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Abstract. The concept of Individually-Consistent Sequential-Equilibrium
broadens the concept of Sequential Equilibrium by allowing players to have
different beliefs on potential deviations. This heterogeneity spontaneously
gives rise to a notion of distance between beliefs. Yet, studying distance
between beliefs in a strategic context reveals to be intricate. Announced
beliefs may be different from revealed beliefs and the meaning of distance
depends on the role assigned to beliefs. If out-of-equilibrium beliefs help
getting a larger payoff at equilibrium, then we might need to reconsider the
traditional definition of sequential rationality: more than just requiring that
players behave optimally at every information set given their beliefs and the
strategies played by others players, we might additionally require that there
does not exist another perturbation scheme that is individually-consistent
and which provides higher payoffs to the players.
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1. Introduction

In this paper, we extend the concept of Individually-Consistent Sequential Equi-
librium (ICSE, Umbhauer and Wolff 2019), which builds on the Sequential Equilibrium
(SE, Kreps and Wilson 1982), a solution concept commonly used to solve extensive-
form games. The SE requires consistency of beliefs at all information sets, even at those
that find themselves out of the equilibrium strategy path. This implies that players are
required to share the same beliefs at out-of-equilibrium information sets, even about the
numerical values of mathematical artifacts used to generate perturbations of strategy
profiles, which are arbitrary by nature. Since there is no a priori basis for requiring
players to agree on the probabilities of other players’ possible mistakes (or deviations),
the ICSE accepts different perturbation systems for different players.

This paper focuses on games with n ≥ 3 players since these are the games in which
the ICSE solution concept can differ from the SE. In particular, we focus on games
in which some players might belong to a same social group or a same community.
Therefore, although out-of-equilibrium beliefs are never directly confronted to reality
(so that players can in some sense agree to disagree), players that belong to a same
social group may feel ill at ease when adopting different beliefs. In fact, research in
political science has shown that individuals are often motivated to shift their beliefs
towards the ones associated with the social groups they belong to (Barber and Pope,
2019, Gould and Klor, 2019, Slothuus and Bisgaard, 2021). Therefore, rather than being
completely arbitrary, beliefs at out-of-equilibrium information sets might be correlated
among players. This leads us to develop a notion of distance between the beliefs of
different players as well as the idea of maximally allowed heterogeneity between the
players’ beliefs.

The notion of distance between beliefs introduced in this paper can not be properly
studied without further delving into the function of beliefs and their intrinsic link to
actions. For instance, a player may publicly declare to hold some beliefs but his actions
contradict the proclaimed beliefs. That is to say, the revealed beliefs of the player are
different from the announced beliefs. The question then arises as to whether we should
measure the distance between the player’s announced beliefs or between their revealed
beliefs. Furthermore, in a game as in real life, the purpose of out-of-equilibrium beliefs
may be to help a player maximize his own payoffs. In this sense, beliefs become strategic
and they may in some way belong to the strategy set of the players. For instance, it
might be in Player 1 and Player 2’s interests to have similar (or different) beliefs so as
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to incentivize Player 3 to adopt a strategy that maximizes their own payoffs. In this
context, players build their beliefs with a strategic purpose and the distance between
their beliefs becomes irrelevant. These considerations lead us to revisit the notion of
sequential rationality in dynamic games of incomplete information. More than just
requiring that players behave optimally at every information set given their beliefs and
the strategies played by other players, we might additionally require that there does not
exist another perturbation scheme that is individually-consistent and which provides
higher payoffs to the players.

The paper is organized as follows. In Section 2, we describe the concept of ICSE and
discuss the way it introduces heterogeneity in beliefs at out-of-equilibrium information
sets. In Section 3, we compare our concept with other often-used solution concepts such
as PBE or AGM-consistency. In Section 4, we turn to the notion of distance between
beliefs. We present two ways of measuring distance. The first is an order relation
on beliefs, while the second is an Euclidean notion of distance, in that we measure
the minimal payoff perturbations necessary to ensure convergence in beliefs. Yet, the
main difficulties remain elsewhere. In Section 5, we introduce the distinction between
revealed and announced beliefs and discuss the strategic function of beliefs. Section 6
discusses the findings of this paper by revisiting the definition of sequential rationality.
The last section concludes.

2. Individually-Consistent Sequential Equilibrium

In this paper, we consider finite extensive-form games and focus on games with
n ≥ 3 players. Let N represent the finite set of players (with typical element n ∈ N),
X the set of non-terminal decision nodes (with typical element x ∈ X) and H the set
of all possible information sets (with h ∈ H a specific information set). Let Hi ⊆ H

denote the set of all possible information sets at which Player i might be called upon
to play. We call i(h) the player playing at h and for every h ∈ Hi, we note Ah the set
of actions available to player i at information set h.

A behavioral strategy for player i, noted πi, is a probability distribution over her
possible actions at each of her information sets. That is, a behavioral strategy for
player i is a member of "h∈Hi

∆(Ah). The set of behavioral-strategy profiles is therefore
"i∈N "h∈Hi

∆(Ah), with typical element π = (πi)i∈N . A system of beliefs is a function
µ : X → [0, 1] such that ∀h ∈ H, Σx∈hµ(x) = 1.
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The Sequential Equilibrium (SE) requires consistency of beliefs at all information
sets, even at those that find themselves out of the equilibrium strategy path. To generate
beliefs that are consistent at every information set, Kreps and Wilson (1982) require that
the belief vector µ be the limit of a sequence of belief vectors derived from Bayes’ rule
applied to a sequence of fully mixed strategy profiles (strategy profiles that put positive
probability to every action in every information set). Let us denote by "h∈H ∆0(Ah)
the set of all fully mixed behavioral strategies. Formally, a pair (µ, π) is consistent if
and only if there exists some sequence (µ̂k, π̂k)∞

k=1 such that:

(i) π̂k ∈ "h∈H ∆0(Ah), ∀k ∈ {1, 2, 3, ...},

(ii) µ̂k
h(x) = P (x|π̂k)

Σ
y∈h

P (y|π̂k) , ∀h ∈ H, ∀x ∈ h, ∀k ∈ {1, 2, 3, ...},1

(iii) πi(h)(ah) = lim
k→∞

π̂k(ah), ∀i ∈ N, ∀h ∈ H, ∀ah ∈ Ah,

(iv) µh(x) = lim
k→∞

µ̂k
h(x), ∀h ∈ H, ∀x ∈ h.

A SE is defined to be any pair (µ, π) that is consistent and sequentially rational
(Kreps and Wilson 1982, p.872).

What is crucial in the concept of SE is that the players are required to implicitly
agree on the value of the ϵ used to generate perturbations of the strategy profiles. That
is, while the ϵ are arbitrary in nature (they only represent mathematical artifacts),
players still need to share the same beliefs about their numerical values. In some way,
it is as if an external player shakes the strategies for everybody. In Umbhauer and Wolff
(2019), we argue that this requirement is too strong. Indeed, we argue that there is
no a priori basis for requiring that players agree on the probabilities of other players’
possible mistakes (or deviations).

Formally, what distinguishes our Individually-Consistent Sequential Equilibrium
(ICSE) concept from the SE is that we do not require the existence of only one sequence
of perturbed strategy profiles on which all players need to agree but allow for different
perturbation systems for different players. In other words, each player j introduces
his own perturbations on the actions at each information set h ∈ H. So, π̂k

j,i(h)(ah)
is the value player j assigns to the probability with which player i(h) plays ah at his
information set h, while π̂k

j is player j’s profile of perturbed strategies in the whole game.
Of course, for consistency, we require that πi(h)(ah) = lim

k→∞
π̂k

j,i(h)(ah) for all j ∈ N , so
that each player j’s perturbed strategy profile has to fit with the played actions in the
game.

