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Abstract: Despite an inherent share of unpredictability, asset prices such as in stock and Bitcoin 
markets are naturally driven by significant magnitudes of memory; depending on the strength of path 
dependence, prices in such markets can be (at least partially) predicted. Being able to predict asset 
prices is always a boon for investors, more so, if the forecasts are largely unconditional and can only 
be explained by the series’ own historical trajectories. Although memory dynamics have been 
exploited in forecasting stock prices, Bitcoin market pose additional challenge, because the lack of 
proper financial theoretic model limits the development of adequate theory-driven empirical 
construct. In this paper, we propose a class of autoregressive fractionally integrated moving average 
(ARFIMA) model with asymmetric exponential generalized autoregressive score (AEGAS) errors to 
accommodate a complex interplay of ‘memory’ to drive predictive performance (an out-of-sample 
forecasting). Our conditional variance includes leverage effects, jumps and fat tail-skewness 
distribution, each of which affects magnitude of memory both the stock and Bitcoin price system 
would possess enabling us to build a true forecast function. We estimate several models using the 
Skewed Student-t maximum likelihood and find that the informational shocks in asset prices, in 
general, have permanent effects on returns. The ARFIMA-AEGAS is appropriate for capturing 
volatility clustering for both negative (long Value-at-Risk) and positive returns (short Value-at-Risk). 
We show that this model has better predictive performance over competing models for both long 
and/or some short time horizons. The predictions from this model beats comfortably the random walk 
model. Accordingly, we find that the weak efficiency assumption of financial markets stands violated 
for all price returns studied over longer time horizon. 

Keywords: Asset price; Forecasting; Memory; ARFIMA-AEGAS; Leverage effects and jumps; 
Market Efficiency. 
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1. Introduction 

1.1 The broader context 

Why asset prices (such as stock and the recent phenomenon, cryptocurrencies) fluctuate 

systematically, is a long-drawn story, having its primary root in behavioral economics and 

finance, where agents (investors) are driven by market sentiments and display a boundedly 

rational behavior leading to choices which are not necessarily optimal. Although 

cryptocurrencies are yet to own a definite financial theoretic model, its increasing importance 

among institutional investors 1  nudges its closer to any acceptable financial theory that 

explains stock price fluctuations. Decades long research and policy practices have led to a 

sole aim: understand asset price behavior with a robust theory to model and provide as 

accurate a prediction as possible. This paper does not intend to dig into the depth of this black 

box, rather undertakes a celebrated route held by time series econometricians: model and 

study the historical trajectory of the series itself in case there are no other available 

information to provide a conditional forecast. We reckon there are important information 

available (see for instance, Gillaizeau et al. (2019), among others) to condition the movement 

of stock and cryptocurrencies (such as Bitcoin), however, our sole aim in this paper to 

provide a better predictive power based mainly on the modelling of historical path of the 

series themselves. Our contribution, of course, is the recognition of an explicit role of 

‘memory’ that drives a part of the volatility in asset prices.  

Memory has an interesting virtue: it is often snared within the complexity of transient 

cycles – ones which dominate the real behavior of the series and sets a natural limit to true 

predictions. Yi et al. (2019) and Phan et al. (2015) in this journal discuss (out-of-sample) 

forecasting performance, where Yi et al. (2019) adopt cycle-decomposed predictors to 

forecast stock prices. Our purpose in this paper is to introduce a new approach to forecast 

stock and Bitcoin prices by offering a complex interplay of `memory’ and volatility. The 

forecast performance of our approach is rigorously compared with competing models. 

Finally, implications of our model performance are drawn regarding investment decisions. 

Indeed, stock and Bitcoin price movements in any country setting essentially reflects 

global movements and co-movements of myriads of factors viz., social, economic, political, 

and environmental (such as the effects of weather and sports events on stock prices). The fact 

                                                           
1https://www.coindesk.com/rising-institutional-investment-setting-pace-for-future-crypto-growth 
 

https://www.coindesk.com/rising-institutional-investment-setting-pace-for-future-crypto-growth
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is that investors are predominantly psychology-driven decision-making agents, where the 

decisions are invariably derived from the realm of incomplete information and bounded 

rationality. This is one of the many imposing reasons, why despite several seminal 

contributions to the determinants of stock and Bitcoin prices, the tendency to include newer 

factors are increasing every day.2 A time series econometrician faces then an upheaval task: 

to study the series over a stretch of time, identify a reality-approximating pattern by using 

state-of-the-art method and produce a nice predictive performance of the model. Just as 

Ronald Coase pointed out (in the above quote), ‘if you torture the data long enough, it will 

confess’. Indeed, over the past three and a half decades since Engle (1982) and Bollerslev 

