified, i.e., adjusted with factor utilization rate. In
addition to eliminating the potential bias in empirical IRFs, Basu, Fernald and Kimball
[2006] show that correcting for unobserved input utilization can avoid understating TFP
changes when technology improves because utilization falls.

To measure technology, in line with the recommendation of Basu, Fernald and Kimball
(BFK henceforth) [2006], we adjust aggregate and sectoral TFPs with the utilization rate.
Because time series for utilization-adjusted TFP are only available for the United States
at an aggregate level, we have constructed time series for the capital utilization rate for
the 17 OECD countries of our sample and at a sectoral level by adopting the methodology
proposed by Imbs [1999].

To check whether our purified measure of efficiency reflects technology, we conduct
below a robustness check where we use alternative measures to ours and we also propose a
set of factors that can rationalize our findings. Note that in contrast to existing methods
which ’purify’ TFP measure from variations in the utilization rate, our method has two
advantages over others: first, we are able to construct time series at a sectoral level in line
with our classification T/N for our sample of seventeen OECD countries over 1970-2017 and
second we adapt the existing methodology to CES production functions where the labor
income share is variable over time.

We conduct a robust check by considering three different approaches. The first ap-
proach by BFK [2006] is thinner than ours because the authors construct a measure of
aggregate technology change, controlling for varying utilization of capital and labor, non-
constant returns to scale, and imperfect competition. HLPN [2023] construct time series
for utilization-adjusted TFP for a sample of 29 OECD countries, 30 sectors and up to 37
years (1970-2007). The authors control for the capital utilization rate, the labor utilization
rate (or worker’s efforts), hours per worker, by adapting the approach initiated by BFK
2006. While the authors allow for non-constant returns to scale, their estimations indicate
that returns to scale are close to constant. They show that hours per worker are not al-
ways an ideal proxy for unobserved utilization. The third approach by Basu [1996] has the
advantage of controlling for unobserved changes in both capital utilization and intensity of
worker effort while we control for the intensity in the use of capital only by adapting Imbs’s
[1999] method. Basu’s [1996] approach is based on the ingenious idea that intermediate
inputs do not have an extra effort or intensity dimension and thus variations in the use
of intermediate inputs relative to measured capital and labor are an index of unmeasured
capital and labor input.

Because time series for utilization-adjusted TFP at a sectoral level are not available for
the countries in our sample over 1970-2017, we conduct a third robustness check where we
construct time series of utilization-adjusted TFP measure at a sectoral level for all OECD
countries by adopting the methodology developed by Basu [1996] and we compare the
responses of utilization-adjusted TFP based on Basu [1996] methodology with the responses
of utilization-adjusted TFP based on Imbs [1999] approach.

Detailed steps of derivation of the utilization rate in Basu [1996] approach
It is useful to detail the steps of derivation of the capacity utilization rate by Basu [1996]
as it shows that the methodology is completely different from ours. The advantage of Basu
[1996] over Imbs [1999] approach is that we control for unobserved changes in both capital
utilization and in the intensity of work effort by using an ingenious and simple assumption
based on the fact that intermediate inputs is a convenient indicator of cyclical factor uti-
lization because its input does not have an extra effort or intensity dimension. Therefore,
we can infer increasing extraction from capital and labor services by firms from materials
use as firms need more material to produce more. Variations in the use of intermediate
inputs relative to measured capital and labor are an index of unmeasured capital and labor
input.

Both the traded and non-traded sectors use physical capital inclusive of capital utiliza-
tion, K̃j(t) = uK,j(t)Kj(t), and labor inclusive of workers’ efforts, L̃j(t) = uL,j(t)Lj(t),
according to constant returns to scale production functions which are assumed to take a
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CES form:

Y j
t =

[
γj

(
uL,j

t Lj
t

)σj−1

σj
+

(
1− γj

) (
uK,j

t Kj
t

)σj−1

σj

] σj

σj−1

, (216)

where γj and 1− γj are the weight of labor and capital in the production technology, σj is
the elasticity of substitution between capital and labor in sector j = H, N . Firms lease the
capital from households and hire workers. They face two cost components: a capital rental
cost equal to R(t), and a labor cost equal to the wage rate W j(t).

Aggregate output denoted by Qj
t is an aggregate of value added Y j

t and intermediate
inputs M j

t :

Qj
t = Zj
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σ
j
M

σ
j
M
−1

, (217)

where σj
M is the elasticity of substitution between value added and intermediate inputs.

We denote the unit cost for value added by cj
t = P j

Y,t where P Y is the value added deflator
since the goods market is perfectly competitive and we denote the aggregate price index of
intermediate inputs by P j

M,t. Both sectors are perfectly competitive and maximize profits
by taking prices as given. Denoting the gross output deflator by P j

Q, firms choose value
added and intermediate inputs so as to maximize:

max
Y j ,Mj

Πj
Q = max

Y j ,Mj

{
P j

QQj − P j
Y Y j − P j

MM j
}

. (218)

First-order conditions lead to optimal demand for value added and intermediate inputs:

P j
Qξj

(
Y j

)− 1

σ
j
M

(
Qj

) 1

σ
j
M ≡ P j

Y , (219a)

P j
Q

(
1− ξj

) (
M j

)− 1

σ
j
M

(
Qj

) 1

σ
j
M ≡ P j

M . (219b)

Dividing the demand for value added by the demand for intermediate inputs leads to:

Y j

M j
=

(
ξj

1− ξj

)σj
M

(
P j

Y

P j
M

)−σj
M

. (220)

Log-linearizing (220) gives:

Ŷ j − M̂ j = −σj
M

(
P̂ j

Y − P̂ j
M

)
. (221)

Log-linearizing the production function for gross output (217) leads to:

Q̂j = Ẑj + αj
Y Ŷ j +

(
1− αj

Y

)
M̂ j ,

= M̂ j + αj
Y

(
Ŷ j − M̂ j

)
,

= Ẑj + M̂ j − αj
Y σj

M

(
P̂ j

Y − P̂ j
M

)
, (222)

were αj
Y = P j

Y Y j

P j
QQj

.

Log-linearizing the production function for value added (216) leads to:

Ŷ j = sj
L

(
ûL,j + L̂j

)
+

(
1− sj

L

)(
ûK,j + K̂j

)
, (223)

where sj
L = W jLj

P jY j .
Plugging (223) into the first line of (222) leads to:

Q̂j = Ẑj + αj
Y

{
sj
L

(
ûL,j + L̂j

)
+

(
1− sj

L

)(
ûK,j + K̂j

)}
+

(
1− αj

Y

)
M̂ j . (224)
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Equating (224) to the last line of (222) allows us to derive an expression for the capacity
utilization rate:

ûj
Y = sj

LûL,j +
(
1− sj

L

)
ûK,j ,

= M̂ j − sj
LL̂j −

(
1− sj

L

)
K̂j − σj

M

(
P̂ j

Y − P̂ j
M

)
. (225)

Assuming that σj
M = 0 implies that the capacity utilization rate can be calculated as

follows:
ûj

Y = M̂ j − sj
LL̂j −

(
1− sj

L

)
K̂j , (226)

where M j are intermediate inputs (i.e., intermediate consumption) at constant prices, Lj

hours worked, Kj the capital stock at constant prices, sj
L is the LIS.

We use (226) to measure the intensity in the use of capital and labor at a sectoral level
(i.e., for each industry) and adjust the Solow residual with this measure to construct time
series for the utilization-adjusted TFP in sector j = H,N :

Ẑj = ˆTFP
j − ûj

Y . (227)

Source: Time series for intermediate inputs at constant prices are taken from EU
KLEMS. Data coverage: 1970-2017 for 17 OECD countries except for JPN (1973-2017). Ta-
ble 25 provides the information about data availability for our four measures of utilization-
adjusted-TFP.

Table 25: Alternative Meaasures of Technology: Data Availability

Imbs [1999] Basu [1996] HLPN [2023] BFK [2006]
AUS 1970-2017 1970-2007 1970-2007 1970-2007
AUT 1970-2017 1970-2017 1976-2007 1976-2007
BEL 1970-2017 1970-2017 1970-2006 1970-2006
CAN 1970-2017 1970-2007 1970-2007 1970-2007
DEU 1970-2017 1970-2017 1970-2007 1970-2007
DNK 1970-2017 1970-2017 1970-2007 1970-2007
ESP 1970-2017 1970-2007 1970-2007 1970-2007
FIN 1970-2017 1970-2017 1970-2007 1970-2007
FRA 1970-2017 1970-2017 1970-2007 1970-2007
GBR 1970-2016 1970-2007 1970-2007 1970-2007
IRL 1970-2017 1970-2007 1988-2007 1988-2007
ITA 1970-2017 1970-2017 1970-2007 1970-2007
JPN 1973-2015 1973-2015 1973-2006 1973-2006
NLD 1970-2017 1970-2017 1970-2007 1970-2007
NOR 1970-2017 1970-2017 no data no data
SWE 1970-2017 1970-2017 1993-2007 1993-2007
USA 1970-2017 1970-2017 1977-2007 1977-2007

Results. Fig. 22 contrasts the effects of a technology shock by considering our baseline
measure of technology shown in the blue line where we adjust the TFP with the capital
utilization rate constructed by adapting the method proposed by Imbs [1999] and three
alternative measures. We have constructed an alternative measure of technology where we
adjust the Solow residual with the capacity utilization rate constructed by following the
approach proposed by Basu [1996] shown in the yellow line. To further test our approach,
we also consider two different time series, i.e., the utilization-adjusted-TFP constructed by
Levchenko et al. [2023] shown in the green line, and that constructed by Basu et al. [2006]
which is displayed by the brown line. While in the baseline case, we estimate the VAR
model with two lags, we alternatively allow for four lags, as displayed by the black line,
and eight lags, as displayed by the red line.

The first column shows the dynamic effects of a technology shock on utilization-adjusted-
aggregate-TFP, total hours worked, traded hours worked, non-traded hours worked, and
the hours worked share of tradables. Overall, a technology improvement produces similar
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effects across measures of technology. Importantly, the adjustment of utilization-adjusted-
aggregate TFP is very close whether we adjust the Solow residual with the capital utilization
rate or with alternative methods. We may notice some quantitative differences as alternative
measures of technology tend to produce a larger decline in total hours worked and in non-
traded hours worked. The second and the third columns show the effects following an
asymmetric and a symmetric technology shock. While our measure of technology controls
for the intensity in the use of capital only, columns 2 and 3 reveal that the controlling
for the both capital and labor utilization rate does not modify the results, as can be see
in the yellow line where we consider the Basu’s [1996] approach. Increasing the lags tend
to produce a larger decline in hours worked following symmetric technology shocks and a
smaller in crease in hours worked after asymmetric technology shocks. In conclusion, our
results are robust to the measure of technology.

N.5 Shock to World TFP

Motivation. In this subsection, we conduct a third empirical test of the robustness of our
SVAR results. Because labor productivity growth depends on adjustment of the capital
stock which adjusts sluggishly and through this channel non-technology shocks can con-
taminate the ’true’ identification of technology shocks, Dupaigne and Fève [2009] find that
each country’s average productivity of labor reflect all the shocks in the model, including
those which materialize in the other countries.

Because SVARs on country-level data fail to properly disentangle the permanent tech-
nology shock common to all countries from the country-specific stationary shocks, Dupaigne
and Fève propose to replace the country-level measure of productivity with an aggregate
measure of country-level productivity. Because world permanent productivity shocks are
not affected by country-specific persistent non-technology shocks, identifying technology
shocks by using productivity growth common to all countries can eliminate the problem
of identification raised by Erceg, Gust and Guerrieri [2005], Chari, Kehoe and McGrattan
[2008]. Dupaigne and Fève [2009] find empirically that when they use the G7 labor produc-
tivity instead of country-level labor productivities, there is almost no discrepancy between
the responses of employment evaluated at the country and G7 level.

Construction of the world utilization-adjusted-TFP growth. Building on the
ingenious idea of Dupaigne and Fève [2009], we replace the country-level utilization-adjusted
TFP with the ’world’ stock of knowledge. The first measure we consider has the advantage
to reflect the common component of the stock ideas across countries. To ensure that our
measure of world sectoral TFP reflects the common component of each sectoral TFP to the
seventeen OECD countries, we run the regression of the growth rate of utilization-adjusted-
TFP in sector j at time t in country i on country and year effects:

Ẑj
it = di + dt + ηit, (228)

where di captures the country fixed effects, dt are time dummies, and ηit are the i.i.d.
error terms. We interpret estimates of time dummies as the growth rate of TFP which
is common to the seventeen OECD countries. We denote the world component of sec-
toral utilization-adjusted-TFP in sector j by ZW,j

it and the world component of utilization-
adjusted-aggregate-TFP by ZW

it . Fig. 23 plots in the black line with triangles the rate of
growth of the world productivity growth. In the blue line with circles, we plot the growth
rate of he utilization-adjusted-aggregate-TFP which is constructed as a cross-country av-
erage of country-level TFP growth. Because the blue and the black line are hardly distin-
guishable, we can conclude that estimating the world component of productivity gives very
similar results to averaging utilization-adjusted-TFP.

Contribution of world TFP component to rate of growth of domestic TFP.
One interesting question to ask is to what extent the world component of utilization-
adjusted-TFP contributes to the rate of growth of the country-level utilization-adjusted-
TFP. Column 1 of Table 26 shows the variance of the growth rate of utilization-adjusted-
TFP. We consider four measures: utilization-adjusted-aggregate-TFP, utilization-adjusted-
traded-TFP, utilization-adjusted-non-traded-TFP and the ratio of traded to non-traded
utilization-adjusted-TFP. Column 2 of Table 26 shows the variance of the rate of growth of
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Figure 22: Labor Market Effects of a Technology Shock: Country-Level vs. World Technol-
ogy Shock Notes: Robustness Check w.r.t. the Measure of Technology Notes: The solid blue line shows the response of aggregate
and sectoral variables to an exogenous increase in the country level utilization-adjusted aggregate TFP by 1% in the long-run. Shaded
areas indicate the 90 percent confidence bounds based on Newey-West standard errors. We estimate a VAR model which includes the
country-level utilization-adjusted-aggregate-TFP, total hours worked, traded hours worked, non-traded hours worked, the hours worked
share of tradables, all variables entering the VAR model in rate of growth. While in the baseline case, we estimate the VAR model
with two lags, we alternatively allow for four lags, as displayed by the black line, and eight lags, as displayed by the red line. Because
in our measure of technology, we adjust the Solow residual with the capital utilization rate constructed by adapting the methodology
proposed by Imbs [1999], we alternatively adopt the approach of Basu [1996]. The yellow line shows the response of TFP based on
the Solow residual adjusted with the time series for the capacity utilization rate by using Basu’s [1996] method. To further test our
approach, we also consider two different time series, i.e., the utilization-adjusted-TFP constructed by Levchenko et al. [2023] shown in
the green line, and that constructed by Basu et al. [2006] which is displayed by the brown line. Sample: 17 OECD countries, 1970-2017,
annual data.
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Figure 23: Rate of Growth of the Ratio of World TFP of Tradables Relative to Non-
Tradable Notes: We run the regression of the growth rate of TFP in sector j at time t in country i on country
and year effects, see eq. (228), and interpret estimated coefficients for time dummies as the rate of growth of sectoral
TFP which is common to the seventeen OECD countries of our sample. The solid blue line with circles plots the
world productivity growth against time. Alternatively, we calculate a world productivity growth by averaging logged
sectoral TFP across countries which is displayed by the black line with triangles. The two measures give similar
results. Sample: 17 OECD countries, 1970-2017, annual data.

world utilization-adjusted-TFP. Column 3 gives the contribution of the world component
to the rate of growth of the country-level of utilization-adjusted-TFP. The first row reveals
that over the period 1970-2017, the common component to the seventeen OECD coun-
tries of the rate of growth of aggregate TFP contributes 32% to the rate of growth of the
country-level aggregate TFP. As can be seen in the second and third row, as expected, the
world component of utilization-adjusted-traded-TFP is larger than the world component
of non-traded utilization-adjusted-non-traded-TFP since traded firms are more prone to
benefit from international innovations as they are more open to trade and investment more
in R&D. Importantly, the analysis over sub-periods reveals that the intensity of traded
technology in the world component has increased from 36% to 49%.

Table 26: The Share of Variance of TFP Growth Attributable to World TFP Growth (in
%)

Total Variance Contribution in % Sub-periods
Variance World World Country-level 1970-1992 1993-2017

(1) (2) (3) (4) (5) (6)

Agg. Technology 0.0043 0.0014 32.2 67.8 0.0015 (35.7%) 0.0013 (37.9%)
H-Technology 0.0125 0.0046 36.9 63.1 0.0041 (36.6%) 0.0060 (49.0%)
N -Technology 0.0032 0.0010 30.5 69.5 0.0015 (34.5%) 0.0006 (32.7%)
H/N Technology 0.0138 0.0052 37.7 62.3 0.0044 (34.7%) 0.0069 (48.6%)

Notes: We run a principal component analysis to extract the common component to all country-level-adjusted-aggregate-
TFP growth that we interpret as the world component. In columns 1 and 2, we show the variance of the rate of growth of
country-level-adjusted-TFP and its common component, respectively. The figure in columns 3-4 denotes the fraction of the
variance of country-level TFP growth attributable to the world component and country-specific component, respectively.
In columns 5 and 6, we show the variance of the rate of growth of world adjusted-TFP. Numbers in parentheses denote
shares of the country-level-adjusted-TFP. Sample: 17 OECD countries, 1970-2017, annual data.

Empirical strategy and results. Fig. 24 contrasts the effects of a technology im-
provement in the baseline scenario where we estimate a VAR model which includes the
country-level utilization-adjusted-aggregate-TFP, total hours worked, traded hours worked,
non-traded hours worked, the hours worked share of tradables, all variables entering the
VAR model in rate of growth. The black line shows the dynamic effects of hours worked
when the country-level utilization-adjusted-aggregate-TFP is replaced with the world com-
ponent of TFP. The world stock of knowledge or world technology is constructed as an
import-share-geometric-weighted-average of TFP of trade partners of country i, i.e., ZW

i,t =

Π16
k=1

(
ZA

k,t

)αk
M

where Zk,t is the utilization-adjusted-TFP of country i’s trade partner. We
use this index in running our estimates in order to use the panel SVAR methodology which
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leads to higher accuracy of estimated values. We may notice a discrepancy in the adjustment
of utilization-adjusted-aggregate-TFP. When we use the international stock of knowledge,
we find that technology improves gradually. Our interpretation is that taking advantage of
existing technologies from abroad might generate adoption technology costs which result in
a gradual increase in ZA

it .
Overall, world technology shocks do not lower labor on impact. Our interpretation

is that world technology shocks are mostly driven by asymmetric technology shocks and
symmetric technology shocks play a minor role. As shown in column 2, world technology
shocks produce very similar effects to those following country-level technology shocks once
we consider asymmetric technology shocks. More specifically, we find that a technology
improvement which is concentrated within traded industries generates an increase in non-
traded hours worked while traded hours worked are unresponsive, thus leading to a gradual
decline in the hours worked share of tradables. As can be seen in the second row of column 2,
the response of total hours worked following an asymmetric world technology shock is very
similar to that following an asymmetric country-level technology shock. In contrast, the
effects of symmetric technology shocks are somewhat different from our baseline when we
approximate the stock of knowledge with the international stock of ideas. The reason is that
while we impose in the long-run that the ratio of traded to non-traded utilization-adjusted-
TFP is fixed, in the short-run, technology improves in the traded relative to the non-traded
sector which appreciates the relative price of non-tradables and thus has an expansionary
effect non non-traded hours worked on impact. However, when we consider an aggregate
technology shock, overall, the discrepancy in the labor market effects are not statistically
different when we consider the baseline measure of technology or the international stock of
knowledge.

N.6 Max Share Identification

Advantages of Max share over LR identification of technology shocks. One
key difference between the empirical and the theoretical model is that the former imposes
a small number of lags whilst the latter allows for an infinite number of lags. Erceg,
Gust and Guerrieri [2005], Chari et al. [2008] argue that it causes a lag-truncation bias
which lead estimated IRFs to be biased, in magnitude for the former and in sign for the
latter. Francis et al. [2014] offer an alternative approach to identification with the intent of
addressing the aforementioned shortcoming associated with long-run restriction in small-
sample estimation. Instead of imposing long-run restrictions, Francis et al. [2014] identify
the technology shock by maximizing the forecast error variance share of productivity at
long, finite horizons. This method has two major advantages over the standard long-run
identification which assumes that the technology shock is the sole contributor of long-run
productivity shifts, all other structural innovations having transitory effects on productivity.
First, in place of the restriction that the unit root in productivity is driven exclusively by
technology, their approach imposes a weaker restriction that the forecast-error variance
in productivity at long horizons is dominated by the technology shock. This allows other
shocks to influence productivity at finite horizon. Second, the max share approach considers
a finite horizon which is more suited to estimate BkA0 (see section F, eq. (100)). Intuitively,
as shown by Uhlig [2004], there is no horizon, at which technology shocks alone explain
productivity. Thus, neither short-run, medium-run, nor long-run identification will exactly
identify the technology shock. He finds however that medium-run identification works
better than the other two.

Using data simulated from a RBC model and a standard medium-scale DSGE model
with sticky prices, Francis et al. [2014] find that the Max Share approach exhibits less bias
(measured by the deviation between the median response and the theoretical response)
and less uncertainty (measured by the width of the 68 percent error bands) than the LR
approach. In addition to the responses to the shocks, when the authors compare the model-
generated and the estimated technology shocks, they find a high correlation (of 0.81) for
the Max share shocks with the true shocks generated by RBC and NK models whilst the
correlation is lower for technology shocks from the LR model.

Advantages of max share identification. As mentioned in section F where we
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detail formally the long-run identification of asymmetric technology shocks across sectors,
we consider a specification where all variables enter the VAR model in growth rate, we
order utilization-adjusted-aggregate-TFP first, and identify asymmetric technology shocks
across sectors as shocks that increase permanently utilization-adjusted-aggregate-TFP (at
an infinite horizon). We consider below two VAR specifications to estimate the labor
labor effects of a permanent technology improvement. In addition to utilization-adjusted-
aggregate-TFP, the baseline VAR model includes real GDP, total hours worked, the real
consumption wage, while the alternative VAR model includes traded and non-traded hours
worked (all variables in rate of growth).