1With P (x|·) being computed using Bayes’ rule.
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Therefore, a pair (µ, π) is individually-consistent if and only if there exist some
sequences (µ̂k

j , π̂k
j )∞

k=1, for all j ∈ N , such that:

(i) π̂k
j,i(h) ∈ "h∈H ∆0(Ah), ∀k ∈ {1, 2, 3, ...}, ∀j ∈ N ,

(ii) µ̂k
i(h)(x) = P (x|π̂k

i(h))
Σ

y∈h
P (y|π̂k

i(h)) , ∀h ∈ H, ∀x ∈ h, ∀k ∈ {1, 2, 3, ...},

(iii) πi(h)(ah) = lim
k→∞

π̂k
j,i(h)(ah), ∀h ∈ H, ∀ah ∈ Ah, ∀j ∈ N ,

(iv) µi(h)(x) = lim
k→∞

µ̂k
i(h)(x), ∀h ∈ H, ∀x ∈ h.

An Individually-Consistent Sequential Equilibrium (ICSE) is any pair (µ, π) that
is both individually-consistent and sequentially rational.

Let us illustrate the consequences of such a concept. In the game in Figure 1, there
does not exist any SE leading Player 1 to play C1 (see Appendix 1), so the players can
not reach the Pareto optimal payoffs (5.99, 10, 10). As a matter of fact, to sustain
B2, Player 2 has to believe that Player 1 trembles toward B1 at least 4 times more
often than toward A1 (µ(x2) ≤ 1

5), whereas to be willing to play B3, Player 3 has to
believe that Player 1 trembles toward B1 at most 3 times more often than toward A2

(µ(y2) ≥ 1
4 , hence µ(x2) ≥ 1

4). This is not possible in a SE, in that all the players shake
the strategies in the same way. Yet this becomes possible with the ICSE.

What is new, in comparison with the SE, is the fact that players can have different
beliefs at the same out-of-equilibrium information set. So, in the above example, we can
set: µ2(x2) = 0.1, µ2(x3) = 0.9 for Player 2, and µ3(y1) = 0, µ3(y2) = 0.3, µ3(y3) = 0
and µ3(y4) = 0.7 for Player 3. This implicitly means that Player 3 assigns the belief
0.3 to x2 and the belief 0.7 to x3, given that Bayes’ Rule requires that Player 3’s beliefs
are consistent: µ(y2) = µ(x2) and µ(y4) = µ(x3). This is due to the fact that each
player shakes the strategies in the way he wants. So, for example, Player 2 may have
in mind the perturbed strategy profile {(1 − ϵk − 9ϵk)C1 + 9ϵkB1 + ϵkA1, (1 − ϵk)B2 +
ϵkA2, (1 − ϵk)B3 + ϵkA3}, while Player 3 may have in mind {(1 − 3ϵk − 7ϵk)C1 + 7ϵkB1 +
3ϵkA1, (1−ϵk)B2+ϵkA2, (1−ϵk)B3+ϵkA3}.2 Heterogeneous beliefs at out-of-equilibrium
information sets can therefore sustain the Pareto optimal payoffs at equilibrium in this
strategic context.

2Player 1’s perturbations have no impact on the game, so we can suppose that he has the same
profile of perturbed strategies as Player 2 for example.
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Player 1
x1

5.99
10
10



C1

x3

y4

0
6
0



B3

6
3
1



A3

B2

y3

0
5
3



B3

1
4
4



A3

A2

B1

x2

y2

1
0
4



B3

0
1
1



A3

B2

y1

6
4
2



B3

6
2
3



A3

A2

A1

Player 2 (h)

Player 3 (h’)

Figure 1: An example of the distinction between ICSE and SE.

3. Connections between ICSE and other solution concepts

3.1. Links between ICSE, SE, SPNE, PBE and SCE

Few solution concepts support the idea that people may share different beliefs at
out-of-equilibrium information sets.3 In fact, researchers tend to require that "players
can not agree to disagree", the logical result stemming from Aumann (1976)’s paper.
Yet, in our context, there is no true state to discover since the beliefs are about de-
viations that will never occur at equilibrium. So Player 2 (respectively Player 3) can
durably think that, if they should face a deviation, then surely Player 1 played A1 with
a probability lower than 1/5 (respectively with a probability larger than 1/4). Nothing
will contradict their beliefs given that Player 1 never deviates.

In the following Proposition, we enumerate the existing links between our ICSE so-
lution concept and other well-known and often-used solution concepts, such as Subgame-
Perfect Nash Equilibrium (SPNE), Sequential Equilibrium (SE), Perfect Bayesian Equi-
librium (PBE) and Self-Confirming Equilibrium (SCE).

3We thank Giacomo Bonanno for informing us that Greenberg et al. (2009) developed a similar
idea in their MACA concept.
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Proposition 3.1. (i) The set of ICSE is included in the set of Subgame-Perfect Nash
Equilibria (SPNE).

(ii) By construction, the set of SE is included in the set of ICSE, so the existence of
an ICSE in a finite extensive-form game follows from the existence of a SE in a
finite extensive-form game.

(iii) The set of ICSE is equal to the set of SE in a two-player game.

(iv) There is no inclusion relation between the set of Perfect Bayesian Equilibria (Fu-
denberg and Tirole, 1991) and the set of ICSE.

(v) The set of ICSE is included in the set of Self-Confirming Equilibria (Fudenberg
and Levine, 1993).

Proof. In Appendix 2. ■

3.2. Links between ICSE and AGM-consistency

The ICSE also shares some links with the concept of AGM-consistency (Bonanno,
2013, 2016). AGM-consistency introduces a plausibility order on stories of actions and
belief revision is based on this plausibility. This plausibility concept grants a large
degree of freedom to the way beliefs are computed after deviations; this liberty differs
from heterogeneous perturbation systems but it shares a partial link with the ICSE.
The following Proposition describes these links.

Proposition 3.2. i) The set of ICSE beliefs is almost included in the set of AGM-
consistent beliefs.

ii) There is no inclusion relationship between the set of ICSE beliefs and Bonanno’s
Perfect Bayesian Equilibrium beliefs.

Proof. In Appendix 2. ■

We come back to Bonanno’s concept when studying the notion of distance, so we
illustrate this concept on the game in Figure 1. Consider the ICSE with µ2(x2) = 0.1,
µ2(x3) = 0.9, µ3(y1) = 0, µ3(y2) = 0.3, µ3(y3) = 0 and µ3(y4) = 0.7. These probabilities
are compatible with AGM-consistency since they give positive weight to the actions
(stories) A1 and B1 and to the stories A1B2 and B1B2. Therefore, they respect the
plausibility-preserving action B2. AGM-consistency is a qualitative notion, so the values
of the beliefs are not important. What matters is that if the support of the beliefs are
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the stories A1 and B1, then the support of the stories reaching h′ are the stories A1B2

and B1B2. So, every ICSE, which by definition lead to µ2(x2) ≤ 1
5 , µ2(x3) = 1−µ2(x2),

and µ3(y1) = 0, µ3(y2) ≥ 1
4 , µ3(y3) = 0, µ3(y4) = 1 − µ3(y2) respect AGM-consistency,

except for the assessment that puts a 0 on µ(x2) or a 1 on µ(y2).
As a matter of fact, let us consider the "extreme" ICSE with µ2(x2) = 0, µ2(x3) = 1,

µ3(y1) = 0, µ3(y2) = 1, µ3(y3) = 0 and µ3(y4) = 0. According to AGM-consistency,
plausible histories can not sustain these beliefs, given that if µ(B1) (the probability
assigned to story B1) is equal to 1 (because µ(x2) = 0 and µ(x3) = 1), then µ(B1B2)
(the probability assigned to story B1B2) is also 1, since B2 is played with probability
1 (it is the plausibility-preserving action); so the story B1B2 is as plausible as the
story B1. Given that A1 is a less plausible story (in fact µ(A1) = 0) and given that
µ(A1) = µ(A1B2), we get µ(A1B2) = µ(y2) < µ(B1B2) = µ(y4), so µ(y2) can not be
equal to 1. With AGM-consistency, all happens as if an external observer deals with
the possible beliefs of every player, upholding the planned equilibrium actions (as in
the SE and in the ICSE) but possibly changing his view on an earlier out-of-equilibrium
way of playing each time he faces a new deviation. So, if by observing that Player 1
does not play C1, he becomes convinced that he plays B1 (µ(x3) = 1), then, given that
Player 2 plays B2 at equilibrium, he necessarily assigns belief 1 to y4.