(1986), financial economists have moved along the non-stationary econometric trajectories 

and have offered numerous powerful competing forecasting models to uncover the real nature 

of stock and Bitcoin price movements. Unfortunately, stock and Bitcoin price is one such 

financial metric which is not driven by a single event’s momentum only (such as only 

political uncertainty or economic prosperity/recession, etc.). Rather, its ever-changing 

complex core that attracts anything ‘psychological bound’ of investors, means that there will 

no single econometric approach that can unravel the real dynamic nature of stock and Bitcoin 

price movements. However, amidst all these dynamisms, the best way to understand its 

movements is to model its variance as conditional -allowing in part, to be determined by past 

variances and in part, by other factors (the class of Fama-French models, for instance). In 

other words, in general stock and Bitcoin prices can reveal some strength in ‘memory’ – an 

ability of the system to remember past shocks. Finally, all the various known and unknown 

factors determining investors’ sentiment also form a complex non-linear relationship. A 

preferable approach to produce realistic predictions would then be to combine both ‘memory’ 

and ‘non-linearity’ within a single modelling framework. This paper builds such a framework 

and aims to provide new insights into stock and Bitcoin price movements. 

At its core, our approach lays emphasis on modelling ‘jumps’ in stock and Bitcoin prices 

along with a possible path dependence. Assuming a jump process for stock and Bitcoin price, 

we allow random movements of prices at all scales, no matter how small. Such a model often 

combines the usual geometric Brownian motion for the diffusion and a space-time Poisson 

process for the jumps such that jump amplitudes are uniformly distributed. Arguably, stock 

and Bitcoin prices exhibit extreme sensitivity to news, in addition to of course, the structural 

                                                           
2Some recent research investigates whether win or loss in a big match (such as football or rugby) 
leads to a rise/fall in stock prices the next day (Urquhart & Sakkas (2018)). 
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changes in financial and economic dynamics. Such a sensitivity can be regarded as response 

to ‘jumps’ the source of which can be both endogenous and exogenous. Irrespective of the 

sources, a jump in stock and Bitcoin prices often reflect the path dependence nature of the 

series: to what extent a strong/weak memory of the system predicts its future movements. 

Hence, in the current paper, we introduce a long-memory based conditional volatility model 

with asymmetry (and non-linearity). Our approach (to be discussed in Section 2 in details) 

exploits learning mechanism of the stock and Bitcoin price system with ‘memory’ and 

embeds asymmetric nature of shocks on the conditional volatility of stock and Bitcoin prices. 

 

1.2 Identifying the missing link 

The classical variants of Generalized Autoregressive Conditional Volatility (GARCH) 

model are extensively employed in the empirical architecture of price volatility (viz., 

symmetric GARCH: Engle (1982) and Bollerslev (1986), asymmetric GARCH, such as 

exponential GARCH (EGARCH): Nelson (1990) and Threshold GARCH (TGARCH): 

Glosten, Jagannathan & Runkle (1993) and Zakoian (1994); the asymmetric power GARCH 

(APGARCH): Ding, Granger & Engle (1993); STGARCH model with regime switching: 

Hagerud (1997a), Gonzalez-Rivera (1998)). For details on the evolution of different 

GARCH-type models, see Bollerslev (2009) and Zhang & Wei (2010). These GARCH 

variants are based on properties of symmetry, asymmetry, nonlinearity, stationarity, 

persistence and structural breaks, but recent innovations have shown that jumps another 

fundamental property in volatility (see for example, Harvey (2013), Yaya, Bada & Atoi 

(2016), Charles & Darné (2017) and Babatunde, Yaya, & Akinlana (2019)). The GARCH 

models are not robust enough to capture these large changes in financial time series, and 

therefore, they underestimate the magnitude effect of the returns. Andersen, Bollerslev & 

Dobrev (2007) originally propose non-parametric approaches based on Brownian Semi-

Martingale for detecting jumps, but these methods cannot predict volatility. Due to the 

presence of occasional jumps, Harvey & Chakravarty (2008) and Harvey (2013) propose 

Generalized Autoregressive Score (GAS) models - a class of observation driven time series 

models, where the time-varying parameters are functions of lagged dependent values and past 

observations. The parameters are stochastic and predictable given the past. These models 

capture these occasional jumps in financial time series with symmetric and asymmetric 

variants, using the score of the conditional density function to drive the dynamics of the time-

varying parameter (see Creal, Koopman & Lucas (2013) and Creal, Schwaab, Koopman & 
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Lucas (2014)). The distribution of innovations in GAS models are non-normal and the 

conditional variance is taken from the conditional score of the distribution with respect to the 

second moment. 

Asset prices often exhibit complex dynamic properties and needs to be adequately flexible 

to describe its important characteristics. The GAS models have proved to be more robust in 

modelling and predicting fat tail and skewed data (Yaya, Bada & Atoi (2016), Opschoor, 

Janus, Lucas & Van Dick (2018) and Makatjane, Xaba & Moroke (2017)). To accommodate 

conditional asymmetry, leverage effect and heavy tails, Laurent, Lecourt & Palm (2016) 

propose AEGAS model (also called Beta-Skew-t-AEGARCH), as an extension to GAS 

(Creal et al (2013)) by introducing time-varying parameters in the class of non-linear models 

with its exponential specification. This new class of volatility model is robust to outliers and 

occasional jumps by using the Skewed Student-t distribution to account for the occurrence of 

large changes in volatility. In the AEGAS model, the mechanism to update the parameters 

over time is provided by the scaled score of the likelihood function (Tafakori, Pourkhanali & 

Fard (2018)). 

