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Schedule Situations and their Cooperative Games1

Léa Munich

BETA (CNRS, University of Strasbourg, University of Lorraine), 13, Place Carnot, C.O 70026, 54035 Nancy.
France.

Abstract

We introduce a new problem of cost allocation resulting from a scheduling problem, and we study
it by a new class of cooperative games, the schedule situations and the associated games. In a
schedule situation several players share a non-rival common-pool infrastructure. Its consumption
is possible during several periods. The consumption needs of each player are described by the
set of minimal schedules satisfying this player. The use of this infrastructure induces a fixed
per-period cost normalized to one unit. Therefore, one objective is to minimize the overall total
number of consumption time periods in order to satisfy all players. For this purpose, the schedule
game gives for each coalition of players the minimal number of time periods needed to satisfy
the consumption needs of all its members. We provide a characterization of the class of schedule
games: a game is a schedule game if and only if it is monotonic, sub-additive, integer-valued
and all nonempty coalitions have positive worths. Moreover, specific schedule games can be
linked to other classes of operational research games: the airport games and the carpool games.
We also introduce Equal pooling allocations, which in some cases coincide with the Shapley
value. Next we develop a natural sufficient condition to guarantee the non-emptiness of the core
of a schedule game. Finally, we provide an application of the the schedule situations and the
associated games to the allocation of cost of the mail carrier route in France.

Keywords: Schedule, OR-game, Cost allocation, Equal pooling allocations, Core.
JEL codes: C71, L87.

1. Introduction

In this article we introduce a new scheduling cost allocation problem called a schedule sit-
uation. Several players share a non-rival common-pool infrastructure whose consumption is
possible during several periods but is costly. The per-period cost is normalized to one unit.
The needs of each player are expressed in the form of consumption schedules, i.e. each schedule
specifies a minimum set of periods that meets the player’s needs. Consumption schedules can
take a variety of forms. In some cases, the identity of the periods included in a consumption
schedule is important, while in others only the number of periods matters.

1For interesting comments, I would like to thank Sylvain Béal, Francis Bloch, Olga Bohorquez Suarez, Claire
Borsenberger, Yannick Gabuthy, David Lowing, Florian Navarro, Philippe Solal, Kevin Techer and the participants
at the workshop Cooperative models in games and social choice, November 24 and 25, 2022, Besançon. The views
expressed here are the author’s alone.
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The objective is to find the combination of consumption schedules for all the players that
minimizes the overall cost, i.e. the one that leads to the use of the infrastructure for the smallest
number of periods in order to satisfy all the needs, in particular through potential mutualisation.
Once this total cost has been determined, the natural next step is to allocate it among the
participating players, taking into account how they managed to jointly use the infrastructure.
We investigate this cost allocation problem by means of the theory of cooperative games with
transferable utility. The resulting game specifies, for each coalition of players, the minimum
number of periods of use of the infrastructure necessary to meet the needs of all members of the
coalition.

Our approach originates from the concrete problem of allocating the common cost of the mail
carrier route in France, which is an ongoing challenge for La Poste, the postal operator in charge
of the postal universal service in France, and Arcep2, the French national regulatory authority.
The European directive 97/67/CE in article 14-3 states that the universal service providers shall
keep separate accounts within their internal accounting systems between the postal products
belonging the universal service scope and the other. For that reason, the common cost of the
mail carrier is allocated between the different postal products that are delivered. In addition,
this article states that “ whenever possible, common costs shall be allocated on the basis of
direct analysis of the origin of the costs themselves; [...]”. Therefore, to allocate the common
cost of the mail carrier route two cost drivers are taken into account, the delivery speed and
the format/volume of the postal products. Currently, the common cost of the mail carrier route
is allocated in two steps. In the first step, postal products are grouped into three categories
according to their delivery speed: D7, D3 and D1 with a delivery target on the 7st, 3rd and
1th business day after posting, respectively. Given that La Poste must organize the delivery
network in order to be in capacity to visit all recipients’ addresses six days a week and given
the logistical constraints, a theoretical delivery frequency of one, three, and six days per week
would be required to respectively deliver D7, D3 and D1. Arcep’s decision 2008-0165 states
that the common cost of the six weekly mail carrier routes is allocated to the three categories
in proportion to their aforementioned delivery frequency: 60% of the delivery costs to D1, 30%
to D3 and 10% to D7. In the second step, the share of the cost previously calculated for each
category is then allocated to the postal products belonging to this category according to their
format/volume.

The schedule situations provide a good insight into the first step of this process (a detailed
description of the second step can be found in Munich and Bohorquez Suarez, 2022). The
infrastructure is the mail carrier route, which can be used six days/periods per week, and the
players are the three postal product categories. The minimal consumption schedules for the three
categories are as follows. For D1, the unique consumption schedule is the set of all six days of
the week (or equivalently a mail carrier route every business day) since the postal products
in this category must be delivered on the next business day. On the contrary, for D7, there
are six singleton possible alternative consumption schedules, one for each day of the week (one
mail carrier route is enough, no matter which day), since a postal product belonging to this
category must be delivered not later than 7 days after being posted. For D3, due to the logistic

2The french’s electronic communications, postal and print media distribution regulatory authority. It has
various responsibilities with respect to the postal sector. Notably exercising accounting and price supervision
over the postal products in the universal service scope and monitoring the quality of the service provided.
https://en.Arcep.fr/
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constraints, the set of minimal consumption schedules contains all the triple of days which are
not consecutive two by two such as, for example, {day 1,day 4,day 6}. In Section 6, we explain
how our model of schedule situations can lead to a relevant alternative allocation.

