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Abstract

In the original specification of cumulative prospect theory, distinct sets of parameters control
for the curvature of the value function and the shape of the probability weighting function.
There is one for the gain domain and one for the loss domain. However, in most estimations,
behaviour over losses is assumed to perfectly reflect behaviour over gains, through a unique set of
parameters. We examine the consequences of relaxing this simplifying assumption in the context
of Tanaka et al.’s (2010) risk-experiment procedure. On the one hand, we show that subjects’
behaviour for gains is mostly reflected for losses at the aggregate and individual levels, and is
consistent with the cumulative prospect theory fourfold pattern. However reflection is partial as
the mean curvature of the value function is slightly less convex for losses than it is concave for
gains. These results are robust to a high-stake context. Then, we demonstrate that assuming
reflection when measuring loss aversion is innocuous neither at the aggregate nor at the individual
level. On the other hand, we highlight the existence of a strong, negative and persistent framing
effect on values elicited for loss aversion.
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1 Introduction

Kahneman and Tversky (1979) started developing Prospect Theory (PT) as an alternative to standard

Expected Utility (EU) to describe individual choices in a stochastic environment, while taking into

account important cognitive biases. Since then, the cumulative version of PT (CPT, Tversky and

Kahneman (1992)) proved to be one of the most promising decision theories (Harrison and Rutström,

2009; Barberis, 2013) and has progressively disseminated into empirical applications, leading the

way to a positive approach of behaviour under risk. Examples include for instance Babcock (2015)

in the field of agricultural economics, Barberis et al. (2001) and Grinblatt and Han (2005) in finance,

and Mercer (2005) in political science. Applying PT requires manipulating several parameters that

code for several aspects of individual risk preferences. Some parameters control the curvature of the

value function, others control the shape of the probability weighting function, and a last one captures

loss aversion. Measuring these parameters in different contexts has been a major preoccupation, both

to validate the relevancy of the theoretical model in describing real behaviour and to provide values

for empirical applications. Due to the multidimensional nature of PT, experiments are the preferred

approach, and values are now available for a variety of populations (see, e.g., Nguyen and Leung

(2009) for Vietnamese fishermen, Booij et al. (2010) for Dutch households, Bocquého et al. (2014)

for French farmers, Bocquého et al. (2018) for Middle East refugees, L’Haridon and Vieider (2019)

for students from 30 countries, Zhao and Yue (2020) for U.S. farmers). Most of these studies rely on

lottery choices organized in multiple price lists, using Tanaka et al.’s (2010) design (henceforth TCN),

on choices between a lottery and a sure amount, using certainty equivalents (Tversky and Kahneman,

1992; Abdellaoui et al., 2008; L’Haridon and Vieider, 2019), or on choices made on lottery pairs

(Harrison and Rutström, 2009).

Parametric methods for preference estimation are the most common approaches because they are

easy to estimate and interpret, but are susceptible to a contamination effect. A misspecification of one

of the value function or probability weighting function will bias the other one (Booij et al., 2010). 1 In

Tversky and Kahneman’s (1992) description of CPT, two different parameters control the curvature

of the value function, one for the gain domain and one for the loss domain. However, in many

1Non-parametric methods include Wakker and Deneffe (1996), extended by Abdellaoui (2000) and Abdellaoui et al.
(2007), but they are typically more difficult to administer and may suffer from error propagation because of their chained
nature (L’Haridon and Vieider, 2019). They are also generally less efficient due to more questions needed (Abdellaoui
et al., 2008). Last, they are not incentive compatible (Booij et al., 2010). See Bauermeister et al. (2018) for a comparison
of TCN and Wakker and Deneffe’s (1996) methods.
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empirical applications they are merged. A similar simplifying assumption is often made about the

CPT parameters controlling the shape of the probability weighting function, in line with Kahneman

and Tversky’s (1979) original PT. These two assumptions apply in particular to studies based on

TCN risk-experiment design (e.g., Nguyen and Leung, 2009; Liu, 2013; Bocquého et al., 2014;

Bauermeister et al., 2018; Bocquého et al., 2018; Zhao and Yue, 2020) 2, but not only. Nonetheless,

the authors who rather account for distinct CPT parameters in the gain and loss domains find close

values in most cases, whatever the estimation method (e.g., Tversky and Kahneman, 1992; Harrison

and Rutström, 2009; Booij et al., 2010; L’Haridon and Vieider, 2019).

In this context, the main objective of this study is methodological. We investigate the impact of

relaxing such simplifying assumptions in the context of the TCN experimental design. We test the

robustness of our findings to the size of the lottery stakes. A secondary objective is to provide new

insights on individual behaviour when subjects are faced with losses, at the aggregate and individual

levels.

We carry out a series of risk experiments in the lab on a sample of students. We test the original

TCN design, and two alternative frames, a reflected loss frame and a high-stake frame, using monetary

incentives. The reflected frame allows us to elicit individual values for the curvature of the value

function and the probability weighting function specifically on loss outcomes. In a second step,

we assess the consequences for the loss aversion estimates, in particular whether loss aversion is

consistent between the gain and the loss frames. We use the high-stake frame as a robustness check.

We are not aware of any other attempt to formally test extensions or alternative framings of TCN risk

experiment.

This paper proceeds as follow. In Section 2 we outline the relevant literature. In Section 3 we

describe the sample and experimental protocol, and in Section 4 we present the estimation methods. In

Section 5 we report non-parametric results on behaviour under the baseline treatment, loss frame and

high-stake frame, as well as estimates of CPT parameters. We develop our analysis at the aggregate

and individual levels. In Section 6 we fine-tune the estimates of elicited loss aversion, by isolating a

pure framing effect and by allowing the curvature of the value function to differ between the gain and

loss domains. Section 7 concludes.
2Bougherara et al. (2017) is an exception in this respect.
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2 Literature review

2.1 Experiments in the loss domain

The idea that individuals behave differently towards gambles expressed as losses or gains is not new.

It appears with Slovic and Lichtenstein (1968) who find that individuals give much less importance

to probabilities of losses than to probabilities of gains. This idea is at the basis of the PT Kahneman

and Tversky (1979) propose as an alternative to EU. Indeed, in EU, value is assigned to final assets,

which integrate gains and losses in the same way. On the contrary, in PT, value is assigned to gains or

losses which are defined with respect to a reference point, and probabilities are replaced by decision

weights. Consequently, PT is able to account for the reflection effect: subjects who are risk averse

in the domain of gains become risk seeking in the domain of losses, and vice versa. The reflection

effect is a well-known empirical finding backed by numerous experimental studies (e.g., Kühberger

et al., 1999; Laury and Holt, 2008; Bosch-Domènech and Silvestre, 2006), even if a few ones do

not corroborate such a result (Hershey et al., 1982). The later CPT version reflects a more general

fourfold pattern of risk attitudes: risk aversion (risk seeking) over gains (losses) occurring with large

probabilities, and risk seeking (risk aversion) over gains (losses) occurring with small probabilities.

This pattern has been largely investigated in experimental economics (Cohen et al., 1987; Wehrung,

1989; Harbaugh et al., 2010).

In terms of structural parameters, one may associate the reflection effect with the shape of the

value function, and the fourfold pattern with the shape of the probability weighting function (Lau

et al., 2019). Although in CPT distinct parameters control the shape of these two functions in

gains and losses, many experimental studies a priori assume that unique parameters operate in both

domains. This is largely the case for those based on TCN risk experiment (Nguyen and Leung,

2009; Tanaka et al., 2010; Liu, 2013; Bocquého et al., 2014, 2018; Zhao and Yue, 2020), but also for

some of those using other experimental designs, like Harrison and Rutström (2008, pp.92-95), and

Harrison and Rutström (2009) as far as the weighting parameters are concerned. These constraints

on parameter values take for granted the reflected behavioural patterns described above, while there

is little evidence on whether such constraints are innocuous (Lau et al., 2019). In particular, it may

directly affect the loss aversion measure(Booij et al., 2010).

Reasons for such assumptions beyond mere simplicity hardly appear. In the case of the value
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function, Wakker (2010, pp. 267–271) suggests it avoids the analytical problems that a power

value function brings for analyzing loss aversion. First, he demonstrates that, unless the powers

for gains and losses agree, loss aversion cannot be defined clearly because it depends on the unit of

money. Second, he explains that a power value function cannot accommodate all plausible empirical

observations whenever the powers for gains and for losses differ. 3 In the case of the probability

weighting function, it is noteworthy that Kahneman and Tversky’s (1979) original description of PT

does assume identical parameters for the gain and the loss domains.

2.2 Experiments assuming distinct functions for the gain and loss domains

The authors who assume distinct parameters in the gain and loss domains when eliciting PT

parameters often report close values, whatever the estimation method. It means that phenomena for

gains are in general reflected for losses, even if behaviour for losses deviates less from linearity, and

thus from expected value maximization (Wakker, 2010). This is what Booij et al.’s (2010) summary

table of PT empirical estimates illustrates. In the studies under review, losses are always evaluated

equally or more linearly than gains through the power value function. In this last case, the function

for losses is generally still convex (except in Fehr-Duda et al. (2006) and Abdellaoui et al. (2008)). In

addition, the power parameters for both domains are always close (except in Fennema and van Assen

(1998) and Abdellaoui et al. (2008)). This last observation also applies to the weighting function,

even though, in the 2-parameter forms, elevation is often higher in the loss domain. The predominant

shape for the weighting function is ’inverse S’.

In more detail, Tversky and Kahneman (1992) find that the median exponent of the value function

is exactly the same for gains and losses, while the median values of the weighting function parameters

in the gain and loss domains are very close, and imply a slightly more pronounced curvature for gains.

If Abdellaoui et al.’s (2007) aggregate findings also suggest that the curvature of the value function

on the gain and loss domains are very close, at the individual level there is less support for reflection

according to various correlation coefficients.

Using a structural PT model, Harrison and Rutström (2009) report similar power value functions

for gains and losses as well. However, they are different from each other under a mixture model that

3Let assume the following value functions defined separately over the gain and loss domains: for y > 0, v(y) = ya

and, for y < 0, v(y) = −λ(−y)b, where λ > 0 is the coefficient of loss aversion. Wakker (2010) recalls that there is
always a part of the domain where v(y) > −v(−y) for some outcome y > 0, whereas it is empirically plausible that
v(y) ≤ −v(−y) for all y > 0.
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simultaneously estimates parameters for EU and PT, and indicate a much more pronounced curvature

for losses this time. Note that Booij and van de Kuilen (2009) obtain analogous evidence that the

value function is concave for gains but is even more convex for losses. They use a rank-sum test on

raw sample data. For the population, though, they are not able to conclude about such a difference.

Booij et al. (2010) themselves collect data from a large representative panel of Dutch households.

They report power parameters for gains and for losses that are not significantly different from one

another. Using a two-parameter specification for the weighting function, they find that the elevation

parameter for losses is significantly higher than that of gains, while, on the contrary, the point

estimates for the degree of curvature in both domains are very similar. It advocates for the standard

inverse-S shape in both the gain and the loss domains.

More recently, L’Haridon and Vieider (2019) find that the two parameters they use to describe the

probability weighting function are significantly different between gains and losses, but reaffirm that

the two functions can be seen as economically very similar.

Nevertheless, a number of studies highlight mixed evidence as to these mirror effects about the

reference point. Wakker et al. (2007, pp. 224) build three lists of authors whose research supports

a partial reflection of the value function. Most found a more concave value function for gains than

convex value function for losses, like in many studies of Booij et al.’s (2010) review. In this category,

we add Bougherara et al. (2017) who apply precisely the TCN design to a sample of French farmers.