We now consider Bonnano’s PBE concept. The above ICSE, with µ(x2) = 0.1,
µ(x3) = 0.9, µ(y1) = 0, µ(y2) = 0.3, µ(y3) = 0, and µ(y4) = 0.7 is not a PBE
(Bonnano’s version) in that, via Bayes’ Rule, µ(x2) = 0.1 and µ(x3) = 0.9 lead to
µ(y1) = 0, µ(y2) = 0.1, µ(y3) = 0 and µ(y4) = 0.9.

We finally show that, conversely, many AGM-consistent stories, and even Bo-
nanno’s PBE consistent stories, are not compatible with the concept of ICSE. So
consider the game in Figure 2. Assume that the planned actions are the bold lines
(in red) and that the beliefs (in blue) are given by µ(x2) ≥ 0.7, µ(x3) = 1 − µ(x2),
µ(y1) = µ(x2), µ(y2) = 1 − µ(x2), µ(y3) = µ(y4) = 0.5.

These beliefs are AGM-consistent and they check Bonanno’s PBE consistency.
This is due to the fact that Bayes’ Rule applies when switching from h to h′ but it
does not apply when switching from h to h′′, since B2 is not a plausibility-preserving
action (by contrast to A2). An external observer, when observing the unexpected
action B2, may completely reconsider the stories of the game. At h, he believes that
Player 1 more often deviates to A1 than to B1, but after observing the new deviation
B2, he changes his mind and thinks that Player 1 deviates to B1 as often as to A1.
This is not possible in an ICSE because the same player, Player 3, plays at h′ and h′′.
Regardless of Player 3’s perturbations on Player 1 and Player 2’s actions, we necessarily
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1
x1

C1

x31 − µ(x2)

y40.5

b3 a3

B2

y2 1 − µ(x2)

B3 A3

A2

B1

x2 µ(x2) ≥ 0.7

y30.5

b3 a3

B2

y1 µ(x2)

B3 A3

A2

A1

2h

3h” 3h’

Figure 2: An example illustrating the difference between ICSE and AGM-consistency.

have µ3(y1) = µ3(y3) and µ3(y2) = µ3(y4), because Player 2 plays A2 with the same
probability at x2 and x3 and B2 with the same probability at x2 and x3. Therefore,
AGM-consistency allows an external player to have different evolving beliefs at a same
information set (before Player 2’s deviation, the external player sets µ(x2) ≥ 0.7, but
after Player 2’s deviation he sets µ(x2) = 0.5), whereas the ICSE does not allow evolving
beliefs at a same information set. Rather, it only allows different beliefs among the
players (so µ3(y1) = µ3(y3) = µ(x2) because these three probabilities express the way
Player 3 evaluates the deviation from Player 1 towards A1 and B1 (before and after
Player 2’s choice of action), but Player 3’s way of evaluating Player 1’s deviations may
be different from Player 2’s way of evaluating these deviations, that is to say µ2(x2)
can be different from Player 3’s beliefs on x2).

4. A physical distance between beliefs

While we defend the point of view that there is no logical reason that constrains
people to have the same beliefs with respect to out-of-equilibrium actions, social groups
often (implicitly, if not explicitly) require their members to have rather similar beliefs
(Barber and Pope, 2019, Gould and Klor, 2019, Slothuus and Bisgaard, 2021), so the
pressure to modify one’s beliefs is increasing in the difference between the player’s
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beliefs and the beliefs of the group they belong to. Therefore, if all the players in
a game belong to a same community, it makes sense for them to seek to reduce the
distance between beliefs.

To approach the distance between beliefs, we start with a first observation. In a
game, very often, the equilibrium payoffs are sustained by sets of beliefs. For example,
the ICSE equilibrium payoffs (5.99, 10, 10) in the game in Figure 1 are sustained by
Player 2’s beliefs µ2(x2) ≤ 1

5 and Player 3’s beliefs µ3(y2) ≥ 1
4 . So Player 2 has to assign

a probability lower than 1
5 to Player 1’s deviating action A1 whereas Player 3 has to

assign a probability larger than 1
4 to this deviation, a fact we reproduce in Figure 3, in

which we highlight Player 2 and Player 3’s sustaining beliefs (SB) on the action A1.

0 1
5

1
4

1
2

1

P2’s SB P3’s SB

Figure 3: Player 2 and Player 3’s sustaining beliefs.

We are concerned with the closest possible beliefs sustaining an ICSE, here 1
5 and

1
4 . Figure 3 illustrates three facts:

(i) First, if Player 2’s and Player 3’s sustaining beliefs have a non-empty intersection,
then common beliefs can sustain the ICSE payoffs and there exists a sequential
equilibrium with these payoffs. So the minimum distance would reduce to 0.

(ii) Second, Player 2’s and Player 3’s sustaining beliefs have an empty intersection,
but both sets are close (1

4 -1
5 is small in comparison to 1), so that few changes in

the game may lead both sets to have a non-empty intersection.

(iii) Third, we observe that both players can assign a probability lower than 1
2 to A1

to sustain the ICSE outcome (red probabilities for Player 2 and Player 3).

4.1. Ordered ICSE

Our first way to consider distance starts with the third observation. Imagine that
Player 2 and Player 3 meet and discuss together: they can easily agree on the fact that
both think that Player 1 deviates more often to B1 than to A1 (red probabilities lower
than 1

2). Player 2 is sure that Player 1 deviates at least 4 times more often to B1 than
to A1. Player 3 can agree that Player 1 deviates more often to B1 than to A1 but at
most 3 times more often. So there is a possible consensus between Player 2 and Player
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3 despite the fact that they can not have the same beliefs. This consensus is on the
way they order the deviations: both players believe that Player 1 more often deviates
to B1 than to A1, yet only the "intensity" of this deviation is not shared among them.

It derives from this observation that a soft notion of proximity between beliefs con-
sists in requiring that all the players order the perturbed strategies at each information
set in the same way.

Definition 1. An ordered ICSE is an ICSE that checks the additional condition:
v) ∀h ∈ H, ∀a, a′ ∈ Ah, ∀j, j′ ∈ N, π̂k

j,i(h)(a) ≥ π̂k
j,i(h)(a′) ⇒ π̂k

j′,i(h)(a) ≥ π̂k
j′,i(h)(a′).

In the game in Figure 1, it is easy to find an ordered ICSE that sustains the
equilibrium actions (C1, B2, B3) and that checks Definition 1. As a matter of example,
with Player 2’s distribution (ϵ, 4ϵ, 1 − 5ϵ) on the actions A1, B1 and C1 and with
Players 3’s distribution (ϵ, 3ϵ, 1 − 4ϵ) on the actions A1, B1 and C1, beliefs converge to
sustaining beliefs and ϵ = π̂k

2,1(x1)(A1) < 4ϵ = π̂k
2,1(x1)(B1) < 1 − 5ϵ = π̂k

2,1(x1)(C1) and
ϵ = π̂k

3,1(x1)(A1) < 3ϵ = π̂k
3,1(x1)(B1) < 1 − 4ϵ = π̂k

3,1(x1)(C1), for ϵ close to 0+.
Yet, not every ICSE equilibrium actions can be sustained by probabilities that

check Definition 1. For example, if Player 3’s payoff 4 after A1B2B3 is replaced by the
payoff 1.9, then (C1, B2, B3) will still be an ICSE, but no ICSE checks the condition in
Definition 1. This is due to the fact that we necessarily have π̂k

2,1(x1)(A1) < π̂k
2,1(x1)(B1)

since we need µ2(x2) ≤ 1
5 < µ2(x3), and π̂k

3,1(x1)(A1) > π̂k
3,1(x1)(B1) since we need

µ3(y2) ≥ 1
1.9 > 1

2 > µ3(y4).