For applications of GAS models to economic and financial time series see, for example, 

Creal, Koopman & Lucas (2013) who present two examples to illustrate their modeling 

framework; viz., square root information matrix scaling with Moody's credit rating data. 

Huang, Wang & Zhang (2014) compare the Realized ARCH and Realized GAS model under 

Gaussian and t-distribution assumptions for the financial return and daily realized variance. 

Muela (2015) compare the performance of several Beta-skewed-t-EGARCH specifications in 

terms of Value at Risk on eight closing daily returns. On the other hand, Koopman, Lucas, & 

Scharth (2016) study the forecasting performance of nonlinear non-Gaussian state-space 

models, generalized autoregressive score models and autoregressive conditional moment 

models for predicting the volatility of twenty Dow Jones index stocks and five major stock 

indices over a period of several years. Olubusoye & Yaya (2016) investigate persistence and 

volatility pattern in the prices of crude oil and other distilled petroleum products for the US 

and the UK petroleum pricing markets. Whereas, Yaya,  Bada & Atoi (2016) estimate 

volatility in the Nigerian Stock Market using the Beta-Skew-t-AEGARCH model and 

compare its forecasting performance over some other volatility models. Salisu (2016) 

employs the Beta-Skew-t-EGARCH framework proposed to model oil price volatility. 

Makatjane, Xaba, Moroke (2017) empirically investigate the behaviour of the time-varying 

parameter by estimating the GAS model to the South Africa Sanlam stock price returns. 
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Müller & Bayer (2017) propose a likelihood ratio test to select the Beta-Skew-t-EGARCH 

model with one or two volatility components and give an empirical illustration devoted to the 

DAX log-returns. Charles & Darné (2017) analyze volatility models in the presence of jumps 

in two crude-oil markets and evaluate the forecasting performance of the volatility models 

using the model confidence set approach, Finally, Tafakori, Pourkhanali & Fard (2018) 

evaluate the accuracy of several 100 one-day-ahead value at risk (VaR) forecasts for 

predicting Australian electricity returns using asymmetric exponential generalized 

autoregressive score (AEGAS) models. 

The class of score-driven models have recently become popular for analyzing financial 

time series, but these last works ignore the existence of dynamic behavior, especially long 

memory, in the conditional mean. Several studies find that the empirical return series exhibit 

long-range persistence (Granger & Joyeux (1980), Hosking (1981) and Chikhi, Péguin & 

Terraza (2013)). Combining long memory (ARFIMA) models with asymmetric exponential 

GAS (AEGAS) errors would provide a flexible class of model to capture the long memory 

structure in the conditional mean and the occasional jumps in the score-driven volatility, 

which includes leverage effect and fat tail-skewness distribution. Harvey (2013), among 

others, specify the GAS models with the heavily tailed and skewed conditional probability 

distribution. These models perform better than the classical GARCH models with larger 

values of log-likelihoods. Blasques, Koopman & Lucas (2014a) and Lambert & Laurent 

(2000, 2001) suggest using the maximum likelihood based on the skewed Student-t density 

proposed by Fernandez & Steel (1998) to estimate this GAS family of models. 

As noted earlier, an imposing characteristic of a conditional volatility model is its memory 

characteristics. When the system reveals certain patterns (such as herding), this means that 

some time series observations within the price data depict certain degree of associations (in 

our case, it can be certain magnitude of dependence between past and present). Led by this, 

the main objective of this paper is to propose a mixture of long memory structure and the 

occasional jumps, leverage effect and fat tail-skewness distribution in the daily price returns. 

Our approach – the ARFIMA-AEGAS model – is employed to three stock markets, such as 

Argentina, Saudi Arabia and France and five Bitcoin markets. Our strategy thus, is to 

combine and estimate the ARFIMA model with asymmetric exponential GAS (AEGAS or 

Beta-Skew-t-AEGARCH) errors using Skewed Student-t maximum likelihood. 
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The remainder of this article is organized as follows: Section 2 focuses on outlining the 

conceptual foundation of our proposed ARFIMA-AEGAS. Section 3 presents the daily stock 

and Bitcoin price data and discusses their statistical properties. Our estimation results are 

shown in section 4. In section 5, we evaluate the forecasting performance of best fitting GAS 

Models in stock and Bitcoin markets, including the long memory in the conditional mean 

equation. We thus try to compare the predictive quality of ARFIMA-GAS, ARFIMA-EGAS, 

ARFIMA-AEGAS and ARFIMA-EGARCH models with that of a random walk. The last 

section concludes the paper. 