They find significantly more curvature of the value function for gains than for losses when they ignore

loss aversion, and less probability distortion for losses than for gains. Some others find the opposite

finding, with more convexity for losses than concavity for gains. We already cited Fehr-Duda et al.

(2006) and Abdellaoui et al. (2008) in this respect, as well as Harrison and Rutström (2009, mixture

model) and Booij and van de Kuilen (2009). A few last ones find unclear or balanced findings, like

the above cited Abdellaoui et al. (2007).

Very uncommon combinations for power coefficients include concavity for gains and slight

concavity for losses (Abdellaoui et al., 2008) and even slight concavity in both domains (Fehr-Duda

et al., 2006). These results apply to both individual and pooled data in the case of Abdellaoui et al.

(2008).

Last, Lau et al. (2019) revisit data from five experimental studies in order to examine specifically

the reflection effect and the fourfold pattern of risk attitudes. They account for three different criteria
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at the aggregate (population means of relevant parameters) and individual levels (within-individual

correlation in parameters between gain and loss domains, and population share of individuals who

display the reflection effect or fourfold pattern). They find conclusive evidence of the reflection effect

and the fourfold pattern for only two of the five datasets under scrutiny, i.e., the datasets for which at

least two of the three properties hold.

3 Experimental design

3.1 Participants and incentives

The experiment was conducted at the Laboratory of Experimental Economics of Strasbourg (LEES) in

October 2017 using computers (EconPlay platform). We recruited 191 students from different study

programs of the University of Strasbourg (France). Each subject participated in one session only.

Before running the experiment, we collected a few socio-demographic characteristics. Descriptive

statistics for the corresponding variables are given in Table 1. Students are on average 22 years

old, of whom half are female. About 25% are engaged in master studies and half study economics,

management, mathematics, or political sciences.

We ran 8 sessions (with 21 to 27 subjects each) of a lottery choice experiment based on TCN,

with lottery payoffs in a virtual currency called ECU (Experimental Currency Unit). Each session

lasted approximately 1 hour. Before starting, we informed subjects that two lottery choices would

be randomly selected for payment at the end of the experiment. We also informed subjects that

the currency exchange rate was ECU 200 for e 1. Subjects received e 17 as an initial endowment

and e 5 as a show-up fee to compensate for travel expenses. These amounts ensured final earnings

would always be positive. Final payment ranged from ECU -190 + ECU 3400 (e -0.95 + e 22.00)

Table 1: Descriptive statistics of socio-demographics
Mean Std. Dev.

age (in years) 21.77 3.44
dummy if female 0.50 0.50
dummy if education level is at least master 0.25 0.43
dummy if education background is Econ., Mgmt, Maths or Pol. Sc. 0.50 0.50

Nb. of obs. 191

Econ: Economics, Mgmt: Management, Pol. Sc.: Political Sciences
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to ECU 595 + ECU 3400 (e 2.98 + e 22.00), with an average of ECU 18 + ECU 3400 (e 0.09 +

e 22.00).

3.2 Treatments

We defined and used four treatments by manipulating two factors of two levels each, in a full factorial

design: the main stake domain (G = gain and L = loss) and the stake level (Lo = low and Hi = high).

Our baseline treatment, called GLo, is a replication of TCN experiment in which we substituted ECUs

for thousands of Vietnamese dongs. In this treatment, subjects are confronted successively with three

series of choices between two lotteries, as displayed in Table 2. The first series consists of fourteen

choices, where lottery A gives a 30% chance of winning ECU 40 (other payoff is ECU 10), while

lottery B gives a 10% chance of winning ECU 68 to ECU 1,700 (other payoff is ECU 5). In the

fourteen choices of the second series, lottery A gives a 90% chance of winning ECU 40 (other payoff

is ECU 30), while lottery B gives a 70% chance of winning ECU 54 to ECU 130 (other payoff is

ECU 5). The third series exhibits only seven rows and mixes positive with negative payoffs: payoffs

of lottery A range from ECU 25 to 1 in the winning case or from ECU -4 to ECU -8 in the opposite

case. Payoffs of lottery B equal ECU 30 in the winning case or range from ECU -21 to ECU -11 in the

opposite case. Probabilities of winning are always 50% in this series. An important distinction with

usual multiple price lists like Holt and Laury’s (2002) is the enforcement of monotonic switching by

asking subjects about their switching point in each series, i.e., the row at which they start to prefer

lottery B rather than lottery A. 4

The GHi treatment is identical to the GLo treatment except that all stakes are multiplied by 2 in

all three series. In the LLo treatment, all payoffs from the baseline are multiplied by −1 and the two

columns in which lotteries are displayed for subjects to choose one are reversed (see Appendix A).

The LHi treatment combines the loss frame with the high-stake frame.

In each session, subjects are confronted successively with all treatments (within-subject design).

To counterbalance potential order effects, we vary the order of treatments across sessions using a

balanced Latin square design. Participants are then randomly assigned to sessions. Table 3 provides

details about the order of treatments and number of subjects in each session (from 23 to 27).

The two lottery choices used for the final payment are selected such as, in a first step, the high or

4In usual multiple price list procedures, subjects are allowed to switch back and forth and inconsistent subjects are
often excluded from the analysis, which is not the case in the TCN experiment.
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Table 2: Lottery options corresponding to the baseline GLo treatment
Payoffs (Expected value A-B)

Option A Option B

Series 1
Probabilities 0.30 0.70 0.10 0.90

row 1 40 10 68 5 (7.7)
row 2 40 10 75 5 (7.0)
row 3 40 10 83 5 (6.2)
row 4 40 10 93 5 (5.2)
row 5 40 10 106 5 (3.9)
row 6 40 10 125 5 (2.0)
row 7 40 10 150 5 (-0.5)
row 8 40 10 185 5 (-4.0)
row 9 40 10 220 5 (-7.5)
row 10 40 10 300 5 (-15.5)
row 11 40 10 400 5 (-25.5)
row 12 40 10 600 5 (-45.5)
row 13 40 10 1,000 5 (-85.5)
row 14 40 10 1,700 5 (-155.5)

Series 2
Probabilities 0.90 0.10 0.70 0.30

row 1 40 30 54 5 (-0.3)
row 2 40 30 56 5 (-1.7)
row 3 40 30 58 5 (-3.1)
row 4 40 30 60 5 (-4.5)
row 5 40 30 62 5 (-5.9)
row 6 40 30 65 5 (-8.0)
row 7 40 30 68 5 (-10.1)
row 8 40 30 72 5 (-12.9)
row 9 40 30 77 5 (-16.4)
row 10 40 30 83 5 (-20.6)
row 11 40 30 90 5 (-25.5)
row 12 40 30 100 5 (-32.5)
row 13 40 30 110 5 (-39.5)
row 14 40 30 130 5 (-53.5)

Series 3
Probabilities 0.50 0.50 0.50 0.50

row 1 25 -4 30 -21 (6.0)
row 2 4 -4 30 -21 (-4.5)
row 3 1 -4 30 -21 (-6.0)
row 4 1 -4 30 -16 (-8.5)
row 5 1 -8 30 -16 (-10.5)
row 6 1 -8 30 -14 (-11.5)
row 7 1 -8 30 -11 (-13.0)

Design adapted from Tanaka et al. (2010). Lottery payoffs are in ECUs. Information
on expected value is not displayed to respondents.
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Table 3: Characteristics of the experimental sessions
Order of treatments in each session Number of subjects

1:GLo-GHi-LHi-LLo 25
2:GHi-LLo-GLo-GHi 25
3:LLo-LHi-GHi-GLo 22
4:LHi-GLo-LLo-GHi 27
5:GLo-GHi-LHi-LLo 21
6:GHi-LLo-GLo-LHi 22
7:LLo-LHi-GHi-GLo 24
8:LHi-GLo-LLo-GHi 25

Total: 191

low frame is randomly selected. In a second step, one choice from the corresponding gain treatment

and one from the corresponding loss treatment is randomly drawn and played for real. Instructions

provided to subjects are translated into English in Appendix B.

4 Estimation methods

4.1 Specification of choice model

We estimate individual risk preference parameters using the CPT framework. It exhibits two key

features that can explain EU anomalies, namely reference dependence and probability weighting.

Whereas EU theory does not distinguish between gains and losses, in CPT outcomes are classified

with respect to a reference point, and people are allowed to behave differently in each of the two gain

and loss domains. Probability weighting refers to people’s tendency to distort objective probabilities

into decision weights. Following Tversky and Kahneman (1992) and most experimental studies,

we assume that subjects’ reference point corresponds to the status quo, or, equivalently, their asset

position before making the choices of interest. In the context of our experiment, subjects’ assets

include their personal assets, the initial endowment and the show-up fee. It means the reference point

which distinguishes gains from losses is zero, and subjects perceive positive lottery payoffs as gains

and negative ones as losses.

Let first assume that subjects value lottery payoffs y through a two-part power value function of
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the form (Tversky and Kahneman, 1992):

v(y) =


yσ

+ if y > 0

0 if y = 0

−λ(−y)σ− if y < 0

. (1)

In this specification, parameter σ+ (σ+ > 0) determines the shape of the value function in the gain

domain and acts as an anti-index of concavity. In the loss domain, parameter σ− (σ− > 0) controls

curvature (as an index of concavity) while parameter λ (λ > 0) modifies the slope. Parameter λ is the

decision maker’s coefficient of loss aversion. The value function is convex (resp. concave) in the gain

domain when σ+ > 1 (resp. σ+ < 1). In the loss domain, σ− > 1 means that the value function is

concave. The decision maker is more (resp. less) sensitive to losses than to gains when λ > 1 (resp.

λ < 1). The usual empirical finding is λ > 1 (loss aversion), along with σ+ < 1 and σ− < 1 (concave

value function for gains, but convex for losses).

We now define decision weights over cumulative probabilities. The value of any binary lottery

(y1, p; y2) is the following prospect value:

PV (y1, p; y2) =


ωd(p).vd(y1) + [1− ωd(p)].vd(y2) if y1 ≥ y2 ≥ 0 or y1 ≤ y2 ≤ 0

ωd(p).vd(y1) + ωd(1− p).vd(y2) if y1 < 0 < y2

(2)

where the probability weighting function ωd(.) is continuous, strictly increasing from the unit interval

into itself, and satisfies ωd(0) = 0 and ωd(1) = 1; and the superscript d indicates the payoff domain

and can take the values + for gains and − for losses. In PT, risk behaviour results from the interplay

of the curvature of the value function, loss aversion and probability weighting. The form of the

weighting function has been widely discussed. In line with TCN, we adopt the one-parameter form

of Prelec’s (1998) specification:

ωd(p) = exp [−(− ln p)γ
d

] (3)

where d again indicates gains and losses; and γd is the parameter controlling the curvature of the

probability weighting function (γd > 0). This parameter can be interpreted as an index of likelihood

sensitivity, with γd = 1 reflecting the absence of probability distortion (ωd(p) = p). In other words,

as γd decreases, the distinction between different levels of probability gets more and more blurred.
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Extreme behaviours are described by very high γd values where subjects perceive probabilities as

either 0 or 1 (extreme likelihood sensitivity), or by values close to nullity where subjects tend to

perceive probabilities as all being equal (extreme likelihood insensitivity). The typical case, backed

by a substantial amount of empirical evidence is γd < 1, and gives to the weighting function an

inverse S-shape. In the case of a binary prospect such as a lottery, it characterises an overweighting

of the low-probability outcome and an underweighting of the high-probability outcome. If γd > 1,

the function takes the less conventional ‘S-shape’.