On top of introducing the new model of schedule situations, we make two types of contribu-
tions to the literature, on the structure of schedule games and on the cost allocations. Regarding
the first type, Proposition 1 is a characterization of the class of schedule games: a game is a
schedule game if and only if it is monotonic, sub-additive, integer-valued and all nonempty coali-
tions have (strictly) positive worths. One of the particularities of this new class of games is that
specific schedule situations can be linked to other classes of operational research games. First, a
schedule situation is called anonymous if for each player only the number of consumption time
periods matters but not their timing. Proposition 2 shows that the games associated to anony-
mous schedule situations are airport games (Littlechild and Owen, 1973). This result follows
Munich and Bohorquez Suarez (2022) in which the postal allocation problem is addressed by an
airport game. The latter article draws an analogy with airport games, but does not deepen or
generalize the analysis as in the present article. Second, a schedule situation is called singleton
if for each player there is a unique minimal schedule satisfying its needs. Proposition 4 proves
that the class of games associated to singleton schedule situations coincides with the class of
carpool games (Naor, 2005).

Regarding the second type of contributions, we provide natural allocations for schedule
situations called the Equal pooling allocations. These allocations can be computed in two
steps as follows: first, select an optimal consumption time schedule for the grand coalition,
and second share the cost of each time period equally among the players who use it. On the
subclass of anonymous schedule situations, Proposition 3 shows that there is always at least
one optimal consumption time schedule for the grand coalition such that the corresponding
Equal pooling allocation coincides with the Shapley value of the associated schedule game. On
the subclass of singleton schedule situations, there is a unique Equal pooling allocation and,
similarly, Proposition 6 demonstrates that it coincides with the Shapley value of the associated
schedule game. Since airport games are concave, anonymous schedule games are concave too.
Moreover, we also show in Proposition 5 that singleton schedule games are concave as well.
In these types of schedule games the core is nonempty. However, Proposition 1 reveals that
some schedule games have an empty core. Nevertheless, Corollary 1 provides a natural sufficient
condition to ensure the non-emptiness of the core of a schedule game. This condition states
that within each coalition, each members is guaranteed to consume the least amount of time
periods among all consumption schedules satisfying its needs. In particular, this condition is
weak enough to be satisfied by the classes of anonymous and singleton schedule situations.

This article is in line with the growing literature on operations research (OR) games in
which the players wish to minimize total joint costs and then must distribute these joint costs
among them. Borm et al. (2001) and Fiestras-Janeiro et al. (2011) provide a general view
of the literature of OR problems and applications of cooperative games to cost allocation in
transportation, connection, sequencing/queuing, production and inventory issues, among others.
To the best of our knowledge, these models are different from ours. The Chinese postal problem
is also different from our schedule situations for at least two reasons, even in the context of
the postal application of Section 6. Firstly, in the Chinese postal problem the first step is to
determine the cost of an optimal mail delivery route on a graph whereas the cost in this article
is the optimal number of route per week. Secondly, in the Chinese postal problem the total
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cost is shared among the postal consumers whereas the cost in this article is shared among the
postal product categories. A prominent example of OR problems is the airport problem studied,
among others, by Littlechild (1974), Littlechild and Owen (1976), Littlechild and Thompson
(1977), Tijs and Driessen (1986). There are also models where a structure similar to that of
airport problems is applied to other contexts (Graham et al., 1990; Dehez and Ferey, 2013; Hou
et al., 2018). Our model can be considered as a generalization of airport games and thus is
in line with the other generalizations of the class of airport games proposed in Fragnelli et al.
(1999), Kuipers et al. (2013) and Rosenthal (2017), among others.

The rest of the article is organized as follows. After giving the preliminaries on cooperative
games in Section 2, we introduce the schedule situations and the associated games in Section 3.
The equal pooling allocations are also presented in this section. In Section 4, we link schedule
games to airport games and carpool games. In Section 5, we provide the sufficient condition for
the non-emptiness of the core. Section 6 comes back to the application of allocating the cost of
the mail carrier route in France. Section 7 concludes with possible extensions of this article.

2. Preliminaries on cooperative games

Let N be a nonempty and finite set of players. Each subset E ∈ 2N is referred to as a
coalition of cooperating players. The grand coalition N represents a situation in which all
players cooperate. Coalition ∅ represents a situation in which no player cooperates, it is called
the empty coalition. For each E ∈ 2N , the integer |E| ∈ N denotes the cardinality of coalition
E.

A transferable utility game, or simply a TU-game, is a couple (N, v) consisting of a finite
players set N and a characteristic function v : 2N → R, with the convention that v(∅) = 0.
The real number v(E) can be interpreted as the worth the players in E generate when they
cooperate. This worth can be perceived by the players as desirable (like profits) or, on the
contrary, undesirable (like costs). We will focus on the second case: the players share cost.
Thus the game (N, v) is a cost game. For ease of writing the game (N, v) will be designated by
its characteristic function v where N is fixed. A game v may satisfy some interesting properties:

Monotone For each E ⊆ S ⊆ N, v(E) ≤ v(S).

Adding a player to a coalition does not reduce its cost.

Sub-additive For each couple of coalitions E,S ⊆ N such that E ∩ S = ∅, v(E ∪ S) ≤
v(E) + v(S).

When two disjoint coalitions come together, the resulting joint cost is at most equal to the sum
of their initial costs. Merging two coalitions is not detrimental to their members.

Concave For each i ∈ N and each E ⊆ S ⊆ N\{i}, v(E ∪ {i})− v(E) ⩾ v(S ∪ {i})− v(S).

This property indicates that the incremental cost due to the arrival of a new player in a coalition
does not increase if this coalition grows.

Strictly positive For each E ⊆ N, v(E) > 0.
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Finally, we say that a game v is integer-valued if v(E) is an integer for each E ⊆ N .
The basic issue in the theory of cooperative games is to divide fairly the cost of the grand

coalition among its members. This issue may be addressed using allocations for TU-games. An
allocation x ∈ R|N | is a |N |-dimensional vector that assigns a share of the cost xi ∈ R to each
player i ∈ N .

An efficient allocation shares exactly v(N) among the players and it is called coalitionally
rational if no coalition would be better off by splitting from the grand coalition and paying its
cost. The core of a game v, is the set Core(v) of efficient and coalitionally rational allocations:

Core(v) =
{
x ∈ RN :

∑
i∈N

xi = v(N) and for each E ⊆ N,
∑
i∈E

xi ⩽ v(E)
}
.