Instead of imposing long-run restrictions, Francis et al. [2014] identify the technology
shock by maximizing the forecast error variance share of productivity at long, finite horizons.
In the Max Share identification, all variables including labor productivity enter the VAR
in log levels. As mentioned above, instead of estimating the long-run cumulative matrix
B(1)A0, the max share approach amounts to estimating BkA0 at a finite horizon. The
Maximum Forecast Error Variance approach extracts the shock that best explains the FEV
at a long but finite horizon of utilization-adjusted-TFP.

LR model vs. Max share: One country at a time. In Fig. 25-28, we generate
the empirical responses from the VAR model estimated for one country at a time. We
have estimated the same VAR model for the seventeen OECD countries of our sample.
The blue line shows responses obtained by imposing LR restrictions to identify asymmetric
technology shocks across sectors. The black line shows results when we estimate the afore-
mentioned VAR model and use the max share identification developed by Francis et al.
[2014] to estimate the effects of a permanent increase in traded TFP relative to non-traded
TFP by 1% in the long-run. As it stands out, for all countries and all variables, the LR
model generates empirical responses which lie within the confidence bounds associated with
the baseline VAR model estimated with long-run restrictions.

Overall, the responses of hours worked generated by applying the Max share (black line)
identification lie within the confidence bounds associated with the LR model (blue line)
except for three countries (Austria, Belgium, Germany) out of seventeen in our sample.
We may notice some quantitative differences however. The LR model generates a gradual
increase in utilization-adjusted-TFP while the Max share produces a larger technology
improvement on impact. This overshooting may produce a larger increase in traded relative
to non-traded technology that would explain why in Austria, Belgium, Germany, non-traded
hours worked increases instead of falling or being muted.

LR model vs. Max share: Median estimates. So far, we have compared the
responses to technology shocks across countries by considering the Max share (black line)
approach and the LR model (blue line). To ease the comparison between the two ap-
proaches, it is convenient to compare one single IRF of one variable between the LR model
and the Max share identification by considering the median of estimates for both methods.
Fig. 29 shows the responses for the VAR model which includes aggregate technology, ZA

it ,
real GDP, hours worked and the real consumption wage. Overall the responses to the Max
share lie within the confidence bounds of the baseline LR model although the Max share
predicts a smaller decline in hours on impact and a greater increase in real GDP.

N.7 Two-Step SVARs-Based Procedure to Identify Technology Shocks

Why should hours be removed from the SVAR? Evidence documented by Christiano
et al. [2006] from their simulation experiments suggests using other variables than hours
worked which are less sensitive to the volatility of non-technology shocks and/or contain
a sizeable part of technology shocks. The reason is that they show that when the model
is more properly estimated, the standard error of the non-technology shocks is half the
standard error of the technology shock. In such a case, the bias in SVARs with labour
productivity and hours is strongly reduced. In light of the above findings, Fève and Guay
[2010] argue that SVARs can deliver accurate results if more efforts are made over the
choice of the stationary variables. More precisely, hours (or other highly persistent variables
subject to empirical controversies about their stationarity) must be excluded from SVARs
and replaced by any variable which presents better stochastic properties. The introduction
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of a highly persistent variable as hours worked in the SVARs confounds the identification
of the permanent and transitory shocks and thus contaminates the corresponding Impulse
Response Functions (IRFs). Following the previously mentioned contributions, the selected
variable must satisfy the following stochastic properties. First, the variable must display
less controversy over its stationarity. Second, the variable must behave more as a capital
(or state) variable than hours worked do, so that a VAR model with a finite number
of lags can more easily approximate the true underlying dynamics of the data. Third, the
variable must contain a sizeable technology component and present less sensitivity to highly
persistent non-technology shocks. According to Fève and Guay [2010], the consumption to
output ratio (in logs) is a promising candidate for fulfilling these three requirements as it
is stationary and consequently displays less persistence than hours worked, it represents a
better approximation of the state variables than hours worked and appears less sensitive to
transitory shocks.

Two-step approach. The proposed approach by Fève and Guay [2010] consists in two
steps. In the first step, a SVAR model which includes utilization adjusted aggregate TFP ZA

it

and the consumption to GDP ratio ωC,it is considered to consistently estimate technology
shocks using a long-run restriction. Note that consumption includes both private and
government consumption. Because we consider an open economy model, for the purposes
of consistency, we augment the broad measure of consumption with net exports which has
the advantage to isolate the demand for domestic goods. In the second step, the IRFs of
hours (or any other aggregate variable under interest) at different horizons are obtained by
a simple (univariate or multivariate) regression of hours on the estimated technology shock.
The VAR we estimate, i.e., [ẐA

it , log ωC,it], includes utilization adjusted aggregate TFP is
in growth rate and ωC is in log as in Blanchard and Quah where they consider a VAR
model which includes the rate of change in real GDP and the unemployment rate (which
is in level). In Fève and Guay ωC enters the VAR model in log level (and not in level).
In the second step, we estimate the dynamic effects on total hours worked by using local
projection methods.

Fig. 30 reveals that the two-step approach (black line) leads to empirical results which
are very close to our baseline estimates shown in the blue line. Because the two-step ap-
proach should considerably mitigate the likelihood for technology shocks to be contaminated
by long-lasting demand shocks, these results corroborate the robustness of our approach.
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Figure 24: Labor Market Effects of a Technology Shock: Country-Level vs. World Tech-
nology Shock Notes: The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in
the country level utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds
based on Newey-West standard errors. We estimate a VAR model which includes the country-level utilization-adjusted-aggregate-TFP,
total hours worked, traded hours worked, non-traded hours worked, the hours worked share of tradables, all variables entering the
VAR model in rate of growth. The black line shows the dynamic effects of hours worked when the country-level utilization-adjusted-
aggregate-TFP is replaced with the world component of TFP. The world stock of knowledge or world technology is constructed as

an import-share-geometric-weighted-average of TFP of trade partners of country i, i.e., ZW
i,t = Π16

k=1

(
ZA

k,t

)αk
M where Zk,t is the

utilization-adjusted-TFP of country i’s trade partner (i.e., country k). Sample: 17 OECD countries, 1970-2017, annual data.
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Figure 25: Responses of Hours to a Technology Shock: Max Share (solid black line)
vs. Long-Run Restriction (solid blue line) Identification for Australia, Austria, Belgium,
Canada. Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-
adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained
by bootstrap sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a
VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption
wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions,
i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative
identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite
horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR
in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure
percentage deviation from trend. Sample: Australia, Austria, Belgium, Canada, 1970-2017, annual data.
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Figure 26: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for Germany, Denmark, Spain, Finland.
Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-adjusted
aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained by bootstrap
sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a VAR model
which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage. In the
baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions, i.e., technology
shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative identification
method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al. [2014] identify
the technology shock by maximizing the forecast error variance share of productivity at long, finite horizons. In
the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR in log levels.
The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure percentage
deviation from trend. Sample: Germany, Denmark, Spain, Finland, 1970-2013, annual data.
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Figure 27: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for France, the United Kingdom, Ire-
land, Italy. Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-
adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained
by bootstrap sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a
VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption
wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions,
i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative
identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite
horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR
in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure
percentage deviation from trend. Sample: France, the United Kingdom, Ireland, Italy, 1970-2013, annual data.
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Figure 28: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for Japan, the Netherlands, Norway,
Sweden, the United States. Notes: The solid lines show the responses of aggregate variables to an exogenous
increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence
bounds obtained by bootstrap sampling. We compare the dynamic effects of two identification methods. In both
cases, we estimate a VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the
real consumption wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run
restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In
the alternative identification method, we employ the Max Share approach. Instead of imposing long-run restrictions,
Francis et al. [2014] identify the technology shock by maximizing the forecast error variance share of productivity at
long, finite horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter
the VAR in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical
axes measure percentage deviation from trend. Sample: Japan, the Netherlands, Norway, Sweden, the United States,
1970-2017, annual data.
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Figure 29: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags
Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-adjusted aggregate TFP by 1%
in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained by bootstrap sampling. We compare the dynamic
effects of two identification methods. In both cases, we estimate a VAR model which includes utilization-adjusted aggregate TFP, real
GDP, total hours worked, the real consumption wage. In the baseline shown in the blue line, the technology shock is identified by
imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In
the alternative identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite horizons. In the
Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR in log levels. The black line shows
the median of the responses. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. Sample. Sample:
17 OECD countries, 1970-2017, annual data.
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Figure 30: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags Notes:
The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate
TFP by 1% in the long-run in the baseline case. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard
errors. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP, real GDP, total hours worked,
the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e., technology shocks are driven
by the permnanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005]
single-equation method. Horizontal axes indicate years. In the lines of Fève and Guay [2010], we estimate in the first step a VAR model
which includes the measure of technology, i.e., utilization-adjusted aggregate TFP, and real GDP both in log differences and the ratio
of the sum of consumption, government spending and net exports to GDP in log level. Results are shown in the black line. Vertical
axes measure percentage deviation from trend. Sample. Sample: 17 OECD countries, 1970-2017, annual data.
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O Semi-Small Open Economy Model

This Appendix puts forward an open economy version of the neoclassical model with trad-
ables and non-tradables, imperfect mobility of labor and capital across sectors, capital
adjustment costs and endogenous terms of trade. This section illustrates in detail the steps
we follow in solving this model. We assume that production functions take a Cobb-Douglas
form since this economy is the reference model for our calibration as we normalize CES
productions by assuming that the initial steady state of the Cobb-Douglas economy is the
normalization point.

Households supply labor, L, and must decide on the allocation of total hours worked
between the traded sector, LH , and the non-traded sector, LN . They consume both traded,
CT , and non-traded goods, CN . Traded goods are a composite of home-produced traded
goods, CH , and foreign-produced foreign (i.e., imported) goods, CF . Households also
choose investment which is produced using inputs of the traded, JT , and the non-traded
good, JN . As for consumption, input of the traded good is a composite of home-produced
traded goods, JH , and foreign imported goods, JF . The numeraire is the foreign good
whose price, PF , is thus normalized to one.

O.1 Households

At each instant of time, the representative household consumes traded and non-traded
goods denoted by CT and CN , respectively, which are aggregated by means of a CES
function:

C(t) =
[
ϕ

1
φ

(
CT (t)

)φ−1
φ + (1− ϕ)

1
φ

(
CN (t)

)φ−1
φ

] φ
φ−1

, (229)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ
corresponds to the elasticity of substitution between traded goods and non-traded goods.
The index CT is defined as a CES aggregator of home-produced traded goods, CH , and
foreign-produced traded goods, CF :

CT (t) =
[(

ϕH
) 1

ρ
(
CH(t)

) ρ−1
ρ + (1− ϕH)

1
ρ

(
CF (t)

) ρ−1
ρ

] ρ
ρ−1

, (230)

where 0 < ϕH < 1 is the weight of the home-produced traded good in the overall traded
consumption bundle and ρ corresponds to the elasticity of substitution between home-
produced traded goods goods and foreign-produced traded goods.

As in De Cordoba and Kehoe [2000], the investment good is produced using inputs of
the traded good and the non-traded good according to a constant-returns-to-scale function
which is assumed to take a CES form:

J(t) =
[
ι

1
φJ

(
JT (t)

)φJ−1

φJ + (1− ι)
1

φJ

(
JN (t)

)φJ−1

φJ

] φJ
φJ−1

, (231)

where ι is the weight of the investment traded input (0 < ι < 1) and φJ corresponds to
the elasticity of substitution in investment between traded and non-traded inputs. The
index JT is defined as a CES aggregator of home-produced traded inputs, JH , and foreign-
produced traded inputs, JF :

JT (t) =
[
(ιH)

1
ρJ

(
JH(t)

) ρJ−1

ρJ + (1− ιH)
1

ρJ

(
JF (t)

) ρJ−1

ρJ

] ρJ
ρJ−1

, (232)

where 0 < ιH < 1 is the weight of the home-produced traded in input in the overall traded
investment bundle and ρJ corresponds to the elasticity of substitution between home- and
foreign-produced traded inputs.

Following Horvath [2000], we assume that hours worked in the traded and the non-
traded sectors are aggregated by means of a CES function:

L(t) =
[
ϑ
−1/εL

L

(
LH(t)

) εL+1

εL + (1− ϑL)−1/εL
(
LN (t)

) εL+1

εL

] εL
εL+1

, (233)
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where 0 < ϑL < 1 is the weight of labor supply to the traded sector in the labor index L(.)
and εL measures the ease with which hours worked can be substituted for each other and
thereby captures the degree of labor mobility across sectors.

Like labor, we generate imperfect capital mobility by assuming that traded KH(t) and
non-traded KN (t) capital stock are imperfect substitutes:

K(t) =
[
ϑ
−1/εK

K

(
KH(t)

) εK+1

εK + (1− ϑK)−1/εK
(
KN (t)

) εK+1

ε

] εK
εK+1

, (234)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate
capital index K(.) and εK measures the ease with which sectoral capital can be substituted
for each other and thereby captures the degree of capital mobility across sectors.

Households choose the level of capital utilization in sector j, denoted by uK,j(t). The
capital utilization rate collapses to one at the steady-state. Capital utilization adjustment
costs are assumed to be an increasing and convex function of the capital utilization rate:

CK,j(t) = ξj
1

(
uK,j(t)− 1

)
+

ξj
2

2
(
uK,j(t)− 1

)2
. (235)

The representative agent is endowed with one unit of time, supplies a fraction L(t) as
labor, and consumes the remainder 1− L(t) as leisure. At any instant of time, households
derive utility from their consumption and experience disutility from working and maximizes
the following objective function:

U =
∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (236)

where β > 0 is the discount rate and we consider the utility specification proposed by
Shimer [2009]:

Λ (C, L) ≡ C1−σV (L)σ − 1
1− σ

, if σ 6= 1, V (L) ≡
(

1 + (σ − 1) γ
σL

1 + σL
L

1+σL
σL

)
, (237)

subject to the flow budget constraint:22

Ṅ(t) +PC(t)C(t) + PJ(t)J(t) +
∑

j=H,N

P j(t)CK,j(t)νK,j(t)K(t)

= r?N(t) + W (t)L(t) + RK(t)K(t)
∑

j=H,N

αj
K(t)uK,j(t)− T (t), (238)

and capital accumulation which evolves as follows:

K̇(t) = I(t)− δKK(t), (239)

where I is investment and 0 ≤ δK < 1 is a fixed depreciation rate. We assume that capital
accumulation is subject to increasing and convex cost of net investment, I(t)− δKK(t):

J(t) = I(t) +
κ

2

(
I(t)
K(t)

− δK

)2

K(t), (240)

Partial derivatives of total investment expenditure are:

∂J(t)
∂I(t)

= 1 + κ

(
I(t)
K(t)

− δK

)
, (241a)

∂J(t)
∂K(t)

= −κ

2

(
I(t)
K(t)

− δK

) (
I(t)
K(t)

+ δK

)
. (241b)

22we denote the share of sectoral capital in the aggregate capital stock by νK,j(t) = Kj(t)/K(t) and the

capital and labor compensation share in sector j = H, N by αj
K(t) = Rj(t)Kj(t)

RK(t)K(t)
and αj

L(t) = W j(t)Lj(t)
W (t)L(t)

.
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Denoting the co-state variables associated with (238) and (239) by λ and Q′, respectively,
the first-order conditions characterizing the representative household’s optimal plans are:

C(t)−σV (t)σ = PC(t)λ(t), (242a)

C(t)1−σV (t)σγL(t)
1

σL = λ(t)W (t), (242b)

Q(t) = PJ(t)
[
1 + κ

(
I(t)
K(t)

− δK

)]
, (242c)

λ̇(t) = λ (β − r?) , (242d)

Q̇(t) = (r? + δK) Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)CK,j(t)νK,j(t)− PJ(t)
∂J(t)
∂K(t)

}
, (242e)

Rj(t)
P j(t)

= ξj
1 + ξj

2

(
uK,j(t)− 1

)
, j = H, N, (242f)

and the transversality conditions limt→∞ λ̄N(t)e−βt = 0 and limt→∞Q(t)K(t)e−βt = 0; to
derive (242c) and (242e), we used the fact that Q(t) = Q′(t)/λ(t). We drop the time index
below when it does not cause confusion.

Given the above consumption indices, we can derive appropriate price indices. With
respect to the general consumption index, we obtain the consumption-based price index
PC :

PC =
[
ϕ

(
P T

)1−φ
+ (1− ϕ)

(
PN

)1−φ
] 1

1−φ
, (243)

where the price index for traded goods is:

P T =
[
ϕH

(
PH

)1−ρ
+ (1− ϕH)

] 1
1−ρ

. (244)

Given the consumption-based price index (243), the representative household has the
following demand of traded and non-traded goods:

CT = ϕ

(
P T

PC

)−φ

C, (245a)

CN = (1− ϕ)
(

PN

PC

)−φ

C. (245b)

Given the price indices (243) and (244), the representative household has the following
demand of home-produced traded goods and foreign-produced traded goods:

CH = ϕ

(
P T

PC

)−φ

ϕH

(
PH

P T

)−ρ

C, (246a)

CF = ϕ

(
P T

PC

)−φ

(1− ϕH)
(

1
PT

)−ρ

C. (246b)

As will be useful later, the percentage change in the consumption price index is a
weighted average of percentage changes in the price of traded and non-traded goods in
terms of foreign goods:

P̂C = αC P̂ T + (1− αC) P̂N , (247a)

P̂ T = αH P̂H , (247b)

where αC is the tradable content of overall consumption expenditure and αH is the home-
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produced goods content of consumption expenditure on traded goods:

αC = ϕ

(
P T

PC

)1−φ

, (248a)

1− αC = (1− ϕ)
(

PN

PC

)1−φ

, (248b)

αH = ϕH

(
PH

P T

)1−ρ

, (248c)

1− αH = (1− ϕH)
(

1
P T

)1−ρ

. (248d)

Given the CES aggregator functions above, we can derive the appropriate price indices
for investment. With respect to the general investment index, we obtain the investment-
based price index PJ :

PJ =
[
ι
(
P T

J

)1−φJ + (1− ι)
(
PN

)1−φJ
] 1

1−φJ , (249)

where the price index for traded goods is:

P T
J =

[
ιH

(
PH

)1−ρJ +
(
1− ιH

)] 1
1−ρJ . (250)

Given the investment-based price index (249), we can derive the demand for inputs of
the traded good and the non-traded good:

JT = ι

(
P T

J

PJ

)−φJ

J, (251a)

JN = (1− ι)
(

PN

PJ

)−φJ

J. (251b)

Given the price indices (249) and (250), we can derive the demand for inputs of home-
produced traded goods and foreign-produced traded goods:

JH = ι

(
P T

J

PJ

)−φJ

ιH
(

PH

P T
J

)−ρJ

J, (252a)

JF = ι

(
P T

J

PJ

)−φJ (
1− ιH

) (
1

P T
J

)−ρJ

J. (252b)

As will be useful later, the percentage change in the investment price index is a weighted
average of percentage changes in the price of traded and non-traded inputs in terms of
foreign inputs:

P̂J = αJ P̂ T
J + (1− αJ) P̂N , (253a)

P̂ T
J = αH

J P̂H , (253b)

where αJ is the tradable content of overall investment expenditure and αH
J is the home-

produced goods content of investment expenditure on traded goods:

αJ = ι

(
P T

J

PJ

)1−φJ

, (254a)

1− αJ = (1− ι)
(

PN

PJ

)1−φJ

, (254b)

αH
J = ιH

(
PH

P T
J

)1−ρJ

, (254c)

1− αH
J =

(
1− ιH

) (
1

P T
J

)1−ρJ

. (254d)
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The aggregate wage index, W , associated with the labor index defined above (233) is:

W =
[
ϑL

(
WH

)εL+1
+ (1− ϑL)

(
WN

)εL+1
] 1

εL+1
, (255)

where WH and WN are wages paid in the traded and the non-traded sectors, respectively.
The aggregate capital rental rate, RK , associated with the aggregate capital index defined
above (234) is:

RK =
[
ϑK

(
RH

)εK+1
+ (1− ϑK)

(
RN

)εK+1
] 1

εK+1
, (256)

where RH and RN are capital rental rates paid in the traded and the non-traded sectors,
respectively.

Given the aggregate wage index and the aggregate capital rental rate, the allocation of
aggregate labor supply and the aggregate capital stock to the traded and the non-traded
sector reads:

LH = ϑL

(
WH

W

)εL

L, LN = (1− ϑL)
(

WN

W

)εL

L, (257a)

KH = ϑK

(
RH

R

)εK

K, KN = (1− ϑK)
(

RN

R

)εK

K, (257b)

As will be useful later, the percentage change in the aggregate return index on labor and
capital is a weighted average of percentage changes in sectoral wages and sectoral capital
rental rates:

Ŵ = αLŴH + (1− αL) ŴN , R̂ = αKR̂H + (1− αK) R̂N , (258)

where αL and αK are the tradable content of aggregate labor and capital compensation:

αL = ϑL

(
WH

W

)1+εL

, 1− αL = (1− ϑL)
(

WN

W

)1+εL

, (259a)

αK = ϑK

(
RH

R

)1+εR

, 1− αK = (1− ϑK)
(

RN

R

)1+εK

. (259b)

O.2 Firms

Both the traded and non-traded sectors use physical capital, K̃j = uK,jKj , and labor, Lj ,
according to constant returns to scale production functions Y j = ZjF j

(
K̃j , Lj

)
which are

assumed to take a Cobb-Douglas form:

Y j = Zj
(
Lj

)θj (
K̃j

)1−θj

, j = H, N (260)

where θj is the labor income share in sector j and Zj corresponds to the total factor
productivity. Both sectors face two cost components: a capital rental cost equal to Rj , and
a labor cost equal to the wage rate, i.e., W j .