4.2 Parameter elicitation

For each subject and each treatment, we calculate the three individual CPT parameters using the TCN

analytical interval approach. In their experiment, the choices are carefully designed so bounds for

σ+ and γ+ can be jointly inferred by crossing responses to Series 1 and Series 2. In a second step,

conditionally to the σ+ value previously elicited, bounds for λ are inferred from the switching point

in Series 3. Parameter values are approximated by taking the midpoint of intervals. When there is no

switch, the value at the boundary is used.

For the choices expressed in the gain frame (GLo and GHi treatments), we use the correspondence

TCN give between the combination of switching points in the three series and the parameter values.

In the loss frame (reflected treatments LLo and LHi ), the correspondence between the couple of

switching points in Series 1 and Series 2 and the couple of (σd, γd) values is the same. However, we

need to recalculate λ values from Series 3 choices. 5

We define the λ value for each treatment (conditional to σ+ or σ−) as depending on the choices

subjects make for the three series of the same treatment. We also define two alternative values for

loss aversion. We calculate a λoppos for each treatment from the choices in Series 3 of the same

treatment, but conditional to the value function parameter from the corresponding opposite gain or

loss treatment (respectively σ+ and σ−). The opposite couples are treatments GLo and LLo on the

one hand, and GHi and LHi on the other hand. We also calculate a λgen for each treatment from the

choices in Series 3 of the same treatment, but conditional to both σ+ and σ− from respectively the

corresponding gain and loss treatments. In other words, the two value function parameters are applied

to Series 3 payoffs depending whether they are a gain or a loss. More precisely, we calculate λgen in

5We provide the calculation details in Appendix C.
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treatments GLo and LLo using the individual σ+ from GLo and σ− from LLo, and λgen in treatments

GHi and LHi using the σ+ from GHi and σ− from LHi. It means, for λgen, we implicitly relax the

initial assumption that a single parameter controls the curvature of the value function in the gain and

loss domains.

5 Results about frame effects

We start by presenting the general pattern of behaviour each treatment reveals using the total number

of risky or safe choices and estimates of parameter values. We also look at the shape of the value

function at the individual level. We investigate the effect of the loss and high-stake frames on the

number of risky or safe choices in a second stage, and on parameter values in a last stage.

5.1 Pattern of behaviour

Table 4 collates the number of left-hand side (LHS) choices by series in the four treatments. 6 In the

gain treatments GLo and GHi, the LHS lottery is the safe lottery, while the right-hand side (RHS)

lottery is the risky one. 7 It is the contrary in the reflected loss treatments LLo and LHi. In Series 1 of

the gain treatments, those who still choose the LHS lottery (i.e., option A) as of row 7 can be qualified

as risk averse as the expected value of the RHS lottery (i.e., option B in Table 2) starts exceeding the

expected value of the LHS lottery. On the contrary, those choosing the RHS lottery at earlier rows

can be qualified as risk lovers. In Series 2 it is as soon as row 1, and in Series 3 it is as of row 2.

In Series 1 of the baseline GLo treatment (gain domain, low stakes), 46% of the subjects choose

the LHS lottery at row 7 while 40% choose the RHS lottery at row 6. It means that at least 46% of the

subjects are risk averse and at least 40% are risk lovers. The behaviour of the remaining 14% is close

to neutrality. The low proportion of risk-averse subjects compared to usual observations under EU can

be explained by subjects being risk seeking over low-probability gains, typically the best outcomes

of the RHS lotteries (see lotteries B of Series 1 in Table 2). This is consistent with the distinctive
6Appendix D gives the distribution of subjects’ switching points in the baseline GLo treatment. Similarly to other

studies based on TCN risk experiment and reporting raw experimental results from rural areas (e.g., Tanaka et al., 2010;
Bocquého et al., 2014), we find that students choose massively extreme switching points in all three series. The never
switch option in Series 1 is an exception as very few of the students we had enrolled opted for it.

7As put by Bosch-Domènech and Silvestre (2013), "‘the terms safe and risky, used by Holt and Laury (2002), must be
understood in a loose sense and relative to each other: in a given pair, [the risky] lottery (...) gives a larger good payoff,
but a lower bad payoff, than [the safe lottery]."
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Table 4: Proportion of left-hand side choices by row and treatment
Treatment GLo Treatment GHi Treatment LLo Treatment LHi

Series 1
row 1 0.83 0.80 0.77 0.67
row 2 0.83 0.80 0.75 0.64
row 3 0.81 0.77 0.70 0.60
row 4 0.77 0.71 0.63 0.55
row 5 0.69 0.64 0.54 0.49
row 6 0.60 0.60 0.48 0.43
row 7 0.46 0.46 0.36 0.29
row 8 0.38 0.34 0.28 0.20
row 9 0.27 0.28 0.21 0.16
row 10 0.18 0.19 0.16 0.10
row 11 0.12 0.13 0.12 0.07
row 12 0.07 0.05 0.08 0.06
row 13 0.04 0.03 0.07 0.05
row 14 0.02 0.02 0.06 0.05

Series 2
row 1 0.79 0.75 0.81 0.75
row 2 0.77 0.73 0.79 0.74
row 3 0.76 0.70 0.73 0.69
row 4 0.74 0.68 0.68 0.62
row 5 0.69 0.62 0.58 0.53
row 6 0.68 0.59 0.50 0.48
row 7 0.61 0.53 0.41 0.38
row 8 0.52 0.49 0.33 0.31
row 9 0.48 0.45 0.27 0.23
row 10 0.39 0.39 0.20 0.17
row 11 0.30 0.31 0.17 0.14
row 12 0.19 0.21 0.12 0.10
row 13 0.17 0.17 0.10 0.09
row 14 0.13 0.15 0.10 0.09

Series 3
row 1 0.92 0.94 0.94 0.96
row 2 0.68 0.73 0.64 0.69
row 3 0.46 0.58 0.43 0.56
row 4 0.31 0.42 0.21 0.32
row 5 0.15 0.15 0.12 0.12
row 6 0.08 0.11 0.08 0.09
row 7 0.07 0.07 0.07 0.09

Number of observations 191 191 191 191

For treatments GLo and GHi, bold italic rows are those where left-hand side choices denote risk aversion. For the
other two treatments, bold italic rows are those where left-hand side choices denote risk seeking.
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fourfold pattern of behaviour that Tversky and Kahneman (1992) describe about CPT. 8 This pattern

depends on outcome sign and probability level:

• risk aversion over medium to high-probability gains

• risk seeking over medium to high-probability losses (avoiding a sure loss)

• risk seeking over low-probability gains

• risk aversion over low-probability losses.

In Series 2 of the baseline treatment, 79% of the subjects choose the LHS lottery (i.e., lottery A)

at row 1, meaning at least 79% of the subjects are risk averse. This time, there is no best outcome

with a low probability, and subjects are predominantly risk averse. It is also consistent with the CPT

fourfold pattern of behaviour. Series 3 uses 50-50 lotteries which mix gains and losses. In the baseline

treatment, 68% of the subjects choose the LHS lottery (i.e., lottery A) at row 2, meaning at least 68%

of the subjects are risk averse. We cannot directly comment this result with respect to the fourfold

pattern as lotteries are mixed. Nevertheless, we can note that it is consistent with the usual empirical

finding of loss aversion as the RHS lottery features high losses.

We now turn to the alternative treatments. If choosing the LHS lottery in the bold rows of Table 4

is an indicator of risk aversion in the gain treatments, it is on the contrary an indicator of risk seeking

in the loss treatments. In Series 1 of the loss treatment LLo, 36% of the subjects choose the LHS

lottery at row 7 while 52% choose the RHS lottery at row 6. It means that at least 36% of the subjects

are risk lovers and at least 52% are risk averse. The behaviour of the remaining 12% is close to risk

neutrality. The low proportion of risk-seeking subjects can be explained by subjects being very risk

averse over low-probability losses, typically the worst outcomes of the LHS lottery. This is again in

accordance with the fourfold pattern as far as the loss behaviour is concerned. In Series 2 of LLo,

81% of the subjects choose the LHS lottery at row 1, meaning at least 81% of the subjects are risk

seeking. In the absence of a worst outcome with a low probability, subjects are predominantly risk

seeking as predicted by the fourfold pattern. Finally, in Series 3 of LLo, 64% of the subjects choose

the LHS lottery at row 2, meaning at least 64% of the subjects are risk lovers. This time this result

cannot be fully explained by loss aversion as it is the LHS lottery which features the worst losses.

In the high-stake treatments (GHi and LHi), the number of LHS choices is close to that in the

corresponding low-stake treatments. It leads to the same conclusions, that is subjects mostly follow

the CPT fourfold pattern of behaviour.

8Tversky and Kahneman (1992) observe the entire fourfold pattern for 88% of the 25 subjects they tested.
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Table 5: Aggregate CPT parameter values by treatment (interval approach)

Treatment GLo Treatment GHi Treatment LLo Treatment LHi

Mean/(Std. Err.) Mean/(Std. Err.) Mean/(Std. Err.) Mean/(Std. Err.)

σd 0.65 0.69 0.76 0.84
(0.032) (0.033) (0.029) (0.028)

γd 0.64 0.64 0.66 0.64
(0.012) (0.026) (0.018) (0.023)

λ 2.46 2.76 1.21 1.11
(0.165) (0.197) (0.092) (0.124)

Nb. of obs. 191 191 191 191
Wald test σd =1 0.000 0.000 0.000 0.001
Wald test γd =1 0.000 0.000 0.000 0.000
Wald test λ =1 0.000 0.000 0.060 0.423
For Wald tests, the number displayed is the p-value.

The mean parameter estimates we calculate assuming the functional forms of Section 4 confirm

the non-parametric analysis. The first column of Table 5 displays mean estimates of σd, γd and λ,

and corresponding standard errors for the underlying population in the baseline GLo treatment. We

find respective values of about 0.65, 0.64 and 2.46, with orders of magnitude similar to other studies

using the TCN design, parametric specifications and estimation method. 9 It means that, on average,

subjects have a concave value function in the gain domain (and convex in the loss domain), tend

to overweight low-probability extreme events in both domains, and value losses more than twice as

much as gains. This is also consistent with the fourfold pattern of behaviour. The other three columns

of Table 5 show that parameter estimates in the alternative treatments vary, in particular in the case of

loss aversion. However, they determine roughly the same pattern of behaviour at the aggregate level,

i.e., σd < 1, γd < 1 and λ > 1.

At the individual level, the picture is less clear-cut. Table 6 classifies subjects according to the

power estimates directing the shape of their individual value function in the gain and loss domains. It

leads to four categories, depending on the respective values of σ+ and σ−. The majority of our sample

displays a standard S-shape value function, concave in gains and convex in losses (i.e., σ+ < 1 and

σ− < 1). It amounts to 72% of the subjects in the low-stake conditions and 67% in the high-stake

conditions. This is also the most common shape in Abdellaoui et al.’s (2007), who also estimate

9See Bocquého et al. (2018, p.35) for a graphical comparison of mean parameter values from our study and TCN; Liu
(2013); Campos-Vazquez and Cuilty (2014); Bocquého et al. (2014); Bauermeister et al. (2018); Bocquého et al. (2018).
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Table 6: Proportion of subjects according to the curvature of the value function in the gain and loss
domains

low stakes high stakes

standard S-shape 0.72 0.67
everywhere concave 0.16 0.18
everywhere convex 0.08 0.10
anti-standard 0.04 0.05

Number of observations 191 191

individual power coefficients for the value function. However, with a similar power specification, but

focusing on losses and allowing a linear category, Etchart-Vincent (2004) finds that roughly only half

of her sample exhibited convexity when facing small (54%) or large (46%) losses. Booij and van de

Kuilen’s (2009) classification of subjects based on a large sample of Dutch people and non-parametric

individual value functions reveals that concavity in gains applied to 42% of their sample and convexity

in losses to 47% of their sample. However, only 25% of the subjects combine both into the S-shape.