 

2. Model 

We specify a fractionally autoregressive moving average (ARFIMA) model (Granger & 

Joyeux (1980) and Hosking (1981)) with Generalized Autoregressive Score [GAS(1,1)] 

errors, also called Beta-Skew-t-GARCH (Harvey & Chakravarty (2008), Creal, Koopman & 

Lucas (2013) and Harvey (2013)). This is defined as follows 

                                         ttt
dd BxgYBBB  )()()1()1)(( 12                                            (1) 

where                                                 , 0t t t tz                                                                  (2) 

and                                               2 2 2
1 1 1 1 1t t t tw u                                                         (3) 

The interest of ARFIMA models for financial series lies mainly in their ability to capture 

the long memory behavior in the conditional mean 
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where (.)  is the gamma function. The roots of polynomials p
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21  in the lag operator with degrees p and q respectively, are 

outside the unit circle. B is the lag operator, 1d  is an integer:  1,01 d . The process is 

stationary and invertible, 
2
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2
1

2  d . The long memory is included in the mean equation (1) 

through the parameter 2d . 1 1 1     and 1 1 ,   ,  w   are the classical GARCH parameters, 
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with 1 10 ,  0 ,  w 0    . For the Skewed Student-t distribution in the conditional 

variance (see Hansen (1994), Lambert & Laurent (2000, 2001) and Theodossiou (2002)) : 
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where   is the asymmetry parameter and   is the degree of freedom of the distribution. 

For a GAS(1,1) model, the equation for time-varying parameters 2
t t   is the 

autoregressive function 1 1 1 1t t tB A       . Harvey & Chakravarty (2008) and Creal, 

Koopman& Lucas (2013) propose to update the time-varying parameters with t t tS    

where t  is the score with respect to the parameter t  with 

 1 1log | , , ,X ; /t t t t t t tf Y Y         and tS  is a time dependent scaling matrix. The 

Normal-GARCH model corresponds to a Normal-GAS(1,1) (i.e. (0,1)tz N  with 

1 1 1 1 12,  ,  tS A B      , 2
t t   and  2 20.5 1t t tz    ). Note that 2

1 1t tu z    is 

proportional to the score of the conditional distribution of t  with respect to 2
1t 
.  For the 

choice of time dependent scaling, Creal, Koopman& Lucas (2012) recommend using 1tS   

or  
1'

1t t t tS E


    while Harvey & Chakravarty (2008) set 2tS  .  

We also consider the EGAS (Beta-Skew-t-EGARCH) model, which is given as (see 

Harvey (2013)) 

                                                     
2 2

1 1 1 1log logt t tw u                                                      (9) 



9 
 

Introducing the leverage effect, we have the AEGAS (Beta-Skew-t-AEGARCH) model 

(see Laurent, Lecourt & Palm (2016)) 

                                                 
2 2

1 1 1 1 1 1log logt t t tw u I                                               (10) 

where tI is an indicator measure asymmetry defined as  

                                                  * * *sgn 0 0t t t tI z I z I z                                           (11) 

For the Skewed Student-t distribution 

                                                  *
1 sgn 1t t tI z u                                                         

(12) 

with                                                      
2

2
1
1tE I 







                                                          (13)                

Some authors suggest using the Skewed Student-t innovation distribution. Lambert & 

Laurent (2000, 2001) apply and extend the skewed-Student density proposed by Fernandez & 

Steel (1998) to the GARCH framework. The procedure for Maximum Likelihood Estimation 

(MLE) of GAS family models was presented in Blasques, Koopman & Lucas (2014a). The 

strong consistency and asymptotic normality of maximum likelihood are also studied. 

Consequently, we propose the Skewed Student-t maximum likelihood to estimate an 

ARFIMA model jointly with AEGAS (Beta-t-EGARCH) error from the Skewed Student-t 

distribution using the BFGS algorithm (Broyden (1970), Fletcher (1970), Goldfarb (1970) 

and Shanno (1970)) implemented by Laurent (2013). The Skewed Student-t log-likelihood 

function is written as 
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and optimized with respect to the unknown dynamic parameters, contained in the vector

 '
2 1 1 1 1 1, ,..., , ,..., , , , ,p qd         and  in the first order model (For details on skewed 

student density see Lambert & Laurent (2001) and For the GAS estimation see Blasques, 

Koopman & Lucas (2014a, 2014b, 2014c)). 

 

3. Data characteristics  

Our database consists of daily stock market indices of three selected markets and five 

Bitcoin returns. The stock indices considered are TASI (Saudi Arabia), Merval (Argentina), 

and CAC SMALL (France). The daily percentage Bitcoin return data applied here are AUD 

(Australian Dollar), CAD (Canadian Dollar), EUR (Euro), GBP (British Pound Sterling) and 

USD (US Dollar). The data sample of Saudi Arabia is from January, 2000 to October, 2018 (

5000T  ); the data sample of the Argentina is from May, 2002 to January, 2019 ( 4093T 

); the data of France cover a historical period from January, 1999 to July, 2018 ( 4999T  ) 

and the Bitcoin data sample cover a historical period from January 1, 2015 to March 13, 2019 

corresponding to 1533 observations (see Figure 1). Daily stock prices of Merval are collected 

from Yahoo finance https://fr.finance.yahoo.com, the data series of TASI and CAC SMALL 

are drawn from https://www.investing.com and the Bitcoin data are gathered from Coincheck 

platform (see for instance, Gillaizeau et al. (2019) for details on data sources and their 

limitations). We use Bitcoin prices in five different markets such as Euros (EUR), Australian 

Dollars (AUD), US Dollars (USD), Canadian Dollars (CAD), and British Pounds (GBP). Our 

estimation involves Bitcoin returns series. 