The core of a game can be empty. However, Shapley (1971) demonstrates that the core of a
concave game is nonempty. The core can contain often several allocations from which it can be
difficult to choose one and only one. Alternatively, the Shapley value assigns to each game v a
unique allocation Sh(v) such that for each i ∈ N :

Shi(v) =
∑

E⊆N\{i}

|E|!(|N | − |E| − 1)!

|N |!

(
v(E ∪ {i})− v(E)

)
.

Shapley (1971) proves that the Shapley value of a concave game lies in its core.

3. Schedule situations and schedule games

A group of players share a common-pool resource whose consumption is possible during
several periods. The use of this resource induces a fixed per-period cost normalized to one unit.
The players have different demands represented by the subsets of periods allowing to satisfy
their needs. Let us formalize this framework and illustrate its features.

3.1. Schedule situations and schedule games

Let N be a fixed finite set of n players. A schedule situation on N is a tuple M =
(T, (Ti)i∈N ) where

• T = {1, . . . , |T |} is a finite set of time periods.

• for each i ∈ N , Ti ⊂ 2T \{∅} is the nonempty set of minimal (w.r.t. inclusion) time
configurations satisfying the needs of player i.

The previous minimality condition implies that if S,E ∈ Ti, then neither S ⊂ E nor E ⊂ S.
In words, each player needs a schedule for the consumption of a common-pool resource. Such

a schedule specifies the needed subset of consumption time periods. The set Ti collects all min-
imal (with respect to set inclusion) schedules or time configurations satisfying the consumption
needs of player i. The use of the common-pool resource is costly, so that the objective is to
minimize the overall total number of consumption time periods while satisfying the needs of all
players. In order to do so, we introduce an associated cooperative game called the schedule
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game. If TE =
∏

i∈E Ti denotes, for each E ⊆ N , the time configurations for E, then the
associated schedule game is defined by

vM (E) = min
R∈TE

∣∣∣∣ ⋃
Q∈R

Q

∣∣∣∣.
The integer vM (E) is the minimal number of time periods needed to satisfy the consumption
needs of all the members of E.

Example 1. Set N = {A,B,C}, T = {1, . . . , 8}, TA = {{1, 2}, {3, 4, 5}}, TB = {{1, 2}, {7, 8}}
and TC = {{3, 4, 5}, {6, 7, 8}}. Then

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 2 2 3 2 3 3 5

As an example, consider coalition {B,C}. We have

T{B,C} = TB × TC =
{
({1, 2}, {3, 4, 5}), ({1, 2}, {6, 7, 8}), ({7, 8}, {3, 4, 5}), ({7, 8}, {6, 7, 8})

}
.

Hence,

vM ({B,C}) = min
{
|{1, 2, 3, 4, 5}|, |{1, 2, 6, 7, 8}|, |{3, 4, 5, 7, 8}|, |{6, 7, 8}|

}
= 3,

which means that player B can completely pool its two-period demand {7, 8} with the demand

{6, 7, 8} of player C. □

The first result below characterizes the class of schedule games.

Proposition 1. The class of all schedule games on N coincides with the class of monotone
sub-additive integer-valued strictly positive TU-games on N .

Proof. It is obvious that vM is monotonic, integer-valued and strictly positive for each
schedule situation M . Furthermore, for a schedule situation M on N , consider any pair of
coalitions E,S ⊆ N such that E ∩ S = ∅. Pick any time configurations R1 and R2 such
that vM (E) = |

⋃
Q∈R1 Q| and vM (S) = |

⋃
Q∈R2 Q|. Since (R1, R2) ∈ TE∪S , i.e., the time

configurations R1 and R2 for E and S are still available, when combined, as a time configuration
for E ∪ S, we immediately get vM (E) + vM (S) ≥ vM (E ∪ S), proving that vM is sub-additive.

Conversly, let v be any monotonic, subadditive integer-valued strictly positive game on N .
To show: there is a schedule situation M on N such that vM = v. Consider any ordering π of
the 2n−1 nonempty coalitions on N , where, for each nonempty coalition E, π(E) stands for the
position of E according to π. Moreover, for each nonempty E, define aE =

∑
S⊆N :π(S)<π(E) v(S)

and AE = {aE + 1, . . . , aE + v(E)}. Remark that, for each E,S ⊆ N with E ̸= S,

AE ∩AS = ∅. (1)

From v, we construct the schedule situation M = (T, (Ti)i∈N ) such that T = {1, . . . , |T |} with
|T | =

∑
E⊆N,E ̸=∅ v(E) and, for each i ∈ N , Ti = {AS : S ∋ i}. Equation (1) implies that the

minimality condition imposed in the definition of set Ti is satisfied. Hence, any time configuration
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R for N is of the form R = (ASi)i∈N where, for each i ∈ N , Si is a coalition containing
player i. From now on, we focus on an arbitrary nonempty coalition E in order to prove that
vM (E) = v(E). From E and any time configuration R ∈ TE , R = (ASi)i∈E , define xE(R) =
{S ⊆ N : ASi = AS for some i ∈ E} and yE(R) = |

⋃
Q∈R Q|. Hence, vM (E) = minR∈TE

yE(R)

or equivalently, from (1), vM (E) = minR∈TE

∑
S∈xE(R) v(S). Remark that RE := (AE , . . . , AE)

belongs to TE and that yE(RE) = |AE | = v(E) since xE(RE) = {E}. It remains to show that
if R ∈ TE , R = (ASi)i∈E , then yE(R) ⩾ v(E). Given R and S ∈ xE(R), define ER(S) = {i ∈
E : ASi = S} and note that

ER(S) ⊆ S. (2)

From R, construct the collection R̄ = (AER(Si))i∈E , which implies that R̄ ∈ TE . By definition,

xE(R̄) is a partition of E. We can write that

yE(R) =
∑

S∈xE(R)

v(S) ⩾
∑

S∈xE(R)

v(ER(S)) =
∑

S′∈xE(R̄)

v(S′) = yE(R̄) ⩾ v(E),

where the first inequality comes from the monotonicity of v and equation (2), and the second
inequality comes from the subadditivity of v and the fact that xE(R̄) is a partition of E. We
conclude that vM (E) = v(E), as desired. ■

Two remarks are in order. First, it is not difficult to get rid of the condition of strict positivity
in Proposition 1. The only slight change needed in the definition of a schedule situation is to
allow the sets Ti to be empty. Second, Proposition 1 implies that not all schedule games have a
nonempty core as pointed out in the introduction.