4.2. How to make ICSE beliefs SE-consistent?

Our second way to consider distance consists in exploiting the small size of the
interval between Player 2’s sustaining beliefs and Player 3’s sustaining beliefs (second
observation). Clearly, with respect to the game in Figure 1, the ICSE payoffs could
become SE payoffs (and so the minimum distance between beliefs could collapse) by
changing the game in a very smooth way. By replacing the payoff 1 after B1B2A3 by
0.87 and the payoff 6 after B1B2B3 by 6.17, it is possible to build an ICSE that is also
a SE. We get µ2(x2) = 4.5

20 , µ2(x3) = 15.5
20 , and µ3(y1) = 0, µ3(y2) = 4.5

20 , µ3(y3) = 0,
µ3(y4) = 15.5

20 , that is to say Player 2 and Player 3 have the same beliefs on Player 1’s
deviations.

It follows from this observation that another way to study the proximity between
beliefs consists in looking at how much we need to shake the payoffs in order to get an
ICSE that is also a SE; that is, how much we should shake payoffs to get beliefs that
are consistent in a SE way. In other terms, after observing that it is not possible to
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get a SE with the equilibrium actions of a given ICSE, we can look if small changes in
payoffs can allow us to get a SE with the ICSE payoffs.

Definition 2. The ISCE beliefs are close if they can become SE-compatible with very
small changes in payoffs. In that sense, the distance in beliefs becomes the distance in
payoffs required to change the ICSE equilibrium payoffs into SE equilibrium payoffs.

The steps are the following ones. We start with ICSE equilibrium behavioral
strategies that can not be part of a SE. Then we introduce variables that express
changes in payoffs and we minimize the changes in payoffs under the constraint that
the ICSE actions and the associated beliefs become a SE.

Let us illustrate the procedure for the game in Figure 1, which is represented again
in Figure 4. A first observation is that it is always possible to change the payoffs in
order to get a SE with the ICSE played actions. The optimization program makes sense
only if it leads to small payoff changes. In that case, we can say that the ICSE beliefs
are not much distant one from another. If so, players will not feel under pressure to
change them, namely because in real life there is always some incomplete information
on the exact payoffs, so the smoothly changed payoffs (needed to share the same beliefs)
belong to the set of possible payoffs.

Player 1
x1

5.99
10
10



C1

x3

y4

 0
6 + x4
0 + y4



B3

 6
3

1 + y3



A3

B2

y3

 0
5 + x3

3



B3

1
4
4



A3

A2

B1

x2

y2

 1
0 + x2
4 + y2



B3

 0
1

1 + y1



A3

B2

y1

 6
4 + x1

2



B3

6
2
3



A3

A2

A1

Player 2

Player 3

Figure 4: Absolute changes in payoffs that can make ICSE beliefs SE-compatible.
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A second observation is that there are only a limited number of changes to introduce
in that many payoffs have no role to play in the studied equilibrium. In our game, the
payoffs to work on are the ones underlined. What matters is that, for (C1, B2, B3) to
become a SE, the SE consistency requires that µ(x2) = µ(y2) = µ and µ(x3) = µ(y4) =
1 − µ. So the program we solve is Program 1:

min
x1,x2,x3,x4,y1,y2,y3,y4,µ

x1
2 + x2

2 + x3
2 + x4

2 + y1
2 + y2

2 + y3
2 + y4

2

s.t. (0 + x2)µ + (6 + x4)(1 − µ) ≥ (4 + x1)µ + (5 + x3)(1 − µ) (1)
(4 + y2)µ + (0 + y4)(1µ) ≥ (1 + y1)µ + (1 + y3)(1 − µ) (2)
µ ≥ 0 (3)
1 − µ ≥ 0 (4)

This objective function is one among the many possible ways to measure the
changes in payoffs, surely the easiest one. We will propose later a more proportional
one. Equations (1) and (2) are the necessary equations ensuring sequential rationality
and SE consistency. Equation (1) ensures sequential rationality for Player 2, Equation
(2) ensures sequential rationality for Player 3 and sequential rationality for Player 1 is
ensured in that nothing has changed for himself with respect to Figure 1. What matters
is that conditions (1) and (2) also ensure the SE consistency, which requires that Player
2 and Player 3 put the same belief µ on x2 (and therefore on y2), the same belief 1 − µ

on x3 (and therefore on y4) and a null belief on y1 and y3.
Given that the objective function goes to +∞ when ∥x∥ and/or ∥y∥ goes to +∞,

and given that the admissible set is closed and that µ is limited by 0 and 1, it is easy
to adapt Weierstrass’ corollary to ensure that Program 1 has a global minimum. The
only solution (see Appendix 3) is:

x2 = −x1 ≃ 0.0158
x4 = −x3 ≃ 0.0564
y2 = −y1 ≃ 0.0206
y4 = −y3 ≃ 0.0736
µ ≃ 0.219

x1
2 + x2

2 + x3
2 + x4

2+y1
2 + y2

2 + y3
2 + y4

2 = 0.0185

The necessary errors are quite small, since the largest one does not exceed 0.074,
which is quite small given that we work with integers ranging from 0 to 6. In other
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terms, we can say that our ICSE payoffs are easily SE-compatible (because the needed
payoffs changes are very small). Observe that the SE belief µ(x2) becomes 0.219, which
is between 1

5 and 1
4 .

If we switch to a more proportional way to see payoff adjustments, we can choose
to switch to Figure 5 and to the maximization Program 2:

min
x1,x2,x3,y1,y2,y3,µ

(x1

4 )2 + (x2

5 )2 + (x3

6 )2 + y1
2 + (y2

4 )2 + y3
2

s.t. (6 + x3)(1 − µ) ≥ (4 + x1)µ + (5 + x2)(1 − µ) (1)
(4 + y2)µ ≥ (1 + y1)µ + (1 + y3)(1 − µ) (2)
µ ≥ 0 (3)
1 − µ ≥ 0 (4)

Player 1
x1

5.99
10
10



C1

x3

y4

 0
6 + x3

0



B3

 6
3

1 + y3



A3

B2

y3

 0
5 + x2

3



B3

1
4
4



A3

A2

B1

x2

y2

 1
0

4 + y2



B3

 0
1

1 + y1



A3

B2

y1

 6
4 + x1

2



B3

6
2
3



A3

A2

A1

Player 2

Player 3

Figure 5: Proportional changes in payoffs that can make ICSE beliefs SE-compatible.

The only solution (see Appendix 3) is: x1 = −0.0258, x2 = −0.1232, x3 = 0.1774,
y1 = −0.0021, y2 = 0.0338, y3 = −0.0065 and µ = 0.2466.

We can observe that (x1
4 )2 + (x2

5 )2 + (x3
6 )2 + y1

2 + (y2
4 )2 + y3

2 = 0.0016, which is
again quite small, and that no term (perturbation/payoff) is larger than 0.00645. The
SE belief µ(x1) now becomes 0.247, which is again between 1

5 and 1
4 . Several remarks

have to be made.
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This concept of distance is rather simple to employ given that the program is easy
to write (sequential rationality and the SE consistency give the set of constraints and
the objective is a function increasing in the introduced payoff perturbations). But the
interpretation of the result is necessarily a little subjective. For example, in Program
2, what should we require in order to say that beliefs are close? What is the threshold
|dx

x
| we should accept (where dx is the variation of payoff and x the payoff)? We can of

course impose the constraint |dx
x

| ≤ 0.1 in order to prevent too strong payoff changes,
but this gives us no way to appreciate the optimal value of the objective function. Also,
should we introduce a fixed threshold on the objective function and/or the ratios |dx

x
|?

Or should the thresholds depend on the payoffs that divergent beliefs allow to get at
equilibrium? We think that, when opting for a proportional approach (Program 2),
rather than asking for |dx

x
| ≤ 0.1 or another small value, we should ask for a threshold

whose value rises with the benefit linked to the ICSE. This way of doing is motivated
by the following fact: when a player earns a large payoff, he is less induced to change
things (e.g., his beliefs) and he is less induced to ask that other persons change their
beliefs.