As a preliminary check before we estimate our model, we study if the series are non-

stationary in nature or contrastingly, if the series are governed by some memory. Following 

convention, we perform unit root tests using Philips & Perron (1988), Kwiatkowski, Phillips, 

Schmidt & Shin (1992) and Elliott, Rothenberg & Stock (1996). In Table 1, we present these 

results: we find that the three logarithmic stock exchange index series are characterized by a 

unit root and the five Bitcoin return series are stationary. The logarithmic index series are 

finally differentiated to obtain the daily percentage returns at time t (see Figure 1) 

 1100 ln lnt t tr P P     

where tP  and 1tP  are daily stock price at two successive days t  and 1t  , respectively. 
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Table 1 – Identifying non-stationarity in the series 
 

Series Test 
Logarithmic Returns 

Test stat. Critical value Test stat. Critical value 

TASI 

PP -1.959 -2.861 -65.532 -1.941 

KPSS 0.349 0.463 0.297 0.463 

ERS 0.010 3.26 70.105 3.26 

Merval 

PP 3.177 -1.941 -60.989 -2.862 

KPSS 1.762 0.463 0.102 0.463 

ERS 0.014 3.26 220.245 3.26 

CAC 

SMALL 

PP 1.371 -1.941 -55.891 -1.941 

KPSS 1.720 0.463 0.113 0.463 

ERS 0.011 3.26 40.361 3.26 

Bitcoin 

AUD 

PP - - -31.149 -1.941 

KPSS - - 0.226 0.463 

ERS - - 50.452 3.26 

Bitcoin 

CAD 

PP - - -31.965 -1.941 

KPSS - - 0.256 0.463 

ERS - - 63.821 3.26 

Bitcoin 

EUR 

PP - - -30.856 -1.941 

KPSS - - 0.238 0.463 

ERS - - 81.521 3.26 

Bitcoin 

GBP 

PP - - -31.561 -1.941 

KPSS - - 0.263 0.463 

ERS - - 65.847 3.26 

Bitcoin 

USD 

 

PP - - -31.261 -1.941 

KPSS - - 0.228 0.463 

ERS - - 44.237 3.26 

Notes: The asymptotic critical value at 5% are computed using Mackinnon’s (1990) 

method. The table reports the results of Philips-Perron unit root test. We accept the unit 
root hypothesis 0H for daily logarithmic series and reject it for daily returns. For 
Philips-Perron, Elliott-Rotenberg-Stock (ERS) and KPSS tests, the spectral estimation 
is based on the Bartlett kernel using the Andrews bandwidth. For KPSS test, 0H  is the 
null hypothesis of stationarity. 
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Figure 1 – Evolutions of stock market indices and returns 
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Interesting observations emerge: from Figure 1, we note some sharp jumps and volatility 

clustering in the returns. As shown in Table 2, the Bitcoin returns AUD, CAD, USD, GBP 

and EUR show the highest risk, as measured by the standard deviation (3.38%, 3.29%, 

3.28%, 3.26% and 3.22% respectively) followed by the Argentina stock market - Merval- 

(2.023%). The French stock market show the lowest risk (0.867%). All series exhibit 

negative skewness. The observed asymmetry may indicate the presence of nonlinearities in 

the evolution process of all returns. In addition, all series also show excess kurtosis: the 

Jarque-Bera test (Jarque & Bera (1987) strongly rejects the null hypothesis of normality. On 

the other hand, there is an ARCH effect in the data since the ARCH-LM statistic is greater 

than the critical value of chi-square distribution with 1 degree of freedom at 1%. for all series. 
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Table 2 – Summary statistics for daily stock market and Bitcoin returns 
 

Series Std. Dev (%) Skewness Kurtosis JB stat. ARCH(1) 

TASI 1.416 -0.880 13.447 23382.58*** 327.632*** 

Merval 2.023 -0.376 6.302 1956.21*** 147.009*** 

CAC SMALL 0.867 -0.948 9.170 8677.555*** 415.59*** 

AUD 3.380 -1.002 9.756 6336.7*** 101.34*** 

CAD 3.290 -0.899 9.034 5420.4*** 125.25*** 

EUR 3.220 -1.276 13.707 12418.2*** 61.302*** 

GBP 3.263 -0.377 5.038 1658.1*** 182.70*** 

USD 3.287 -1.344 13.689 12432.1*** 41.580*** 

Notes: *** indicates a rejection of null hypothesis of normality and homoscedasticity 
at the 1% level. 

 

In Table 3, we present the BDS (Brock et al. (1996))statistics to gauge whether stock 

returns are non-linear in nature. As evident, the BDS statistics are strictly greater than the 

critical value at 5% for all the embedding dimensions m and thus all returns are non-linearly 

dependent. Moreover, the variance ratio statistic (Lo & MacKinlay (1988)) is significant for 

all returns as well: the critical probabilities are less than 0.05 for all period(see Table 4). 