Both sectors are assumed to be perfectly competitive and thus choose capital and labor
by taking prices as given:

max
K̃j ,Lj

Πj = max
K̃j ,Lj

{
P jY j −W jLj −RjK̃j

}
. (261)

Since capital can move freely between the two sectors, the value of marginal products in
the traded and non-traded sectors equalizes while costly labor mobility implies a wage
differential across sectors:

P jZj
(
1− θj

) (
Lj

)θj (
K̃j

)−θj

= Rj , (262a)

P jZjθj
(
Lj

)1−θj (
K̃j

)1−θj

= W j . (262b)
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O.3 Short-Run Solutions

Consumption and Labor
Before linearizing, we have to determine short-run solutions. First-order conditions

(242a) and (242b) can be solved for consumption and aggregate labor supply which of
course must hold at any point of time:

C = C
(
λ̄, PN , PH

)
, L = L

(
λ̄,WH ,WN

)
, (263)

with partial derivatives given by

Ĉ = −σC
ˆ̄λ− σCαCαH P̂H − σC (1− αC) P̂N , (264a)

L̂ = σL
ˆ̄λ + σL (1− αL) ŴN + σLαLŴH , (264b)

where we used (258) and (247).
Inserting first the solution for consumption (263) into (245a)-(246b) allows us to solve

for CN , CH , and CF :

CN = CN
(
λ̄, PN , PH

)
, CH = CH

(
λ̄, PN , PH

)
, CF = CF

(
λ̄, PN , PH

)
, (265)

with partial derivatives given by

ĈN = −φP̂N + (φ− σC) P̂C − σC
ˆ̄λ,

= − [αCφ + (1− αC) σC ] P̂N + (φ− σC) αCαH P̂H − σC
ˆ̄λ, (266a)

ĈH = − [
ρ

(
1− αH

)
+ φ (1− αC) αH + σCαCαH

]
P̂H + (1− αC) (φ− σC) P̂N − σC

ˆ̄λ,(266b)

ĈF = αH [ρ− φ (1− αC)− σCαC ] P̂H + (1− αC) (φ− σC) P̂N − σC
ˆ̄λ. (266c)

Inserting first the solution for labor (263) into (257a) allows us to solve for LH and LN :

LH = LH
(
λ̄,WH ,WN

)
, LN = LN

(
λ̄,WH ,WN

)
, (267)

with partial derivatives given by:

L̂H = [εL (1− αL) + σLαL] ŴH − (1− αL) (εL − σL) ŴN + σL
ˆ̄λ, (268a)

L̂N = [εLαL + σL (1− αL)] ŴN − αL (εL − σL) ŴH + σL
ˆ̄λ. (268b)

The decision to allocate capital between to the traded and the non-traded sectors (257b)
allows us to solve for KH and KN :

KH = KH
(
K, RH , RN

)
, KN = KN

(
K, RH , RN

)
, (269)

with partial derivatives given by:

K̂H = εK (1− αK) R̂H − (1− αK) εKR̂N + K̂, (270a)

K̂N = εKαKR̂N − αKεKR̂H + K̂. (270b)

Sectoral Wages and Sectoral Capital Rental Rates
Plugging the short-run solutions for LH , LN , KH , KN , given by (267)-(269) into the

demand for capital and labor (262a)-(262b), the system of four equations can be solved for
sectoral wages W j and sectoral capital rental rates Rj . Log-differentiating (262a)-(262b)
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yields in matrix form:



−
[(

1− θH
) LH

WH

LH + 1
W H

]
− (

1− θH
) LH

WN

LH

(
1− θH

) KH
RH

KH

(
1− θH

) KH
RN

KH

− (
1− θN

) LN
WN

LN −
[(

1− θN
) LN

WN

LN + 1
W N

] (
1− θN

) KN
RH

KN

(
1− θN

) KN
RN

KN

θH LH
WH

LH θH LH
WN

LH −
[
θH KH

RH

KH + 1
RH

]
θH KH

RN

KH

θN LN
WH

LN θN LN
WN

LN θN KN
RH

KN −
[
θN KN

RN

KN + 1
RN

]




×




dWH

dWN

dRH

dRN




=




(
1− θH

) LH
PN

LH dPN +
[(

1− θH
) LH

PH

LH − 1
P H

]
dPH − (

1− θH
) KH

K

KH dK − ẐH − (
1− θH

)
duK,H

[(
1− θN

) LN
PN

LN − 1
P N

]
dPN +

(
1− θN

) LN
PH

LN dPH − (
1− θN

) KN
K

KN dK − ẐN − (
1− θN

)
duK,N

−θH LH
PH

LH dPN −
[
θH LH

PH

LH + 1
P H

]
dPH + θH KH

K

KH dK − ẐH + θHduK,H

−
[
θN LN

PN

LN + 1
P N

]
dPN − θN LN

PH

LN dPH + θN KN
K

KN dK − ẐN + θNduK,N




,(271)

The short-run solutions for sectoral wages and the capital rental rates are:

W j = W j
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
, Rj = Rj

(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
.

(272)
Inserting first sectoral wages and capital rental rates (272) into intermediate solutions for
sectoral hours worked (267) and sector capital capital (269), these equations can be solved
as functions of the aggregate capital stock, the price of non-traded goods in terms of foreign
goods, PN , the terms of trade, and the capital utilization rates:

Lj = Lj
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
, Kj = Kj

(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
,

(273)
Finally, plugging solutions for sectoral labor (273) and sector capital-labor ratios (272),
production functions (260) can be solved for sectoral value added:

Y j = Y j
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
. (274)

Capital Utilization Rates, uK,j(t)
Inserting firm’s optimal decision for capital (262a) in sector j in the optimal intensity

in the use of physical capital (242f) leads to:

Rj(t)
P j(t)

= ξj
1 + ξj

2

(
uK,j(t)− 1

)
= Zj(t)

(
1− θj

) (
Lj(t)

)θj (
K̃j(t)

)−θj

. (275)

Inserting intermediate solutions (273) for sectoral hours worked and sectoral capital into
(275) and log-differentiating leads to in a matrix form:




[
ξH
2

ξH
1

+ θH + θH KH
uK,H

KH

]
− θH LH

uK,H

LH θH KH
uK,N

KH − θH LH
uK,N

LH

θN KN
uK,H

KN − θN LN
uK,H

LN

[
ξN
2

ξN
1

+ θN + θN KN
uK,N

KN

]
− θN LN

uK,N

LN




(
ûK,H

ûK,N

)

=




[
θH LH

X

LH − θH KH
X

KH

]
dX + ẐH

[
θN LN

X

LN − θN KN
X

KN

]
dX + ẐN


 , (276)

where X = K, PH , PN , ZH , ZN
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The short-run solutions for capital and technology utilization rates are:

uK,j = uK,j
(
λ̄, K, PN , PH , ZH , ZN

)
. (277)

Intermediate Solutions for Rj , W j ,Kj , Lj , Y j

Plugging back solutions for the capital utilization rates (277) into the intermediate solu-
tions for the sectoral wage rates and the capital rental rates (272), for sectoral hours worked
and sectoral capital stocks (273), and for sectoral value added (274) leads to intermediate
solutions for sectoral wages, sectoral capital rental rates, sectoral hours worked, sectoral
capital stocks, sectoral value added:

W j , Rj , Lj ,Kj , Y j
(
λ̄,K, PN , PH , ZH , ZN

)
. (278)

Optimal Investment Decision, I/K
Eq. (242c) can be solved for the investment rate:

I

K
= v

(
Q

PI (P T , PN )

)
+ δK , (279)

where

v (.) =
1
κ

(
Q

PJ
− 1

)
, (280)

with

vQ =
∂v(.)
∂Q

=
1
κ

1
PJ

> 0, (281a)

vP H =
∂v(.)
∂PH

= −1
κ

Q

PJ

αJαH
J

PH
< 0, (281b)

vP N =
∂v(.)
∂PN

= −1
κ

Q

PJ

(1− αJ)
PN

< 0. (281c)

Inserting (279) into (240), investment including capital installation costs can be rewritten
as follows:

J = K

[
I

K
+

κ

2

(
I

K
− δK

)2
]

,

= K
[
v(.) + δK +

κ

2
(v(.))2

]
. (282)

Eq. (282) can be solved for investment including capital installation costs:

J = J
(
K,Q, PN , PH

)
, (283)

where

JK =
∂J

∂K
=

J

K
, (284a)

JX =
∂J

∂X
= κvX (1 + κv(.)) > 0, (284b)

with X = Q,PH , PN .
Substituting (284) into (251b), (252a), and (252b) allows us to solve for the demand of

non-traded, home-produced traded, and foreign inputs:

JN = JN
(
K, Q,PN , PH

)
, JH = JH

(
K,Q, PN , PH

)
, JF = JF

(
K,Q, PN , PH

)
,

(285)
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with partial derivatives given by

ĴN = −αJφJ P̂N + φJαJαH
J P̂H + Ĵ ,

=
Q

PJ

(1 + κv(.))
J

Q̂−
[
αJφJ +

Q

PJ

(1 + κv(.))
J

(1− αJ)
]

P̂N

+ αJαH
J

[
φJ − Q

PJ

(1 + κv(.))
J

]
P̂H + K̂, (286a)

ĴH = − [
ρJ

(
1− αH

J

)
+ αH

J φJ (1− αJ)
]
P̂H + φJ (1− αJ) P̂N + Ĵ ,

= −
{[

ρJ

(
1− αH

J

)
+ αH

J φJ (1− αJ)
]
+ αJαH

J

Q

PJ

(1 + κv(.))
J

}
P̂H

+ (1− αJ)
[
φJ − Q

PJ

(1 + κv(.))
J

]
P̂N +

Q

PJ

(1 + κv(.))
J

Q̂ + K̂, (286b)

ĴF = αH
J [ρJ − φJ (1− αJ)] P̂H + φJ (1− αJ) P̂N + Ĵ ,

= αH
J

{
[ρJ − φJ (1− αJ)]− αJ

Q

PJ

(1 + κv(.))
J

}
P̂H

+ (1− αJ)
[
φJ − Q

PJ

(1 + κv(.))
J

]
P̂N +

Q

PJ

(1 + κv(.))
J

Q̂ + K̂, (286c)

where use has been made of (284), i.e.,

Ĵ = K̂ +
Q

PJ

(1 + κv(.))
J

Q̂− Q

PJ

(1 + κv(.))
J

(1− αJ) P̂N

−αJαH
J

Q

PJ

(1 + κv(.))
J

P̂H .

O.4 Market Clearing Conditions

Finally, we have to solve for non-traded good prices and the terms of trade. The role of
the price of non-traded goods in terms of foreign goods is to clear the non-traded goods
market:

Y N = CN + GN + JN + CK,NKN . (287)

The role of the price of home-produced goods in terms of foreign-produced goods or the
terms of trade is to clear the home-produced traded goods market:

Y H = CH + GH + JH + XH + CK,HKH , (288)

where XH stands for exports which are negatively related to the terms of trade:

XH = ϕX

(
PH

)−φX
, (289)

with φX is the elasticity of exports with respect to the terms of trade. The rationale behind
(289) comes from the fact that exports are the sum of foreign demand for the domestically
produced tradable consumption goods and investment inputs denoted by CF,? and JF,?,
respectively:

XH(t) = CF,?(t) + JF,?(t),

= ϕ

(
P T,?

P ?
C

)−φ

(1− ϕ?
H)

(
PH(t)

P ?
T

)−ρ?

C? + ι

(
P T,?

J

P ?
J

)−φJ

(1− ι?H)

(
PH(t)

P T,?
J

)−ρ?
J

J?,

where we assume that the rest of the world have similar preferences with potentially different
elasticities (i..e, ρ? 6= ρ and ρ?

J 6= ρJ) between foreign and domestic tradable goods. To
keep things simple, we assume that technology is fixed abroad. Therefore foreign prices
denoted with a star remain constant and thus domestic exports are decreasing in the terms
of trade, PH(t).
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As shall be useful to write formal expressions in a compact form, we wet

∆H
P H = Y H

P H − CH
P H − JH

P H −XH
P H − ξH

1 uK,H
P H , (290a)

∆H
P N = Y H

P N − CH
P N − JH

P N − ξH
1 uK,H

P N , (290b)

∆H
K = Y H

K − CH
K − JH

K − ξH
1 uK,H

K , (290c)

∆H
Zj = Y H

Zj − CH
Zj − ξH

1 uK,H
Zj , (290d)

∆N
P H = Y N

P H − CN
P H − JN

P H − ξN
1 uK,N

P H > 0, (290e)

∆N
P N = Y N

P N − CN
P N − JN

P N − ξN
1 uK,N

P H , (290f)

∆N
K = Y N

K − CN
K − JN

K − ξN
1 uK,N

K , (290g)

∆N
Zj = Y N

Zj − CN
Zj − ξN

1 uK,N
Zj , (290h)

where XH
P H = ∂XH

∂P H < 0.
Totally differentiating the market clearing conditions (287)-(288) leads to in a matrix

form: (
∆H

P H ∆H
P N

∆N
P H ∆N

P N

)(
dPH

dPN

)
=

( −∆H
KdK + JH

Q dQ−∑
j ∆H

ZjdZ
j

−∆N
KdK + JN

Q dQ−∑
j ∆N

ZjdZ
j

)
. (291)

Applying the implicit functions theorem leads to the short-run solutions for the terms of
trade and non-traded good prices:

PH , PN
(
λ̄,K, Q,ZH , ZN

)
. (292)

Plugging back the solutions for sectoral prices into (277) and (278) allow us to find
the final versions of solutions of the capital utilization rate, sectoral wages, sectoral capital
rental rates, sectoral hours worked, sectoral capital stocks, sectoral value added:

uK,j ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K,Q, ZH , ZN

)
. (293)

Inserting the solutions for prices into the intermediate solutions for consumption (265) and
investment (285) leads to:

Cg, Jg
(
K,Q, ZH , ZN , λ̄

)
, (294)

where g = H, N, F .

O.5 Solving the Model

Remembering that the non-traded input JN used to produce the capital good is equal

to (1− ι)
(

P N

PJ

)−φJ

J (see eq. (251b)) with J = I + κ
2

(
I
K − δK

)2
K, using the fact that

JN = Y N − CN − GN − CK,NKN and inserting I = K̇ + δK , the capital accumulation
equation reads as follows:

K̇ =
Y N − CN −GN − CK,NKN

(1− ι)
(

P N

PJ

)−φJ
− δKK − κ

2

(
I

K
− δK

)2

K. (295)

Inserting short-run solutions for the capital utilization rate and value added, i.e., (293) ,
investment and consumption in non-tradables (294), into the physical capital accumulation
equation (295), and plugging the short-run solution for the return on domestic capital (293)
into the dynamic equation for the shadow value of capital stock (242e), the dynamic system
reads as follows:23

K̇ ≡ Υ
(
K,Q, ZH , ZN

)
=

EN
(
K,Q, ZH , ZN

)

(1− ι)
{

P N (.)
PJ [P H(.),P N (.)]

}−φJ
− δKK − K

2κ

{
Q

PJ [PH (.) , PN (.)]
− 1

}2

, (296a)

Q̇ ≡ Σ
(
K,Q, ZH , ZN

)
= (r? + δK) Q−

[∑
j Rj

(
K,Q, ZH , ZN

)
K̃j

(
K, Q, ZH , ZN

)

K

−
∑

j

CK,j
(
uK,j

(
K, Q,ZH , ZN

)] Kj
(
K,Q, ZH , ZN

)

K
+ PJ

κ

2
v(.) (v(.) + 2δK)

]
,(296b)

23We omit the shadow value of wealth from short-run solutions for clarity purposes as λ remains constant
over time.
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where EN = Y N − CN −GN − CK,NKN

To facilitate the linearization, it is useful to break down the capital accumulation into
two components:

K̂ = J − δKK − κ

2

(
I

K
− δK

)2

K. (297)

The first component is J . Using the fact that J = JN

(1−ι)
(

PN

PJ

)−φJ
and log-linearizing gives:

Ĵ = ĴN + φJαJ P̂N − φJαJαH
J P̂H (298)

where we used the fact that P̂J = αJαH
J P̂H + (1− αJ) P̂N . Using (297) and the fact that

JN = Y N−CN−GN−CK,NuK,N , linearizing (297) in the neighborhood of the steady-state
gives:

K̇ =
J

JN

[
dY N (t)− dCN (t)− ξN

1 duK,N (t)
]
+ φJ

J

PN
αJdPN (t)

− φJ
J

PH
αJαH

J dPH(t)− δKdK(t), (299)

where J = I = δKK in the long-run.
As will be useful, let us denote by ΥK , ΥQ, and ΥZj the partial derivatives evaluated

at the steady-state of the capital accumulation equation w.r.t. K, Q, and Zj , respectively.
Using (299), these elements of the Jacobian matrix are given by:

ΥK ≡ ∂K̇

∂K
=

J

JN
EN

K + αJφJJ

(
PN

K

PN
− αH

J

PH
K

PH

)
− δK ≷ 0, (300a)

ΥQ ≡ ∂K̇

∂Q
=

J

JN
EN

Q + αJφJJ

(
PN

Q

PN
− αH

J

PH
Q

PH

)
> 0, (300b)

ΥZj ≡ ∂K̇

∂Zj
=

J

JN
EN

Zj + αJφJJ

(
PN

Zj

PN
− αH

J

PH
Zj

PH

)
, (300c)

where J = δKK in the long run and EN
X = Y N

X − CN
X − ξN

1 uK,N
X with X = K, Q,Zj ,

Let us denote by ΣK , ΣQ, and ΣZj the partial derivatives evaluated at the steady-state
of the dynamic equation for the marginal value of an additional unit of capital w.r.t. K,
Q, and Zj , respectively:

ΣK ≡ ∂Q̇

∂K
= −

[
−R

K
+

∆K

K
+ PJκvKδK

]
> 0, (301a)

ΣQ ≡ ∂Q̇

∂Q
= (r? + δK)−

[
∆Q

K
+ PJκvQδK

]
> 0, (301b)

ΣZj ≡ ∂Q̇

∂Zj
= −

[
∆Zj

K
+ PJκvZjδK

]
. (301c)

where ∆K =
∑

j KjRj
K + RjKj

K + RjKjuK,j
K , ∆Q =

∑
j KjRj

Q + RjKj
Q + RjKjuK,j

Q ,

∆Zj =
∑

j KjRj
Zj + RjKj

Zj + RjKjuK,j
Zj .

Assuming that the saddle-path stability condition is fulfilled, and denoting the negative
eigenvalue by ν1 and the positive eigenvalue by ν2, the general solutions for K and Q are:

K(t)− K̃ = D1e
ν1t + D2e

ν2t, Q(t)− Q̃ = ω1
2D1e

ν1t + ω2
2D2e

ν2t, (302)

where K0 is the initial capital stock and
(
1, ωi

2

)′ is the eigenvector associated with eigenvalue
νi:

ωi
2 =

νi −ΥK

ΥQ
. (303)

Because ν1 < 0, ΥK > 0 and ΥQ > 0, we have ω1
2 < 0, regardless of sectoral capital

intensities, which implies that the shadow value of investment and the stock physical capital
move in opposite direction along a stable path (i.e., D2 = 0).
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O.6 Current Account Equation and Intertemporal Solvency Condition

To determine the current account equation, we use the following identities and properties:

PCC = PHCH + CF + PNCN , (304a)

PJJ = PHJH + JF + PNJN , (304b)

T = G = PHGH + GF + PNGN , (304c)

WL + RK̃ =
(
WHLH + RHK̃H

)
+

(
WNLN + RNK̃N

)
= PHY H + PNY N , (304d)

where (304d) follows from Euler theorem. Using (304d), inserting (304a)-(304c) into (238)
and invoking market clearing conditions for non-traded goods (287) and home-produced
traded goods (288) yields:

Ṅ = r?N + PH
(
Y H − CH −GH − JH − CK,HKH

)− (
CF + JF + GF

)
,

= r?N + PHXH −MF , (305)

where XH = Y H − CH − GH − JH stands for exports of home goods and we denote by
MF imports of foreign consumption and investment goods:

MF = CF + GF + JF . (306)

Inserting appropriate solutions, the current account equation reads:

Ṅ ≡ r?N + Ξ
(
K, Q, ZH , ZN

)
,

= r?N + PH
(
K,Q, ZH , ZN

)
XH

(
K, Q,ZH , ZN

)−MF
(
K,Q, ZH , ZN

)
. (307)

Let us denote by ΞK , ΞQ, and ΞZj the partial derivatives evaluated at the steady-state of
the dynamic equation for the current account w.r.t. K, Q, and Zj , respectively:

ΞK ≡ ∂Ṅ

∂K
= (1− φX) XHPH

K −MF
K , (308a)

ΞQ ≡ ∂Ṅ

∂Q
= (1− φX) XHPH

Q −MF
Q , (308b)

ΞZj ≡ ∂Ṅ

∂Zj
= (1− φX)XHPH

Zj −MF
Zj . (308c)

where we used the fact that PHXH = ϕX

(
PH

)1−φX (see eq. (289)).
Linearizing (307) in the neighborhood of the steady-state, making use of (308a) and

(308b), inserting solutions for K(t) and Q(t) given by (302) and solving yields the general
solution for the net foreign asset position:

N(t) = N + [(N0 −N)−Ψ1D1 −Ψ2D2] er?t + Ψ1D1e
ν1t + Ψ2D2e

ν2t, (309)

where N0 is the initial stock of traded bonds and we set

Ei = ΞK + ΞQωi
2, (310a)

Ψi =
Ei

νi − r?
. (310b)

Invoking the transversality condition leads to the linearized version of the nations’s
intertemporal solvency condition:

N −N0 = Ψ1 (K −K0) , (311)

where K0 is the initial stock of physical capital.
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O.7 Derivation of the Accumulation Equation of Non Human Wealth

Remembering that the stock of financial wealth A(t) is equal to N(t)+Q(t)K(t), differenti-
ating w.r.t. time, i.e., Ȧ(t) = Ṅ(t) + Q̇(t)K(t) + Q(t)K̇(t), plugging the dynamic equation
for the marginal value of capital (242e), inserting the accumulation equations for physical
capital (239) and traded bonds (238), yields the accumulation equation for the stock of
financial wealth or the dynamic equation for private savings:

Ȧ(t) = r?A(t) + W (t)L(t)− T (t)− PC(t)C(t). (312)

where we assume that the government levies lump-sum taxes, T , to finance purchases of
foreign-produced, home-produced and non-traded goods, i.e., T = G =

(
GF + PH(.)GH + PN (.)GN

)
.

Solving for C = C
(
K,Q, ZH , ZN

)
by inserting the solutions for sectoral prices (292)

into the optimal decision for consumption (242a), inserting solutions for W j , Lj , into (278)
allows us to write the financial wealth accumulation equation as follows:

Ȧ ≡ r?A + Λ
(
K,Q, ZH , ZN

)
,

= r?A +
∑

j

W j
(
K, Q,ZH , ZN

)
Lj

(
K, Q,ZH , ZN

)−G
(
K, Q,ZH , ZN

)

− PC

[
PH (.) , PN (.)