In order to illustrate the proof, we consider the following four-players game in which brackets
and commas are omitted in order to save space.

E a b c d ab ac ad bc bd cd abc abd acd bcd abcd

v(E) 4 3 4 2 6 4 5 7 3 6 7 7 6 7 7

It is easy to check that v satisfies the conditions imposed in Proposition 1. As a start, let us
build the schedule situation M as in the proof. The sum of all coalitions’ worth is equal to
78 so that T = {1, . . . , 78}. Let us also use the order of all 15 nonempty coalitions from left
to right in the previous table, i.e., coalitions are ordered by size and lexicographically within a
given size. The first coalition in the order is {a} for which we create set A{a} = {1, . . . , 4} since
a{a} = 0 and v({a}) = 4. The second coalition in the order is {b}, a{b} = 4 and v({b}) = 3, so
that A{b} = {5, 6, 7}. Continuing in this fashion, we get for coalition {a, b, c} that a{a,b,c} = 44,
which implies that A{a,b,c} = {45, . . . , 51} since v({a, b, c}) = 7. All sets AE are disjoint two
by two as illustrated by the following picture (in which brackets and commas are omitted as well).

Aa

1 4

Ab

5 7

Ac

8 1
1

Ad

1
2

1
3

Aab

1
4

1
9

Aac

2
0

2
3

Aad

2
4

2
8

Abc

2
9

3
5

Abd

3
6

3
8

Acd

3
9

4
4

Aabc

4
5

5
1

Aabd

5
2

5
8

Aacd

5
9

6
4

Abcd

6
5

7
1

Aabcd

7
2

7
8

Ta
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We now focus on the previous coalition E = {a, b, c} in order to show that vM ({a, b, c}) =
v({a, b, c}). The proof proceeds in three steps.

Firstly, we prove that a specific time configuration for E costs exactly v(E). In fact,
since A{a,b,c} belongs to Ta, Tb and Tc, R{a,b,c} := (A{a,b,c}, A{a,b,c}, A{a,b,c}) ∈ T{a,b,c}. Ob-

viously, yE(R{a,b,c}) = |A{a,b,c}| = v({a, b, c}) = 7. In the final two steps, we show that
no other time configuration R ∈ T{a,b,c} can do better. We only illustrate these steps with
R = (A{a,b,c,d}, A{a,b,c,d}, A{c,d}).

Secondly, step two is a “reduction” step in which the individual time configurations in R
are reduced by eliminating unnecessary needs in some sense. From R and E, we have xE(R) =
{{a, b, c, d}, {c, d}} so that yE(R) = v({a, b, c, d}) + v({c, d}). We drop from coalition {a, b, c, d}
the two players c and d that do not choose A{a,b,c,d} in R and similarly, we drop d from {c, d}. The
resulting coalitions, called ER({a, b, c, d}) = {a, b} and ER({c, d}) = {c} in the proof, are subsets
of the original coalitions and R̄ := (A{a,b}, A{a,b}, A{c}) is also in T{a,b,c}. The monotonicity of v

then yields that |A{a,b,c,d}| > |A{a,b}| and |A{c,d}| > |A{c}| so that yE(R̄) < yE(R). Thus, R̄ is
already better than R for coalition E.

Thirdly, step 3 is a “partition” step in which non-pooled consumption in R̄ are compared to
the fully pooled consumption in R{a,b,c}. To see this, note that {a, b} and {c} form a partition of
E so that the sub-additivity of v yields that v({a, b, c}) < v({a, b})+ v({c}). Thus, we conclude
that yE(R{a,b,c}) < yE(R̄), proving that R{a,b,c} from step one is even better than R̄ for coalition
E.

Next, we introduce three specific schedule situations. In the first one only the number of
consumption time periods matters but not their timing.

Definition 1. A schedule situation is called anonymous if for each player all time config-
urations of a certain size satisfy the needs of a player. Formally, for each i ∈ N , there is
pi ∈ {1, . . . , t} such that Ti = {Q ⊆ T : |Q| = pi}.

This definition can be illustrated by the following example:

Example 2. The set of players is N = {A,B,C} and the set of time periods is T = {1, ..., 6}
and

TA = {{q}, q ∈ T},
TB = {E ⊆ T : |E| = 4},

TC = {T}.

Then the resulting game is:

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 1 4 6 4 6 6 6

□

In the second type of schedule situation, on the contrary, the players have no flexibility: each
seeks a unique particular minimal time configuration.
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Definition 2. A schedule situation is called singleton if for each player there is a unique
minimal time configuration satisfying the needs of this player. Formally, for each i ∈ N we have
|Ti| = 1. In this case let us denote by Ai the unique element of Ti, for each i ∈ N .

Example 3. The set of players is N = {A,B,C} and the set of time periods is T = {1, ..., 6}.
The players’ time configuration is the following TA = {{1}}, TB = {{5}} and TC = {{1, 3, 5}}.
This is a singleton schedule situation in the sense of definition 2. Then,

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 1 1 3 2 3 3 3

□

In the two previous situations, within a coalition the players need not consume more than
what they individually need for pooling reasons. The third type of schedule situation is build
around an optimal time configuration for the grand coalition with a similar property. Formally,
for each nonempty coalition E, let O(E) be the set of all optimal time configurations, i.e. those
which minimize the overall total number of consumption time periods in order to satisfy the
needs of E:

O(E) =
{
R ∈ TE :

∣∣ ⋃
Q∈R

Q
∣∣ ≤ ∣∣ ⋃

Q∈R′

Q
∣∣, ∀R′ ∈ TE

}
.