Another category is quite well represented in our sample: 16 to 18% of the subjects exhibit a

concave value function in the two gain and loss domains (σ+ < 1 and σ− > 1). Concave and linear

value functions for losses are not uncommon at the individual level under PT. Abdellaoui et al. (2008)

report the everywhere concave category was the most common in their study, but highlight it does not

correspond to a significantly different proportion of subjects than the category with a standard S-shape

value function. Etchart-Vincent (2004) counts 34 and 45% of subjects with a concave value function

for small and large losses respectively. In Booij and van de Kuilen (2009), the linear-concave shape

(almost 25%) is as prevalent as the standard concave-convex S-shape. In total, 22% of the subjects

under study exhibit a concave value function and 30% a linear one. The everywhere concave category

is about 9%.

The two other categories of Table 6, corresponding to a convex value function for gains, are

anecdotal. Subjects with an everywhere convex value function represent 8 to 10% of the sample, and

subjects who behave oppositely to the standard represent only 4 to 5%.
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5.2 Frame effects on the number of LHS choices

We implement the loss treatments to test whether behaviour for gains is reflected for losses. Should

reflection be perfect at the sample level, the proportion of LHS choices at each row should be very

close between the gain and loss frames. Indeed, under this hypothesis, subjects should follow a

symmetrical risk behaviour in the two frames, while the LHS and the RHS are reversed when lottery

stakes are multiplied by −1. Thus, we expect those subjects to collectively repeat within each row

the choice of the RHS or the LHS lottery between the two frames, at least in Series 1 and 2. Indeed,

loss aversion is not at play when comparing all-loss lotteries between them. For instance, a similar

proportion of subjects should switch at row 12 in Series 1 both in the gain frame (very risk averse)

and in the loss frame (very risk seeking).

This is not what we observe in Table 4 as the LHS choices are lower, in treatment LLo compared

to baseline GLo in all three series, although to a lesser extent in Series 3. The same applies

to the high-stake treatments. In Table 7, we regress the total number of LHS choices over all

rows on frame characteristics, by series, and control for the interacted frame effects and individual

socio-demographics. We observe consistent results: a highly significant negative effect of the loss

frame in Series 1 and 2, but small (about -0.9 and -1.5 choices respectively out of 764) and similar

between the high- and low-stake conditions. It means that, when faced with losses, on average,

subjects switch comparatively earlier, i.e., they find the LHS lottery less attractive compared to the

RHS lottery.
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Table 7: Regression (OLS) of total number of left-hand side choices on frame characteristics and
socio-demographics by series

Series 1 Series 2 Series 3

Covariate Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Constant 7.271*** (650) 6.074*** (606) 531*** (0.572)

Frames:
Loss -0.853** (0.360) -450*** (0.403) -0.162 (0.174)
High -0.267 (0.290) -0.461 (0.365) 0.330** (0.149)

Loss×High -0.586 (0.407) -0.010 (0.502) 0.000 (0.208)

Individual characteristics:
Age -0.064 (0.076) 0.052 (0.067) 0.042 (0.026)
Female 0.221 (0.396) 0.736 (0.467) 0.527*** (0.154)
Master -0.244 (0.552) -701*** (0.620) -0.194 (0.209)
Economics 0.302 (0.411) 0.134 (0.467) 0.007 (0.154)

Model R-squared 0.035 0.049 0.034
Nb. of obs. /clusters 764/191 764/191 764/191

*, ** and *** stand for significance at the 10, 5 and 1% level respectively.
OLS stands for Ordinary Least Squares.
All monetary terms are in euros.

As determined in Section 5.1, our sample is mostly risk averse in the gain domain and risk seeking

in the loss domain, and thus over-values the LHS lottery in both domains. Thus, switching earlier

when facing losses means that the gap between the CPT values of the two LHS and RHS lotteries is

thinner in the loss domain than in the gain domain. It advocates for a more linear value function in

the loss domain.

Probability weighting may provide another explanation for the LHS lottery becoming less

attractive compared to the RHS lottery in the loss frame, as regards Series 1 and 2. Indeed, in the

loss treatments the LHS lotteries feature low-probability losses. Yet, our sample mostly overweights

low-probability extreme events (see Section 5.1), and thus under-values the LHS lottery in the loss

treatments. Thus, switching earlier when facing losses may mean that probability weighting is

stronger in the loss domain than in the gain domain. This time it would be consistent with a more

curved probability weighting function in the loss domain. As for Series 3, loss aversion can also

contribute to explain why behaviour is only partially reflected for losses at several rows, although the

loss-frame effect is overall unsignificant in this series. Indeed, while in the gain treatments the loss

outcomes of the LHS lottery are small (in absolute terms) and those of the RHS lottery are high, in

the loss treatments the high loss outcomes are those of the LHS lottery, and are more extreme than

in the gain treatments. In other words, in the loss treatments, the LHS may become less attractive

compared to the RHS because the difference in the penalties applied to lotteries for featuring losses

get mechanically larger, even if loss aversion is stable between the gain and loss domains.
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Although in this paper the focus is on the loss frame, the effect on behaviour of the high-stake

frame in itself deserves a few comments. We already mentioned in Section 5.1 that the number

of LHS choices in the high-stake treatments (GHi and LHi) is close to that in the corresponding

low-stake treatments. It is in accordance with Table 7 which shows that the high-stake frame has

no significant effect on the total number of LHS choices in Series 1 and 2. Thus, at the aggregate

level, the non-parametric analysis reveals no evidence of the ’forgotten’ fourfold pattern described by

Scholten and Read (2014), which depends on outcome sign and outcome level:

• risk aversion over medium to high gains

• risk seeking over medium to high losses

• risk seeking over small gains

• risk aversion over small losses.

One exception is Series 3, for which we find that the high-stake frame has a significant effect

on the total number of LHS choices, at the 5% level. The effect is positive but very small (+0.3),

suggesting that when faced with high stakes, on average, subject switch comparatively later, i.e., find

the LHS lottery more attractive than the RHS lottery. Following the same reasoning than for the

loss-frame effect, and accounting again for the fact that subjects are collectively risk averse in the

gain domain and risk seeking in the loss domain, we conclude that this result supports the idea of a

more curved value function when stakes are higher.

Manipulating payoff ranges in multiple price lists has been common, and, in line with our work,

mostly delivered evidence in favour of risk aversion increasing with payoff level. For instance, Holt

and Laury (2002, 2005) show that the proportion of safe choices increases sharply when positive real

payoffs are scaled up by factors of 20, 50 and 90. Using different probability levels and a multiplying

factor of 6 to 10, Bouchouicha and Vieider (2017) show that the mean risk premia move up across gain

stakes for every probability. However, using a sample of nearly 2,000 students and scaling up lottery

gain and loss outcomes by a factor 10, Booij et al. (2010) find no difference between the high and

low treatments in the non-parametric estimates. Stake effects for losses are especially inconclusive in

the literature. For instance, Etchart-Vincent (2004) mentions that behaviour towards risk in general

appears not to be sensitive to the magnitude of negative payoffs. In the same vein, Bouchouicha and

Vieider (2017) cannot replicate for losses the pattern they describe for gains, whatever the probability

level.
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The curvature of the value function is not the only possible interpretation for stake effects.

Probability weighting does not interfere in Series 3 choices due to homogeneous probabilities, but loss

aversion does. In the case of the gain frame, loss aversion can indeed provide a sufficient explanation.

In the gain treatment GHi, the RHS (or risky) lottery features the highest losses. Since higher stakes

mean a higher penalty for the highest losses compared to other outcomes, loss-averse subjects tend

to reduce the CPT value of the RHS lottery proportionally more than the LHS lottery. It results in a

higher proportion of LHS choices and of risk-averse subjects (73% for high stakes vs. 68% for low

stakes). But this reasoning does not hold in the loss treatment LHi as, this time, the highest losses

belong to the LHS (or risky) lottery. Thus, we should observe a decrease in the proportion of LHS

choices and of risk-seeking subjects. On the contrary, at least 69% of the subjects are risk seeking in

treatment LHi, but only 64% in treatment LLo.

5.3 Frame effects on parameter estimates

In order to assess the effect of the loss and high-stake frames on the CPT parameters previously

elicited at the aggregate level (Table 5), we regress the latter on frame characteristics and individual

socio-demographics. Results are displayed in Tables 8, 9 and 10 for σd, γd and λ respectively. In

each table, model (1) only includes frame characteristics as covariates, while model (2) also includes

socio-demographics.
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Table 8: Regression (OLS) of σd on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 0.647*** (0.026) 0.620*** (0.137)

Frames:
Loss 0.118*** (0.032) 0.118*** (0.032)
High 0.040 (0.026) 0.040 (0.026)

Loss×High 0.036 (0.037) 0.036 (0.037)

Socio-demographics:
Age 0.002 (0.006)
Female -0.050 (0.035)
Master 0.107** (0.047)
Economics -0.023 (0.035)

Model R-squared 0.041 0.065
Adjusted R-squared 0.038 0.056
Nb. of obs. /clusters 764/191 764/191
AIC 609.045 598.302
BIC 627.599 635.410

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1%
level respectively.
OLS stands for Ordinary Least Squares.
AIC and BIC stand for Akaike and Schwarz’s Bayesian
information criteria respectively.
All monetary terms are in euros.

Table 9: Regression (OLS) of γd on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 0.636*** (0.020) 0.767*** (0.108)

Frames:
Loss 0.029 (0.025) 0.029 (0.025)
High 0.009 (0.022) 0.009 (0.023)

Loss×High -0.034 (0.031) -0.034 (0.031)

Socio-demographics:
Age -0.006 (0.005)
Female -0.026 (0.029)
Master 0.068* (0.041)
Economics 0.008 (0.030)

Model R-squared 0.002 0.011
Adjusted R-squared -0.002 0.002
Nb. of obs. /clusters 764/191 764/191
AIC 258.555 259.300
BIC 277.109 296.409

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1%
level respectively.
OLS stands for Ordinary Least Squares.
AIC and BIC stand for Akaike and Schwarz’s Bayesian
information criteria respectively.
All monetary terms are in euros.
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Table 10: Regression (OLS) of λ on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 2.456*** (0.179) 2.175*** (0.665)

Frames:
Loss -249*** (0.201) -249*** (0.202)
High 0.303 (0.215) 0.303 (0.216)

Loss×High -0.404* (0.239) -0.404* (0.240)

Socio-demographics:
Age 0.004 (0.029)
Female 0.262* (0.147)
Master 0.306 (0.249)
Economics -0.049 (0.151)

Model R-squared 0.128 0.138
Adjusted R-squared 0.124 0.130
Nb. of obs. /clusters 764/191 764/191
AIC 3173.122 3172.127
BIC 319676 3209.236

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1%
level respectively.
OLS stands for Ordinary Least Squares.
AIC and BIC stand for Akaike and Schwarz’s Bayesian
information criteria respectively.
All monetary terms are in euros.