Consequently, we reject the random walk hypothesis, indicating that stock market price and 

Bitcoin returns can be predicted in the short term. 

 

Table 3 – BDS test results on the stock market and Bitcoin returns 
 

m TASI Merval 
CAC 

SMALL 
AUD CAD EUR GBP USD 

2 
24.124 

(0.000) 

11.888 

(0.000) 

23.445 

(0.000) 

16.236 

(0.000) 

15.219 

(0.000) 

16.553 

(0.000) 

16.963 

(0.000) 

15.280 

(0.000) 

3 
30.607 

(0.000) 

16.194 

(0.000) 

29.869 

(0.000) 

17.876 

(0.000) 

17.199 

(0.000) 

18.380 

(0.000) 

18.304 

(0.000) 

17.158 

(0.000) 

4 
34.967 

(0.000) 

18.719 

(0.000) 

33.587 

(0.000) 

19.416 

(0.000) 

18.601 

(0.000) 

20.126 

(0.000) 

19.993 

(0.000) 

18.905 

(0.000) 

5 39.051 20.875 37.035 21.016 20.054 21.833 21.585 20.664 
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(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

6 
43.416 

(0.000) 

22.740 

(0.000) 

40.420 

(0.000) 

22.918 

(0.000) 

21.838 

(0.000) 

23.981 

(0.000) 

23.509 

(0.000) 

22.775 

(0.000) 

7 
48.327 

(0.000) 

24.467 

(0.000) 

43.993 

(0.000) 

24.959 

(0.000) 

23.935 

(0.000) 

26.400 

(0.000) 

25.746 

(0.000) 

25.179 

(0.000) 

8 
53.899 

(0.000) 

26.307 

(0.000) 

48.017 

(0.000) 

27.456 

(0.000) 

26.402 

(0.000) 

29.359 

(0.000) 

28.426 

(0.000) 

28.008 

(0.000) 

9 
60.684 

(0.000) 

28.155 

(0.000) 

52.694 

(0.000) 

30.339 

(0.000) 

29.401 

(0.000) 

32.837 

(0.000) 

31.668 

(0.000) 

31.328 

(0.000) 

10 
68.463 

(0.000) 

30.344 

(0.000) 

57.990 

(0.000) 

33.928 

(0.000) 

33.104 

(0.000) 

37.074 

(0.000) 

35.659 

(0.000) 

35.382 

(0.000) 

Notes: The numbers in the parenthesis are the critical probabilities. The BDS statistics are 
calculated by the fraction of pairs method with equal to 0.7. m represents the embedding 
dimension. 

 

 

Table 4 – Variance Ratio test Statistics for stock market and Bitcoin returns 

 

Series Period VR z-stat. Prob. 

TASI 

2 0.557 -12.686 0.000 

4 0.264 -11.874 0.000 

8 0.133 -9.443 0.000 

Merval 

2 0.521 -16.234 0.000 

4 0.259 -14.643 0.000 

8 0.130 -11.927 0.000 

CAC 

SMALL 

2 0.570 -14.700 0.000 

4 0.303 -13.291 0.000 

8 0.152 -10.923 0.000 

AUD 

2 0.663 -7.445 0.000 

4 0.307 -8.356 0.000 

8 0.166 -6.681 0.000 

CAD 

2 0.623 -7.716 0.000 

4 0.297 -7.998 0.000 

8 0.158 -6.429 0.000 

EUR 
2 0.653 -7.610 0.000 

4 0.317 -8.263 0.000 
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8 0.166 -6.792 0.000 

GBP 

2 0.638 -7.736 0.000 

4 0.312 -8.202 0.000 

8 0.161 -6.836 0.000 

USD 

2 0.640 -8.261 0.000 

4 0.316 -8.455 0.000 

8 0.163 -6.829 0.000 

Notes: p-Value of variance ratio statistic represents a 
probability approximation using studentized maximum 
modulus with parameter value 3 and infinite degrees of 
freedom. 

 

These previous tests highlighted the presence of significant non-zero autocorrelations in 

the short term and lead us to reject the i.i.d hypothesis. However, it is impossible to exploit 

these autocorrelations to establish speculative rules leading to abnormal profits. Given this 

situation, we test the presence of autocorrelations by considering longer horizons. By 

estimating the fractional integration coefficient (see Table 5), we note that this is a sign of 

long memory since the values of Student statistic (with a power of 0.8)  are strictly greater 

than the critical value of normal distribution at 5%. In other words, the memory parameter 

estimated by a Gaussian semiparametric method (Robinson & Henry (1999)) is positive and 

significant. The estimation results are confirmed by the GPH (Geweke & Porter-Hudak 

(1983)) method. The presence of a long memory indicates that we can anticipate the returns 

to a sufficiently long time-horizon and the return will not revert to its fundamental value. 

 

Table 5 – Results from the ARFIMA(0,d,0) estimation  

On daily returns 
 

Series 
GPH Robinson-Henry 

D t-stat. Prob. d t-stat. Prob. 