]
C

(
K,Q, ZH , ZN

)
, (313)

where PN and PH are given by (292).
Let us denote by ΛK , ΛQ, and ΛZj the partial derivatives evaluated at the steady-state

of the dynamic equation for the non human wealth w.r.t. K, Q, and Zj , respectively:

ΛK ≡ ∂Ȧ

∂K
= (WKL + WLK)−GK −

(
∂PC

∂K
C + PCCK

)
, (314a)

ΛQ ≡ ∂Ȧ

∂Q
= (WQL + WLQ)−GQ −

(
∂PC

∂Q
C + PCCQ

)
, (314b)

ΛZj ≡ ∂Ȧ

∂Zj
= (WZjL + WLZj )−GZj −

(
∂PC

∂Zj
C + PCCZj

)
. (314c)

Linearizing (313) in the neighborhood of the steady-state, making use of (314a) and
(314b), inserting solutions for K(t) and Q(t) given by (302) and solving yields the general
solution for the stock of non human wealth:

A(t) = A + [(A0 −A)−∆1D1 −∆2D2] er?t + ∆1D1e
ν1t + ∆2D2e

ν2t, (315)

where A0 is the initial stock of financial wealth and we set

Mi = AK + AQωi
2, (316a)

∆i =
Mi

νi − r?
. (316b)

The linearized version of the representative household’s intertemporal solvency condition
is:

A−A0 = ∆1 (K −K0) , (317)

where A0 is the initial stock of non human wealth.

P Semi-Small Open Economy Model with CES Production
Functions

In section O, we have laid out a model with Cobb-Douglas production functions. The
steady-state of this model is used to normalize CES production functions. This section
extends the model with Cobb-Douglas production functions in two directions. First, in
the baseline model we allow for CES production functions and factor-biased technological
change (FBTC henceforth). Second, we assume that factor-augmenting efficiency has both
a symmetric and an asymmetric component. The first order conditions from households’
maximization problem detailed in subsection O.1 remain almost identical and we emphasize
only the main changes.
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P.1 Households

Households choose the level of capital utilization in sector j, which includes both a sym-
metric and an asymmetric component, denoted by uK,j

S (t) and uK,j
D (t):

uK,j(t) =
(
uK,j

S (t)
)η (

uK,j
D (t)

)1−η
. (318)

Both components of the capital utilization rate collapse to one at the steady-state. The
capital utilization adjustment costs are assumed to be an increasing and convex function
of the capital utilization rate:

CK,j
S (t) = ξj

1,S

(
uK,j

S (t)− 1
)

+
ξj
2,S

2

(
uK,j

S (t)− 1
)2

, (319a)

CK,j
D (t) = ξj

1,S

(
uK,j

D (t)− 1
)

+
ξj
2,D

2

(
uK,j

D (t)− 1
)2

, (319b)

where ξj
2,S > 0, ξj

2,D > 0, are free parameters which indicate the extent of the cost of
adjusting the intensity in the use of capital. When we let ξj

2,c → ∞ (c = S, D), capital
utilization is fixed at unity and TFP growth collapses to technological change.

The dynamic equation of the shadow price of capital (242e) and the optimal decision
about the capital utilization rate (242f) are modified as follows:

Q̇(t) = (r? + δK) Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)
(
CK,j

S (t) + CK,j
D (t)

)
νK,j(t)− PJ(t)

∂J(t)
∂K(t)

}
, (320a)

Rj(t)
P j(t)

η
uK,j(t)

uK,j
S (t)

= ξj
1,S + ξj

2,S

(
uK,j

S (t)− 1
)

, j = H, N, (320b)

Rj(t)
P j(t)

(1− η)
uK,j(t)

uK,j
D (t)

= ξj
1,D + ξj

2,D

(
uK,j

D (t)− 1
)

, j = H, N, (320c)

where η is the share of aggregate technology shocks driven by symmetric technology im-
provements.

P.2 Firms

Both the traded and non-traded sectors use physical capital, K̃j , and labor, Lj , according
to constant returns to scale production functions which are assumed to take a CES form:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (321)

where γj and 1− γj are the weight of labor and capital in the production technology, σj is
the elasticity of substitution between capital and labor in sector j = H, N , Aj and Bj are
labor- and capital-augmenting efficiency. Both sectors face two cost components: a capital
rental cost equal to Rj , and a labor cost equal to the wage rate W j .

Factor-augmenting productivity is made up of a symmetric component (across sectors)
denoted by the subscript S and an asymmetric component denoted by the subscript D:

Aj(t) =
(
Aj

S(t)
)η (

Aj
D(t)

)1−η
, Bj(t) =

(
Bj

S(t)
)η (

Bj
D(t)

)1−η
, (322)

where the elasticity of factor-augmenting productivity w.r.t. to its symmetric component is
denoted by η which is assumed to be symmetric across sectors. As we shall see below, this
parameter determines the share of technology improvements which are symmetric across
sectors.
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Firms rent capital K̃j(t) and labor Lj(t) services from households. We assume that
the movements in capital and labor across sectors are subject to frictions which imply that
the capital rental cost equal to Rj(t), and the wage rate W j(t), are sector-specific. Both
sectors are assumed to be perfectly competitive and thus choose capital services and labor
by taking prices P j as given:

max
K̃j(t),Lj(t)

Πj(t) = max
K̃j(t),Lj(t)

{
P j(t)Y j(t)−W j(t)Lj(t)−Rj(t)K̃j(t)

}
. (323)

We drop the time index when it does not cause confusion. Costly labor and capital mobility
implies a labor and capital cost differential across sectors:

P j(t)γj
(
Aj(t)

)σj−1

σj
(
Lj(t)

)− 1

σj
(
Y j(t)

) 1

σj ≡ W j(t), (324a)

P j(t)
(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj = Rj(t). (324b)

Some Useful Results
Multiplying both sides of (324a)-(324b) by Lj and K̃j , respectively, and dividing by

sectoral value added leads to the labor and capital income share:

sj
L = γj

(
Aj

yj

)σj−1

σj

, 1− sj
l = γj

(
BjuK,jkj

yj

)σj−1

σj

, (325)

where

yj =
[
γj

(
Aj

)σj−1

σj +
(
1− γj

) (
BjuK,jkj

)σj−1

σj

] σj

σj−1

. (326)

Dividing eq. (325) by eq. (326), the ratio of the labor to the capital income share

denoted by Sj = sj
L

1−sj
L

reads as follows:

Sj =
γj

1− γj

(
BjuK,jKj

AjLj

) 1−σj

σj

. (327)

Dividing (324a) by (324b) leads to a positive relationship between the relative cost of
labor and the capital-labor ratio in sector j:

W j

Rj
=

γj

1− γj

(
Bj

Aj

) 1−σj

σj

(
K̃j

Lj

) 1

σj

. (328)

To determine the conditional demands for both inputs, we make use of (328) which leads
to:

Lj = K̃j

(
γj

1− γj

)σj (
Bj

Aj

)1−σj (
W j

Rj

)−σj

, (329a)

K̃j = Lj

(
1− γj

γj

)σj (
Bj

Aj

)σj−1 (
W j

Rj

)σj

. (329b)

Inserting eq. (329b) (eq. (329a) resp.) in the CES production function and solving for Lj

(K̃j resp.) leads to the conditional demand for labor (capital resp.):

Lj = Y j
(
Aj

)σj−1
(

γj

W j

)σ (
Xj

) σj

1−σj , K̃j = Y j
(
Bj

)σj−1
(

1− γj

Rj

)σj (
Xj

) σj

1−σj , (330)

where Xj is given by:

Xj =
(
γj

)σj (
Aj

)σj−1 (
W j

)1−σj

+
(
1− γj

)σj (
Bj

)σj−1 (
Rj

)1−σj

. (331)

151



Total cost is equal to the sum of the labor and capital cost:

Cj = W jLj + RjKj . (332)

Inserting conditional demand for inputs (329) into total cost (332), we find Cj is homoge-
nous of degree one with respect to the level of production

Cj = cjY j , with cj =
(
Xj

) 1

1−σj . (333)

Using the fact that
(
cj

)1−σj

= Xj , conditional demand for labor (329a) can be rewritten

as Lj = Y j
(
Aj

)σj−1
(

γj

W j

) (
cj

)σj

which gives the labor income share denoted by sj
L:

sj
L =

W jLj

P jY j
=

(
γj

)σj
(

W j

Aj

)1−σj (
cj

)σj−1
, (334a)

1− sj
L =

RjK̃j

P jY j
=

(
1− γj

)σj
(

Rj

Bj

)1−σj (
cj

)σj−1
. (334b)

P.3 Short-Run Solutions

Sectoral Wages and Capital-Labor Ratios
Plugging the short-run solutions for LH , LN , KH , KN , given by (267)-(269) into the

demand for capital and labor (324a)-(324b), the system of four equations can be solved
for sectoral wages W j and sectoral capital rental rates Rj . Log-differentiating (324a)-
(324b)yields in matrix form:




−
[(

1−sH
L

σH

)
LH

W H

LH + 1
W H

]
−

(
1−sH

L
σH

)
LH

W N

LH

(
1−sH

L
σH

)
KH

RH

KH

(
1−sH

L
σH

)
KH

RN

KH

−
(

1−sN
L

σN

)
LN

W N

LN −
[(

1−sN
L

σN

)
LN

W N

LN + 1
W N

] (
1−sN

L
σN

)
KN

RH

KN

(
1−sN

L
σN

)
KN

RN

KN

sH
L

σH

LH
W H

LH

sH
L

σH

LH
W N

LH −
[

sH
L

σH

KH
RH

KH + 1
RH

]
sH

L
σH

KH
RN

KH

sN
L

σN

LN
W H

LN

sN
L

σN

LN
W N

LN

sN
L

σN

KN
RH

KN −
[

sN
L

σN

KN
RN

KN + 1
RN

]




×




dW H

dW N

dRH

dRN




=




(
1−sH

L
σH

)
LH

P N

LH dP N +

[(
1−sH

L
σH

)
LH

P H

LH − 1
P H

]
dP H −

(
1−sH

L
σH

)
KH

K
KH dK −

(
1−sH

L
σH

)
duK,H −

[ (
σH−1

)
+sH

L

σH

]
ÂH −

(
1−sH

L
σH

)
B̂H

[(
1−sN

L
σN

)
LN

P N

LN − 1
P N

]
dP N +

(
1−sN

L
σN

)
LN

P H

LN dP H −
(

1−sN
L

σN

)
KN

K
KN dK −

(
1−sN

L
σN

)
duK,N −

[ (
σN−1

)
+sN

L

σN

]
ÂN −

(
1−sN

L
σN

)
B̂N

− sH
L

σH

LH
P H

LH dP N −
[

sH
L

σH

LH
P H

LH + 1
P H

]
dP H +

sH
L

σH

KH
K

KH dK +
sH

L
σH duK,H −

(
σH−sH

L
σH

)
B̂H −

(
sH

L
σH

)
ÂH

−
[

sN
L

σN

LN
P N

LN + 1
P N

]
dP N − sN

L
σN

LN
P H

LN dP H +
sN

L
σN

KN
K

KN dK +
sN

L
σN duK,N −

(
σN−sN

L
σN

)
B̂N −

(
sN

L
σN

)
ÂN




.(335)

From eq. (318), i.e., uK,j(t) =
(
uK,j

S

)η (
uK,j

D

)1−η
, the capital utilization rate is a

function of its symmetric and asymmetric components:

uK,j = uK,j
(
uK,j

S , uK,j
D

)
, (336)

where
∂uK,j

∂uK,j
S

= η,
∂uK,j

∂uK,j
D

= 1− η. (337)

By using the implicit function theorem, eq. (335) together with eq. (336) leads to the
short-run solutions for sectoral wages

W j = W j
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H, N, (338)

and capital rental rates

Rj = Rj
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H, N. (339)
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Inserting sectoral wages (338) into (267), sectoral hours worked can be solved as func-
tions of the shadow value of wealth, the capital stock, the price of non-traded goods in
terms of foreign goods, PN , the terms of trade, factor-augmenting productivity and capital
utilization rates:

Lj = Lj
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H,N. (340)

Inserting capital rental rates (339) into (269), sectoral capital stock can be solved as func-
tions of the shadow value of wealth, the aggregate capital stock, the price of non-traded
goods in terms of foreign goods, PN , the terms of trade, factor-augmenting productivity
and capital utilization rates:

Kj = Kj
(
λ̄,K, PN , PH , AH , Aj , Bj , uK,j

S , uK,j
D

)
. (341)

Finally, plugging solutions for sectoral hours worked (340) and sectoral capital stock
(341), and using (318), production functions (321) can be solved for sectoral value added:

Y j = Y j
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H, N. (342)

Symmetric and Asymmetric Components of Capital Utilization Rates, uK,j
S (t)

and uK,j
D (t)

Inserting firm’s optimal decision for capital (324b) in sector j in the optimal intensity
in the use of physical capital (320b) leads to:

η
uK,j(t)

uK,j
S (t)

= ξj
1,S + ξj

2,S

(
uK,j

S (t)− 1
)

=
(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj .

(343)
Inserting intermediate solutions (340) for sectoral hours worked and (341) for sectoral cap-
ital into (343) and log-differentiating leads to in a matrix form:




a11 a12 − sH
L

σH

LH

u
K,N
S

LH +
sH

L
σH

KH

u
K,N
S

KH − sH
L

σH

LH

u
K,N
D

LH +
sH

L
σH

KH

u
K,N
D

KH

a21 a22 − sH
L

σH

LH

u
K,N
S

LH +
sH

L
σH

KH

u
K,N
S

KH − sH
L

σH

LH

u
K,N
D

LH +
sH

L
σH

KH

u
K,N
D

KH

− sN
L

σN

LN

u
K,H
S

LN +
sN

L
σN

KN

u
K,H
S

KN − sN
L

σN

LN

u
K,H
D

LN +
sN

L
σN

KN

u
K,H
D

KN a33 a34

− sN
L

σN

LN

u
K,H
S

LN +
sN

L
σN

KN

u
K,H
S

KN − sN
L

σN

LN

u
K,H
D

LN +
sN

L
σN

KN

u
K,H
D

KN a43 a44




×




û
K,H
S

û
K,H
D

û
K,N
S

û
K,N
D




=




∑
Xj=Aj,Bj,P j,j=H,N

(
sH

L
σH

LH
Xj

LH − sH
L

σH

KH
Xj

KH

)
dXj +

(
sH

L
σH

LH
K

LH − sH
L

σH

KH
K

KH

)
dK +

sH
L

σH ÂH −
(

σH−sH
L

σH

)
B̂H

∑
Xj=Aj,Bj,P j,j=H,N

(
sH

L
σH

LH
Xj

LH − sH
L

σH

KH
Xj

KH

)
dXj +

(
sH

L
σH

LH
K

LH − sH
L

σH

KH
K

KH

)
dK +

sH
L

σH ÂH −
(

σH−sH
L

σH

)
B̂H

∑
Xj=Aj,Bj,P j,j=H,N

(
sN

L
σN

LN
Xj

LN − sN
L

σN

KN
Xj

KN

)
dXj +

(
sN

L
σN

LN
K

LN − sN
L

σN

KN
K

KN

)
dK +

sN
L

σN ÂN −
(

σN−sN
L

σN

)
B̂N

∑
Xj=Aj,Bj,P j,j=H,N

(
sN

L
σN

LN
Xj

LN − sN
L

σN

KN
Xj

KN

)
dXj +

(
sN

L
σN

LN
K

LN − sN
L

σN

KN
K

KN

)
dK +

sN
L

σN ÂN −
(

σN−sN
L

σN

)
B̂N




, (344)
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where Xj =, PH , PN , ZH , ZN and

a11 =

[
ξH
2,S

ξH
1,S

+ η
sH
L

σH
+ (1− η)

]
− sH

L

σH

LH
uK,H

S

LH
+

sH
L

σH

KH
uK,H

S

KH
, (345a)

a12 = −
(

σH − sH
L

σH

)
(1− η)− sH

L

σH

LH
uK,H

D

LH
+

sH
L

σH

KH
uK,H

D

KH
, (345b)

a21 = −
(

σH − sH
L

σH

)
η − sH

L

σH

LH
uK,H

S

LH
+

sH
L

σH

KH
uK,H

S

KH
, (345c)

a22 =

[
ξH
2,D

ξH
1,D

+ (1− η)
sH
L

σH
+ η

]
− sH

L

σH

LH
uK,H

D

LH
+

sH
L

σH

KH
uK,H

D

KH
, (345d)

a33 =

[
ξN
2,S

ξN
1,S

+ η
sN
L

σN
+ (1− η)

]
− sN

L

σN

LN
uK,N

S

LN
+

sN
L

σN

KN
uK,N

S

KN
, (345e)

a34 = −
(

σN − sN
L

σN

)
(1− η)− sN

L

σN

LN
uK,N

D

LN
+

sN
L

σN

KN
uK,N

D

KN
, (345f)

a43 = −
(

σN − sN
L

σN

)
η − sN

L

σN

LN
uK,N

S

LN
+

sN
L

σN

KN
uK,N

S

KN
, (345g)

a44 =

[
ξN
2,D

ξN
1,D

+ η
sN
L

σN
+ (1− η)

]
− sN

L

σN

LN
uK,N

D

LN
+

sN
L

σN

KN
uK,N

D

KN
. (345h)

The short-run solutions for capital and technology utilization rates are:

uK,j
c = uK,j

c

(
λ̄, K, P j , Aj , Bj

)
, c = S,D, j = H,N. (346)

Intermediate Solutions for Rj , W j ,Kj , Lj , Y j

Plugging back solutions for the capital utilization rates (346) into the intermediate
solutions for the sectoral wage rates (338) and the capital rental rates (339), for sectoral
hours worked (340) and sectoral capital stocks (341), and for sectoral value added (342)
leads to intermediate solutions for sectoral wages, sectoral capital rental rates, sectoral
hours worked, sectoral capital stocks, sectoral value added:

W j , Rj , Lj , Kj , Y j
(
λ̄, K, PN , PH , AH , BH , AN , BN

)
. (347)

P.4 Market Clearing Conditions

Finally, we have to solve for non-traded good prices and the terms of trade. The role of
the price of non-traded goods in terms of foreign goods is to clear the non-traded goods
market:

Y N = CN + GN + JN +
(
CK,N

S + CK,N
D

)
KN . (348)

The role of the price of home-produced goods in terms of foreign-produced goods or the
terms of trade is to clear the home-produced traded goods market:

Y H = CH + GH + JH + XH +
(
CK,H

S + CK,H
D

)
KH . (349)
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As shall be useful to write formal expressions in a compact form, we wet

∆H
P H = Y H

P H − CH
P H − JH

P H −XH
P H − ξH

1,S

∂uK,H
S

∂PH
− ξH

1,D

∂uK,H
D

∂PH
, (350a)

∆H
P N = Y H

P N − CH
P N − JH

P N − ξH
1,S

∂uK,H
S

∂PN
− ξH

1,D

∂uK,H
D

∂PH
, (350b)

∆H
K = Y H

K − CH
K − JH

K − ξH
1,S

∂uK,H
S

∂K
− ξH

1,D

∂uK,H
D

∂K
, (350c)

∆H
Aj = Y H

Aj − CH
Aj − ξH

1,S

∂uK,H
S

∂Aj
− ξH

1,D

∂uK,H
D

∂Aj
, j = H, N, (350d)

∆H
Bj = Y H

Bj − CH
Bj − ξH

1,S

∂uK,H
S

∂Bj
− ξH

1,D

∂uK,H
D

∂Bj
, j = H, N, (350e)

∆N
P j = Y N

P j − CN
P j − JN

P j − ξN
1,S

∂uK,N
S

∂P j
− ξN

1,D

∂uK,N
D

∂P j
, j = H, N, (350f)

∆N
K = Y N

K − CN
K − JN

K − ξN
1,S

∂uK,N
S

∂K
− ξN

1,D

∂uK,N
D

∂K
, (350g)

∆N
Aj = Y N

Aj − CN
Aj − JN

Aj − ξN
1,S

∂uAj ,N
S

∂Aj
− ξN

1,D

∂uAj ,N
D

∂Aj
, j = H, N, (350h)

∆N
Bj = Y N

Bj − CN
Bj − JN

Bj − ξN
1,S

∂uBj ,N
S

∂Bj
− ξN

1,D

∂uBj ,N
D

∂Bj
, j = H, N. (350i)

Totally differentiating the market clearing conditions (348)-(349) leads to in a matrix
form:
(

∆H
P H ∆H

P N

∆N
P H ∆N

P N

)(
dPH

dPN

)
=

( −∆H
KdK + JH

Q dQ−∑
j=H,N ∆H

AjdAj −∑
j=H,N ∆H

BjdBj

−∆N
KdK + JN

Q dQ−∑
j=H,N ∆N

AjdAj −∑
j=H,N ∆N

BjdBj

)
.

(351)
Applying the implicit functions theorem leads to the short-run solutions for the terms of
trade and non-traded good prices:

PH , PN
(
λ̄,K, Q,AH , BH , AN , BN

)
. (352)

Plugging back the solutions (352) for sectoral prices into (346) and (347) allow us to
find the final versions of solutions of capital utilization rates, sectoral wages, sectoral capital
rental rates, sectoral hours worked, sectoral capital stocks, sectoral value added:

uK,j
S , uK,j

D ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K,Q, AH , BH , AN , BN

)
. (353)

Inserting the solutions for prices into the intermediate solutions for consumption (265) and
investment (285)

Cg, Qg
(
λ̄,K, Q,AH , BH , AN , BN

)
. (354)

where g = H, N, F .
Using the fact that factor-augmenting efficiency Xj (with X = A,B, j = H, N) has

both a symmetric S and an asymmetric D component across sectors,

Xj = Xj
(
Xj

S , Xj
D

)
. (355)

where

Xj

Xj
S

=
∂Xj

∂Xj
S

= η
Xj

Xj
S

, Xj

Xj
D

=
∂Xj

∂Xj
D

= (1− η)
Xj

Xj
D

, (356)

and inserting (355) into (352), (353) and (354) leads to the following solutions for capital
utilization rate, sectoral wages, sectoral capital rental rates, sectoral hours worked, sectoral
capital stocks, sectoral value added:

P j , uK,j
S , uK,j

D ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K, Q,Xj

c

)
, j = H, N, (357)

and for consumption and investment in good g = H, N,F :

Cg, Qg
(
λ̄, K,Q, Xj

c

)
, (358)

where X = A,B, j = H,N , c = S, D.
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P.5 Solving the Model

In our model, there are nine state variables, namely K, Xj
c where X = A,, j = H, N ,

c = S,D, and one control variable, Q. The capital accumulation equation reads as follows:

K̇ =
Y N − CN −GN −

(
CK,N

S + CK,N
D

)
KN

(1− ι)
(

P N

PJ

)−φJ
− δKK − κ

2

(
I

K
− δK

)2

K. (359)

Inserting short-run solutions for value added and the capital utilization rate (357), in-
vestment and consumption in non-tradables (358), into the physical capital accumulation
equation (359), and plugging the short-run solution for the return on domestic capital (357)
into the dynamic equation for the shadow value of capital stock (320a), the dynamic system
reads as follows:24

K̇ ≡ Υ
(

K, Q, X
j
c

)
=

EN
(

K, Q, Xj
c

)

(1− ι)

{
P N (.)