An optimal time configuration R∗ ∈ O(N) with R∗ = ({A∗
i })i∈N is called coherent for M

if for each E ⊆ N,E ̸= ∅ R∗
E ∈ O(E), where R∗

E is the restriction of R∗ to E. Hence, a time
configuration for N is coherent if no player has an incentive to change its consumption schedule
in smaller coalitions.

Definition 3. A schedule situation is called coherent if it admits a coherent optimal time
configuration.

These types of schedule situations are illustrated in the example below.

Example 4. Let N = {A,B,C} and T = {1, ..., 6}. We have the following time configurations:

TA = {{1, 2}, {2, 3, 4}, {2, 5}},
TB = {{1, 3, 4}, {1, 5}},
TC = {{2, 4, 5}, {3, 4, 5}}.

Then the resulting game is:

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 2 2 3 3 3 4 4

□

There are two optimal time configurations for N :

O(N) = {{R1}, {R2}} where R1 = ({1, 2}, {1, 5}, {2, 4, 5}) and R2 = ({2, 5}, {1, 5}, {2, 4, 5}).
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This is also the case for several smaller coalitions as illustrated in the following table:

E vM (E) O(E)

{A} 2 ({1, 2})
({2,5})

{B} 2 ({1,5})
{C} 3 ({2,4,5})

({3, 4, 5})
{A,B} 3 ({1, 2}, {1, 5})

({2,5}, {1,5})
{A,C} 3 ({2,5}, {2,4,5})
{B,C} 4 ({1, 3, 4}, {3, 4, 5})

({2, 3, 4}, {2, 4, 5})
({1, 5}, {3, 4, 5})
({1,5}, {2,4,5})

{A,B,C} 4 R1 = ({1, 2}, {1, 5}, {2, 4, 5})
R2 = ({2,5}, {1,5}, {2,4,5})

Table 1: The set of all optimal time configurations

The time configuration R2 is the unique coherent time configuration (this is highlighted in
bold characters in Table 1).

Examples 2 to 3 yield games with nonempty cores but this is not the case for all schedule
games. The example 1 illustrates that the core of a schedule game can be empty. Let an
allocation x be a candidate to belong to the core. Note that xA + xB ≤ 2 and efficiency leads
to xC ≥ 3. Similarly the use of efficiency together with xA + xC ≤ 3 and xB + xC ≤ 3 yields
that xB ≥ 2 and xA ≥ 2. Summing these 3 inequalities, we get xA + xB + xC ≥ 7, which is
incompatible with the efficiency constraint. Thus, Core(v) = ∅.

3.2. Equal pooling allocations

For schedule situations a natural allocation can be formulated in two steps. Firstly, we
compute the set of all optimal time configurations for the grand coalition. The periods belonging
to this set are called active. Secondly, if a player is the only one who consumes the common-
pool resource during an active time period, it alone incurs the unit cost of this time period.
Nevertheless, if there are several players which consume the common-pool resource during the
same active time period, they pool the cost and share it equally among them. For these reasons,
we call this allocation Equal Pooling allocation.

Definition 4. Fix any schedule situation M . Let R∗ = (A∗
1, ..., A

∗
n) be an element of O(N).

The Equal Pooling allocation EPR∗
on M associated with R∗ is such that, for each i ∈ N ,

EPR∗
i (M) =

∑
t∈T :t∈A∗

i

1

|{j ∈ N : t ∈ A∗
j}|

.
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Since there can be more than one optimal time configuration for N , there can be several
Equal pooling allocations as underlined in the following example. For the Example 4 we obtain
the following results:

EPR1
(M) = (1; 1; 2),

EPR2
(M) = (

5

6
;
8

6
;
11

6
).

4. Particular schedule situations

4.1. Anonymous schedule situations and airport games

An airport situation (Littlechild and Owen, 1973) on N is a tuple A = ((Nj , cj)j∈{1,...,m})
where Nj denotes the set of nj aircrafts of type j, for j = 1, ...,m, and N = ∪m

j=1Nj and
n =

∑m
j=1 nj . The cost associated with an aircraft of type j is given by cj . These types of

aircraft are ordered so that c0 < c1 < ... < cm, where c0 = 0 by convention. Any airport
situation A gives rise to an airport game vA such that for each E ⊆ N ,

vA(E) = max
j∈{1,...,m}:E∩Nj ̸=∅

cj .

Note that the schedule game in Example 2 coincides with the airport situation in which
N1 = {A}, N2 = {B}, N3 = {C} and c1 = 1, c2 = 4, c3 = 6. We show below that this property
holds for any anonymous schedule situation. To see this, from any anonymous schedule
situation M (recall definition 1 page 8) it is possible to construct a specific airport situation
AM = ((NM

j , cMj )j∈{1,...,m}) such that

cM1 = min
i∈N

pi and NM
1 = {i ∈ N : pi = cM1 },

and for each j = 2, ...,m,

cMj = min
i∈N\

(
∪j−1
k=1N

M
k

) pi and NM
j = {j ∈ N : pj = cMj },

The next result shows that anonymous schedule games are airport games.

Proposition 2. If M is an anonymous schedule situation on N , then the associated schedule
game vM coincides with the airport game vAM .

Proof. Let M = (T, (Ti)i∈N ) with Ti = {Q ⊆ T : |Q| = pi}, pi ∈ {1, ..., |T |} be any anonymous
situation on N and let E be any nonempty coalition in N . We will prove that,

vM (E) = max
i∈E

pi = vAM (E).

We proceed in two steps.
Step 1. Let

p∗ = max
i∈E

pi.