The loss frame has a significant positive impact on curvature σd (+0.12, significant at the 1%

level), meaning respondents exhibit a value function which is less convex for losses than it is concave

for gains. As expected, they thus tend towards being less risk seeking for losses than they are risk

averse for gains, but the difference is very low. We thus conclude in favour of a partial reflection of

the value function at the aggregate level towards more linearity in the loss domain, for low stakes and

high stakes, as found in many experimental studies (e.g., Kahneman and Tversky, 1979; Fennema and

van Assen, 1998; Abdellaoui, 2000; Laury and Holt, 2008). However, our results do not support any

significant loss-frame effect on the weighting parameter γd. Thus, the parametric analysis reveals that

the decrease in the number of LHS choices of the loss frame we have identified in Section 5.2 is due

to a more linear value function rather than a more curved probability weighting function. The only

study documenting distinct loss and gain parameters using the TCN design is Bougherara et al. (2017).

The authors rely on a structural estimation procedure, but they report like us close and significantly

different power parameters for the curvature of the value function (0.60 for gains vs. 0.66 for losses)

when loss aversion is set to 1. However, they are able to detect a small significant difference as well

in the probability weighting function (parameter is 0.79 for gains vs. 0.84 for losses, even when loss

aversion is not constrained), in line with Tversky and Kahneman’s (1992) and Abdellaoui (2000) who
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use the same one-parameter form.

About loss aversion λ, recall that the estimation derives from Series 3 answers, conditionally to

the σ+ or σ− values elicited from Series 1 and 2. It implicitly assumes that the curvature of the

value function is similar in the gain and loss domains as we apply the same value indifferently to the

gain and loss outcomes. In the gain treatments, we apply only the value elicited over gains, even

for losses, whereas in the loss treatments we apply the one elicited over losses, even for gains. We

find a strong and significant negative impact of the loss frame on elicited λ (-1.25, significant at the

1% level), with an additional small negative impact in the high-stake conditions (-0.40, significant at

the 10%level). This result seems to reveal that, surprisingly, subjects are less loss averse when gain

outcomes are converted into losses (and conversely), and even less when outcomes are high. It leads

to λ mean values cut by more than half and ending up close to the neutrality threshold (1.21 under the

low-stake conditions, and 1.11 under the high-stake conditions, Table 5). The Wald tests at the bottom

of Table 5 demonstrate that mean λ is still statistically different from 1 in the low-stake case, but at

the 10% level only. In the high-stake case, loss aversion is not significant anymore, meaning subjects

are on average neutral with respect to losses. This unexpected result is too strong to be explained

only by response error. We bring forward two possible explanations. We suspect a pure loss-frame

effect. As highlighted by many authors, loss aversion elicitation is indeed very sensitive to framing

(Abdellaoui et al., 2007; Wakker, 2010). Another possible explanation is the sequential structure of

the TCN procedure, and the fact that λ is calculated in a second step conditionally to a unique σd

value from the first step.

As regards the high-stake frame, it has no significant impact on any of the three CPT parameters.

Thus, we are not able to confirm the hypotheses we made in Section 5.2 about why the number of

LHS choices decreases in Series 3 when stakes are higher. Other authors having studied the effect of

stake size on the curvature of the value function are not able to report either a significant difference

when outcomes get larger (Booij and van de Kuilen, 2009; Booij et al., 2010). 10 Evidence regarding

the probability weighting parameter is mixed. Tversky and Kahneman (1992) already suspect that

decision weights might be sensitive to framing, including the level of outcomes. Booij et al. (2010)

cannot find any significant effect of stake size while Etchart-Vincent (2004) reports the opposite result

10On the contrary, in the EU context, Reynaud and Couture (2012) replicate Holt and Laury’s (2002) as well as Eckel
and Grossman’s (2008) baseline lotteries, and also multiply stakes by 20. They find that, for both methods, the mean
constant relative risk aversion coefficients are statistically different, subjects being more risk averse for high payoffs
than for low payoffs. However, in the case of Holt and Laury’s (2002) experiment, they report that distribution of the
coefficients is not modified by the payoff level.
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based on loss lotteries, but only when using a 2-parameter specification. Fehr-Duda et al. (2010) and

Bouchouicha and Vieider (2017) find a significant effect of stake size in the gain domain but not in

the loss domain. As regards loss aversion, Schmidt and Traub (2002), Booij and van de Kuilen (2009)

and Booij et al. (2010) detect no effect of stake size on the controlling parameter, similarly to us.

However, in Abdellaoui et al. (2007), the mean value of the loss aversion coefficient decreases with

the size of the gains and losses involved. Bleichrodt and Pinto (2002) observe a similar phenomenon

in the health domain.

About the choice of the econometric model, one may argue that ordinary least squares is not

suitable although it is widely used in the experimental literature after eliciting risk parameters

analytically from multiple price lists. Indeed, the most common technique is to calculate intervals for

parameter values, advocating for the use of interval regression as in Appendix E, Tables 20 to 22. Note

that regressing each parameter independently is another simplification as the TCN procedure elicits

σd and γd intervals jointly from Series 1 and 2. 11 Furthermore, the distribution of λ is far from normal

(see Appendix F), and thus a log-normal interval regression may even seem more adequate for this

parameter, as the Akaike and Schwarz’s Bayesian information criteria reveal (Appendix E, Table 23).

These alternative specifications show that the results from the ordinary least square regresssions are

robust. The only difference is in Table 23 where the interaction term between the loss and high-stake

frames becomes significant at the 5% level (instead of 1%), and a weekly significant positive effect

of stake size appears.

So far, we have shown that subjects’ behaviour is consistent with the CPT fourfold pattern and

loss aversion at the aggregate level, whatever the treatment. The parameter estimates confirm the

non-parametric analysis. At the individual level the picture for the value function is less clear-cut,

but a large majority of our sample follows the standard S-shape. We have then revealed that the

total number of LHS choices significantly increases when gain lotteries are reversed into loss lotteries

whatever the stake size, due to a slightly more linear value function. It brings proof of partial reflection

of the value function at the aggregate level. Last, we have unvealed that mirroring into the opposite

domain the mixed lotteries of TCN Series 3 has an unexpected strong negative effect on elicited loss

aversion, that may be due either to mere framing or to the sequential structure of the TCN design.

In the following section, we fine-tune the estimates of the loss aversion parameter by accounting for

11In Tables 20 and 21 the intervals for σd and γd are artificially rebuilt based on the matrix of point estimates in TCN
and the information the authors give about the 0.5 approximation.
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these last two phenomena.

6 Consequences on elicited loss aversion

In this section, we provide new estimates of the loss aversion parameter. We first investigate further

the negative effect of the loss frame on loss aversion in Series 3. Second, we explore the consequences

of relaxing the hypothesis of identical value functions in the gain and loss domains. We analyse the

results at the aggregate and individual levels.

6.1 When a pure framing effect is isolated

In Section 5.3 we have measured a strong negative effect of the loss frame on λ. We aim at

disentangling its two components by identifying which part is due to subjects being less loss averse

when gains and losses of Series 3 are exactly mirrored in the opposite domain (pure framing effect),

and which part is due to loss aversion in the loss treatments being calculated conditionally to the

curvature of the value function over losses (sequential calculation procedure).

To this end, we use the alternative λoppos parameter described in Section 4. In the gain treatments,

λoppos values are conditional to σ− elicited over losses, and in the loss treatments, they are conditional

to σ+ elicited over gains. The mean value and distribution percentiles of λoppos by treatment are

displayed in Table 11. Comparing λ of baseline GLo to λoppos of treatment LLo (i.e, using σ+) allows

to assess the pure framing effect in the low-stake conditions. The mean and median values drop by

half: from 2.46 to 1.34 and from 1.60 to 0.65 respectively. In the high-stake conditions, the effect is

even larger. On average, neutrality towards loss cannot be excluded anymore as the Wald test reported

in the bottom panel shows (p-value is 0.145). The first two lines of Table 12 give the corresponding

proportion of respondents. A subject is classified as loss averse when the parameter under scrutiny is

higher than 1. 12 We find that the pure framing effect decreases the proportion of loss-averse subjects

from 69% to 36% in the low-stake conditions, and from 76% to 31% in the high-stake conditions.

12Corresponding distributions are represented in Appendix G, Figures 5 and 6.
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Table 11: Aggregate λ, λoppos and λgen values by treatment (interval approach)

Treatment GLo Treatment GHi Treatment LLo Treatment LHi

Mean
(S.E.)

25th

50th

75th
Mean
(S.E.)

25th

50th

75th
Mean
(S.E.)

25th

50th

75th
Mean
(S.E.)

25th

50th

75th

λ 2.46 0.91 2.76 1.11 1.21 0.48 1.11 0.35
(0.16) 1.60 (0.20) 2.01 (0.09) 0.62 (0.12) 0.51

3.01 3.10 2.03 1.81

λoppos 2.47 0.91 2.76 1.11 1.34 0.49 1.21 0.35
(0.16) 1.65 (0.21) 2.02 (0.07) 0.65 (0.13) 0.51

3.01 3.04 2.19 2.03

λgen 8.43 0.36 7.47 0.31 3.37 0.15 7.66 0.09
(2.18) 1.08 (1.98) 1.03 (0.92) 0.41 (4.84) 0.43

2.95 3.46 2.03 1.59

Nb. of obs. 191 191 191 191
Wald test λ =1 0.000 0.000 0.060 0.423
Wald test λoppos =1 0.000 0.000 0.002 0.145
Wald test λgen =1 0.011 0.014 0.036 0.211

S.E. stands for standard error.
Labels 25th, 50th and 75th stand for the corresponding percentiles.
For Wald tests, the number displayed is the p-value.

Table 12: Proportion of subjects exhibiting loss aversion (parameter value ≥)

Low stakes High stakes

λ in gain frame 0.69 0.76

λoppos in loss frame 0.36 0.31
λoppos in gain frame 0.68 0.76

λgen in gain frame 0.52 0.50
λgen in loss frame 0.33 0.31

Number of observations 191 191
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Now, comparing λ of baseline GLo to λoppos of the same treatment (i.e, using σ−) allows to

assess the sequentiality effect in the low-stake conditions. Sequentiality slightly increases mean (from

2.46 to 2.47) and median loss aversion (from 1.60 to 1.65, Table 11). In the high-stake conditions

(GHi treatment), there is no salient difference. This is in accordance with our previous finding that

the curvature of the value function has significantly different but close values in the gains and loss

domains, whatever the size of stakes. The first and third lines of Table 12 confirm that the sequentiality

effect is neither prominent at the individual level. Proportions of loss-averse subjects are unchanged:

68% vs. 69% when low stakes, and 76% vs. 76% when high stakes.

As a consequence, decreasing loss aversion in the loss versions of Series 3 is rather due to a pure

framing effect rather than to a sequentiality effect, and it holds for both the low-stake and high-stake

conditions. Our finding gives credit to the volatility of loss aversion and its sensitivity to small details

of framing as put by Wakker (2010). Wakker (2010) explains violations of asset integration entailed

by reference dependence are highly irrational, and can explain part of this volatility. Andersen et al.

(2006) and Harrison and Rutström (2008) also discuss the crucial role of the reference point as a

source of volatility, in particular in dynamic tasks and in the field. As a remedy, based on several

studies, Wakker (2010) recommends proper learning and incentives. 13 More largely, Tversky and

Kahneman (1992) highlight heuristics of choices, and thus PT parameters, might be sensitive to the

formulation of the problem, the method of elicitation and the context of choice.