PJ

[
P H (.),P N (.)

]
}−φJ

− δKK − K

2κ

{
Q

PJ
[
P H (.) , P N (.)

] − 1

}2

, (360a)

Q̇ ≡ Σ
(

K, Q, X
j
c

)
=

(
r

?
+ δK

)
Q−

[ ∑
j Rj

(
K, Q, Xj

c

)
Kj

(
K, Q, Xj

c

) (
u

K,j
S

(
K, Q, Xj

c

))η (
u

K,j
D

(
K, Q, Xj

c

))1−η

K

−
∑

j

[
C

K,j
S

u
K,j
S

(
K, Q, X

j
c

)
+ C

K,j
D

u
K,j
D

(
K, Q, X

j
c

)] Kj
(

K, Q, Xj
c

)

K

+ PJ

[
P

H
(.) , P

N
(.)

] κ

2
v(.) (v(.) + 2δK)

]
, (360b)

where EN = Y N − CN −GN −
(
CK,N

S + CK,N
D

)
KN

P.6 Current Account Equation and Intertemporal Solvency Condition

Following the same steps as in subsection O.6, the current account reads as:

Ṅ = r?N + PHXH −MF , (361)

where XH = Y H − CH − GH − JH stands for exports of home goods and we denote by
MF imports of foreign consumption and investment goods:

MF = CF + GF + JF . (362)

Substituting first solutions for sectoral prices P j given by (357) into export function
(289) and substituting solutions for consumption and investment (358) into (362) allows us
to write the current account equation as follows:

Ṅ ≡ r?N + Ξ
(
λ̄,K,Q, Xj

c

)
,

= r?N + PH
(
λ̄,K, Q,Xj

c

)
XH

(
λ̄,K, Q, Xj

c

)

−MF
(
λ̄, K, Q, Xj

c

)
. (363)

P.7 CES Technology Frontier

We assume that firms in sector j choose labor and capital efficiency along the technology
frontier which is assumed to take a CES form:


γj

Z

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γj

Z

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (364)

where Zj > 0 is the height of the technology frontier, 0 < γj
Z < 1 is the weight of labor

efficiency in technology and σj
Z > 0 corresponds to the elasticity of substitution between

24We omit the shadow value of wealth from short-run solutions for clarity purposes as λ remains constant
over time.
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labor and capital efficiency. Performing the minimization of the unit cost for producing
(69) subject to the technology frontier (364) leads to:

γj
Z

1− γj
Z

(
Aj

Bj

)σ
j
Z
−1

σ
j
Z =

sj
L

1− sj
L

, (365)

where we used the fact that
(
γj

)σj
(

W j(t)
Aj(t)

)1−σj (
cj(t)

)σj−1 = sj
L(t), see eq. (334a), and

(
1− γj

)σj
(

Rj(t)
Bj(t)

)1−σj (
cj(t)

)σj−1 = 1− sj
L(t), see eq. (334b). As shall be useful later, we

solve eq. (365) for sj
L:

sj
L =

γj
Z

(
Aj

)σ
j
Z
−1

σ
j
Z

γj
Z (Aj)

σ
j
Z
−1

σ
j
Z +

(
1− γj

Z

)
(Bj)

σ
j
Z
−1

σ
j
Z

,

= γj
Z

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z , (366)

where we made use of (364) to obtain the last line.
Log-linearizing (364) in the neighborhood of the initial steady-state and making use of

eq. (366) leads to:

Ẑj(t) = γj
Z

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z Âj(t) +

(
1− γj

Z

)(
Bj

Zj

)σ
j
Z
−1

σ
j
Z B̂j(t),

= sj
LÂj(t) +

(
1− sj

L

)
B̂j(t). (367)

Solving eq. (367) and the log-linearized version of the demand for factors of production
(327) leads to the solutions for Âj(t) and B̂j(t). By using the fact that factor-augmenting
productivity has a symmetric and an asymmetric component across sectors, i.e., Xj =
Xj

(
Xj

S , Xj
D

)
(see eq. (355)), leads to the solutions for Âj

c(t) and B̂j
c(t) described

by (47a)-(47b) in the main text.

Q Solving for Permanent Technology Shocks Shocks

In this section, we detail the steps to solve the model for permanent technology shocks
which have a symmetric and an asymmetric component.

The percentage deviation of factor-augmenting efficiency Xj
c = Aj

c, B
j
c relative to its

long-run value Xj
c (c = S, D, j = H, N) is described by:

X̂j
S(t) = e−ξj

X,St −
(
1− xj

S

)
e−χj

X,St, (368a)

X̂j
D(t) = e−ξj

X,Dt −
(
1− xj

D

)
e−χj

X,Dt, (368b)

where X̂j
c (t) = Xj

c (t)−Xj
c

Xj
c

, xj
c (c = S,D, j = H,N) parameterizes the impact response of

factor-augmenting technological change; ξj
X > 0 and χj

X > 0 are (positive) parameters
which are set in order to reproduce the dynamic adjustment of factor-augmenting techno-
logical change.

Linearizing the dynamic equations of physical capital and its shadow price in the neigh-
borhood of the steady-state, we get in a matrix form:
(

K̇(t)
Q̇(t)

)
=

(
ΥK ΥQ

ΣK ΣQ

)(
dK(t)
dQ(t)

)
+

( ∑
c=S,D

∑N
j=H Υ

Aj
c
dAj

c(t) +
∑

c=S,D

∑N
j=H Υ

Bj
c
dBj

c(t)∑
c=S,D

∑N
j=H Σ

Aj
c
dAj

c(t) +
∑

c=S,D

∑N
j=H Σ

Bj
c
dBj

c(t)

)
,

(369)
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where the coefficients of the Jacobian matrix are partial derivatives evaluated at the steady-
state, e.g., ΥX = ∂Υ

∂Y with Y = K,Q, and the direct effects of an exogenous change in
factor-augmenting productivity on K and Q are described by ΥX = ∂Υ

∂X and ΣX = ∂Σ
∂X ,

also evaluated at the steady-state.

Now define the auxiliary vector X̂(t) =
(

X̂1(t)
X̂2(t)

)
as follows:

X̂(t) = V−1Ŷ (t) (370)

Given this renaming, we can write the system as:
˙̂

X(t) = ΛX̂(t) + V−1ΣŜ(t)

where Λ =
(

ν1 0
0 ν2

)
, V−1 is the inverse of the matrix of eigenvectors; let us write out

the product V−1Σ



u11 u12

u21 u22


×

(
ΥAH

S
ΥBH

S
ΥAN

S
ΥBN

S
ΥAH

D
ΥBH

D
ΥAN

D
ΥBN

D

ΣAH
S

ΣBH
S

ΣAN
S

ΣBN
S

ΣAH
D

ΣBH
D

ΣAN
D

ΣBN
D

)
.

The product leads to a matrix of the same size as the matrix of shocks, i.e., with two
rows and eight columns with elements denoted by s1k = u11ΥXj

c
+ u12ΣXj

c
and s2k =

u21ΥXj
c

+ u22ΣXj
c

(l the row, k is the column).
The differential equation for X1(t) reads:

Ẋ1(t) = ν1X1(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

[
e−ξj

X,ct − (
1− xj

c

)
e−χj

X,ct
]
, (371a)

Ẋ2(t) = ν2X2(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

[
e−ξj

X,ct − (
1− xj

c

)
e−χj

X,ct
]
. (371b)

Solving (371a)-(371b) for X1(t) and X2(t) leads to:

dX1(t) = dX1(0) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

ν1 + ξj
X,c

[(
eν1t − e−ξj

X,ct
)
− (

1− xj
c

)
(

ν1 + ξj
X,c

ν1 + χj
X,c

)(
eν1t − e−χj

X,ct
)]

,

(372a)

dX2(t) = dX2(0) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

ν1 + ξj
X,c

[(
eν2t − e−ξj

X,ct
)
− (

1− xj
c

)
(

ν2 + ξj
X,c

ν2 + χj
X,c

)(
eν2t − e−χj

X,ct
)]

.

(372b)

As shall be useful to write the solutions in a compact form, we set

∆Xj
c

1 =
s1kX

j
c

ν1 + ξj
X,c

, (373a)

∆Xj
c

2 =
s2kX

j
c

ν2 + ξj
X,c

. (373b)

ΘXj
c

1 =
(
1− xj

c

) ν1 + ξj
X,c

ν1 + χj
X,c

, (373c)

ΘXj
c

2 =
(
1− xj

c

) ν2 + ξj
X,c

ν2 + χj
X,c

, (373d)

The solution for X1(t) and the ’stable’ solution for X2(t), i.e., consistent with convergence
toward the steady-state when t tends toward infinity, is thus given by:

dX1(t) = X11e
ν1t +

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1

[
e−ξj

X,ct − (
1− xj

c

)
e−χj

X,ct,
]
, (374a)

dX2(t) = −
∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2

[
e−ξj

X,ct − (
1− xj

c

)
e−χj

X,ct,
]
, (374b)
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where
X11 = dX1(0)−

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1

(
1−ΘXj

c
1

)
. (375)

Using the definition of Xi(t) (with i = 1, 2) given by (370), we can recover the solutions
for K(t) and Q(t):

K(t)− K̃ = X1(t) + X2(t), (376a)

Q(t)− Q̃ = ω1
2X1(t) + ω2

2X2(t). (376b)

Linearizing the current account equation around the steady-state:

Ṅ(t) = r?dN(t) + ΞKdK(t) + ΞQdQ(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
dXj

c (t),

=
(
ΞK + ΞQω1

2

)
X1(t) +

(
ΞK + ΞQω2

2

)
X2(t)

+
∑

c=S,D

∑

j=H,N

∑

X=A,B

Xj
c

[
e−ξj

X,ct − (
1− xj

c

)
e−χj

X,ct
]
. (377)

Setting N1 = ΞK +ΞQω1
2, N2 = ΞK +ΞQω2

2, inserting solutions for K(t) and Q(t) given by
(376), solving yields the solution for traded bonds:

dN(t) = er?t

[
(N0 −N)− ω1

N

ν1 − r?
+

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξj
X,c + r?

(
1−ΘXj

c ,′
)

+ N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξj
X,c + r?

(
1−ΘXj

c ,′
1

)
−N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξj
X,c + r?

(
1−ΘXj

c ,′
2

)]

+
ω1

N

ν1 − r?
eν1t −

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′e−χj

X,ct,
]

− N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′

1 e−χj
X,ct,

]

+ N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′

2 e−χj
X,ct,

]
, (378)

where ω1
N = N1X11 and we set

ΘXj
c ,′ =

(
1− xj

c

) ξj
X,c + r?

χj
X,c + r?

, (379a)

ΘXj
c ,′

1 = ΘXj
c

1

ξj
X,c + r?

χj
X,c + r?

, (379b)

ΘXj
c ,′

2 = ΘXj
c

2

ξj
X,c + r?

χj
X,c + r?

. (379c)

Inserting the transversality condition into (378) leads to the ’stable’ solution for the stock
of foreign assets:

dN(t) =
ω1

N

ν1 − r?
eν1t −

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′e−χj

X,ct,
]

− N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′

1 e−χj
X,ct,

]

+ N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξj
X,c + r?

[
e−ξj

X,ct −ΘXj
c ,′

2 e−χj
X,ct,

]
, (380)
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which is consistent with the intertemporal solvency condition

dN = − ω1
N

ν1 − r?
+

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξj
X,c + r?

(
1−ΘXj

c ,′
)

+ N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξj
X,c + r?

(
1−ΘXj

c
1

)
−N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξj
X,c + r?

(
1−ΘXj

c
2

)
,(381)

where dN = N − N0. Eq. (381) determines the change in the equilibrium value of the
marginal utility of wealth which adjusts once for al once the permanent shock hits the
economy so that the open economy remains solvent.

R Semi-Small Open Economy Model with Endogenous Tech-
nology Decisions

This Appendix puts forward an open economy version of the neoclassical model with trad-
ables and non-tradables, imperfect mobility of inputs across sectors, adjustment costs and
endogenous terms of trade. We assume that production functions take a Cobb-Douglas form
and importantly, firms must decide about the optimal amount of tangible and intangible
assets to rent.

Households accumulate both physical and intangible capital stocks in the economy and
rent them out to firms in the production sector. Households supply labor, L, and must
decide on the allocation of total hours worked between the traded sector, LH , and the non-
traded sector, LN . They consume both traded, CT , and non-traded goods, CN . Traded
goods are a composite of home-produced traded goods, CH , and foreign-produced foreign
(i.e., imported) goods, CF . Households also choose investment in physical which is produced
using inputs of the traded, JT , and the non-traded good, JN . As for consumption, input
of the traded good to produce tangible investment goods is a composite of home-produced
traded goods, JH , and foreign imported goods, JF . Households also choose investment in
intangible capital which is produced by using domestic inputs only, i.e., JZ is a composite
of home-produced traded goods, JZ,H , and non-traded goods, JZ,N . The numeraire is
the foreign good whose price, PF , is thus normalized to one. We assume that services
from labor, tangible and intangible assets are imperfect substitutes across sectors. While
households choose the intensity in the use of the stock of physical capital, the optimal
allocation of labor, tangible and intangible assets is determined by optimal conditions from
firms’ profit maximization.

R.1 Households

Like labor and tangible assets, we allow for imperfect mobility of intangible assets by
assuming that traded ZH(t) and non-traded ZN (t) stock of ideas are imperfect substitutes:

ZA(t) =
[
ϑ
−1/εZ

Z

(
ZH(t)

) εZ+1

εZ + (1− ϑZ)−1/εZ
(
ZN (t)

) εZ+1

ε

] εZ
εZ+1

, (382)

where 0 < ϑZ < 1 is the weight of traded intangible assets and εZ measures the ease with
which sectoral intangible assets can be substituted for each other and thereby captures the
degree of mobility of ideas across sectors.

We assume that the households own tangible Kj(t) and intangible assets Zj(t) and lease
both services from tangible and intangible assets to firms in sector j at rental rate RK,j(t)
and RZ,j(t), respectively. Thus income from leasing activity received by households reads∑

j

(
RK,j(t)uK,j(t)Kj(t) + RZ,j(t)Zj(t)

)
where we assume that households also choose the

intensity uK,j(t) in the use of the physical capital stock. Households supply labor services
to firms in sector j at a wage rate W j(t). Thus labor income received by households reads∑

j W j(t)Lj(t).
In addition, households accumulate internationally traded bonds, N(t), that yield net

interest rate earnings of r?N(t). Denoting lump-sum taxes by T (t), households’ flow budget
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constraint states that real disposable income can be saved by accumulating traded bonds,
consumed, PC(t)C(t), invested in tangible assets, PJ(t)JK(t), invested in intangible assets,
PZ(t)JZ(t), and covers capital utilization costs:

Ṅ(t) + PC(t)C(t) + PJ(t)JK(t) + PZ(t)JZ(t) +
∑

j

P j(t)CK,j(t)νK,j(t)K(t)

= r?N(t) +
[
αK(t)uK,H(t) + (1− αK(t))uK,N (t)

]
RK(t)K(t) + RZ(t)ZA(t) + W (t)L(t)− T (t),(383)

where we denote the share of sectoral tangible assets in the aggregate capital stock by
νK,j(t) = Kj(t)/K(t), and the share of income on tangible and intangible assets in sector j
in total income from tangible and intangible assets, by capital compensation share of sector
j = H, N by αj

K(t) = RK,j(t)Kj(t)
RK(t)K(t)

and αZ(t) = RZ,j(t)Zj(t)
RZ(t)ZA(t)

, respectively. As shall be useful,

we denote the labor compensation share by αj
L(t) = W j(t)Lj(t)

W (t)L(t) .
The intangible good is produced using inputs of the home-produced traded good and

the non-traded good according to a constant-returns-to-scale function which is assumed to
take a CES form:

JZ(t) =
[
ι

1
φZ
Z

(
JZ,H(t)

)φZ−1

φZ + (1− ιZ)
1

φZ

(
JZ,N (t)

)φZ−1

φZ

] φZ
φZ−1

, (384)

where ιZ is the weight of the intangible traded input (0 < ιZ < 1) and φZ corresponds
to the elasticity of substitution in investment between traded and non-traded intangible
inputs. The price index associated with the aggregator function (384) is:

PZ =
[
ιZ

(
PH

)1−φZ + (1− ιZ)
(
PN

)1−φZ
] 1

1−φZ . (385)

Accumulation of intangible assets is governed by the following law of motion:

ŻA(t) = IZ(t)− δZZA(t), (386)

where IZ is investment in intangible assets and 0 ≤ δZ < 1 is a fixed depreciation rate. We
assume that capital accumulation is subject to increasing and convex cost of net investment:

JZ(t) = IZ(t) + Ψ
(
IZ(t), ZA(t)

)
ZA(t), (387)

with partial derivatives

∂JZ(t)
∂IZ(t)

= 1 + ζ

(
IZ(t)
ZA(t)

− δZ

)
, (388a)

∂JZ(t)
∂ZA(t)

= −ζ

2

(
IZ(t)
ZA(t)

− δZ

)(
IZ(t)
ZA(t)

+ δZ

)
. (388b)

Households choose consumption, worked hours, capital and technology utilization rates,
investment in tangible and intangible assets by maximizing lifetime utility (236) subject to
(383), (239) and (386). Denoting the co-state variables associated with (383), (239) (i.e.,
K̇(t) = I(t)−δKK(t)), and (386) by λ, QK,′, and QZ,′ respectively, the first-order conditions
characterizing the representative household’s optimal plans are described by (242a)-(242f)
and

QZ(t) = PZ(t)
[
1 + ζ

(
IZ(t)
ZA(t)

− δZ

)]
, (389a)

Q̇Z(t) = (r? + δZ) QZ(t)−
[
RZ(t)− PZ(t)

∂JZ(t)
∂ZA(t)

]
, (389b)

and the transversality conditions limt→∞ λ̄N(t)e−βt = 0, limt→∞QK(t)K(t)e−βt = 0, and
limt→∞QZ(t)ZA(t)e−βt = 0; to derive (389a) and (389b), we used the fact that QZ(t) =
QZ,′(t)/λ(t).
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Given the knowledge investment-based price index (385), we can derive the demand for
inputs of the traded good and the non-traded good:

JZ,H = ιZ

(
PH

PZ

)−φZ

JZ , (390a)

JZ,N = (1− ιZ)
(

PN

PZ

)−φZ

JZ . (390b)

As will be useful later, the percentage change in the R&D investment price index is a
weighted average of percentage changes in the price of traded and non-traded inputs:

P̂Z = αZ P̂H + (1− αZ) P̂N , (391)

where

αZ
J =

PHJZ,H

PZJZ
= ιZ

(
PH

PZ

)1−φZ

. (392)

The aggregate rental rate for intangible assets, RZ(t), associated with the aggregate
stock of knowledge defined above (382) is:

RZ =
[
ϑZ

(
RZ,H

)εZ+1
+ (1− ϑZ)

(
RZ,N

)εZ+1
] 1

εZ+1
, (393)

where RZ,H and RZ,N are rental rates for intangible assets paid in the traded and the
non-traded sectors, respectively.

Given the aggregate rental rate for intangible assets, RZ , the allocation of the stock of
knowledge to the traded and the non-traded sector reads:

ZH = ϑZ

(
RZ,H

RZ

)εZ

ZA, ZN = (1− ϑZ)
(

RZ,N

RZ

)εZ

ZA. (394)

As will be useful later, the percentage change in the aggregate rental rate of intangible
assets is a weighted average of percentage changes in sectoral rental rates:

R̂Z = αZR̂Z,H + (1− αZ) R̂Z,N , (395)

where αZ is the tradable content of the aggregate income from intangible assets

αZ = ϑZ

(
RZ,H

RZ

)1+εZ

, 1− αZ = (1− ϑZ)
(

RZ,N

RZ

)1+εZ

. (396)

The decision to allocate intangible assets between the traded and the non-traded sectors
(257b) allows us to solve for ZH and ZN :

ZH = ZH
(
ZA, RZ,H , RZ,N

)
, ZN = ZN

(
ZA, RZ,H , RZ,N

)
, (397)

with partial derivatives given by:

ẐH = εZ (1− αZ) R̂Z,H − (1− αZ) εZR̂Z,N + ẐA, (398a)

ẐN = εZαZR̂Z,N − αZεZR̂Z,H + ẐA. (398b)

R.2 Final and Intermediate Good Producers

We assume that within each sector, there are a large number of intermediate good producers
which produce differentiated varieties and thus are imperfectly competitive. They choose to
rent labor services from households along with services from tangible and intangible assets.

Final Goods Firms
The final non-traded output, Y j , is produced in a competitive retail sector using a

constant-returns-to-scale production function which aggregates a continuum measure one
of sectoral goods:

Y j =

[∫ 1

0

(
Xj

i

)ωj−1

ωj
di

] ωj

ωj−1

, (399)
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where ωj > 0 represents the elasticity of substitution between any two different sectoral
goods and Xj

i stands for intermediate consumption of sector’j variety (with i ∈ (0, 1)).
The final good producers behave competitively, and the households use the final good for
both consumption and investment. While the output of non-traded final good, Y N , is
for domestic absorption only, the output of home-produced traded good can be consumed
domestically, invested or exported.