4.3. Distance in ICSE beliefs and AGM-consistent beliefs

Another remark, which brings us back to Bonanno (2013, 2016)’s concept of AGM-
consistency, is that this notion of distance does not take into account the number of
deviations required to reach an information set. Let us consider the game in Figure
6. Suppose that it is possible to build an ICSE (C1, A2, B3) with beliefs checking
µ2(x2) ≥ 0.6 and µ3(y1) ≤ 0.3. Of course, SE consistency requires that µ2(x2) = µ3(y1),
so that we potentially have to strongly shake the payoffs in order to make the ICSE
payoffs SE-compatible. In other terms, if we measure the distance as in Program 1 or
Program 2, we will surely conclude that Player 2 and Player 3’s beliefs are distant from
one another. But this conclusion does not take into account a strong difference between
h and h′: h needs one deviation to be reached (Player 1’s deviation) whereas h′ needs
two deviations to be reached (Player 1’s deviation and Player 2’s deviation).

This fact explains that Player 2 and Player 3’s beliefs are AGM-consistent. As
a matter of fact, the story A1 is as plausible as the story A1A2 (because A2 is the
plausibility-preserving action), the story B1 is as plausible as the story B1A2 for the
same reason, and so an external observer can judge that the stories A1 and A1A2 are
more plausible than the stories B1 and B1A2. Yet, he may also judge that the story
B1B2 is more plausible than the story A1A2 because B2 is a new deviation that totally
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1
x1

C1

x31 − µ(x2)

y21 − µ(y1)

B3 A3

B2 A2

B1

x2 µ(x2) ≥ 0.6

y1µ(y1) ≤ 0.3

B3 A3

B2 A2

A1

2h

3h’

Figure 6: Revisiting the links between ICSE and AGM-consistency.

shakes his understanding of the game: at h, after Player 1’s deviation, he thinks that
Player 1 probably deviated toward A1, so that Player 2 should play A2, but after Player
2’s unexpected deviation toward B2 (at h′), he changes his mind and finally thinks that
Player 1 probably deviated to B1.

By contrast to Bonanno, we do not work with an external observer but only with
the players themselves. This amounts, in Figure 6, in translating Bonanno’s switch
in beliefs into the following question: can we reasonably require that somebody who
observes more deviations needs to share the same beliefs than somebody who observes
less deviations? Player 2 observes only one deviation (Player 1’s deviation) whereas
Player 3 observes two deviations (Player 1’s and Player 2’s deviations). Facing more
deviations may introduce more doubts and therefore allow for different beliefs. To say
it differently, the distance in beliefs might also depend on the distance (in the number
of deviations to reach it) between an information set and the equilibrium path. This
amounts to saying that players facing more deviations can be expected to have more
distant beliefs. In some way, if we note Player 2’s payoff changes by dx, and Player 3’s
payoff changes by dy, it could make sense, in the game in Figure 6, to weight |dx

x
| more

strongly than |dy
y

| in the distance function to minimize (for example 2(dx
x

)2 and (dy
y

)2).
It would perhaps even make more sense to change the power assigned to |dx

x
| and |dy

y
|

given that the probability of several deviations exponentially decreases with the number
of deviations (we could work with (dx

x
)2 and (dy

y
)4). In this way, given that |dx

x
| and
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|dy
y

| are lower than one, Player 3 can afford more payoff changes without increasing too
much the value of the distance function: this amounts to saying that we do not judge
his beliefs very distant from the other players’, even if in fact they are very different.

5. Revealed beliefs and strategic beliefs

Taking into account the number of deviations to reach an out-of-equilibrium in-
formation set puts into light a new problem when studying the notion of distance in
beliefs. What exactly is the link between beliefs and deviations? May there be a differ-
ence between announced beliefs and the beliefs revealed through the players’ behavior?

Let us again consider the game in Figure 6. Are Player 3’s beliefs really distant
from Player 2’s revealed beliefs? A2 is optimal when µ(x2) ≥ 0.6. Yet, when Player
3 is called on to play, Player 2 played B2 and not A2. Given that Player 2 plays B2

when his beliefs check µ(x2) < 0.6 (because the complementary beliefs lead to the
play of A2), we can say that if Player 3 is called on to play (if Player 2 played B2),
then Player 2’s revealed beliefs contradict the beliefs announced at the information
set h. And the revealed beliefs (µ(x2) < 0.6), are compatible with Player 3’s beliefs,
µ(y1) = µ(x2) ≤ 0.3. So Player 3’s beliefs are in reality compatible with Player 2’s
revealed beliefs. By the way, this might provide a logical reason for the reversal of
beliefs of Bonanno’s external observer at h′ in the game in Figure 6. Given that Player
2 does not play A2 (the action compatible with the observer’s beliefs µ(x2) ≥ 0.6),
Player 2 reveals to the observer that his beliefs are the reversed ones, which induces
the observer to change his beliefs.4

This way of coping with beliefs may seem attractive but it clearly leads to difficul-
ties. First, it is often incompatible with the ICSE beliefs. In the game in Figure 2 for
example, Player 3, with the ICSE concept, necessarily has the same beliefs at h′ and
h′′ (µ(y1) = µ(y3)), so his beliefs are not reversed at h′′ despite the fact that he knows,
at h′′, that Player 2 did not behave in conformity with his beliefs at h (given that he
did not play A2). In fact Player 3, at h′′, sees Player 2’s action B2 as a trembling hand
action that has no informative content and his beliefs only follow from his own per-
turbations on Player 1’s actions A1 and B1. Secondly, AGM-consistent beliefs in this
game are compatible with the notion of revealed beliefs, given that Player 3’s beliefs
at h′′ take into account that Player 2, by playing B2, revealed that his beliefs are such

4But Bonanno (2013, 2016) does not require this reversal. AGM-consistent assessments also allow
beliefs such as µ(x2) = µ(y1) and µ(x3) = µ(y2).
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that µ(x2) ≤ 0.7. But AGM-consistent beliefs could also assign probability 0.7 to y3

in that the external observer is in no way compelled to change his view on Player 1’s
played actions after an unexpected action from Player 2.

Thirdly, taking into account revealed beliefs puts into question the measure of the
distance we proposed previously. If a player tries to be close to a previous player’s
beliefs, then the notion of revealed beliefs requires that his beliefs must be different
depending on whether the previous player played the planned action or not. In Figure
2 for example, a SE requires µ(x2) = µ(y1) = µ(y3), so if an equilibrium starts with
µ(y1) ̸= µ(y3), the distance is necessarily strictly positive despite the fact that revealed
beliefs by definition require µ(y1) ̸= µ(y3). This suggests that taking into account the
number of deviations required to reach an information set must change our measure of
distance.

Finally, we should consider the notion of revealed beliefs with suspicion. Let us
consider the game in Figure 7.

1
x1

3
6
3



C1

x3

y2

6
4
6



B3

2
1
2



A3

B2

2
2
2



A2

B1

x2 µ(x2) ≤ 1
3

y1≥ 1
2

2
1
2



B3

6
4
6



A3

B2

2
2
2



A2

A1

2h

3h’

Figure 7: Revealed and announced beliefs.

In every sequential equilibrium, we have µ(x2) = µ(y1), and it follows that Player
2 always plays B2 (because either µ(x2) = µ(y1) > 1

2 , Player 3 plays A3 and therefore
Player 2 plays B2 or µ(x2) = µ(y1) < 1

2 , Player 3 plays B3 and therefore Player 2
plays B2, or µ(x2) = µ(y1) = 1

2 , Player 3 plays A3 with probability q and therefore
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Player 2 plays B2). This implies that Player 1 plays A1 if µ(x2) = µ(y1) > 1
2 , B1 if

µ(x2) = µ(y1) < 1
2 , and A1 or B1 depending on the value of q if µ(x2) = µ(y1) = 1

2 .
Hence, both Players 1 and 3 get 6 at any sequential equilibrium and Player 2 gets at
best 4.5

Now consider the ICSE given in Figure 7, with the SE incompatible beliefs µ(x2) ≤
1
3 and µ(y1) ≥ 1

2 . This new profile of actions and beliefs checks AGM-consistency (and
Bonanno’s PBE consistency) and is conform to revealed beliefs. As a matter of fact,
given his beliefs and Player 3’s action A3, Player 2 should play A2, which he does at
equilibrium and which induces Player 1 to play C1. So, if Player 3 is called on to play,
this means that Player 2 played B2 which, according to revealed beliefs, reveals that he
does not believe that Player 1 played A1 with a probability lower than 1

3 . Therefore,
Player 3, if he wishes to share similar beliefs to Player 2, can believe that Player 1
played A1 with a probability larger than 1

3 and possibly larger than 1
2 . These beliefs

induce him to play A3. So revealed beliefs sustain a profile of strategies where Players
1 and 3 only get 3 and Player 2 gets 6, by leading Player 1 to play C1.