6.2 When behaviour is free to jointly differ between gains and losses

We have seen in Section 5.3 that the loss frame has a significant impact on the estimated curvature of

value function and loss aversion, especially on the latter. In this section, we fully relax the assumption

about equal curvature in the gain and loss domains and assess the consequences for elicited loss

aversion at the aggregate and individual levels. In particular, we expect that accounting jointly for σ+

and σ− when measuring loss aversion allows a more accurate elicitation and might also moderate the

pure framing effect we have isolated in the previous section.

We use the more general λgen value defined in Section 4, which is calculated conditionally to

13Loss aversion also varies widely between studies. Abdellaoui et al. (2007) mention as reasons for it different
parametric assumptions about the other PT components, reports of either mean or median values for loss aversion indices
and different definition of loss aversion. In this paper loss aversion is defined as −vd(−1)/vf (1) where d and f can take
the value + when the value function is estimated on all-gain lotteries or the value − when is is estimated on all-loss
lotteries. This is also the definition that Tversky and Kahneman (1992) implicitly use. See Abdellaoui et al. (2007) for an
assessment of the extent to which the degree of loss aversion varies with the definition used.
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both σ+ and σ−. We compare on the one hand λ with λgen in the gain treatments, and on the other

hand λoppos with λgen in the loss treatments. It allows us to assess the effect of applying σ− to Series 3

negative payoffs instead of σ+ when measuring loss aversion. Table 11 shows it dramatically increases

mean loss aversion in the gain treatments: from 2.46 to 8.43 in the low-stake conditions, and from

2.76 to 7.47 in the high-stake conditions. 14 This is partly due to extreme outliers with very high loss

aversion values, including 2- and 3-digit numbers. Extreme values in the vicinity of 0 do also appear.

It leads to high standard errors, and despite a high mean value, λgen becomes significantly different

from 1 at the 5% level only (p-value is 0.011 in the low-stake context and 0.014 in the high-stake

context). These extreme λgen values belong to subjects whose σ+ and σ− are on either side of the

1 threshold, meaning an everywhere-concave or everywhere-convex value function. Summing the

second and third lines of Table 6 shows they represent 24% and 28% of our sample, respectively in

the low-stake and high-stake conditions. Looking at corresponding medians and individual values

gives indeed opposite results to mean values. Median loss aversion decreases from 1.60 to 1.08 in

the low-stake conditions, and from 2.01 to 1.03 in the high-stake conditions (Table 11). The first and

fourth lines of Table 12 reveal that the proportion of loss-averse subjects falls from 69% to 52% for

low stakes, and even more from 76% down to 50% for high stakes.

In the loss treatments, applying σ− to loss outcomes entails similar effects although less

pronounced. In the low-stake conditions, mean loss aversion jumps from 1.34 to 3.37 (and from

1.21 to 7.66 in the high-stake conditions), but median loss aversion decreases from 0.65 to 0.41 (and

from 0.51 to 0.43 in the high-stake conditions). The proportion of loss-averse subjects decreases only

slightly in the low-stake conditions, from 36% to 33%, while it remains unchanged in the high-stake

conditions.

These results suggest that assuming a unique curvature for the value function leads to strongly

underestimating mean loss aversion in the TCN method. On the contrary, it overestimates median

loss aversion. It also skews distribution to the right and minors heterogeneity. Furthermore, the

proportion of loss-averse subjects is artificially inflated. As a result, loss aversion may not be the

dominant behaviour in all circumstances. Loss-neutral and loss-seeking subjects seem to be much

more common than usually assumed, whether at the aggregate or individual level. Abdellaoui et al.

(2007) also evaluate how bad it is to measure loss aversion assuming reflection by imposing for each

14Other examples of high loss aversion estimates include Harrison and Rutström (2009, mixture model) and Abdellaoui
et al. (2007, Köbberling and Wakker definition) with respective mean values of 5.80 and 8.27.
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subject the power coefficient for gains on the function for losses. At the aggregate level they do

not find any major distortion in the median values of the loss aversion coefficients, but considerable

distortions arise at the individual level. The interquartile ranges are much wider and 33% of the

subjects are misclassified with respect to their attitude towards losses.

There are several experimental studies that, at the same time, relax some of the reflection

constraints and report low levels of loss aversion, if compared to the reference value of 2.25 obtained

by Tversky and Kahneman (1992). For instance, Bougherara et al. (2017) estimate through the TCN

design but under structural estimation based on pooled observations a mean value of 1.37 or French

farmers. The authors assume reflection for the value function only. 15 Also using structural preference

models, Andersen et al. (2006), Abdellaoui et al. (2008), Harrison and Rutström (2009), and Booij

et al. (2010) find mean values of 1.07, 1.38, 1.58, and 1.60 respectively. The first two studies rely on

a student sample and assume reflection for the weighting function only, while the last one assumes

reflection for the power value function only. The third one applies to Dutch citizens and is free from

any reflection constraint. With a model variant featuring an endogenous reference point, Andersen

et al. (2006) estimate mean loss aversion to be as low as 0.5. At the individual level, when they allow

for demographic heterogeneity with respect to preference parameters, the results show a clear first

mode indicating loss neutrality or slight loss aversion. The two other modes reflect loss aversion but

also loss seeking.

Assuming a piecewise linear value function but no constraint on probability weighting, Schmidt

and Traub (2002) estimate an average index of loss aversion of 1.43. At the individual level, they

find mixed evidence for loss aversion. Their tests indeed classify about 30% of their student sample

as strictly loss averse, but also 25% as loss seeking, while about 45% cannot be classified. Andersen

et al. (2006) also assume a piecewise linear value function in one of their models, which leads to a

mean loss version value as high as 2.66. Similar to Schmidt and Traub (2002), at the individual level,

when they allow for demographic heterogeneity with respect to preference parameters, the range of

individual values is strikingly large. The first mode reflects extreme loss aversion, but the second

mode lies in the loss-seeking domain. Abdellaoui et al. (2008) report considerable variation in loss

aversion at the individual level as well. However, loss aversion is clearly the dominant pattern in their

study. The same applies to Abdellaoui et al. (2007) who test five definitions of loss aversion. They

15Liebenhem and Waibel (2014) report with the same methods a mean loss aversion of 1.35 for African farmers,
although they enforce reflection both for the value function and the probability weighting function.
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find that 54 to 81% of the subjects are loss averse when response error is not taken into account as in

our paper, and 2 to 25% are loss seeking, with a lot of subjects left unclassified.

To assess whether using two different power parameters in the value function modifies the pure

framing effect we identified in the previous section on loss aversion, we compare λgen in the gain

treatments to λgen in the loss treatments. We find in the low-stake conditions that the mean and

median loss aversion values now drop by more than half: from 8.43 to 3.37 and from 1.08 to

0.41 respectively (Table 11). The proportion of loss-averse subjects also strongly decreases from

52% to 33% (Table 12). In the high-stake conditions, results are similar, except for the mean loss

aversion which stays pretty stable. It implies that, despite less stringent parametric constraints, a pure

loss-framing effect towards less loss aversion is still substantial both at the aggregate and individual

levels.

7 Conclusion

In this paper, we examine the consequences of relaxing the simplifying assumption of similar CPT

parameter values over gains and losses, in the context of the TCN risk experiment procedure. We

implement in the lab the original experiment and additional treatments involving a loss frame and a

high-stake frame. On the one hand, we show that subjects’ behaviour for gains is mostly reflected for

losses at the aggregate and individual levels, and is consistent with the CPT fourfold pattern. However

reflection is partial as the mean curvature of the value function is slightly less convex for losses than

it is concave for gains. These results are robust to a high-stake context. Then, we demonstrate that

assuming reflection when measuring loss aversion is innocuous neither at the aggregate nor at the

individual level. It leads to underestimating mean loss aversion while overestimating median loss

aversion. It also skews distribution to the right, minors heterogeneity and inflates the proportion of

loss-averse subjects. On the other hand, we highlight the existence of a strong, negative and persistent

framing effect on the loss aversion elicited from mixed lotteries, regardless of whether reflection about

the other parameters is assumed.

Loss aversion may not be the dominant behaviour in all circumstances. Our results indeed confirm

previous evidence that loss-neutral and loss-seeking behaviours are much more common than usually

presumed. However, because we chose to fully follow the TCN elicitation procedure based on

intervals, in our study we account neither for individual response error, nor for the joint influence
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of the PT parameters on lottery choices. Introducing a probabilistic choice function and pooling

observations in a structural econometric model would refine our quantitative analysis, and probably

lessen the preference heterogeneity we report. Alternative functional specifications like a 2-parameter

weighting function and varying reference points may also yield additional fruitful conclusions.

The TCN methodology is becoming increasingly popular to elicit risk preferences in the field

because it combines the simplicity of the multiple price list format with the sophistication of PT.

However, in the field, control on framing effects is typically more difficult to achieve than in the

lab. We thus recommend that future practitioners be particularly cautious about the instability of the

loss aversion estimates they obtain. Examples of good practice are tests for sensitivity in responses

with respect to parametric constraints such as reflection, and to framing in relation to reference

dependence. For the whole set of CPT parameters, we also call for a more systematic recourse to

percentile aggregate estimates, as well as individual-level analyses.
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Appendices

A Lotteries of the LLo treatment
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Table 13: Lottery options corresponding to the loss LLo treatment
Payoffs (Expected value C-D)

Option C Option D

Series 1
Probabilities 0.10 0.90 0.30 0.70

row 1 -68 -5 -40 -10 (7.7)
row 2 -75 -5 -40 -10 (7.0)
row 3 -83 -5 -40 -10 (6.2)
row 4 -93 -5 -40 -10 (5.2)
row 5 -106 -5 -40 -10 (3.9)
row 6 -125 -5 -40 -10 (2.0)
row 7 -150 -5 -40 -10 (-0.5)
row 8 -185 -5 -40 -10 (-4.0)
row 9 -220 -5 -40 -10 (-7.5)
row 10 -300 -5 -40 -10 (-15.5)
row 11 -400 -5 -40 -10 (-25.5)
row 12 -600 -5 -40 -10 (-45.5)
row 13 -1,000 -5 -40 -10 (-85.5)
row 14 -1,700 -5 -40 -10 (-155.5)

Series 2
Probabilities 0.70 0.30 0.90 0.10

row 1 -54 -5 -40 -30 (-0.3)
row 2 -56 -5 -40 -30 (-1.7)
row 3 -58 -5 -40 -30 (-3.1)
row 4 -60 -5 -40 -30 (-4.5)
row 5 -62 -5 -40 -30 (-5.9)
row 6 -65 -5 -40 -30 (-8.0)
row 7 -68 -5 -40 -30 (-10.1)
row 8 -72 -5 -40 -30 (-12.9)
row 9 -77 -5 -40 -30 (-16.4)
row 10 -83 -5 -40 -30 (-20.6)
row 11 -90 -5 -40 -30 (-25.5)
row 12 -100 -5 -40 -30 (-32.5)
row 13 -110 -5 -40 -30 (-39.5)
row 14 -130 -5 -40 -30 (-53.5)

Series 3
Probabilities 0.50 0.50 0.50 0.50

row 1 -30 21 -25 4 (6.0)
row 2 -30 21 -4 4 (-4.5)
row 3 -30 21 -1 4 (-6.0)
row 4 -30 16 -1 4 (-8.5)
row 5 -30 16 -1 8 (-10.5)
row 6 -30 14 -1 8 (-11.5)
row 7 -30 11 -1 8 (-13.0)

Lottery payoffs are in ECUs. Information on expected value is not displayed to
respondents.
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B Experimental instructions

The experiment you are going to participate studies individual decision-making in risky situations.

You will be confronted with 12 series of choices between two options A and B. The gains/losses

associated with these options will be expressed in a virtual currency called ECU (Experimental

Currency Unit).