TASI 0.0427 3.1925 0.0014 0.0291 2.9098 0.0036 

Merval 0.0494 3.1294 0.0018 0.0346 3.1335 0.0017 

CAC SMALL 0.1634 12.2010 0.0000 0.1495 14.947 0.0000 

AUD 0.1021 4.2547 0.0000 0.0950 5.1537 0.0000 

CAD 0.1067 4.4495 0.0000 0.0927 5.1523 0.0000 

EUR 0.1167 4.8657 0.0000 0.1022 5.6783 0.0000 

GBP 0.1104 4.6014 0.0000 0.0986 5.4831 0.0000 
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USD 0.0887 3.6958 0.0000 0.0974 5.4111 0.0000 

Notes: GPH: Geweke-Porter-Hudak. d is the estimated Long memory parameter with a 
power of 0.8. 

 

4. Main results  

In this section, we focus on modelling the dynamics of the return and the volatility of daily 

return series using the ARFIMA model jointly with GAS, exponential GAS and asymmetric 

exponential GAS errors. The estimation procedure is based on the Skewed Student-t 

maximum likelihood using the BFGS algorithm. As there are some sharp jumps in the 

volatility, it will be interesting to take into account this asymmetry in volatility estimation 

(see Salisu (2012), Yaya (2013) and Yaya & Gil-Alana (2014)). For the time dependent 

scaling tS , we use the choice of Harvey & Chakravarty (2008) by setting 2tS  . To 

facilitate inference about the null hypothesis of symmetry, we estimate log( ) . 

We estimate several models with different lags, such as an ARFIMA(p, d, q) jointly with a 

GAS(1,1), EGAS(1,1) and AEGAS(1,1) model. For each model, we calculate both Schwarz 

(1978) and Hannan & Quinn (1979) information criteria and the ARCH-LM statistic. The 

results of the model estimations by the Skewed Student-t maximum likelihood method are 

shown in Table6. For all studied return series, we find that the coefficients of the three 

models are highly significant, especially the fractional integration parameters, which are 

significant, positive and less than 1/2, indicating the presence of long-range dependence in 

the conditional mean equation illustrated in Figure 3, 4, 5, 6, 7, 8, 9 and 10. In particular, the 

fractional integration parameters of French stock market and Saudi stock market are higher 

than those of Argentina stock market, reflecting a more pronounced persistence effect. In 

addition, the estimated long memory coefficients of USD and EUR are higher than those of 

CAD, AUD and GBP. This result may be explained by the existence of strong persistence in 

these two Bitcoin return series. For all return series, the information criteria are minimum for 

the ARFIMA-AEGAS model. The asymmetric parameter   is statistically significant and 

positive. Evidence regarding leverage effects implies that negative shocks imply a higher next 

period variance than positive shocks of the same magnitude. In other words, news has an 

asymmetric impact on volatility: bad news or negative shocks give more rise than good news 

or positive shocks. 
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This specification seems to be adequate to model the series since the ARFIMA-AEGAS 

residuals (see Figure 3, 4, 5, 6, 7, 8, 9 and 10) are characterized by the absence of conditional 

heteroskedasticity: there are no remaining ARCH effects in all the estimated models since the 

ARCH-LM statistics are strictly less than the critical value of 2
1  at 5%. It should be noted 

that the normality assumption of residuals is rejected because the Jarque-Bera statistics are 

strictly greater than the critical value of 2
2 at 5%. The conditional standard deviation is 

characterized by asymmetric dynamics with some sharp jumps for all series. Moreover, the 

series of standardized residuals show no dependence structure where the BDS statistics, 

reported in Table 7, are strictly less than the critical value of normal distribution at the 5% 

level for all embedding dimensions m. 
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Table 6 – Skewed Student-t maximum likelihood estimation – BFGS algorithm– 

 

Parameters 
TASI Merval CAC SMALL AUD 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

d  
0.068 

(6.010) 

0.068 

(6.041) 

0.089 

(7.208) 

0.041 

(3.224) 

0.044 

(3.221) 

0.054 

(4.203) 

0.133 

(7.191) 

0.163 

(12.96) 

0.160 

(8.008) 

0.058 

(2.346) 

0.057 

(2.469) 

0.056 

(2.148) 

1  - - - - 
-0.237 

(4.824) 
- 

0.048 

(2.120) 
- 

0.044 

(1.842) 

-0.376 

(-3.680) 

-0.356 

(-3.641) 

-0.353 

(-3.562) 

1  - - - - - - - - - 
0.516 

(6.203) 

0.502 

(6.278) 

0.496 

(6.181) 

1  
0.230 

(10.13) 

0.217 

(13.28) 

0.212 

(11.93) 

0.133 

(5.979) 

0.105 

(6.185) 

0.128 

(11.02) 

0.201 

(10.92) 

0.174 

(14.31) 

0.145 

(13.80) 

0.265 

(8.150) 

0.300 

(8.137) 

0.287 

(6.645) 

1  
0.999 

(152.3) 

0.973 

(2115.2) 