But let us look more closely at Player 2’s revealed beliefs. By playing B2 instead
of the planned action A2, Player 2 sends the following message to Player 3: "Normally
I play A2 because it is my best response to your action A3, since I believe that Player
1 much more deviates to B1 than to A1; so, if you see me playing B2, this means that I
changed my opinion about Player 1’s deviation, so that you are right in believing that he
more often deviated to A1, and so you are right in playing A3." The problem is that this
message is at best "cheap talk" because Player 2 has no information to reveal to Player
3. Player 2 has no idea about the potential deviations of Player 1, given that Player
1 does not deviate when he expects Player 2 to play A2. One more time, by contrast
to Aumann (1976), Geanakoplos and Polemarchakis (1982), and Hart and Tauman
(2004), the out-of-equilibrium actions played by the players do not provide information
on a true state to discover but on an action that will never be observed at equilibrium.
Player 1 does not deviate and so there is nothing to learn about his deviation. If Player
3 "naively" believes that Player 2 can reveal something about Player 1’s deviations with
his behavior, then he gives Player 2 the power of manipulating Player 3’s beliefs to his
advantage. As a matter of fact, the beliefs in this ICSE clearly are advantaging Player
2 because they induce Player 1 to play C1, so they lead to the payoff profile (3,6,3)
which is exclusively in advantage of Player 2.

5There also exists a SE where Player 1 plays A1 and B1 with probability 1
2 and Player 3 plays A3

and B3 with probability 1
2 , so they both get 4 given that Player 2 plays B2.
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6. Discussion

Our analysis suggests that out-of-equilibrium beliefs might be here to justify the
players’ behaviour at out-of-equilibrium information sets. Choosing them in a given
way may help to get a higher payoff, which means that they belong to the strategy
set. Let us recall that in a SE, everybody builds the beliefs on a same profile of
perturbations, so a player does not really choose his beliefs given that he applies Bayes’
Rule to the same perturbations. So in a SE, out-of-equilibrium beliefs do not belong to
the player’s strategy set. By contrast, in an ICSE, each player chooses his own profile
of perturbations, which means that he chooses his own beliefs at out-of-equilibrium
sets. This degree of liberty can be exploited to build beliefs that lead to interesting
payoffs. In the game in Figure 7, it is good for Player 2 to build beliefs (about Player
1’s deviation) that are strikingly different from those of Player 3 in order to justify the
action A2 that prevents Player 1 from deviating from C1, the most interesting action
for Player 2. By contrast, for Player 3, it is better to have similar beliefs than Player 2,
in order to lead Player 2 to play B2, which ultimately leads to the payoffs (6,4,6). So
we are tempted to say that, given that each player chooses his set of perturbations, out-
of-equilibrium beliefs belong to the strategy set. This fact induces two consequences:
we have to reconsider the notion of sequential rationality and we have to reconsider the
notion of distance between beliefs.

We start with the notion of distance by coming back to the game studied in Figure
1. We already made the observation, in Section 3, when opting for a proportional
approach (Program 2), that rather than asking for |dx

x
| ≤ 0.1 or another threshold,

we should ask for a threshold whose value rises with the benefit linked to the ICSE
payoffs. As a matter of fact, if everybody benefits from the ICSE payoffs then nobody
cares about the distance between the beliefs necessary to sustain the equilibrium. By
contrast, in the game in Figure 7, Player 3 may require that Player 2 has beliefs that
are close to his own beliefs (especially if Player 2 is a newcomer in the community)
because similar beliefs among Player 2 and Player 3 are necessary for Player 3 to get
the nice payoff 6. Conversely, if Player 3 is the newcomer in the community, then Player
2 might not pressure Player 3 to adopt beliefs close to his own. The (social) pressure to
modify beliefs so as to be close to another player’s beliefs must therefore be contrasted
with the benefits (in terms of actions played) of holding different beliefs.

Concerning sequential rationality, given that each player chooses his perturbation
scheme, these perturbation schemes belong to his strategy set, that is, each player
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will build (in a consistent way) beliefs at his out-of-equilibrium information sets to
get a better payoff. This changes nothing with respect to the definition of individual
consistency, but this should lead us to reconsider Kreps and Wilson (1982)’s notion
of sequential rationality. In some way, we should add that, for each player, given the
strategies played by the other players, there does not exist a perturbation scheme that
is sequentially rational (as defined by Kreps and Wilson 1982), individually-consistent
and that leads to a larger payoff for the player.

However, sequential rationality rests on unilateral deviations and this additional
condition might thus not always help. For example, the ICSE in Figure 7 would resist
such an additional condition despite the fact that Player 3 would like to adapt his
beliefs to Player 2’s beliefs to compel him to play B2. The problem is that, as long as
Player 2 plays A2 and Player 1 plays C1, Player 3’s beliefs and actions have no impact
on his equilibrium payoff. The idea is that each player selects the perturbation scheme
associated to the ICSE that leads him to his largest equilibrium payoff. If so, in the
game in Figure 7, Player 3 should opt for a perturbation scheme (on Player 1’s actions)
similar to Player 2’s, to push Player 1 and Player 2 to play A1 and B2 for example (he
can choose the SE (A1, B2, A3) with the beliefs µ(x2) = µ(y1) = 1). Yet, Player 2 would
of course choose another perturbation scheme, namely the one leading to the ICSE in
Figure 7. So this additional condition, in the game in Figure 7, leads to the non-
existence of a system of perturbation schemes both selected by Player 2 and Player 3.
In the game in Figure 1, Player 2 and Player 3 can select the same perturbation scheme,
namely the one of an ICSE leading to the payoffs (5.99, 10,10). Player 1 can not counter
Player 2 and Player 3’s selection, in that if they play B2 and B3 he is constrained to
play C1. Yet, even in this game, Player 1 may opt for another equilibrium in which he
plays A1, therefore constraining Player 2 and Player 3 to play A2 and A3. Therefore,
there is no obvious way, even if we switch to coalitions of players, to clearly formalize
and express the wish to select payoff-optimizing perturbation schemes. The only trivial
configuration is a game such that one ICSE ensures the best payoff to all the players,
so that the grand coalition of all the players will be incentivized to select it.

7. Conclusion

The paper started with an obvious observation: there is no reason that leads
every player to build the perturbed strategies similarly. Each player has to respect
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the probabilities assigned to actions that are in the support of the equilibrium, but,
given that there does not exist an external observer who can decide for the profiles of
ϵ-perturbations, each player is free to build the perturbations assigned to the actions
out of the support of the equilibrium. It follows that in an ICSE, players can have
different beliefs at out-of-equilibrium information sets.

This led us first to evaluate the distance between different beliefs, because players
in the same community are often expected to share similar beliefs. We did this in
Section 3 in two ways: (i) an ordering of perturbations and (ii) the minimization of
changes in payoffs necessary to make the ICSE beliefs SE-compatible.

We then focused on the function held by beliefs at out-of-equilibrium sets. Since
players can build their beliefs at out-of-equilibrium sets, they might build them strate-
gically in order to improve their payoffs. This observation led us to reconsider the
traditional concept of sequential rationality, by further requiring that there does not
exist a perturbation profile that is individually-consistent and that provides greater
payoffs to the player, even though such an additional constraint is not always easy to
cope with.

8. Appendix 1

We show that there are no sequential equilibria supporting the action C1 for player
1 (and therefore the socially optimal situation) in the game shown in Figure 1.