11



To show that vM (E) = p∗ denote by i one of the players in E such that pi = p∗. Then since
the schedule situation M is anonymous, any Ai ∈ Ti is such that |Ai| = p∗. We immediately get
that vM (E) ⩾ p∗. Next, for each j ∈ E, {1, ..., pj} ∈ Tj and {1, ..., pj} ⊆ {1, ..., p∗}. Hence,∣∣∣∣ ⋃

j∈E
{1, ..., pj}

∣∣∣∣ = ∣∣{1, ..., p∗}∣∣ = p∗,

which implies that vM (E) ⩽ p∗. Thus vM (E) = p∗.

Step 2. Consider the airport situation AM . By definition of an airport game, for each nonempty
E, we have:

vAM (E) = max
j∈{1,...,m}:E∩NM

j ̸=∅
cMj .

It is clear that player i ∈ E such that pi = p∗ is the player belonging to the group Nj with the
greatest index j among E, from which one gets,

vAM (E) = p∗.

This completes the proof. ■

It is well-known that airport games are concave. According to the Proposition 2, anonymous
schedule games are concave too.

Proposition 3. If M is an anonymous schedule situation on N , then there is R∗ ∈ O(N) such
that the Equal pooling allocation EPR∗

(M) coincides with the Shapley value of game vM .

Proof. As a reminder, in the specific airport situations AM each player with the same
needs in time periods pi ∈ {1, ..., t} are grouped in the same subset of players. Formally,
NM

j = {i ∈ N : pi = cMj } with j = 1, ...,m and cMj the costs associated to the group of players

of type j. These types of players are ordered so that cM1 < cM2 < ... < cMm .
Littlechild and Owen (1973) give the following expression for the Shapley value of an airport

game:

Shi(vAM ) =

j∑
q=1

cMq − cMq−1∑
m
g=q|NM

g |
, (3)

with i ∈ NM
j . The Equal pooling allocation associated to some R∗ = ({A∗

i })i∈N ∈ O(N),
according to definition 4, is given by:

EPR∗
i (M) =

∑
t∈T :t∈A∗

i

1

|{j ∈ N : t ∈ A∗
j}|

. (4)

To prove Proposition 3, we first rewrite the Equal pooling allocation in the context of an
anonymous schedule situation M . Proposition 2 implicitly demonstrates that ({1, ..., pi})i∈N is
a coherent optimal time configuration. So let R∗ = ({1, ..., pi})i∈N in (4). In particular, if player
k is such that pk ⩽ pi then {1, ..., pk} ⊆ {1, ..., pi}. We can rewrite (4) as follows:

12



EPR∗
i (M) =

pi∑
t=1

1

|{k ∈ N : t ⩽ pk}|
.

Secondly, we rewrite the previous expression in the form of (3). For each i ∈ NM
j , we have

pi = cMj and |{k ∈ N : t ⩽ pk}| corresponds to
∑

q={1,...,m}:t⩽cMq
|NM

q |. Hence,

EPR∗
i (M) =

cMj∑
t=1

1∑
q={1,...,m}:t⩽cMq

|NM
q |

.

Summing over types of players instead of summing over periods, we get:

EPR∗
i (M) =

j∑
q=1

cMq − cMq−1∑
m
g=q|NM

g |
= Shi(vAM ).

This specific Equal pooling allocation is equal to the Shapley value, as desired. ■

4.2. Singleton schedule situations and carpool games

A carpool situation (Naor, 2005) is a situation in which players form a carpool and decide
to use it on different days. Formally, a carpool situation on N is a tuple D = (Dk)k=1,...,l where
each Dk ⊆ N corresponds to the nonempty set of players who showed on day k ∈ {1, ..., l}. The
use of the carpool system is costly: any carpool situation D gives rise to a carpool game vD
such that, for any subset E ⊆ N , vD(E) associates for each coalition E a cost measured by the
number of days on which at least one player of the coalition E shows up, i.e.,

vD(E) =
∣∣{1 ⩽ j ⩽ l : Dj ∩ E ̸= ∅}

∣∣.
From any singleton schedule situationM it is possible to construct a specific carpool situation

DM = (DM
k )k=1,...,l, such that l = |T | for each k ∈ {1, ..., l}, DM

k = {i ∈ N : k ∈ Ai}, where Ai

is the unique element in Ti. It is easy to get the correspondence between the carpool situation
and the singleton schedule situation. In Example 3, the set of periods T can represent the set
of days where the players A,B and C “showed up” or must be distributed. The following table
gives the relationship between the carpool and the schedule situations:

k\i A B C DM
k

1 X X {A,C}
2 ∅
3 X {C}
4 ∅
5 X X {B,C}
6 ∅
Ai {1} {5} {1, 3, 5}

Table 2: Relationship between carpool and schedule situations
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Proposition 4.
If M is a singleton schedule situation on N , then the associated schedule game vM coincides

with the carpool game vDM .

Proof. Let M = (T, (Ti)i∈N with Ti = {Ai}, i ∈ N be any singleton schedule situation. For
any E subset of N , vM (E) can be rewritten as:

vM (E) =

∣∣∣∣ ⋃
i∈E

Ai

∣∣∣∣. (5)

Let us show that vDM (E) = vM (E). Since l = |T |, we have

vDM (E) = |{1 ≤ j ≤ |T | : DM
j ∩ E ̸= ∅}|

= |{1 ≤ j ≤ |T | : {i ∈ N : j ∈ Ai} ∩ E ̸= ∅}|
= |{1 ≤ j ≤ |T | : j ∈ Ai for some i ∈ E}|
= |

⋃
i∈E Ai|

= vM (E),

as desired. ■

Reciprocally it is easy to figure out that each carpool game coincides with the schedule game
associated with some singleton schedule situation. In other words, the class of singleton schedule
games on N coincides with the class of carpool games on N . The games in the latter class are
concave as demonstrated below.

Proposition 5. If M is a singleton schedule situation on N , then the associated schedule game
vM is concave.