Denoting by P j and P j
i the price of the final good in sector j and the price of of the ith

variety of the intermediate good, respectively, the profit the final good producer reads:

Πj
F = P j

[∫ 1

0

(
Xj

i

)ωj−1

ωj
di

]ωj

ωj

−
∫ 1

0
P j

i Xj
i di. (400)

Total cost minimization for a given level of final output gives the (intratemporal) demand
function for each input:

Xj
i =

(
P j

i

P j

)−ωj

Y j , (401)

and the price of the final output is given by:

P j =
(∫ 1

0

(
P j

i

)1−ωj

di

) 1

1−ωj

, (402)

where P j
i is the price of variety i in sector j and P j is the price of the final good in sector

j = H,N . Making use of eq. (401), the price-elasticity of the demand for output of the ith
variety within sector j is:

−∂Xj
i

∂P j
i

P j
i

Xj
i

= ωj . (403)

Intermediate Goods Firms
Within each sector j, there are firms producing differentiated goods. Each intermediate

good producer uses labor services, Lj(t), services from tangible assets (inclusive of the
intensity in the use of tangible assets) K̃j(t), and services from intangible assets Zj(t),
to produce a final good according to a technology of production which displays increasing
returns to scale:

Xj(t) =
(
Zj

i (t)
)νj (

Lj
i (t)

)θj (
K̃j

i (t)
)1−θj

, (404)

where the stock of knowledge Zj is a stock of ideas used by domestic firms in sector
j = H, N . this stock of ideas gives rise to the utilization-adjusted-TFP, i.e.,

(Zj(t)
)νj

=
TFPj

adj(t). The stock of ideas is made up of a domestic Zj(t) and an international stock of
knowledge ZW (t):

Zj(t) =
(
Zj

i (t)
)ζj (

ZW (t)
)1−ζj

. (405)

Note that because the firm must pay (time-invariant) fixed costs F j , we require the markup
denoted by µj to be larger than the degree of increasing returns to scale, i.e., 1+νjζj < µj ,
so that the excess of value added over the payment of factors of production is large enough
to cover fixed costs.

Firms face three cost components: a labor cost equal to the wage rate W j(t), and a
sector-specific rental cost for tangible and intangible assets equal to RK,j(t) and RZ,j(t),
respectively. Both sectors are assumed to be imperfectly competitive and thus choose
capital services and labor by taking prices as given:

max
Lj

i (t),K̃
j
i (t),Zj

i (t)
Πj

i (t)

≡ max
Lj

i (t),K̃
j
i (t),Zj

i (t)
P j

i (t)Xj
i (t)−W j(t)Lj

i (t)−RK,j(t)K̃j
i (t)−RZ,j(t)Zj

i (t)− P jF j ,(406)

where F j is a fixed cost which is symmetric across all intermediate good producers but
varies across sectors.
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From (404), we have Xj
i = F

(
Lj

i , K̃
j
i , Z

j
i

)
. the Lagrangian for the i-th firm’s optimiza-

tion problem in the sector j is:

Lj
i = P j

i F j
(
Lj

i , K̃
j
i , Z

j
i

)
−W j(t)Lj

i (t)R
K,j(t)K̃j

i (t)−RZ,j(t)Zj
i (t)− P jF j

+ηj
i

[
F

(
Lj

i , K̃
j
i , Z

j
i

)
−

(
P j

i

)−ωj (
P j

)ωj

Y j

]
, (407)

where
(

P j
i

P j

)−ωj

Y j = Xj
i stands for the demand for variety j; firm j chooses its price P j

i to

maximize profits treating the factor prices as given. The corresponding first-order necessary
conditions (for labor, physical capital, intangible capital, and variety-i price) are:

(
P j

i + ηj
i

) ∂F j (.)

∂Lj
i

= W j , (408a)

(
P j

i + ηj
i

) ∂F j (.)

∂K̃j
i

= RK,j , (408b)

(
P j

i + ηj
i

) ∂F j (.)

∂Zj
i

= RZ,j , (408c)

Xj
i = −ηj

i ω
j
(
P j

i

)−ωj−1 (
P j

)ωj

Y j , (408d)

where F j (.) = Xj
i . Using (401), i.e., Xj

i =
(

P j
i

P j

)−ωj

Y j , eq. (408d) can be rewritten as

follows:

ηj
i = −P j

i

ωj
. (409)

Denoting the markup charged by intermediate good producers by µj = ωj

ωj−1
> 1, and

inserting (409) into (408a)-(408c), first-order conditions can be rewritten as follows:

P j
i θj Xj

i

Lj
i

= µjW j , (410a)

P j
i

(
1− θj

) Xj
i

K̃j
i

= µjRK,j , (410b)

P j
i νjζj Xj

i

Zj
i

= µjRZ,j , (410c)

where we used the fact that ∂Xj
i

∂Lj
i

= θj Xj
i

Lj
i

, ∂Xj
i

∂K̃j
i

=
(
1− θj

) Xj
i

K̃j
i

, and ∂Xj
i

∂Zj
i

= νj Xj
i

Zj
i

.

Free entry Condition
We assume free entry in the goods markets so that the movement of firms in and out of

the goods market drives profits to zero at each instant of time, i.e., Πj
i (t) = P j

i (t)Xj
i (t) −

W j(t)Lj
i (t) − RK,j(t)K̃j

i (t) − RZ,j(t)Zj
i (t) − P jF j = 0. Inserting first-order conditions

(410a)-(410c) into (406) leads to:

P j
i (t)Xj

i (t)−W j(t)Lj
i (t)−RK,j(t)K̃j

i (t)−RZ,j(t)Zj
i (t)− P jF j = 0,

= P j
i Xj

i −
P j

i

µj
θjXj

i −
P j

i

µj

(
1− θj

)
Xj

i −
P j

i

µj
νjζjXj

i − P jF j = 0,

P j
i Xj

i

[
1− θj +

(
1− θj

)
+ νjζj

µj

]
− P j

i F j = 0,

P j
i Xj

i

[
1− 1 + νjζj

µj

]
− P j

i F j = 0. (411)

To ensure that profits cannot be negative, we assume that the contribution of the stock
of intangible assets to the production of the i-th variety of the intermediate good is lower
than the markup:

µj > 1 + νjζj . (412)
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Because intermediate good producers are symmetric, they face the same costs of factors
and the same price elasticity of demand. Therefore, they set same prices which collapse to
final good prices, i.e., P j

i = P j and they produce the same quantity, i.e., Xj
i = Xj = Y j .

Eq. (411) implies that value added covers the payment of labor services, W jLj , rental
payments of services from tangible and intangible assets to households, i.e., RK,jK̃j and
RZ,jZj , and also covers the payment of the fixed cost:

P jY j = W jLj + RK,jK̃j + RZ,jZj + P jF j . (413)

Output Net of Fixed Costs
We denote output net of fixed costs by Qj = Y j−F j . By using the free entry condition

(411), i.e., P jF j = P jY j
[
1− 1+νjζj

µj

]
, output net of fixed costs is thus equal to:

Qj = Y j − F j = Y j

(
1 + νjζj

µj

)
. (414)

Unit Cost for Producing
As shall be useful, we derive the unit cost for producing in sector j. Dividing the

demand for labor (410a) by the demand for capital (410b), and next dividing the demand
for demand for tangible assets (410b) by the demand for intangible assets (410c), and finally
the demand for labor (410a) by the demand for intangible assets (410c), we get:

1− θj

θj

Lj

K̃j
=

RK,j

W j
, (415a)

1− θj

νjζj

Zj

K̃j
=

RK,j

RZ,j
, (415b)

νjζj

θj

Lj

Zj
=

RZ,j

W j
. (415c)

Making use of eq. (415a) and (415b) to eliminate Lj and Zj from the Cobb-Douglas
production function (404)-(405) and solving for K̃j , and next making use of eq. (415a)
and (415c) to eliminate K̃j and Zj from the Cobb-Douglas production function (404)-(405)
and solving for Lj , and finally making use of eq. (415b) and (415c) to eliminate K̃j and
Lj from the Cobb-Douglas production function 404)-(405) and solving for Zj leads to the
conditional demand for capital stock, for labor, and for intangible assets:

(
K̃j

)1+νjζj

=
Y j

(ZW )(1−ζj)νj

(
1− θj

θj

)θj (
1− θj

νjζj

)νjζj (
RZ,j

)νjζj (
W j

)θj

(RK,j)θj+νjζj , (416a)

(
Lj

)1+νjζj

=
Y j

(ZW )(1−ζj)νj

(
θj

1− θj

)1−θj (
θj

νjζj

)νjζj (
RZ,j

)νjζj (
RK,j

)1−θj

(W j)(1−θj)+νjζj , (416b)

(
Zj

)1+νjζj

=
Y j

(ZW )(1−ζj)νj

νjζj

(1− θj)1−θj

(θj)θj

(
W j

)θj (
RK,j

)1−θj

RZ,j
. (416c)

Total (variable) cost is equal to the sum of labor compensation, rental cost of tangible
and intangible assets:

Cj = W jLj + RK,jK̃j + RZ,jZj . (417)

Inserting conditional demand for inputs (416a)-(416c) into total cost (417), we find that
Cj is homogenous of a degree smaller than one with respect to value added due to the fact
that the production function displays increasing returns to scale:

Cj =

[
Y j

(ZW )(1−ζj)νj

] 1

1+νjζj (
M j

) 1

1+νjζj
(
1 + νjζj

)
(418)

where we set
M j =

(
Ψj

)−1 [
W j

]θj (
RK,j

)1−θj (
RZ,j

)νjζj

, (419)
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where
Ψj =

(
θj

)θj (
1− θj

)1−θj (
νjζj

)νjζj

. (420)

By using (413) and the definition of total costs (417) which implies that P jY j−P jF j =
Cj and by using the fact that P jY j − P jF j = P jY j

(
1+νjζj

µj

)
= P jQj (see eq. (414)), we

have P jQj = Cj . The unit codt for producing denoted by cj is obtained by dividing Cj by
Qj = Y j

(
1+νjζj

µj

)
which leads to

cj = µj
(
Y j

)− νjζj

1+νjζj

[
M j

(ZW )(1−ζj)νj

] 1

1+νjζj

. (421)

The price over the markup P j/µj thus equalizes with cj/µj .

R.3 Solving the Model

First-order conditions from firm’s profit maximization are for sector j = H,N :

P j

µj
θj

(
Zj

)νjζj (
ZW

)(1−νj)ζj (
Lj

)θj−1 (
uK,jKj

)1−θj

= W j , (422a)

P j

µj

(
1− θj

) (
Zj

)νjζj (
ZW

)(1−νj)ζj (
Lj

)θj (
uK,jKj

)−θj

= RK,j , (422b)

P j

µj
νjζj

(
Zj

)(νjζj−1) (
ZW

)(1−νj)ζj (
Lj

)θj (
uK,jKj

)1−θj

= RZ,j . (422c)

Totally differentiating first-order conditions from firm’s profit maximization leads to:

−
[(

1− θj
)
L̂j + Ŵ j

]
+

(
1− θj

) (
ûK,j + K̂j

)
+ νjζjẐj = −P̂ j − (

1− νj
)
ζjẐW , (423a)

θjL̂j −
[
θj

(
ûK,j + K̂j

)
+ R̂K,j

]
+ νjζjẐj = −P̂ j − (

1− νj
)
ζjẐW , (423b)

θjL̂j +
(
1− θj

) (
ûK,j + K̂j

)
−

[(
1− νjζj

)
Ẑj + R̂Z,j

]
= −P̂ j − (

1− ζj
)
νjẐW . (423c)

Inserting intermediate solutions for Lj and Kj described by (267) and (269), respectively,
and inserting the intermediate solution for Zj described by eq. (397) into (423a)-(423c)
and invoking the theorem of implicit functions leads to

W j , RK,j , RZ,j
(
PN , PH ,K, ZA, uK,H , uK,N , ZW

)
. (424)

Plugging back (424) into (267) and (269) together with (397) leads to solutions for Lj ,Kj , Zj

and then for Y j by inserting these solutions onto the production function (404)-(405), i.e.,

Lj , Kj , Y j
(
PN , PH ,K, ZA, uK,H , uK,N , ZW

)
. (425)

Inserting first the marginal revenue product of capital(422b) into the optimal decision
for the capital utilization rate

RK,j(t)
P j(t)

= ξj
1 + ξj

2

(
uK,j(t)− 1

)
=

(
1− θj

)

µj

(
Zj

)νjζj (
ZW

)νj(1−ζj) (
Lj

)θj (
uK,jKj

)−θj

.

(426)
Totally differentiating (426) leads to:

[
ξj
2

ξj
1

+ θj

]
ûK,j − θjL̂j + θjK̂j − νjζjẐj = νj

(
1− ζj

)
ẐW . (427)

Inserting (425) into (427) and invoking the implicit function theorem leads to:

uK,j
(
PN , PH ,K, ZA, ZW

)
. (428)

Plugging (428) into (424) and (425) leads to

W j , RK,j , RZ,j , Lj ,Kj , Y j
(
PN , PH , K, ZA, ZW

)
. (429)
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From eq. (389a), we have IZ(t)
ZA(t)

which is a positive function of 1
ζ

(
QZ(t)
PZ(t) − 1

)
+ δZ .

Setting

vZ (.) =
1
ζ

(
QZ

PZ
− 1

)
(430)

we have JZ = ZA

[
IZ

ZA + ζ
2

(
IZ

ZA − δZ

)2
]

which can be solved for R&D investment including

installation costs:
JZ = JZ

(
ZA, QZ , PN , PH

)
. (431)

Inserting first (431) into (390a)-(390b), we can solve for investment in traded and non-
traded R&D:

JZ,H , JZ,N
(
ZA, QZ , PN , PH

)
. (432)

The market clearing conditions for traded and non-traded goods read:

QH = CH + GH + JK,H + JZ,H + XH + CK,HKH , (433a)

QN = CN + GN + JK,N + JZ,N + CK,NKN . (433b)

Inserting first appropriate intermediate solutions and differentiating enables to solve for
home-produced traded good and non-traded good prices:

PH , PN
(
K, QK , ZA, QZ , ZW

)
. (434)

Plugging back these solutions (434) into (428), (429) leads to:

uK,j ,W j , RK,j , RZ,j , Lj ,Kj , Y j
(
K,QK , ZA, QZ , ZW

)
. (435)

Inserting solutions for sectoral prices (434) intro intermediate solutions for investment in
tangible (285) and intangible assets (432) and consumption (265) leads to:

Cg, JK,g, JZ,g
(
K,QK , ZA, QZ , ZW

)
. (436)

The adjustment of the open economy toward the steady state is described by a dynamic
system which comprises five equations

K̇(t) =
QN (t)− CN (t)−GN (t)− JZ,N (t)− CK,N (t)KN (t)

(1− ι)
(

P N (t)
PJ (t)

)−φJ

−δKK(t)− κ

2

(
I(t)
K(t)

− δK

)2

K(t), (437a)

Q̇K(t) = (r? + δK) Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)CK,j(t)νK,j(t)− PJ(t)
∂J(t)
∂K(t)

}
, (437b)

ŻA(t) = vZ
(
K(t), QK(t), ZA(t), QZ(t), ZW (t)

)
ZA(t), (437c)

Q̇Z(t) = (r? + δZ) QZ(t)−
[
RZ(t)− PZ(t)

∂JZ(t)
∂ZA(t)

]
, (437d)

ŻW (t) = ẐW + zW e−ξZt (437e)

where we have used the fact that vZ = IZ

ZA − δZ with vZ
(
QZ(t), PN (t), PH(t)

)
, ẐW is the

long-run rate of change in the international stock of knowledge, zW and ξZ are parameters
which capture the magnitude of the change in ZW on impact and its persistence.

The dynamic system can be written in a compact form:

K̇(t) = Υ
(
K(t), QK(t), ZA(t), QZ(t), ZW (t)

)
, (438a)

Q̇K(t) = Σ
(
K(t), QK(t), ZA(t), QZ(t), ZW (t)

)
, (438b)

ŻA(t) = Π
(
K(t), QK(t), ZA(t), QZ(t), ZW (t)

)
, (438c)

Q̇Z(t) = Γ
(
K(t), QK(t), ZA(t), QZ(t), ZW (t)

)
, (438d)

ŻW (t) = −ξZ

(
ZW (t)− ZW

)
, (438e)
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where j = H, N .
We linearize (438a)-(438e) around the steady-state:




K̇(t)
Q̇K(t)
ŻA(t)
Q̇Z(t)
ŻW (t)




=




ΥK ΥQK ΥZA ΥQZ ΥZW

ΣK ΣQK ΣZA ΣQZ ΣZW

ΠK ΠQK ΠZA ΠQZ ΠZW

ΓK ΓQK ΓZA ΓQZ ΓZW

0 0 0 0 −ξZ







dK(t)
dQK(t)
dZA(t)
dQZ(t)
dZW (t)




. (439)

Denoting by ωi
k the kth element of eigenvector ωi related to eigenvalue νi, the general

solution that characterizes the adjustment toward the new steady-state can be written as
follows: V (t) − V =

∑5
i=1 ωiDie

νit where V is the vector of state and control variables.
Denoting the positive eigenvalue by ν3, ν4 > 0, we set D3 = D4 = 0 to eliminate explosive
paths and determine the five arbitrary constants Di (with i = 1, ..., 5, i 6= 3, 4) by using the
three initial conditions, i.e., K(0) = K0, ZA(0) = ZA

0 , ZW (0) = ZW
0 . Convergent solutions

toward the stable manifold read:

dK(t) = D1e
ν1t + D2e

ν2t + ω5
1D5e

ν5t, (440a)

dQK(t) = ω1
2D1e

ν1t + ω2
2D2e

ν2t + ω5
2D5e

ν5t, (440b)

dZA(t) = ω1
3D1e

ν1t + ω2
3D2e

ν2t + ω5
3D5e

ν5t, (440c)

dQZ(t) = ω1
4D1e

ν1t + ω2
4D2e

ν2t + ω5
4D5e

ν5t, (440d)

dZW (t) = D5e
ν5t, (440e)

where dX(t) = X(t) − X with X corresponding to the steady-state value in the next
steady-state, and ν5 = −ξZ < 0.

Setting t = 0 into the solutions for the stock of capital and the stock of knowledge, i.e.,
K0−K−ω5

1D5 = D1 +D2 and ZA
0 −ZA−ω5

3D5 = ω1
3D1 +ω2

3D2, and solving for arbitrary
constants:

D1 =
(K0 −K) ω2

3 −
(
ZA

0 − ZA
)−D5

(
ω5

1ω
2
3 − ω5

3

)

ω2
3 − ω1

3

, (441a)

D2 =

(
ZA

0 − ZA
)− (K0 −K)ω1

3 −D5

(
ω5

3 − ω1
3ω

5
1

)

ω2
3 − ω1

3

. (441b)

The current account reads Ṅ(t) = r?N(t) + PH(t)XH(t) −MF (t) where MF = CF +
GF + JK,F . Linearizing the current account equation, inserting solutions (440a)-(440e),
integrating over (0, t), solving, invoking the transversality condition leads to the stable
convergent path for the stock of net foreign assets:

dN(t) =
E1D1

ν1 − r?
eν1t +

E2D2

ν2 − r?
eν2t +

E5D5

ν5 − r?
eν5t, (442)

and the intertemporal solvency condition

dN +
E1D1

ν1 − r?
+

E2D2

ν2 − r?
+

E5D5

ν5 − r?
, (443)

where ν1, ν2, ν5 < 0, Ei = ΞK + ΞQK ωi
2 + ΞZAωi

3 + ΞQZωi
4 for i = 1, 2, and E5 = ΞKω5

1 +
ΞQK ω5

2 + ΞZAω5
3 + ΞQZω5

4 + ΞZW .

R.4 Numerical Strategy to Compute the Share of the Asymmetric Tech-
nological Change Driven by the Increase in the Stock of Knowledge

Panel A of Table 27 shows the variance of asymmetric technological change, the variance
of the growth rate of aggregate utilization-adjusted-TFP (adjusted with the covariance),
the ratio of the former to the latter, and the contribution of asymmetric technological
change to the variance of the growth rate of aggregate utilization-adjusted-TFP. The share
of asymmetric technological change has increased from 18.7% to 38.9%. Our objective is
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to quantify the contribution of the growing stock of knowledge together with the greater
exposition of traded industries than the non-traded sector to innovation abroad to rational-
ize the growing contribution of asymmetric technological change to aggregate technological
change.

We denote utilization-adjusted-TFP in sector j by Zj and utilization-adjusted-aggregate-
TFP by ZA. As demonstrated in section J.9, the variance of aggregate technological change
(adjusted with the covariance), Var′

(
ẐA(t)

)
, driven by the the variance asymmetric tech-

nological change, Var
(
ẐH(t)− ẐN (t)

)
can be measured by means of the following formula:

Unconditional Share of Asym. Tech. Change =
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) ., (444)

where νY,H is the value added share of tradables averaged over 1970-2017. Eq. (444)
shows that the variance of aggregate technological change driven by asymmetric technol-
ogy improvements is driven by the dispersion between traded and non-traded technology
improvements and also by the value added share of tradables.

First step. In the first step, we calibrate the semi-small open economy with endogenous
technology decisions and estimate the effects on utilization-adjusted-TFP of tradables and
non-tradables of a 1% permanent increase in the world utilization-adjusted-TFP (driven by
the permanent increase in the international stock of knowledge ZW (t)).

As detailed in section R.1, households decide about the investment in R&D which gives
rise to an aggregate stock of knowledge ZA(t). Households stand ready to supply the stock
of knowledge to firms in the traded and the non-traded sectors. Because intangible assets
are imperfect substitutes, they pay different returns. Given sector-specific rental rates on
intangible assets denoted by Rj

Z(t), traded and non-traded firms choose the amount of
intangible assets ZH(t) and ZN (t) according to the following optimal rules:

P j(t)
µj

ζjνj
(
Zj(t)

)ζjνj−1 (
ZW (t)

)(1−ζj)νj (
Lj(t)

)θj (
K̃j(t)

)1−θj

= Rj
Z(t),

where P j is the price of the final good in sector j = H, N . This equation shows that an
increase in international stock of knowledge ZW (t) raises the marginal revenue product of
investing in intangible assets and thus has a positive impact on Zj(t). Higher levels in
both international ZW and domestic Zj(t) stock of knowledge have a positive impact on
utilization-adjusted-TFP.

In this regard, one key parameter is νj which measures the impact of 1% increase in the
stock of R&D in sector j on utilization-adjusted-TFP in sector j. Using data from Stehrer
et al. [2019] (EU KLEMS database) we construct time series for both gross fixed capital
formation and capital stock in R&D in the traded and non-traded sectors. Data are available
for thirteen countries over 1995-2017, see Table 28. We have run the regression of the logged
utilization-adjusted-TFP in sector j on the logged stock of R&D at constant prices by using
cointegration techniques. As shown in Table 29, we find a FMOLS estimated value of the
long-term elasticity of utilization-adjusted-TFP w.r.t. the stock of R&D of 0.1499 for the
traded sector and 0.0007 for the non-traded sector. Once we have estimated the elasticity
γj of utilization-adjusted-TFP in sector j w.r.t the stock of knowledge in sector j, we have
to recover the parameter νH and νN by using values of parameters ζH and ζN . By adopting
a principal component analysis, we have estimated the common component of utilization-
adjusted-TFP which stands at 1 − ζH = 0.369 for tradables and 1 − ζN = 0.305 for non-
tradables. These values lead to νH = γH/ζH = 0.238 and νN = γN/ζN = 0.001. These
values suggest that increasing the domestic or the international stock of knowledge have
little impact on utilization-adjusted TFP of non-tradables and instead have a significant
impact on utilization-adjusted TFP of tradables. These values fit the data which indicates
that utilization-adjusted-TFP has increased by 0.2% per year while technology improves
by 1.6% on average per year in the traded sector over 1995-2017.