Case 1: Player 2 plays A2. Therefore player 1 plays A1.
Case 2: Player 2 plays B2.
(i): If player 3 plays A3, player 1 plays B1.
(ii): If player 3 plays B3, then player 1 might want to play C1, but we have already

shown that the beliefs that would support this equilibrium are not mutually consistent.
(iii): If player 3 plays A3 and B3, then γ = 1

4 , and so necessarily α = 1
4 . But

then, player 2 would prefer to play A2. To show this, first let r be the probability
that player 3 plays A3. By playing A2, player 2’s expected payoff is 1

4(2r + 4(1 − r) +
3
4(4r + 5(1 − r)) = 1

4(14r + 19(1 − r)). By playing B2, player 2’s expected payoff is
1
4r + 3

4(3r + 6(1 − r)) = 1
4(10r + 18(1 − r)), which is strictly inferior to the expected

gain of playing A2.
Case 3: Player 2 plays A2 and B2.
(i): Player 3 plays A3. In this case, it would not be profitable for player 2 to
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randomize, given that playing only A2 would allow her to always gain strictly more.
(ii): Player 3 plays B3. Given player 2’s indifference between A2 and B2, it is

necessary that α = 1
5 . To show that with these beliefs, player 3 would want to deviate,

first note q the probability that player 2 would play A2. Then by playing A3, player 3’s
expected gain would be 1

5(1 + 2q) + 4
5(1 + 3q) = 1

5(5 + 14q). By playing B3, player 3’s
expected gain would be 1

5(4 − 2q) + 4
5(3q) = 1

5(4 + 10q), which is strictly inferior to the
expected gain player 3 would receive by playing A3.

(iii): Player 3 plays A3 and B3. Let r be the probability that player 3 plays
A3, and q the probability that player 2 plays A2. Let ϵ0 and ϵ1 be the perturbations
associated to A1 and B1 respectively. The expected gain of playing A2 for player 2 is
ϵ0(2r + 4(1 − r)) + ϵ1(4r + 5(1 − r)) = ϵ0(4 − 2r) + ϵ1(5 − r). The expected gain of
playing B2 for player 2 is ϵ0r + ϵ1(3r + 6(1 − r)) = ϵ0r + ϵ1(6 − 3r). Equalizing these
expected gains yields ϵ0(4−2r)+ ϵ1(5− r) = ϵ0r + ϵ1(6−3r), or ϵ0(4−3r) = ϵ1(1−2r).

The expected gain of playing A3 for player 3 is ϵ0(3q + (1 − q)) + ϵ1(4q + (1 − q)) =
ϵ0(1+2q)+ϵ1(1+3q). The expected gain of playing B3 for player 3 is ϵ0(2q+4(1−q))+
ϵ13q = ϵ0(4−2q)+ϵ13q. Equalizing these expected gains yields ϵ0(1+2q)+ϵ1(1+3q) =
ϵ0(4 − 2q) + ϵ13q, or ϵ0(3 − 4q) = ϵ1. It follows that ϵ1 = ϵ0(3 − 4q) = ϵ0

4−3r
1−2r

. Therefore,
3 − 4q = 4−3r

1−2r
, so 4q = 3 − 4−3r

1−2r
= 3−6r−4+3r

1−r
= −1−3r

1−r
, which is strictly inferior to 0; an

impossible event.

9. Appendix 2

Proof of Proposition 3.1. (i) This follows from the fact that in an ICSE, all strate-
gies are sequentially rational and beliefs are obtained via Bayes’ Rule applied
to strategies close to the true ones (even if the perturbations are not the same
among players). In an ICSE, players agree on the planned actions, even those at
unreached subgames, so the ICSE induces a Nash equilibrium in each subgame.

(ii) This follows directly from the definition of both concepts.

(iii) This follows from the fact that the perturbations required by Player 2 (to build
his beliefs) are about actions played by Player 1, and the perturbations required
by Player 1 are about actions played by Player 2. Both players do not work with
different perturbations about actions played by another (third) player. So we
can work with one set of perturbations for the game, which is the same for both
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players (by taking Player 1’s perturbations (about Player 2’s actions) and Player
2’s perturbations (about Player 1’s actions)).

(iv) To show why an ICSE is not necessarily a PBE, we choose a game closer to the
games studied by Fudenberg and Tirole (1991), by changing our main example in
the following way. θ1 and θ

′
1 are Player 1’s two possible types, unknown to Player

2 and to Player 3 (prior probabilities ρ and 1 − ρ). So we get the game in Figure
8.

Figure 8: Distinction between ICSE and PBE (1/3).

According to Fudenberg and Tirole (1991)’s PBE equilibrium concept, Player
2 and Player 3 share the same beliefs everywhere (Condition B(iv) p.332), and
these beliefs are build using the history of play whenever possible. So, if µ(x4) =
µ2(θ

′
1/h) = µ(θ′

1/h) = 1
5 , we get:

µ(y3) = µ(θ′
1/h)π2(B2)

µ(θ1/h)π2(B2) + µ(θ1/h)π2(A2) + µ(θ′
1/h)π2(B2) + µ(θ′

1/h)π2(A2)
= µ(θ′

1/h)

= 1
5 ,

(due to the Condition B(ii) p.332). Therefore, we can not get µ(y3) = 1
4 . Player
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3’s beliefs are built like Player 2’s. Given that B2 is an expected action, and given
that the beliefs at h are not 0, the beliefs at y3 are necessarily the same than the
ones at x4.

The ICSE concept takes into account that B2 is an expected action, but it al-
lows Player 3 not to share Player 2’s beliefs at h. Therefore, we keep Condition
B(ii) but not Condition B(iv), in that Player 2 (respectively Player 3) assigns
probability 1

5 (respectively 1
4) to θ

′ if h is reached.

Yet, all PBE are not necessarily ICSE. For example, consider Fudenberg and
Tirole (1991)’s example reproduced in Figures 9 and 10 (Figure 8.9 p.346 in their
book). The beliefs are in red. The beliefs assigned to the states θ have been
obtained by Bayesian inference from previous play. Player 1 is the player who
plays the actions a∗

1, a
′
1 and a

′′
1 , while ek, e

′
k are perturbations going to 0.

Figure 9: Distinction between ICSE and PBE (2/3).

Figure 10: Distinction between ICSE and PBE (3/3).

Fudenberg and Tirole (1991) say that the beliefs (in red) at h and h′ belong to
a PBE because the PBE places no restrictions on the beliefs at h and h′, since
both beliefs that lead to h and h′ are 0. The only condition is that these beliefs
have to be common to all players.
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Yet the beliefs at h and h′ can not belong to an ICSE when the same player,
Player 2 in Figure 9, plays at h and h′. As a matter of fact, by calling ϵ

′k and ϵ
′′k

the probabilities to reach y1 and y2, respectively, which go to 0 given the beliefs,
we get µ2(x3) = lim

ϵ→0
( ϵ

′ke
′
k

ϵ′ke
′
k

+ϵ′′k(1−ek−ek
′)), which can go to 1 only if ϵ

′′k(1−ek−ek
′)

ϵ′ke
′
k

goes

to 0, which requires that ϵ
′′k

ϵ′k → 0. But then µ2(x2) = lim
ϵ→0

( ϵ
′′kek

ϵ′′kek+ϵ′k(1−ek−ek
′)) → 0.

So the PBE is not a ICSE.

By contrast, when there are two different players at h and h′′, like in Figure 10
(Player 2 and Player 3 respectively), the PBE is an ICSE, since we can take
different perturbations leading to y1 and y2 for Player 2 (ϵ′k

2 and ϵ
′′k
2 ) and Player

3 (ϵ′k
3 and ϵ

′′k
3 ), respectively. Therefore, we get: µ3(x3) = lim

ϵ→0
( ϵ

′k
3 e

′
k

ϵ
′k
3 e

′
k

+ϵ
′′k
3 (1−ek−ek

′)),

which can go to 1 if ϵ
′′k
3

ϵ
′k
3 e

′
k

→ 0. And we get µ2(x2) = lim
ϵ→0

( ϵ
′′k
2 ek

ϵ
′′k
2 ek+ϵ

′k
2 (1−ek−ek

′)), which

can also go to 1 if ϵ
′k
2

ϵ
′′k
2 ek

→ 0. Given that the set of perturbations is different for
the two players, both conditions can be fulfilled and the PBE becomes an ICSE.