Proof. Let M be a singleton schedule situation on N with Ti = {Ai} for each i ∈ N . We will
prove that for each E ⊆ S ⊆ N\{i}, vM (E ∪ {i})− vM (E) ⩾ vM (S ∪ {i})− vM (S). From (5),
we can rewrite both parts of the inequality as follows:

vM (E ∪ {i})− vM (E) =
∣∣Ai\

(
∪j∈E Aj

)∣∣,
vM (S ∪ {i})− vM (S) =

∣∣Ai\
(
∪j∈S Aj

)∣∣.
Next, we can write that:

∪j∈EAj ⊆ ∪j∈SAj

⇐⇒ Ai

∖(
∪j∈E Aj

)
⊇ Ai

∖(
∪j∈S Aj

)
⇐⇒

∣∣Ai

∖(
∪j∈E Aj

)∣∣ ⩾ ∣∣Ai

∖(
∪j∈S Aj

)∣∣.
Hence,

vM (E ∪ {i})− vM (E) ⩾ vM (S ∪ {i})− vM (S),

for each i ∈ N and E ⊆ S ⊆ N\{i}. ■
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In a carpool game Fagin and Williams (1983) and continued by Ajtai et al. (1998) proposed
an equal share of the cost of each days between the players who used it. The resulting allocation
rule α is as follows, for each D and each i:

αi(D) =
∑

j∈{1,...,l}:i∈Dj

1

|Dj |
.

Naor (2005) demonstrated that α(D) is the Shapley value of the game vD, i.e. α(D) = Sh(vD).
Note that there is trivially a unique optimal time configuration R∗ ∈ O(N) such that R∗ =
({Ai})i∈N for each singleton schedule situation M .

Proposition 6.
If M is a singleton schedule situation on N , then the Equal pooling allocation EPR∗

(M)
coincides with the allocation α(DM ) of the carpool situation DM .

Proof. The claim follows from viewing the allocation rule EPR∗
(M) as the sum of the inverse

of the number of players who consume the active time period t simultaneously. In the carpool
situation the active time period t is expressed by a set of days DM

k ⊆ N corresponding to
the players who showed on day k and |DM

k | is the number of these players. Hence, |DM
k | and

|{j ∈ N : t ∈ Aj}| express the same thing and EPi(M) = αi(D
M ). See table 2. Therefore,

EPR∗
i (M) is the Shapley value of the game vM when M is a singleton schedule situation on N .

■

5. Non-emptiness of the core of coherent schedule situations

Proposition 1 reveals that the core of a schedule game can be empty (see Example 1). In this
section, we provide a sufficient condition for the non-emptiness of the core of a schedule game.
If we focus on Example 4, the time configuration R2 is the unique coherent time configuration.
The presence of such a coherent time configuration is sufficient to guarantee that the core is
nonempty as a corollary of the next result.

Proposition 7. If M is coherent, then vM = vM ′ for some singleton schedule situation M ′.

Proof. Let R∗ = (A∗
i )i∈N be any coherent time configuration on M . From M and R∗,

construct the schedule situation MR∗
such that MR∗

= (TR∗
, (TR∗

)i∈N ) with TR∗
= T and

TR∗
i = {A∗

i }. Consequently, MR∗
is a singleton schedule situation. In addition, R∗ is coherent

for MR∗
. Therefore, vMR∗ = vM follows from the fact that R∗ is coherent for both MR∗ and

M . ■

From Propositions 5, 6 and 7, we get the following corollary.

Corollary 1. If R∗ on M is coherent, then the Equal pooling allocation EPR∗
(M) is in the

core of vM and coincides with the Shapley value Sh(vM ).

The condition in Proposition 7 is sufficient but not necessary. In the following example an
allocation EPR∗(M) is in the core of vM even if R∗ is not coherent for a schedule situation M .
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Example 5. LetN = {A,B,C}, T = {1, . . . , 5}, TA = {{1, 2, 3}, {1, 4}, {2, 4}}, TB = {{1, 5}, {2, 5}}
and TC = {{1, 2, 3, 5}}. Then we obtain the following table,

E vM (E) O(E)
∑

i∈E xi
{A} 2 ({1, 4}) 1

({2, 4})
{B} 2 ({1, 5}) 1

({2, 5})
{C} 4 ({1, 2, 3, 5}) 2

{A,B} 3 ({1, 4}, {1, 5}) 2
({2, 4}, {2, 5})

{A,C} 4 ({1, 4}, {1, 2, 3, 5}) 3
({2, 4}, {1, 2, 3, 5})

{B,C} 4 ({1, 5}, {1, 2, 3, 5}) 3
({2, 5}, {1, 2, 3, 5})

{A,B,C} 4 ({1, 2, 3}, {1, 5}, {1, 2, 3, 5}) 4
({1, 2, 3}, {2, 5}, {1, 2, 3, 5})

Table 3: The set of all optimal time configurations

□

As in Example 1, the time configuration of player A used to compute vM (N) is not its
smaller time configuration. More specifically, the selected time configuration for A is ({1, 2, 3})
whereas on its own its smaller time configurations are ({1, 4}) or ({2, 4}). Hence, none of the
two optimal time configurations on N is coherent. However, contrary to Example 1, the core of
this example is nonempty since it contains allocation x = (1; 1; 2) as shown by the above table.
Remark that the two Equal pooling allocations are also in the core.