First step. In the quantitative analysis, we consider two scenarios. First, in line
with the principal component analysis we have conducted in section N.5 to extract the
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Table 27: Contribution of the International Stock of R&D to the Increasing Share of Asym-
metric Technological Change

Variance
Var(ẐH (t)−ẐN (t))

Var′(ẐA(t))
Share Asymmetric

Period ẐH(t)− ẐN (t) ẐA(t) (1)/(2) Tech. Change (in %)
(1) (2) (3) (4)

A.Total
1970-1992 0.000096 0.000077 1.25 18.7%
1993-2017 0.000072 0.000028 2.60 38.9%

B.International
1970-1992 0.000040 0.000050 0.52 7.7%
1993-2017 0.000041 0.000023 1.48 22.1%

Notes: In columns 1 and 2, we show the variance of the rate of the growth of the utilization-adjusted-TFP differential
between tradables and non-tradables, i.e., and the rate of the growth of the utilization-adjusted–aggregate-TFP.

Column 3 shows the ratio of Var
(
ẐH(t)− ẐN (t)

)
to Var

(
ẐA(t)

)
. Column 4 displays the share of the variance of

asymmetric technological change to the variance of technological change, i.e., compute the second term on the RHS
of eq. (49). In panel A, we consider the seventeen OECD countries average. In panel B, we have created artificial
data by i) estimating numerically the effect of a 1% permanent increase in the world utilization-adjusted-TFP on the
utilization-adjusted TFP of tradables and non-tradables by considering two sub-periods 70-92 and 93-17 by setting
the world component of sectoral utilization-adjusted-TFP to their estimates by means of PCA, 2) calculating the
growth rate of Zj(t) by multiplying the growth rate of ZW (t) with the long-run effect of a 1% permanent increase in
ZW (t) on ZH(t) and ZN (t) which stand at 0.92 and 1.23 for tradables over 70-92 and 93-17, respectively, and 0.004
for non-tradables over the two sub-periods, 3) calculating the contribution of variance of the productivity growth
differential between tradables and non-tradables as if the differential was only driven by the increase in ZW (t).
Sample: 17 OECD countries, 1970-2017, annual data.

Table 28: Stocks of Capital from KLEMS and sectoral R&D series: Data Availability

data on K from KLEMS data on R&D
AUS 1970-2007 no data
AUT 1976-2017 1995-2017
BEL 1995-2017 1995-2017
CAN 1970-2016 no data
DEU 1991-2017 1995-2017
DNK 1970-2017 1995-2017
ESP 1970-2016 1995-2016
FIN 1970-2017 1995-2017
FRA 1978-2017 1995-2017
GBR 1970-2017 1995-2017
IRL 1985-2017 no data
ITA 1970-2017 1995-2017
JPN 1973-2015 1995-2015
NLD 1970-2017 1995-2017
NOR 1970-2017 no data
SWE 1993-2016 1995-2016
USA 1970-2016 1995-2017

international component of traded and non-traded technology, see Table 26, we set the
world components of utilization-adjusted-TFP of tradables and non-tradables to 37% and
35% respectively over 1970-1992 and to 49% and 33% respectively over 1993-2017. In
Fig. 9(a), we consider a shock to the international stock of knowledge ZW (t) which gen-
erates a 1% permanent increase in the world utilization-adjusted-TFP. In Fig. 9(b), we
plot the endogenous responses of utilization-adjusted-TFP of tradables and non-tradables,
i.e., TFPadjH(t) = ZH(t) =

(
ZH(t)

)ζHνH (
ZW (t)

)(1−ζH)νH

and TFPadjN (t) = ZN (t) =(
ZN (t)

)ζNνN (
ZW (t)

)(1−ζN )νN

, in the blue line and the red line, respectively. We find that
a 1% permanent increase in TFPadjW (t) generates an increase in ZH(t) by 0.92 and 1.24
for tradables over 70-92 and 93-17, respectively, and an increase in ZN (t) by 0.004 for non-
tradables over the two sub-periods. These findings suggest that the greater asymmetry of
technology improvements between sectors is driven by the increasing exposition of tradable
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Table 29: Elasticity of Utilization-Adjusted-TFP w.r.t. the Stock of R&D

ZH ZN ZW

(1) (2) (3)
ZH 0.1499a

(5.88)
n.a. 0.077a

(4.71)

ZN n.a. 0.0007b

(1.66)
−0.002b

(−2.13)

ZA 0.019
(0.42)

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported
in parentheses. Denoting utilization-adjusted-TFP in sector j by Zj

it is
We run the regression of utilization adjusted TFP on the stock of R&D
at constant prices in sector j in panel format on annual data:

lnZj
it = αi + αt + βit + γj ln Zj

t + ηit,

where we include country fixed effects, time dummies, country-specific
linear time trend and we estimate γj = νjζj . Because ζj is the domestic
component of country-level-utilization-adjusted-TFP we obtain from

the principal component analysis, we can infer νj = γj

ζj . Since our

estimates for 17 countries by adopting an ACP reveals that ζH = 0.631
and ζN = 0.695, and our FMOLS estimates show that γH = 0.1499 and
γN = 0.0007, we can recover νH = 0.238 and νN = 0.001. In column
3, we construct the international stock of knowledge as a geometric
weighted average of trade partners’ aggregate stock of R&D at constant

prices for country i, i.e., ZW
it = Π12

k=1 (Zkt)
αM

ik where αM
k is the share

of imports of home country i from the trade partner k. Sample: 13
OECD countries, 1970-2017, annual data.

industries to innovation from abroad together with the higher elasticity of technological
change in traded industries w.r.t. the stock of intangible assets.

Second step. Once we have computed the elasticity of utilization-adjusted-TFP in sec-
tor j w.r.t. the world utilization-adjusted–TFP, we calculate the growth rate of TFPadjj(t)
predicted by the progression in the international stock of knowledge by using the ’real’ (i.e.,
taken from the data) growth rate of the (import share) weighted averaged of utilization-
adjusted TFP ZW (t) of all trade partners and multiply this growth rate by the numerically
computed elasticity of Zj(t) w.r.t. ZW (t) which allows us to generate artificial time series
for TFPadjj(t) only driven by the change in TFPadjW (t). We need now to decompose the
share of the variance of aggregate technological change driven by asymmetric technology
improvements into a country-specific- and a world-driven component.

We denote by ZW,j(t) the sectoral utilization-adjusted-TFP only driven by the progres-
sion in ZW (t). We need to quantify the share of the FEV of aggregate technological change
driven by asymmetric technology improvements when asymmetric technological change is
only driven by the increase in the international stock of knowledge conditional on the expo-
sition of industries to the world stock of innovation. To conduct this analysis, we must use
the fact that utilization-adjusted-TFP has a world (indexed by the superscript W ) and a
country-specific component (indexed by the superscript C), i.e., Ẑj(t) = ẐW,j(t)+ ẐC,j(t).
The share of the FEV of aggregate technological change driven by asymmetric technology
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improvements described by eq. (444) can be rewritten as follows:

Share of asm. tech. change

=
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) ,

=
(
νY,H

)2
Var

[(
ẐC,H(t)− ẐC,N (t)

)
+

(
ẐW,H(t)− ẐW,N (t)

)]

Var′
(
ẐA(t)

) ,

=
(
νY,H

)2
Var′

(
ẐC,H(t)− ẐC,N (t)

)

Var′
(
ẐA(t)

) +
(
νY,H

)2
Var

(
ẐW,H(t)− ẐW,N (t)

)

Var′
(
ẐA(t)

) , (445)

where Var′ is the variance of asymmetric country-specific technological change adjusted
with the covariance, i.e.,

Var′
(
ẐC,H(t)− ẐC,N (t)

)
= Var

(
ẐC,H(t)− ẐC,N (t)

)

−2Cov
[(
ẐC,H(t)− ẐC,N (t)

)
,
(
ẐW,H(t)− ẐW,N (t)

)]
.(446)

By using the decomposition shown in (446), panel B of Table 27 shows the variance of
asymmetric technological change caused by the international stock of ideas only, the vari-
ance of the growth rate of aggregate utilization-adjusted-TFP (adjusted with the covari-
ance), the ratio of the former to the latter, and the contribution of asymmetric technological
change caused by the international stock of knowledge to the variance of the growth rate
of aggregate utilization-adjusted-TFP. The share of the variance of technological change
driven by asymmetric technological change whe shutting down the country-specific compo-
nent has almost tripled, passing from 7.7% to 22.1%. More specifically, the international
stock of ideas accounts for 7.7%/18.7% = 41% of the the variance of technological change
attributed to asymmetric technological change over 1970-1992 and this contribution has
increased to 22.1%/38.9% = 57% over 1993-2017 due to the increased exposition of traded
industries to the world stock of innovation.

S Skilled vs. Unskilled Labor: Model

This Appendix puts forward an open economy version of the neoclassical model with trad-
ables and non-tradables, imperfect mobility of labor and capital across sectors, capital
adjustment costs, endogenous terms of trade. This section illustrates in detail the steps we
follow in solving this model. We assume that production functions take a CES form and we
allow for factor-biased technological change. We also make the distinction between skilled
and unskilled labor and allow for skill-biased technological change.

S.1 Households

At each instant of time, the representative household consumes traded and non-traded
goods denoted by CT and CN , respectively, which are aggregated by means of a CES
function:

C =
[
ϕ

1
φ

(
CT

)φ−1
φ + (1− ϕ)

1
φ

(
CN

)φ−1
φ

] φ
φ−1

, (447)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ
corresponds to the elasticity of substitution between traded goods and non-traded goods.
The index CT is defined as a CES aggregator of home-produced traded goods, CH , and
foreign-produced traded goods, CF :

CT =
[(

ϕH
) 1

ρ
(
CH

) ρ−1
ρ + (1− ϕH)

1
ρ

(
CF

) ρ−1
ρ

] ρ
ρ−1

, (448)
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where 0 < ϕH < 1 is the weight of the home-produced traded good in the overall traded
consumption bundle and ρ corresponds to the elasticity of substitution between home-
produced traded goods goods and foreign-produced traded goods.

As in De Cordoba and Kehoe [2000], the investment good is produced using inputs of
the traded good and the non-traded good according to a constant-returns-to-scale function
which is assumed to take a CES form:

JK =
[
ι

1
φJ

(
JT

)φJ−1

φJ + (1− ι)
1

φJ

(
JN

)φJ−1

φJ

] φJ
φJ−1

, (449)

where ι is the weight of the investment traded input (0 < ι < 1) and φJ corresponds to
the elasticity of substitution in investment between traded and non-traded inputs. The
index JT is defined as a CES aggregator of home-produced traded inputs, JH , and foreign-
produced traded inputs, JF :

JT =
[
(ιH)

1
ρJ

(
JH

) ρJ−1

ρJ + (1− ιH)
1

ρJ

(
JF

) ρJ−1

ρJ

] ρJ
ρJ−1

, (450)

where 0 < ιH < 1 is the weight of the home-produced traded in input in the overall traded
investment bundle and ρJ corresponds to the elasticity of substitution between home- and

We allow for imperfect mobility of capital across sectors by assuming that the capital
stock in the traded and the non-traded sectors are aggregated by means of a CES function:

K =
[
ϑ
−1/εK

K

(
KH

) εK+1

εK + (1− ϑK)−1/εK
(
KN

) εK+1

εK

] εK
εK+1

, (451)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate
capital index K(.) and εK measures the ease with which tangible assets can be substituted
for each other and thereby captures the degree of capital mobility across sectors.

The aggregate capital rental index RK(.) associated with the above defined capital index
(451) is:

RK(t) =
[
ϑK

(
RH(t)

)εK+1
+ (1− ϑK)

(
RN (t)

)εK+1
] 1

εK+1
, (452)

where RH(t) and RN (t) are capital rental rates paid in the traded and the non-traded
sectors.

The representative agent is endowed with one unit of time, supplies a fraction L(t) as
labor, and consumes the remainder 1 − L(t) as leisure. At any instant of time, house-
holds derive utility from their consumption and experience disutility from working. The
representative household maximizes the following objective function:

U =
∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (453)

where β > 0 is the discount rate. We allow for non-separability in consumption and leisure
in preferences. The household’s period utility function is increasing in his/her consumption
C and decreasing in his/her labor supply L, with functional form (see Shimer [2009]):

Λ (C, L) ≡ C1−σV (L)σ − 1
1− σ

, if σ 6= 1, V (L) ≡
(

1 + (σ − 1) ζ
σL

1 + σL
L

1+σL
σL

)
(454)

and
U (C, L) ≡ log C − ζ

σL

1 + σL
L

1+σL
σL , if σ = 1. (455)

These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of
labor supply, and σ > 0 determines the substitutability between consumption and leisure;
it is worthwhile noticing that if σ > 1, the marginal utility of consumption is increasing in
hours worked. Importantly, such preferences imply that the Frisch elasticity of labor supply
is constant.
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Each household supplies skilled and unskilled labor denoted by S(t) and U(t), respec-
tively. We keep the labor-supply side of our model simple and do not model flows between
occupations in order to focus on the role of skills in driving both the labor reallocation
and wage effects of technology shocks. We thus assume that the desutility from aggregate
labor supply is split into the desutility from the supply of skilled labor and the supply of
unskilled labor:

ζ
σL

1 + σL
L

1+σL
σL =

[
ζS

σL

1 + σL
(S)

σL+1

σL + ζU
σL

1 + σL
(U)

σL+1

σL

]
, (456)

where 0 < ζs < 1 (s = S,U) is the weight of skilled (unskilled) labor supply to the labor
index L(.).

As shall be useful below, we write down the partial derivatives of (455):

ΛC = C−σV (L)σ, (457a)

ΛCC = −σ
ΛC

C
, (457b)

ΛS =
C1−σσVSV σ−1

1− σ
, (457c)

ΛSS = ΛS

[
VSS

VS
+ (σ − 1)

VS

V

]
, (457d)

ΛU =
C1−σσVUV σ−1

1− σ
, (457e)

ΛUU = ΛU

[
VUU

VU
+ (σ − 1)

VU

V

]
, (457f)

ΛCS = σC−σVSV σ−1, (457g)

ΛCU = σC−σVUV σ−1, (457h)

ΛSU = ΛS (σ − 1)
VU

V
, (457i)

where ΛC = ∂Λ
∂C . According to eq. (457g) and (457h), the marginal utility of consumption

is increasing in labor supply as long as σ > 1, i.e., if consumption and leisure are gross
substitutes. To get (457i), we have used the fact that VSU = 0 which comes from our
assumption that skills are immobile across occupations although they are mobile (to a
certain extent) across sectors. To see it formally, we write out the partial derivatives of the
desutility from labor supply:

VS = (σ − 1) ζS (S)
1

σL , (458a)

VSS = (σ − 1)
ζS

σL
(S)

1
σL
−1

, (458b)

VSU = 0, (458c)

VU = (σ − 1) ζU (U)
1

σL , (458d)

VUU = (σ − 1)
ζU

σL
(U)

1
σL
−1

. (458e)

Following Horvath [2000], we assume that hours worked in the traded and the non-
traded sectors are aggregated by means of a CES function:

S(t) =
[
ϑ
−1/εS

S

(
SH

) εS+1

εS + (1− ϑS)−1/εS
(
SN

) εS+1

εS

] εS
εS+1

, (459a)

U(t) =
[
ϑ
−1/εU

U

(
UH

) εU +1

εU + (1− ϑU )−1/εU
(
UN

) εU +1

εU

] εU
εU +1

, (459b)

where 0 < ϑS < 1 (ϑU ) is the weight of skilled (unskilled) labor supply to the traded sector
in the skilled (unskilled) labor index S(.) (U(.)) and εS (εU ) measures the ease with which
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skilled (unskilled) hours worked can be substituted for each other and thereby captures the
degree of skilled (unskilled) labor mobility across sectors.

The aggregate wage index W (.) associated with the above defined labor index for skilled
(459a) and unskilled (459b) labor supply is:

WS(t) =
[
ϑS

(
WS,H(t)

)εS+1
+ (1− ϑS)

(
WS,N (t)

)εS+1
] 1

εS+1
, (460a)

WU (t) =
[
ϑU

(
WU,H(t)

)εU+1
+ (1− ϑU )

(
WU,N (t)

)εU+1
] 1

εU +1
, (460b)

where WS,H(t) (WU,H(t)) and WS,N (t) (WU,N (t)) are wages paid in the traded and the
non-traded sectors for skilled (unskilled) labor.

We assume that the households own the physical capital stock and choose the level of
capital utilization uK,j(t). Households lease capital services (the product of utilization and
physical capital) to firms in sector j at rental rate Rj(t). Thus capital income received by
households reads

∑
j Rj(t)uK,j(t)Kj(t). Households supply labor services to firms in sector

j at a wage rate W j(t). Thus labor income received by households reads
∑

j W j(t)Lj(t).
In addition, households accumulate internationally traded bonds, N(t), that yield net in-
terest rate earnings of r?N(t). Denoting lump-sum taxes by T (t), households’ flow budget
constraint states that real disposable income can be saved by accumulating traded bonds,
consumed, PC(t)C(t), invested in tangible assets, PJ(t)JK(t), and covers the capital uti-
lization cost:

Ṅ(t) = r?N(t) +
[
αK(t)uK,H(t) + (1− αK(t))uK,N (t)

]
RK(t)K(t) + WS(t)S(t) + WU (t)U(t)

−T (t)− PC(t)C(t)− PJ(t)JK(t)−
∑

j

P j(t)CK,j(t)νK,jK(t) (461)

where we denote the capital return share of tradables by αK = RHKH

RKK
and the share of

sectoral capital in the aggregate capital stock by νK,j(t) = Kj(t)/K(t).
The role of the capital utilization rate is to mitigate the effect of a rise in the capital

cost. We let the function CK,j(t) denote the adjustment costs associated with the choice
of capital and technology utilization rates which are increasing and convex functions of
utilization rates uK,j(t):

CK,j(t) = ξj
1

(
uK,j(t)− 1

)
+

ξj
2

2
(
uK,j(t)− 1

)2
, (462)

where ξj
2 > 0 is a free parameter; as ξj

2 → ∞, utilization is fixed at unity; ξj
1 must be

restricted so that the optimality conditions are consistent with the normalization of steady
state utilization of 1.

The accumulation of tangible assets is governed by the following law of motions:

K̇(t) = IK(t)− δKK(t), (463)

where IK is investment and 0 ≤ δK < 1 is a fixed depreciation rate. We assume that capital
accumulation is subject to increasing and convex cost of net investment:

JK(t) = IK(t) + Ψ
(
IK(t),K(t)

)
K(t), (464)

where Ψ (.) is increasing (i.e., Ψ′(.) > 0), convex (i.e., Ψ′′(.) > 0), is equal to zero at δK (i.e.,
Ψ(δK) = 0), and has first partial derivative equal to zero as well at δK (i.e., Ψ′(δK) = 0).
We suppose the following functional form for the adjustment cost function:

ΨK
(
IK(t),K(t)

)
=

κ

2

(
IK(t)
K(t)

− δK

)2

. (465)

Using (458), partial derivatives of total investment expenditure are:

∂JK(t)
∂IK(t)

= 1 + κ

(
IK(t)
K(t)

− δK

)
, (466a)

∂JK(t)
∂K(t)

= −κ

2

(
IK(t)
K(t)

− δK

)(
IK(t)
K(t)

+ δK

)
. (466b)
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To solve the representative household’s optimization problem, we set up current-value
Hamiltonian:

HH(t) = Λ (C(t), S(t), U(t)) + λ(t)Ḃ(t) + Q′
KK̇(t), (467)

where we denote the co-state variables associated with the flow budget constraint (461),
investment in tangible assets (463) by λ, Q′

K , respectively,
The representative household chooses C(t), L(t), JK(t), JZ(t), uK,jt), uZ,j(t), which

are control variables, B(t), K(t), ZA(t), which are state variables. Denoting QK(t) =
Q′

K(t)/λ(t) and QZ(t) = Q′
Z(t)/λ(t), the first-order conditions characterizing the represen-

tative household’s optimal plans are:

ΛC(t) = PC(t)λ(t), (468a)

−ΛS(t) = λ(t)WS(t), (468b)

−ΛU (t) = λ(t)WU (t), (468c)

QK(t) = PJ(t)
[
1 + κ

(
IK(t)
K(t)

− δK

)]
, (468d)

RH(t) = PH(t)
[
ξH
1 + ξH

2

(
uK,H(t)− 1

)]
, (468e)

RN (t) = PN (t)
[
ξN
1 + ξN

2

(
uK,N (t)− 1

)]
, (468f)

λ̇(t) = λ (β − r?) , (468g)

Q̇K(t) = (r? + δK) QK(t)−
{ [

αK(t)uK,H(t) + (1− αK(t))uK,N (t)
]
RK(t)

−PH(t)CK,H(t)αK(t)− PN (t)CK,N (t) (1− αK(t))− PJ(t)
∂JK(t)
∂K(t)

}
, (468h)

and the transversality conditions limt→∞ λ̄B(t)e−βt = 0, limt→∞QK(t)K(t)e−βt = 0. We

used the fact that Q̇K(t) = Q̇′K(t)

λ(t) − λ̇(t)
λ(t)

Q′K(t)

λ(t) .
Given the above consumption indices, we can derive appropriate price indices. With

respect to the general consumption index, we obtain the consumption-based price index
PC :

PC =
[
ϕ

(
P T

)1−φ
+ (1− ϕ)

(
PN

)1−φ
] 1

1−φ
, (469)

where the price index for traded goods is:

P T =
[
ϕH

(
PH

)1−ρ
+ (1− ϕH)

] 1
1−ρ

. (470)

Given the consumption-based price index (469), the representative household has the
following demand of traded and non-traded goods:

CT = ϕ

(
P T

PC

)−φ

C, (471a)

CN = (1− ϕ)
(

PN

PC

)−φ

C. (471b)

Given the price indices (469) and (470), the representative household has the following
demand of home-produced traded goods and foreign-produced traded goods:

CH = ϕ

(
P T

PC

)−φ

ϕH

(
PH

P T

)−ρ

C, (472a)

CF = ϕ

(
P T

PC

)−φ

(1− ϕH)
(

1
PT

)−ρ

C. (472b)

As will be useful later, the percentage change in the consumption price index is a
weighted average of percentage changes in the price of traded and non-traded goods in
terms of foreign goods:

P̂C = αC P̂ T + (1− αC) P̂N , (473a)

P̂ T = αH P̂H , (473b)
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where αC is the tradable content of overall consumption expenditure and αH is the home-
produced goods content of consumption expenditure on traded goods:

αC = ϕ

(
P T

PC

)1−φ

, (474a)

1− αC = (1− ϕ)
(

PN

PC

)1−φ

, (474b)

αH = ϕH

(
PH

P T

)1−ρ

, (474c)

1− αH = (1− ϕH)
(

1
P T

)1−ρ

. (474d)

Given the CES aggregator functions above, we can derive the appropriate price indices
for investment. With respect to the general investment index, we obtain the investment-
based price index PJ :

PJ =
[
ι
(
P T

J

)1−φJ + (1− ι)
(
PN

)1−φJ
] 1

1−φJ , (475)

where the price index for traded goods is:

P T
J =

[
ιH

(
PH

)1−ρJ +
(
1− ιH

)] 1
1−ρJ . (476)

Given the physical investment-based price index (475), we can derive the demand for
inputs of the traded good and the non-traded good:

JT = ι

(
P T

J

PJ

)−φJ

J, (477a)

JN = (1− ι)
(

PN

PJ

)−φJ

J. (477b)

Given the price indices (475) and (476), we can derive the demand for inputs of home-
produced traded goods and foreign-produced traded goods:

JH = ι

(
P T

J

PJ

)−φJ

ιH
(

PH

P T
J

)−ρJ

J, (478a)

JF = ι

(
P T

J

PJ

)−φJ (
1− ιH

) (
1

P T
J

)−ρJ

J. (478b)

As will be useful later, the percentage change in the investment price index is a weighted
average of percentage changes in the price of traded and non-traded inputs in terms of
foreign inputs:

P̂J = αJ P̂ T
J + (1− αJ) P̂N , (479a)

P̂ T
J = αH

J P̂H , (479b)

where αJ is the tradable content of overall investment expenditure and αH
J is the home-

produced goods content of investment expenditure on traded goods:

αJ = ι

(
P T

J

PJ

)1−φJ

, (480a)

1− αJ = (1− ι)
(

PN

PJ

)1−φJ

, (480b)

αH
J = ιH

(
PH

P T
J

)1−ρJ

, (480c)

1− αH
J =

(
1− ιH

) (
1

P T
J

)1−ρJ

. (480d)
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Given the aggregate wage index for skilled labor (460a) and unskilled labor (460b), we
can derive the allocation of labor supply to the traded and the non-traded sector for each
type of skill:

SH(t) = ϑS

(
WS,H(t)
WS(t)

)εS

S(t), SN (t) = (1− ϑS)
(

WS,N (t)
WS(t)

)εS

S(t). (481a)

UH(t) = ϑU

(
WU,H(t)
WU (t)

)εU

U(t), SN (t) = (1− ϑU )
(

WU,N (t)
WU (t)

)εU

U(t). (481b)

Aggregating labor compensation across sectors and skills leads to:

WS,HSH + WS,NSN = WSS, (482a)

WU,HUH + WU,NUN = WUU, (482b)

WSS + WUU = WL, (482c)

where W is the aggregate wage and L is aggregate labor supply.
As will be useful later, log-linearizing the wage index in the neighborhood of the initial

steady-state leads to:

ŴS(t) = αH
S ŴS,H(t) +

(
1− αH

S

)
ŴS,N (t), (483a)

ŴU (t) = αH
U ŴU,H(t) +

(
1− αH

U

)
ŴU,N (t), (483b)

where αH
S = W S,HSH

W SS
and αH

U = W U,HUH

W UU
tradable content of aggregate labor compensation:

αH
S = ϑS

(
WS,H

WS

)1+εS

, 1− αH
S = (1− ϑS)

(
WS,N

WS

)1+εS

, (484a)

αH
U = ϑU

(
WU,H

WU

)1+εU

, 1− αH
U = (1− ϑU )

(
WU,N

WU

)1+εU

, (484b)

Given the aggregate capital rental index, we can derive the allocation of aggregate
capital supply to the traded and the non-traded sector:

KH = ϑK

(
RH

RK

)εK

K, KN = (1− ϑK)
(

RN

RK

)εK

K, (485)

where the elasticity of capital supply across sectors ε captures the degree of capital mobility.
As will be useful later, log-linearizing the capital rental index in the neighborhood of the
initial steady-state leads to:

R̂K(t) = αKR̂H(t) + (1− αK) R̂N (t), (486)

where αK = RHKH

RKK
is the tradable content of aggregate capital return which reads as

follows:

αK = ϑK

(
RH

RK

)1+εK

, 1− αK = (1− ϑK)
(

RN

RK

)1+εK

. (487)

S.2 Firms

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital (inclusive of capital utilization), K̃j , according to a technology described by a CES
production function:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (488)

where 0 < γj < 1 is the weight of labor in the production technology, σj is the elasticity of
substitution between capital and labor in sector j = H,N , and Aj(t) and Bj(t) are labor-
and capital-augmenting efficiency.
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We assume that efficient labor is a CES aggregator of skilled and unskilled labor:

AjLj(t) =


γj

L

(
Aj

S(t)Sj(t)
)σ

j
L
−1

σ
j
L +

(
1− γj

L

)(
Aj

U (t)U j(t)
)σ

j
L
−1

σ
j
L




σ
j
L

σ
j
L
−1

, (489)

where 0 < γj
L < 1 is the weight of skilled labor in the efficient labor index, σj

L is the elasticity
of substitution between skilled and unskilled labor in sector j = H,N , and Aj

S(t) and Aj
U (t)

are skilled labor- and unskilled labor-augmenting efficiency. While capital-augmenting pro-
ductivity has a symmetric and an asymmetric component across sectors, see eq. (15), both
skilled- and and unskilled-labor augmenting productivity are made up of a symmetric com-
ponent across sectors denoted by the subscript S and an asymmetric component denoted
by the subscript D:

AS,j(t) =
(
AS,j

S (t)
)η (

AS,j
D (t)

)1−η
, AU,j(t) =

(
AU,j

S (t)
)η (

AU,j
D (t)

)1−η
, (490)

where η is assumed to be symmetric across sectors.
Both sectors are assumed to be perfectly competitive and thus choose capital and labor

by taking prices as given:

max
Sj ,Uj ,K̃j

Πj = max
Sj ,Uj ,K̃j

{
P jY j −WS,jSj −WU,jU j −RjK̃j

}
. (491)

Since skilled, unskilled and capital cannnot move freely between the two sectors, the value
of marginal revenue products in the traded and non-traded sectors do not equalize while
costly labor and capital mobility implies a wage and a capital rental rate differential across
sectors. The demand for skilled and unskilled labor together with the demand for capital
by traded firms are described by:

PH ∂Y H

∂LH

∂LH

∂SH
= γH

(
AH

)σH−1

σH
(
LH

)− 1

σH
(
Y H

) 1

σH γH
S

(
AH

S

AH

)σH
L −1

σH
L (

SH
)− 1

σH
L

(
LH

) 1

σH
L

= WS,H , (492a)

PH ∂Y H

∂LH

∂LH

∂UH
= γH

(
AH

)σH−1

σH
(
LH

)− 1

σH
(
Y H

) 1

σH
(
1− γH

S

)(
AH

U

AH

)σH
L −1

σH
L (

UH
)− 1

σH
L

(
LH

) 1

σH
L

= WU,H , (492b)

PH ∂Y H

∂K̃H
= PH

(
1− γH

) (
BH

)σH−1

σH

(
K̃H

)− 1

σH (
Y H

) 1

σH = RH . (492c)

The demand for skilled and unskilled labor together with the demand for capital by
traded firms are described by:

PN ∂Y N

∂LN

∂LN

∂SN
= γN

(
AN

)σN−1

σN
(
LN

)− 1

σN
(
Y N

) 1

σN γN
S

(
AN

S

AN

)σN
L −1

σN
L (

SN
)− 1

σN
L

(
LN

) 1

σN
L

= WS,N , (493a)

PN ∂Y N

∂LN

∂LN

∂UN
= γN

(
AN

)σN−1

σN
(
LN

)− 1

σN
(
Y N

) 1

σN
(
1− γN

S

)(
AN

U

AN

)σN
L −1

σN
L (

UN
)− 1

σN
L

(
LN

) 1

σN
L

= WU,N , (493b)

PN ∂Y N

∂K̃N
= PN

(
1− γN

) (
BN

)σN−1

σN

(
K̃N

)− 1

σN (
Y N

) 1

σN = RN . (493c)

Pre-multiplying the equality between the marginal revenue product of skilled labor by
Sj/Lj , i.e., P j ∂Y j

∂Lj
∂Lj

∂Sj
Sj

Lj = W S,jSj

Lj and using the fact that P j ∂Y j

∂Lj = W j , leads to the
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equality between the elasticity of labor w.r.t. skilled labor and the skilled labor income
share denoted by sj

S . Applying the same logic to unskilled labor leads to:

∂Lj

∂Sj

Sj

Lj
=

WS,jSj

W jLj
≡ sj

S , (494a)

∂Lj

∂U j

Sj

Lj
=

WU,jU j

W jLj
≡ sj

U = 1− sj
S . (494b)

Dividing the skilled labor income share by the unskilled labor income share and using
(492a)-(492b) leads to a relationship between the skilled labor income share sj

S and skilled-
biased technological change:

sj
S

1− sj
S

=
γj

S

1− γj
S

(
Aj

S

Aj
U

)σ
j
L
−1

σ
j
L

(
Sj

U j

)σ
j
L
−1

σ
j
L (495)

We can recover the dynamics Aj
S

Aj
U

by using the dynamic responses of sj
S and Sj

Uj .

S.3 Skill-Biased Technological Change (SBTC) and Elasticity of Substi-
tution between Skilled and Unskilled Labor

Costly labor and capital mobility implies a labor and capital cost differential across sectors:

(
1− sj

L(t)
)

P j(t)Y j(t)

K̃j(t)
= Rj(t), (496a)

sj
L(t)sj

S(t)P j(t)Y j(t)
Sj(t)

= WS,j(t), (496b)

sj
L(t)

(
1− sj

S(t)
)

P j(t)Y j(t)

U j(t)
= WU,j(t), (496c)

where sj
S(t) is the share of skilled labor in labor compensation in sector j = H, N , i.e.,

sj
S(t) =

WS,j(t)Sj(t)
W j(t)Lj(t)

= γj
S

(
AS,j(t)Sj(t)
Aj(t)Lj(t)

)σ
j
L
−1

σ
j
L . (497)

Dividing the demand for skilled labor by the demand for unskilled labor, inserting (497),

and denoting the ratio of skilled to unskilled labor income share by Sj
S(t) ≡ sj

S(t)

1−sj
S(t)

, leads
to:

Sj
S(t) ≡ sj

S(t)

1− sj
S(t)

=
γj

S

1− γj
S

(
SBTCj

)−1
(

Sj(t)
U j(t)

)− 1−σ
j
L

σ
j
L , (498)

where SBTCj(t) =
(

AS,j(t)
AU,j(t)

) 1−σ
j
L

σ
j
L is skill-biased technological change (SBTC henceforth).

We assume imperfect substitution between skill types and one important question is whether
skilled and unskilled labor are substitutes or complements. If σj

L > 1, an increase in skilled-
relative to unskilled-labor-augmenting productivity increases the demand for skilled labor.
When Sj(t) and U j(t) are gross complements (i.e., if σj

L < 1), higher productivity of skilled
workers relative to unskilled workers lowers the demand for skilled labor.

A large span of the literature, see e.g., Acemoglu [2002], Caselli and Coleman [2006],
Jones [2014], assume that skilled and unskilled workers as gross substitutes and choose an
elasticity of substitution of 1.5. In contrast, the meta analysis by Bazcik et al. [2020]
questions the common view that the elasticity exceeds 1. After correcting for the biases,
the literature is consistent with an elasticity in the US of 0.6-0.9. When we estimate
the elasticity of substitution between skilled and unskilled labor over 1970-2017 for eleven
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OECD countries of our sample by using cointegration techniques and sectoral data, our
evidence corroborates the findings by Bazcik et al. [2020] as we estimate empirically an
elasticity of σH

L = 0.77 for the traded sector and an elasticity of σH
L = 0.69 for the non-traded

sector. When we run estimates for one country at a time estimated values display some
cross-country dispersion. For example, for the United States, we find a value of σH

L = 1.11
and σN

L = 0.91 which suggests that skilled and unskilled labor are gross substitutes in
the traded sector and gross complements in the non-traded sector. In accordance with our
estimates, we will assume that skilled and unskilled labor are gross complements. As skilled
relative to unskilled labor-augmenting productivity increases (i.e., as AS,j(t)/AU,j(t) rises),
the demand for unskilled labor increases when σj

L < 1 which in turn lowers the share of the
skilled labor income share in sector j in line with our evidence.

S.4 Technology Frontier

While we keep assuming that firms within each sector j = H, N decide about the split
of capital-utilization-adjusted-TFP Zj(t) between labor- and capital-augmenting efficiency,
we assume that firms choose a mix of skilled- and unskilled-labor-augmenting productivity
AS,j(t) and AU,j(t) along a technology frontier (which is assumed to take a CES form):


γS,j

Z

(
AS,j(t)

)σ
j
L,Z

−1

σ
L,j
Z +

(
1− γS,j

Z

) (
AU,j(t)

)σ
L,j
Z

−1

σ
L,j
Z




σ
j
Z

σ
L,j
Z

−1

≤ Aj(t). (499)

where Aj(t) > 0 is the height of the technology frontier, 0 < γS,j
Z < 1 is the weight of skilled

labor efficiency in labor-augmenting efficiency and σL,j
Z > 0 corresponds to the elasticity of

substitution between skilled labor- and unskilled labor-augmenting productivity. The unit
cost minimization requires that

sj
S = γS,j

Z

(
AS,j(t)
Aj(t)

)σ
L,j
Z

−1

σ
L,j
Z . (500)

Inserting this equality into the log-linearized version of the technology frontier shows that
labor-augmenting technological change is driven by variations in skilled labor- and unskilled-
labor-augmenting technological change (weighted by their contribution to the decline in the
unit cost for labor in sector j):

Âj(t) = sj
SÂS,j(t) +

(
1− sj

S

)
ÂU,j(t). (501)

S.5 Calibration

The calibration procedure is identical to that described in sections 4.1-4.2 except that we
have to choose values for both production and preference parameters related to workers’
skills. Because data for skilled and unskilled labor at a sectoral level are available for
eleven countries only over a long enough time length, we calibrate the model to the data
by estimating parameters such as ε and φ and computing ratios for this group of countries
only.

Production parameters. Since we choose the initial steady-state in a model with
Cobb-Douglas production functions as the normalization point, we set both σj and σj

L to
one. Building on pour estimates, the labor income share for the traded and non-traded
sectors are set to sH

L = 0.636 and sN
L = 0.682 and and for the skilled labor income share to

sH
S = 0.636 and sN

S = 0.699.
Preference parameters. We keep assuming σ = 2 and σL = 3 and choose a value for

ζS so as to target a ratio of skilled to unskilled labor of S/L = 56%. To pin down the degree
of labor mobility of skilled (unskilled) labor across sectors, i.e., εS (εU ), we run the regression
in panel format on annual data of the percentage change in the skilled (unskilled) hours
worked share of sector j on the percentage change in the relative share of value added paid
to skilled ((unskilled) workers in sector j. In accordance with the evidence documented by
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Kambourov and Manovskii [2009] which reveals that industry (and occupational) mobility
declines with education, our empirical findings reveal that the elasticity of labor supply
across sectors is twice larger for unskilled than skilled workers. More specifically, we set
εS = 0.63 and εU = 1.13, in line with our panel data estimates. We choose values for
ϑS and ϑU so as to target a weight of skilled and unskilled labor supply of SN/S = 69%
and UN/U = 59%, respectively. Note that for the eleven countries of our sample, we set
εK = 0.18 and choose ϑK so as to target KH/K = 38%.

We estimate a value for the elasticity of substitution φ between traded and non-traded
goods of 0.19 and choose a value for ϕ so as to target a non-tradable of consumption
expenditure 1−αC = 58%. Keeping assuming φJ = 1, we choose 1−αJ = 68%. We choose
ϕH and ιH so as to target αH = 66% and αH

J = 43%. Using the fact that ωJ = 23%,
ωC = 57% and ωG = 20%, the demand components for home-produced traded goods gives
a value added share of tradables PHY H/Y of 35% in line with our estimates.

CES economy. In line with our panel data estimates, we choose for the elasticity of
substitution between capital and labor σH = 0.86 and σN = 0.83 and for the elasticity of
substitution between skilled and unskilled labor σH

L = 0.77 and σN
L = 0.69.

Factor-augmenting efficiency. We assume that factor-augmenting productivity is
made up of a symmetric component across sectors denoted by the subscript S and an
asymmetric component denoted by the subscript D. To recover the dynamics of Bj(t)
and Aj(t), and the dynamics of AS,j(t) and AU,j(t), we proceed as in section 4.2. Be-
cause the equations are identical for Bj(t) and Aj(t) (see eq.s (47a)-(47b)), we focus on
labor-augmenting efficiency across workers’ skills. Log-linearizing the demand for skilled
labor relative to the demand for unskilled labor (495), this equation together with the log-
linearized versions of the technology frontier (501) can be solved for deviations of AS,j

c (t)
and AU,j

c (t) relative to their initial steady-state values:

ÂS,j
c (t) = Âj(t)−

(
1− sj

S

)[(
σj

L

1− σj
L

)
Ŝj

S(t)−
(
Ŝj(t)− Û j(t)

)]
, c = S,D (502a)

ÂU,j
c (t) = Âj(t) + sj

S

[(
σj

L

1− σj
L

)
Ŝj

S(t)−
(
Ŝj(t)− Û j(t)

)]
, c = S, D. (502b)

Plugging estimated values for σj
L and empirically estimated responses for sj

S(t), Sj(t)/U j(t),
following a symmetric (asymmetric) technology shock across sectors into above equations
enables us to recover the dynamics for AS,j

S (t) (AS,j
D (t)) and AU,j

S (t) (AU,j
D (t) consistent with

the demand for factors of production (498) and the technology frontier (501).
Share of symmetric technology shocks across sectors. By using the fact that

technology improvements are a weighted average of symmetric and asymmetric technology
shocks, we find that a value of η = 80% minimizes the discrepancy between the empirical re-
sponse of ZA(t) following a permanent technology improvement and its response computed
from ẐA(t) = ηẐA

S (t) + (1− η) ẐA
D(t). Note that the capital utilization rates are found to

quite muted after a technology improvement for the eleven countries of our sample, we let
ξj
2,S , ξj

2,D tend toward infinity.

S.6 Taking the Model to the Data

Labor composition effects across workers’ skills. In Fig. 31, we contrast the dynamics
effects of a 1% permanent technology improvement we estimate empirically (shown in the
solid blue line) with the responses we compute numerically in the baseline model (shown
in black line with squares). To give a sense of the role of FBTC and SBTC in driving
the effects of a permanent technology improvement, we also consider a restricted version
of our model shown in dashed red lines which imposes Cobb-Douglas production functions
to produce sectoral goods and to aggregate both types of labor so that both FBTC and
SBTC are shut down.

A permanent increase in utilization-adjusted-aggregate-TFP shown in Fig. 31(a) leads
agents to work less as displayed by Fig. 31(b). Quantitatively, hours worked decline by
0.45% on impact and such a dramatic decline in caused by the importance of symmetric
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technology shocks which account for 80% of technology improvements. Intuitively, when
technological change is evenly spread across sectors, higher productivity puts downward
pressure on sectoral prices which curbs the increase in sectoral wages. Because the sub-
stitution effect is small, the wealth effect lowers significantly hours worked. Fig. 31(c)
shows that the skilled labor share of labor income αS(t) = sH

S (t)αL(t) + sN
S (t) (1− αL(t))

decreases over time which reflects the fact that most of the decline is driven by the fall in
skilled labor. In contrast, as shown in the dashed red lines, a model abstracting from SBTC
predicts a flat skilled labor income share. As displayed by Fig. 31(d), the restricted model
tends to understate the fall in skilled labor. In contrast, a model with SBTC reproduces
well the adjustment in skilled labor, in particular the dynamics for skilled hours worked in
the traded sector, as can be seen in Fig. 31(e). The reason behind the decline in the skilled
labor income share is the gradual decrease in the skilled labor income shares in both the
traded and the non-traded sector. As shown in the dashed red lines in Fig. 31(g) and Fig.
31(h), only the baseline model assuming SBTC can generate a decrease in the intensity of
production of both sectors in skilled labor.

Fig. 31(i) reveals that skilled labor shifts away from traded industries and the cause
of this movement is twofold. First, because the decrease in sH

S is more pronounced in the
traded than in the non-traded sector, the demand for skilled labor declines more rapidly
in the traded than in the non-traded sector. Second, the decrease in the skilled labor
income share amplifies the fall in SH(t)/L(t). While the tradable content of unskilled
labor income, αH

U (t) is quite muted, the tradable content of skilled labor income, αH
S (t),

experiences a pronounced decline that our model reproduces reasonably well. And therefore,
the reallocation of labor toward the non-traded sector shown in Fig. 31(j) is mostly driven
by the shift of skilled labor away from traded industries and toward the non-traded sector.
As shown in Fig. 31(o), to compensate for the labor mobility costs, non-traded industries
pay higher wages relative to the traded sector. The reallocation of labor is driven by the
productivity growth differential between tradables and non-tradables which leads to an
appreciation in the relative price of non-tradables, as displayed by Fig. 31(m).
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Figure 31: Theoretical vs. Empirical Responses Following a Technology Shock: Labor
Composition Effects across Workers’ Skills. Notes: The solid blue line which displays point estimate
from local projections with shaded areas indicating 90% confidence bounds; the thick solid black line with squares
displays model predictions in the baseline scenario with FBTC and SBTC, while the dashed red line shows predictions
of a model with Cobb-Douglas production functions (which amount to shutting down FBTC and SBTC). In line with

the evidence for the eleven countries of our sample, we let ξj
2,S , ξj

2,D tend toward infinity so that the capital utilization

rates are muted in both sectors.
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