(v) To formally describe the concept of SCE, we need to introduce some more no-
tation. Let a mixed strategy profile be represented by σ = (σi)i∈N , while a
behavioral strategy profile will be denoted, as before, by π = (πi)i∈N . We refer
to information sets that are reached with positive probability under the mixed
strategy profile σ as H̄(σ), and write hi for a specific information set controlled by
player i. We write the behavioral representation of a mixed strategy σi as π̂i(·|σi),
such that π̂i(hi|σi) represents the probability distribution over actions induced by
the mixed strategy σi at information set hi. Furthermore, let µi represent player
i’s beliefs about their opponents’ play, such that µi is a probability distribution
over Π−i, the set of other players’ behavioral strategies, with typical element π−i.

A (mixed) strategy profile σ is a Self-Confirming Equilibrium (Fudenberg and
Levine, 1993) if, ∀i ∈ N and ∀si ∈ support(σi), there exists beliefs µi such that:

(i) si maximizes ui(·, µi), and

(ii) µi[{π−i|πj(hj) = π̂j(hj|σj)}] = 1, ∀j ̸= i, ∀hj ∈ H̄(si, σ−i).

In words, every players’ subjective probability distribution needs to put proba-
bility 1 to strategy profiles that are compatible with observed play (reached with
positive probability). That is, players’ expectations need to be right on the equi-
librium path, but need not be right at information sets that are never reached.
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Importantly, since each player has to best respond only to the observed actions
of other players, the SCE only requires that players play a best response to their
beliefs about other player’s actions out of the equilibrium strategy path. This
implies that a SCE is not necessarily an ISCE, since the ICSE requires that
players play best responses to other player’s actions, even at information sets
that are out of the equilibrium strategy path. On the other hand, an ICSE is
always a SCE, since it is always possible to create a SCE in which players play
best responses, and have accurate beliefs, even at out-of-equilibrium information
sets.

■

Proof of Proposition 3.2. (i) AGM-consistency works with plausibility orders on sto-
ries. It is a qualitative notion that focuses on plausibility-preserving actions, which
are actions played with a positive probability in the game. Given that the ICSE
also respects the actions played with a positive probability in the game, an ICSE
is usually AGM-consistent, except if it leads to 0-1 assessments.

(ii) Bonanno’s PBE concept transforms the qualitative notion into a quantitative one,
by requiring that the beliefs respect Bayes’ Rule when it applies, i.e., in presence of
plausibility-preserving actions. Given that Bonanno’s concept only introduces one
probability distribution at each out-of-equilibrium information set, it immediately
follows that it cannot intersect with the ICSE concept, which works with the
Bayesian rule applied to several perturbation distributions, one for each player.

■

10. Appendix 3

Program 1:

min
x1,x2,x3,x4,y1,y2,y3,y4,µ

x1
2 + x2

2 + x3
2 + x4

2 + y1
2 + y2

2 + y3
2 + y4

2

s.t. (0 + x2)µ + (6 + x4)(1 − µ) ≥ (4 + x1)µ + (5 + x3)(1 − µ) (1) λ1

(4 + y2)µ + (0 + y4)(1 − µ) ≥ (1 + y1)µ + (1 + y3)(1 − µ) (2) λ2

µ ≥ 0 (3) λ3

1 − µ ≥ 0 (4) λ4

27



Equations (1) and (2) can be rewritten:

1 − x3 + x4 − µ(5 + x1 − x2 − x3 + x4) ≥ 0 (1)
−1 − y3 + y4 − µ(−4 + y1 − y2 − y3 + y4) ≥ 0 (2)

The KT function becomes:

x1
2 + x2

2 + x3
2 + x4

2 + y1
2 + y2

2 + y3
2 + y4

2 − λ1(1 − x3 + x4 − µ(5 + x1 − x2 − x3 + x4))
− λ2(−1 − y3 + y4 − µ(−4 + y1 − y2 − y3 + y4)) − λ3µ − λ4(1 − µ).

The KT equations are:

2x1 + λ1µ = 0 (a)
2x2 − λ1µ = 0 (b)

2x3 + λ1(1 − µ) = 0 (c)
2x4 − λ1(1 − µ) = 0 (d)

2y1 + λ2µ = 0 (e)
2y2 − λ2µ = 0 (f)

2y3 + λ2(1 − µ) = 0 (g)
2y4 − λ2(1 − µ) = 0 (h)

λ1(5 + x1 − x2 − x3 + x4) + λ2(−4 + y1 − y2 − y3 + y4) − λ3 + λ4 = 0 (i)

It follows that x2 = −x1 ≥ 0, x4 = −x3 ≥ 0, y2 = −y1 ≥ 0, and y4 = −y3 ≥ 0, due
to the positivity of the KT multipliers.

Both Conditions (1) and (2) are necessarily checked with equality, because λ1 = 0
leads to λ2(−4 − 2y2 + 2y4) = 0, hence y4 ≥ 2, which can clearly not lead to a global
minimum given our numerical introduction, and λ2 = 0 leads to λ1(5 − 2x2 + 2x4) = 0,
hence x4 ≥ 2.5, which can not lead to a global minimum for the same reason.

We seek a solution that checks 0 < µ < 1, and so λ3 = λ4 = 0. It follows that
λ1 = 2x2

µ
= 2x4

1−µ
, hence µ = x2

x2+x4
, and λ2 = 2y2

µ
= 2y4

1−µ
, hence µ = y2

y2+y4
. As a result:

x2y4 = y2x4 (j)
2(x2

2 + x2
4) = 4x2 − x4 (k)

2(y2
2 + y2

4) = −3y2 + y4 (l)
x2(1 + 2x4) + y2(−1 + 2y4) = 0 (m)
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The only solution is:

x2 = −x1 = −53
√

29 − 290
290 ≃ 0.0158

x4 = −x3 = 33
√

29 − 145
580 ≃ 0.0564

y2 = −y1 = 83
√

29 − 435
580 ≃ 0.0206

y4 = −y3 = −19
√

29 − 145
580 ≃ 0.0736

µ = −106
√

29 + 580
435 − 73

√
29

≃ 0.219

λ1 = 435 − 73
√

29
290 ≃ 0.1444

λ2 = 64
√

29 − 290
290 ≃ 0.1885.

Program 2:

min
x1,x2,x3,y1,y2,y3,µ

(x1

4 )2 + (x2

5 )2 + (x3

6 )2 + y1
2 + (y2

4 )2 + y3
2

s.t. (6 + x3)(1 − µ) ≥ (4 + x1)µ + (5 + x2)(1 − µ) (1) λ1

(4 + y2)µ ≥ (1 + y1)µ + (1 + y3)(1 − µ) (2) λ2

µ ≥ 0 (3) λ3

1 − µ ≥ 0 (4) λ4

Equations (1) and (2) can be rewritten:

1 + x3 − x2 + µ(−5 − x1 + x2 − x3) ≥ 0 (1)
−1 − y3 + µ(4 − y1 + y2 + y3) ≥ 0 (2)

The KT function becomes:

(x1

4 )2 + (x2

5 )2 + (x3

6 )2 + y1
2 + (y2

4 )2 + y3
2 − λ1(1 + x3 − x2 + µ(−5 − x1 + x2 − x3))

− λ2(−1 − y3 + µ(4 − y1 + y2 + y3)) − λ3µ − λ4(1 − µ).
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The KT equations are:

2x1

16 + λ1µ = 0 (a)
2x2

25 + λ1(1 − µ) = 0 (b)
2x3

36 − λ1(1 − µ) = 0 (c)

2y1 + λ2µ = 0 (e)
2y2

16 − λ2µ = 0 (f)

2y3 + λ2(1 − µ) = 0 (g)
λ1(5 + x1 − x2 + x3) + λ2(−4 + y1 − y2 − y3) − λ3 + λ4 = 0 (i)

We look for a solution such that Conditions (1) and (2) are checked with equality,
and such that 0 < µ < 1 (so that λ3 = λ4 = 0. The only solution gives: x1 = −0.0258,
x2 = −0.1232, x3 = 0.1774, y1 = −0.0021, y2 = 0.0338, y3 = −0.00645, λ1 = 0.01308,
λ2 = 0.01712 and µ = 0.24657.
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