6. An application to the French postal case

Below, we present once again the problem of allocating the cost of the mail carrier route
in France which was already mentioned in the introduction. To meet its universal service obli-
gations, La Poste must organize the delivery network in order to be in capacity to visit all
recipients’ addresses six days a week and meet the delivery speed of the postal products.
The delivery speed refers to the time period within which a particular postal product must
be delivered, from the moment between it is posted until its actual delivery at the customers’
location choice. In its decision 2008-0165 the French national regulatory authority Arcep, in
charge of defining the allocation rules of universal products’ costs, distinguished three delivery
speed categories: D7 for a delivery target on the 7th business day after posting, D3 for a delivery
target on the 3rd business day after posting and D1 for a delivery target on the 1st business day
after posting. Considering logistical constraints, a delivery frequency of one day per week
would be enough to satisfy D7, delivery frequency of three days per week would be enough to
satisfy D3 and delivery frequency of six days per week would be required to satisfy D1. Arcep’s
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decision states that the common cost of the six weekly mail carrier routes, first, is allocated to
the three categories in proportion to their aforementioned delivery frequency, i.e. 10% of the
delivery costs to D7, 30% to D3 and 60% to D1. Secondly, the share of the cost previously
calculated for each category is then allocated to the postal products belonging to this category
according to their format/volume. We will only focus on the first part of this process which can
be apprehended by an anonymous schedule game.

We can use the rich possibilities offered by the schedule situations in order to model the cost
sharing of the mail carrier route as the following schedule situation M1. The infrastructure is the
mail carrier route which can be used once during six days per week, so that T = {1, 2, 3, 4, 5, 6}.
Period 1 represents the delivery day Monday and so on. The players are the three postal product
categories, i.e. N = {D7, D3, D1}. For category D7, there are six singleton possible alternative
consumption schedules, one for each day of the week, since a postal product in this category
must be delivered not later than 7 days after being posted. On the contrary, for category D1,
the unique consumption schedule is the set of all six days of the week since the postal products
in this category must be delivered on the next business day. For category D3, the set of minimal
consumption schedules contains all the triple of days which are not consecutive two by two3.
Therefore:

TD7 = {{1}, {2}, {3}, {4}, {5}, {6}},
TD3 = {{1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}},

TD1 = {{1, 2, 3, 4, 5, 6}}.

We obtain the associated schedule game vM1 below, where superscript 1 is here added to dis-
tinguish the two schedule situations presented in this section.

E {D7} {D3} {D1} {D7, D3} {D7, D1} {D3, D1} {D7, D3, D1}
vM1(E) 1 3 6 3 6 6 6

The content of decision 2008-0165 only considers the number of delivery days. This process
could naively be formulated as the following anonymous schedule situation M2 where T =
{1, 2, 3, 4, 5, 6}, N = {D7, D3, D1} and:

TD7 = {{1}, {2}, {3}, {4}, {5}, {6}},
TD3 = {E ⊆ T : |E| = 3},
TD1 = {{1, 2, 3, 4, 5, 6}}.

However, the set TD3 does not reflect correctly the constraints imposed on category D3. As
an example, {1, 2, 3} ∈ TD3 which means that postal products in category D3 can, a priori,
be distributed in the three consecutive days Monday, Tuesday and Wednesday. However, this
would prevent postal products posted on Wednesday to be delivered on time. This is legally
not possible because La Poste has to meet the delivery speed of each postal product. This
may seem inconsequential from the point of view of cost sharing since the resulting anonymous
schedule game vM2 is identical to vM1 . This will no longer be the case if further changes are
incorporated to this problem. As an illustration, imagine that we add a new category of postal
products that must be delivered on some specific days, such as newspapers or advertisements,

3Time periods 1 and 6 belonging to TD3 are not consecutive due to Sunday which is not a delivery day.
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the mutualization of the time configurations can be different from vM1 to vM2 . More specifically,
suppose that we add a fourth category of postal products D2 corresponding to direct marketing
mail that must be distributed in two specific consecutive days {2, 3}. Consider for instance
a first advertisement sent Tuesday that proposes discounts on Wednesday and, to encourage
consumers, the store send back coupons on Wednesday, as a reminder. We get the following set
of minimal time configurations for category D2:

TD2 = {{2, 3}}.

Denote by vM1′ and vM2′ the two four-player schedule games obtained by adding player D2 to
the schedule situations M1 and M2, respectively. These two games are distinct. To see this
consider coalition {D2, D3}. In the schedule game vM1′ , the delivery category D2 pools only
one of its two days with D3, which yields that vM1′({D2, D3}) = 4, i.e. four routes per week are
needed. On the contrary, in the anonymous schedule game vM2′ the label of the delivery days
does not matter, hence the delivery category D2 can completely (but inaccurately) pool its time
periods with category D3, which implies that vM2′({D2, D3}) = 3.

To conclude this application, let us back to the original three-player problem. To deter-
mine allocations of the schedule game vM1 we will apply the Equal pooling allocation to a
coherent optimal time configuration R∗ and to a non-coherent optimal time configuration R.
Let R∗ =

{
{1}, {1, 3, 5}, {1, 2, 3, 4, 5, 6}

}
and R =

{
{1}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}

}
. According to

proposition 3 the Equal pooling allocation of a coherent optimal time configuration is the Shap-
ley value. It gives the following percentages: D7 incurs 5.56% of the costs, D3 incurs 22.22%
and D1 incurs 72.22% of the costs. This corresponds to the efficient allocation (13 ,

4
3 ,

13
3 ) in the

game vM1 , as calculated in Munich and Bohorquez Suarez (2022). The Equal pooling allocation
on R gives the following percentages: D7 incurs 8.33% of the costs, D3 incurs 25% and D1

incurs 66.67% of the costs. This corresponds to the efficient allocation (12 ,
3
2 , 4) in the game

vM1 . Compared to the two previous allocations the current allocation incurs less costs to D1.
Although, the three allocations are close to each other, they rely on distinct principles. The
Shapley value is based on the incremental costs of each category to coalitions, the Equal pooling
allocation takes into account the routes needed by each category and the current allocation
shares the costs according to a proportional principle. Hence, the Equal pooling allocations can
be considered as an alternative to the current allocation.

7. Concluding remarks

We conclude briefly with two remarks. Firstly, in Section 5 we provide a sufficient condition
on a schedule situation of the non-emptiness of the core. It remains an open question to find a
condition which would be both necessary and sufficient. Secondly, an axiomatic analysis of some
solutions for schedule situations in order to underline, for instance, the fairness consideration
underlying the Equal pooling allocations, is left for future work.
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