At the end of the experiment you will be asked questions about your personal characteristics (age,

gender, education, etc.).

Let’s take an example to become familiar with the choices to be made. Here are two series,

presented in tables 14 and 15, that look like the ones you will be facing.

Table 14: Series 1
Option A Option B

Row Prob 30% Prob 70% Prob 10% Prob 90%
1 20 5 34 2.5
2 20 5 37.5 2.5
3 20 5 41.5 2.5
4 20 5 46.5 2.5
5 20 5 53 2.5
6 20 5 62.5 2.5
7 20 5 75 2.5
8 20 5 92.5 2.5
9 20 5 110 2.5

10 20 5 150 2.5
11 20 5 200 2.5
12 20 5 300 2.5
13 20 5 500 2.5
14 20 5 850 2.5

This Series 1 contains 14 choices or rows to be made between two options, option A and option

B.

Details of Row 1:

Option A: Consider an urn composed of 10 balls of which 3 are yellow and 7 are blue. If a yellow

ball was drawn (Prob 30%) then you would get ECU 20 and if the drawn ball was blue (Prob 70%)

then you would get ECU 5.

Option B: Consider an urn composed of 10 balls of which 1 is yellow and 9 are blue. If a yellow ball

was drawn (Prob 10%) then you would get ECU 34 and if the drawn ball was blue (Prob 90%) then

you would get ECU 2.5.
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The question that will be asked about this series is:

- I choose option A for choices 1 to __

- I choose option B for choices __ at 14.

You must choose between option A and option B for each of the 14 rows. Suppose you choose

option A for rows 1 to 3, and option B for rows 4 to 14, should then appear respectively in the spaces

above the numbers 3 and 4. It is also possible to choose option A for all rows. In this case, the first

number will be 14 and write the letter X in the second space. It is also possible to choose option B

for all rows. In this case, write the letter X in the first space and the number 1 in the second one.

Table 15: Series 2
Option A Option B

Row Prob 50% Prob 50% Prob 50% Prob 50%
1 12.5 -2 15 -10.5
2 2 -2 15 -10.5
3 0.5 -2 15 -10.5
4 0.5 -2 15 -8
5 0.5 -4 15 -8
6 0.5 -4 15 -7
7 0.5 -4 15 -5.5

This Series 2 contains 7 choices to be made between two options, option A and option B.

Details of Row 1:

Option A: Consider an urn composed of 10 balls of which 5 are yellow and 5 are blue. If a yellow

ball was drawn (Prob 50%) then you would get ECU 12.5 and if the drawn ball was blue (Prob 50%)

then you would lose ECU 2.

Option B: Consider an urn composed of 10 balls of which 5 are yellow and 5 are blue. If a yellow

ball was drawn (Prob 50%) then you would get ECU 15 and if the drawn ball was blue (Prob 50%)

then you would lose ECU 10.5.

The question that will be asked about this series is:

- I choose option A for choices 1 to __

- I choose option B for choices __ at 7.
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You must choose between option A and option B for each row. Suppose you choose option A for

rows 1 to 3, and option B for rows 4 to 7, should then appear respectively in the spaces above the

numbers 3 and 4. It is also possible to choose option A for all rows. In this case, the first number will

be 7 and write the letter X in the second space. It is also possible to choose option B for all rows. In

this case, write the letter X in the first space and the number 1 in the second one.

Two series of choices have just been presented as examples. In total, you will be confronted with

12 different series.

You need to take the time to choose the answers that really fit your preferences. There is no right

or wrong answer, just different behaviors to observe. You also have no time constraint, you have all

the time you need. At the end of the experiment, two of your choices will be randomly drawn by

the computer to determine your payment for the participation to the experiment. This remuneration

will correspond to a sum of money. The ECU (Experimental Currency Unit) will be converted at

the rate of ECU 200 = e1. As some choices may result in losses, we are now giving you an initial

endowment of e17. To this sum will be added: i) the gain or loss that you will realize during the

experiment; ii) a show-up fee of e5 to compensate for travel expenses. We will ask you to sign a

receipt for the final amount obtained. The payment protocol has been built in such a way that you get

a positive final amount regardless of your choice.

For the purposes of the experiment, you must answer all the questions. Your answers will

be recorded by the computer network and processed anonymously. The confidentiality of the

information contained in this questionnaire is ensured by the anonymity of the respondent. Your

answers will therefore remain completely confidential. The results will be presented in synthetic

form in scientific publications with scrupulous respect for the anonymity of the answers. The absence

of communication between participants is a guarantee of success. We ask you not to discuss with

other participants.

During the experience do not hesitate to ask questions to the organizers. They are at your disposal.
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C Calculation of the individual CPT parameters according to

frame

We distinguish parameters and functions between the gain and loss frames through index d (d is + in

the gain frame, d is − in the loss frame).

C.1 Calculation of σd and γd

The following calculations are valid for Series 1 and 2.

C.1.1 Gain frame

Let A(xA, pA; yA) be the LHS lottery and Bl(xBl , pB; yB) the RHS lottery of row l (xA, yA, xBl and

yB are strictly positive ∀l, and 0 < pA < 1 and 0 < pB < 1). The lottery structure is such that only

xBl varies over rows l, while the other lottery attributes remain similar. For a given subject, switching

at row s means the following inequalities in terms of prospect value:

 PV (A) > PV (Bs−1)

PV (A) < PV (Bs).
(4)

From Equation (2) we know that the prospect value of any lottery (x, p; y) is vd(y) + ωd(p) ·

(vd(x) − vd(y)) when xy ≥ 0 and |x| > |y|. Equations (1) and (3) give the functional forms for the

value and probability weighting functions respectively. Thus, we obtain:

(4)⇔

 yσ
+

A + exp [−(− ln pA)
γ+ ](xσ

+

A − yσ
+

A ) > yσ
+

B + exp [−(− ln pB)
γ+ ](xσ

+

Bs−1
− yσ+

B )

yσ
+

A + exp [−(− ln pA)
γ+ ](xσ

+

A − yσ
+

A ) < yσ
+

B + exp [−(− ln pB)
γ+ ](xσ

+

Bs
− yσ+

B )

⇔ yσ
+

B + exp [−(− ln pB)
γ+ ](xσ

+

Bs−1
− yσ+

B ) < yσ
+

A + exp [−(− ln pA)
γ+ ](xσ

+

A − yσ
+

A )

< yσ
+

B + exp [−(− ln pB)
γ+ ](xσ

+

Bs − y
σ+

B ). (5)
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C.1.2 Loss frame

Let C l(xCl , pC ; yC) be the LHS lottery of row l and D(xD, pD; yD) the RHS lottery (xCl , yC , xD, and

yD are strictly negative ∀l, and 0 < pC < 1 and 0 < pD < 1). The lottery structure is such that only

xCl varies over rows l. This time, switching at row s means:

 PV (C) > PV (Ds−1)

PV (C) < PV (Ds).
(6)

As xy ≥ 0 still, any lottery (x, p; y) has the same prospect value than in the previous section, i.e.,

vd(y) + ωd(p) · (vd(x)− vd(y)) when |x| > |y|. Equation (1) gives the specific value function for the

loss domain vd(x) = −λ(−x)σd ∀x < 0. Thus,

(6)⇔



−λ(−yC)σ
−
+ exp [−(− ln pC)

γ− ](−λ)((−xCs−1)
σ− − (−yC)σ

−
)

> −λ(−yD)σ
−
+ exp [−(− ln pD)

γ− ](−λ)((−xD)σ
− − (−yD)σ

−
)

−λ(−yC)σ
−
+ exp [−(− ln pC)

γ− ](−λ)((−xCs)σ
−
(−yC)σ

−
)

< −λ(−yD)σ
−
+ exp [−(− ln pD)

γ− ](−λ)((−xD)σ
− − (−yD)σ

−
).

Simplifying by −λ, we obtain:

(6)⇔



(−yC)σ
−
+ exp [−(− ln pC)

γ− ]((−xCs−1)
σ− − (−yC)σ

−
)

< (−yD)σ
−
+ exp [−(− ln pD)

γ− ]((−xD)σ
− − (−yD)σ

−
)

(−yC)σ
−
+ exp [−(− ln pC)

γ− ]((−xCs)σ
−
(−yC)σ

−
)

> (−yD)σ
−
+ exp [−(− ln pD)

γ− ]((−xD)σ
− − (−yD)σ

−
).

As xCl = −xBl , yC = −yB, xD = −xA, yD = −yA, and pD = pA, pC = pB, we further obtain:

(6)⇔

 yσ
−

B + exp [−(− ln pB)
γ− ](xσ

−
Bs−1
− yσ−

B ) < yσ
−

A + exp [−(− ln pA)
γ− ](xσ

−
A − yσ

−
A )

yσ
−

B + exp [−(− ln pB)
γ− ](xσ

−
Bs
− yσ−

B ) > yσ
−

A + exp [−(− ln pA)
γ− ](xσ

−
A − yσ

−
A )

yσ
−

B + exp [−(− ln pB)
γ− ](xσ

−

Bs−1
− yσ−

B ) < yσ
−

A + exp [−(− ln pA)
γ− ](xσ

−

A − yσ
−

A )

< yσ
−

B + exp [−(− ln pB)
γ− ](xσ

−

Bs − y
σ−

B ). (7)
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We see that (7) is equivalent to (5), meaning that a similar couple of switching points in Series 1 and 2

(s1, s2) in the gain domain and in the loss domain leads to a similar couple of parameters(σd, γd).

C.2 Calculation of λ, λoppos, and λgen conditionally to σd

The following calculations are valid for Series 3 only, where lotteries mix positive and negative

payoffs. We distinguish σd1 and σd2, depending on which type of payoff the parameter applies to:

σd1 applies to gains while σd2 applies to losses.

C.2.1 Gain frame

Let Al(xAl , p; yAl) be the LHS lottery and Bl(xB, p; yBl) the RHS lottery of row l (xAl and xB are

strictly positive ∀l, while yAl and yBl are strictly negative ∀l, and p = 1
2

). The lottery structure is

such that only xB does not vary over rows. A subject switching at row s means:

 PV (As−1) > PV (Bs−1)

PV (As) < PV (Bs).
(8)

From Equation (2), we know that the prospect value of any binary lottery (x, p; y) is ωd(p) · vd(x) +

ωd(p)(1− p) · vd(y) when xy ≤ 0. As p = 1
2

it simplifies to ωd(1
2
) · (vd(x) + vd(y)). We designate as

λ12 the loss aversion parameter, which is equivalent to λ, λoppos or λgen depending on the hypotheses

relative to σd1 and σd2. We obtain:

(8)⇔



exp [−(− ln 1
2
)γ
d
][(xAs−1)

σd1 + (−λ12)(−yAs−1)
σd2 ]

> exp [−(− ln 1
2
)γ
d
][(xBs−1)

σd1 + (−λ12)(−yBs−1)
σd ]

exp [−(− ln 1
2
)γ
d
][(xAs)

σd1 + (−λ12)(−yAs)σ
d2
]

< exp [−(− ln 1
2
)γ
d
][(xBs)

σd1 + (−λ12)(−yBs)σ
d2
]

⇔

 (xAs−1)
σd1 − λ12(−yAs−1)

σd2 > (xBs−1)
σd1 − λ12(−yBs−1)

σd2

(xAs)
σd1 − λ12(−yAs)σ

d2
< (xBs)

σd1 − λ12(−yBs)σ
d2

⇔

 λ12[(−yBs−1)
σd2 − (−yAs−1)

σd2 ] > (xBs−1)
σd1 − (xAs−1)

σd1)

λ12[(−yBs)σ
d2 − (−yAs)σ

d2
] < (xBs)

σd1 − (xAs)
σd1).
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Last, as yAl and yBl are negative payoffs such as |yAl | < |yBl |, σd1 > 0, and σd2 > 0, we can write:

(8)⇔


λ12 >

(xBs−1
)σ
d1−(xAs−1

)σ
d1

(−yBs−1
)σd2−(−yAs−1

)σd2

λ12 <
(xBs )

σd1−(xAs )
σd1

(−yBs )σ
d2−(−yAs )σ

d2 .
(9)

Inequations (9) define the bound values of λ when σd1 = σd2 = σ+, λoppos when σd1 = σd2 = σ−,

and λgen when σd1 = σ+ and σd2 = σ−.

C.2.2 Loss frame

Let C l(xC , p; yCl) be the LHS lottery and Dl(xDl , p; yDl) the RHS lottery of row l (xC and xDl are

strictly negative ∀l, while yCl and yDl are strictly positive ∀l, and p = 1
2

). The lottery structure is

such that only xC does not vary over rows. A subject switching at row s means:

 PV (Cs−1) > PV (Ds−1)

PV (Cs) < PV (Ds).
(10)

As xy ≤ 0 still, any lottery (x, p; y) has the same prospect value than in the previous section, i.e.,

ωd(1
2
) · (vd(x) + vd(y)). Equation (1) gives the specific value function for the loss domain vd(x) =

−λ12(−x)σ
d ∀x < 0. We obtain:

(10)⇔



exp [−(− ln 1
2
)γ][(−λ)(−xCs−1)

σd2 + (yCs−1)
σd1 ]

> exp [−(− ln 1
2
)γ][(−λ12)(−xDs−1)

σd2 + (yDs−1)
σd1 ]

exp [−(− ln 1
2
)γ][(−λ)(−xCs)σ

d2
+ (yCs)

σd1 ]

< exp [−(− ln 1
2
)γ][(−λ12)(−xDs)σ

d2
+ (yDs)

σd1 ]

⇔

 (yCs−1)
σd1 − λ12(−xCs−1)

σd2 > (yDs−1)
σd1 − λ12(−xDs−1)

σd2

(yCs)
σd1 − λ12(−xCs)σ

d2
< (yDs)

σd1 − λ12(−xDs)σ
d2

⇔

 λ[(−xDs−1)
σd2 − (−xCs−1)

σd2 ] > (yDs−1)
σd1 − (yCs−1)

σd1

λ[(−xDs)σ
d2 − (−xCs)σ

d2
] < (yDs)

σd1 − (yCs)
σd1 .
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Last, as xC and xDl are negative payoffs such as |xC | > |xDl |, σd1 > 0, and σd2 > 0, we can write:

(10)⇔


λ12 <

(yDs−1
)σ
d1−(yCs−1

)σ
d1

(−xDs−1
)σd2−(−xCs−1

)σd2

λ12 >
(yDs )

σd1−(yCs )
σd1

(−xDs )σ
d2−(−xCs )σ

d2 .
(11)

As xC = −xB, yC = −yB, xD = −xA and yD = −yA, then Equation (11) can be written as:


λ12 <

(−yAs−1
)σ
d1−(−yBs−1

)σ
d1

(xAs−1
)σd2−(xBs−1

)σd2

λ12 >
(−yAs )σ

d1−(−yBs )σ
d1

(xAs )
σd2−(xBs )

σd2



⇔


λ12 <

(−yBs−1
)σ
d1−(−yAs−1

)σ
d1

(xBs−1
)σd2−(xAs−1

)σd2

λ12 >
(−yBs )σ

d1−(−yAs )σ
d1

(xBs )
σd2−(xAs )

σd2
.

 (12)

Inequations (12) define the bound values of λ when σd1 = σd2 = σ−, λoppos when

σd1 = σd2 = σ+, and λgen when σd1 = σ+ and σd2 = σ−.

As a last remark, in the special case when σd1 = σd2, note that the bound values of the loss

aversion parameter in the gain and in the loss frames are linked. Recall that, in the gain frame, the

bounds of the loss aversion parameter are (Equation (9)):


λG12,min =

(xBs−1
)σ
d1−(xAs−1

)σ
d1

(−yBs−1
)σd2−(−yAs−1

)σd2

λG12,max =
(xBs )

σd1−(xAs )
σd1

(−yBs )σ
d2−(−yAs )σ

d2 .


Comparing with Equation (12) provides the following equivalencies for λ bounds, which also apply

to λoppos:  λLmax = 1/λGmin

λLmin = 1/λGmax.



45



D Raw results

Table 16: Distribution of switching points for treatment GLo

Percentage of respondents
Row Series 1 Series 2 Series 3

1 16.8 20.9 8.4
2 0.0 1.6 23.6
3 2.6 1.6 22.0
4 3.1 1.6 15.2
5 8.9 5.2 16.2
6 8.4 1.6 6.8
7 14.1 6.3 0.5
8 8.4 9.4
9 10.5 3.7
10 8.9 8.9
11 6.8 9.4
12 4.2 10.5
13 3.1 2.1
14 2.6 4.7
never 1.6 12.6 7.3

Total 100.0 100.0 100.0
Number of observations 191 191 191
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Table 17: Distribution of switching points for treatment GHi

Percentage of respondents
Row Series 1 Series 2 Series 3

1 20.4 25.1 6.3
2 0.0 2.1 20.9
3 2.6 2.6 14.7
4 5.8 2.6 16.2
5 6.8 5.2 26.7
6 4.7 3.7 4.2
7 14.1 5.2 4.2
8 11.5 4.2
9 5.8 4.2
10 9.4 6.3
11 5.8 7.9
12 7.9 9.9
13 2.6 3.7
14 1.0 2.1
never 1.6 15.2 6.8

Total 100.0 100.0 100.0
Number of observations 191 191 191

Table 18: Distribution of switching points for treatment LLo

Percentage of respondents
Row Series 1 Series 2 Series 3

1 23.0 18.8 5.8
2 1.6 2.1 29.8
3 5.2 6.3 21.5
4 7.3 5.2 21.5
5 8.9 9.9 9.9
6 5.8 7.3 3.1
7 12.0 9.4 1.0
8 8.4 7.9
9 6.8 5.8
10 4.7 7.3
11 4.2 3.1
12 3.7 5.2
13 1.0 1.0
14 1.6 0.5
never 5.8 9.9 7.3

Total 100.0 100.0 100.0
Number of observations 191 191 191
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Table 19: Distribution of switching points for treatment LHi

Percentage of respondents
Row Series 1 Series 2 Series 3

1 33.0 25.1 4.2
2 2.6 1.0 26.7
3 4.7 4.7 13.1
4 4.7 7.3 24.1
5 6.3 8.4 19.9
6 5.2 5.2 2.6
7 14.7 10.5 0.5
8 8.4 6.3
9 4.2 8.9
10 6.3 5.8
11 2.6 3.1
12 1.6 3.7
13 0.5 1.0
14 0.5 0.0
never 4.7 8.9 8.9

Total 100.0 100.0 100.0
Number of observations 191 191 191
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E Alternative regressions

Table 20: Interval regression of σd on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 0.649*** (0.027) 0.626*** (0.146)

Frames:
Loss 0.120*** (0.034) 0.120*** (0.034)
High 0.041 (0.027) 0.041 (0.027)

Loss×High 0.040 (0.039) 0.040 (0.039)

Socio-demographics:
Age 0.002 (0.006)
Female -0.054 (0.037)
Master 0.110** (0.049)
Economics -0.027 (0.037)

Constant -0.973*** (0.038) -0.986*** (0.039)

Nb. of obs. /clusters 764/191 764/191
Estimated standard error of the model 0.378 0.373
AIC 4035.529 4025.424
BIC 4058.722 4067.171

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1% level respectively.
All monetary terms are in euros.
The estimated standard error of the model is comparable to the root mean
squared error that would be obtained in an OLS regression.
AIC and BIC stand for Akaike and Schwarz’s Bayesian information
criteria respectively.
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Table 21: Interval regression of γd on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 0.634*** (0.021) 0.763*** (0.110)

Frames:
Loss 0.030 (0.025) 0.030 (0.025)
High 0.008 (0.023) 0.008 (0.023)

Loss×High -0.033 (0.032) -0.033 (0.032)

Socio-demographics:
Age -0.006 (0.005)
Female -0.026 (0.029)
Master 0.068* (0.041)
Economics 0.010 (0.030)

Constant -241*** (0.032) -246*** (0.031)

Nb. of obs. /clusters 764/191 764/191
Estimated standard error of the model 0.289 0.288
AIC 3752.779 3753.742
BIC 3775.971 3795.489

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1% level
respectively.
All monetary terms are in euros.
The estimated standard error of the model is comparable to the root
mean squared error that would be obtained in an OLS regression.
AIC and BIC stand for Akaike and Schwarz’s Bayesian information
criteria respectively.

Table 22: Interval regression of λ on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 2.396*** (0.197) 2.249*** (0.760)

Frames:
Loss -323*** (0.228) -324*** (0.228)
High 0.289 (0.241) 0.289 (0.241)

Loss×High -0.445 (0.280) -0.444 (0.280)

Socio-demographics:
Age -0.003 (0.032)
Female 0.292* (0.164)
Master 0.398 (0.283)
Economics -0.049 (0.168)

Constant 0.757*** (0.077) 0.749*** (0.076)

Nb. of obs. /clusters 764/191 764/191
Estimated standard error of the model 2.132 2.116
AIC 3969.289 3968.305
BIC 3992.481 4010.052

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1% level
respectively.
All monetary terms are in euros.
The estimated standard error of the model is comparable to the root
mean squared error that would be obtained in an OLS regression.
AIC and BIC stand for Akaike and Schwarz’s Bayesian information
criteria respectively.
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Table 23: Log-interval regression of λ on several sets of covariates including frame
(1) (2)

Covariate Coef. Std. Err. Coef. Std. Err.

Constant 0.459*** (0.084) 0.580 (0.383)

Frames:
Loss -0.900*** (0.122) -0.900*** (0.122)
High 0.170* (0.095) 0.169* (0.095)

Loss×High -0.329** (0.141) -0.329** (0.141)

Socio-demographics:
Age -0.011 (0.017)
Female 0.092 (0.081)
Master 0.191 (0.127)
Economics 0.069 (0.085)

Constant 0.039 (0.062) 0.036 (0.061)

Nb. of obs. /clusters 764/191 764/191
Estimated standard error of the model 040 036
AIC 3204.499 3207.211
BIC 3227.692 3248.958

Standard errors are clustered at the individual level.
*, ** and *** stand for significance at the 10, 5 and 1% level respectively.
All monetary terms are in euros.
The estimated standard error of the model is comparable to the root mean
squared error that would be obtained in an OLS regression.
AIC and BIC stand for Akaike and Schwarz’s Bayesian information
criteria respectively.
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F Distribution of individual CPT parameter values

Figure 1: Distribution of individual CPT parameters for baseline treatment GLo.
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Figure 2: Distribution of individual σd parameters over treatments.
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Figure 3: Distribution of individual γd parameters over treatments.
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Figure 4: Distribution of individual λ parameters over treatments.
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G Distribution of selected individual loss-aversion values

Figure 5: Distribution of individual λ values in baseline GLo and λoppos values in treatment LLo.
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Figure 6: Distribution of individual λ values in treatment GHi and λoppos values in treatment LHi.
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