0.999 

(2740.3) 

0.970 

(86.06) 

0.999 

(2080.3) 

0.948 

(1976.01) 

0.971 

(115.8) 

0.956 

(2342.2) 

0.951 

(2599.3) 

0.980 

(160.6) 

0.958 

(79.84) 

0.998 

(784.6) 

  - - 
0.052 

(5.823) 
- - 

0.050 

(6.355) 
- - 

0.067 

(10.02) 
- - 

0.012 

(3.098) 

Asymmetry 
0.115 

(-8.180) 

-0.120 

(-7.747) 

-0.088 

(-5.881) 

0.090 

(-4.632) 

--0.089 

-4.711) 

-0.079 

(-4.148) 

-0.188 

(-10.16) 

-0.183 

(-10.31) 

-0.159 

(-8.573) 

-0.053 

(-2.185) 

-0.057 

(-2.408) 

-0.047 

(-1.844) 

Tail 
3.964 

(14.81) 

4.048 

(14.45) 

4.012 

(14.90) 

6.575 

(8.896) 

6.085 

(9.079) 

6.723 

(9.031) 

7.524 

(9.526) 

7.196 

(10.56) 

7.358 

(10.79) 

3.377 

(9.589) 

3.177 

(8.949) 

3.095 

(9.276) 

SC -6.474 -6.474 -6.478+ -5.176 -5.163 -5.186+ -7.180 -7.182 -7.198+ -4.551 -4.534 -4.556+ 

HQ -6.479 -6.480 -6.483+ -5.182 -5.170 -5.193+ -7.185 -7.187 -7.205+ -4.566 -4.551 -4.571+ 

JB stat. 11074.1* 10107.4* 11696.5* 1093.1* 3276.1* 1309.9* 765.83* 821.01* 749.86* 1087900* 1517400* 2702400* 

ARCH(1) 0.447** 0.418** 2.641** 1.300** 1.679** 0.213** 0.236** 0.096** 0.932** 0.197** 0.034** 0.128** 
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Parameters 
CAD EUR GBP USD 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

d  
0.070 

(2.607) 

0.063 

(2.676) 

0.060 

(2.566) 

0.072 

(2.553) 

0.066 

(2.586) 

0.062 

(2.476) 

0.067 

(2.265) 

0.063 

(2.426) 

0.058 

(2.309) 

0.068 

(2.232) 

0.065 

(2.329) 

0.060 

(2.166) 

1  
-0.292 

(-2.231) 

-0.264 

(-2.355) 

-0.264 

(-2.333) 

-0.376 

(-3.373) 

-0.345 

(-3.380) 

-0.360 

(-3.610) 

-0.426 

(-2.889) 

-0.401 

(-2.960) 

-0.419 

(-3.227) 

-0.378 

(-3.261) 

-0.351 

(-3.072) 

-0.368 

(-3.271) 

1  
0.405 

(3.509) 

0.395 

(4.067) 

0.391 

(4.048) 

0.535 

(5.865) 

0.516 

(6.226) 

0.526 

(6.501) 

0.587 

(4.848) 

0.572 

(5.142) 

0.585 

(5.528) 

0.534 

(5.542) 

0.514 

(5.402) 

0.527 

(5.621) 

1  
0.265 

(7.628) 

0.323 

(6.558) 

0.305 

(5.835) 

0.267 

(8.296) 

0.303 

(7.117) 

0.280 

(5.859) 

0.248 

(7.340) 

0.280 

(6.548) 

0.258 

(5.467) 

0.224 

(7.860) 

0.244 

(7.353) 

0.224 

(5.762) 

1  
0.982 

(176.8) 

0.958 

(67.37) 

0.998 

(715.2) 

0.984 

(200.2) 

0.965 

(82.78) 

0.999 

(791.1) 

0.981 

(162.2) 

0.962 

(71.07) 

0.999 

(843.0) 

0.986 

(215.9) 

0.973 

(103.4) 

0.999 

(993.9) 

  - - 
0.082 

(7.834) 
- - 

0.112 

(4.755) 
- - 

0.098 

(5.642) 
- - 

0.118 

(6.271) 

Asymmetry 
-0.034 

(-1.358) 

-0.041 

(-1.699) 

-0.035 

(-1.381) 

-0.066 

(-2.573) 

-0.069 

(-2.768) 

-0.067 

(-2.538) 

-0.073 

(-2.942) 

-0.077 

(-3.179) 

-0.074 

(-3.022) 

-0.053 

(-2.029) 

-0.053 

(-2.100) 

-0.054 

(-1.991) 

Tail 
3.200 

(9.572) 

3.051 

(8.607) 

2.960 

(8.966) 

3.284 

(9.200) 

3.092 

(8.472) 

2.998 

(9.133) 

3.383 

(9.686) 

3.143 

(8.940) 

2.996 

(10.59) 

3.539 

(7.936) 

3.374 

(7.643) 

3.306 

(8.013) 

SC -4.644 -4.633 -4.654+ -4.632 -4.618 -4.636+ -4.564 -4.549 -4.568+ -4.531 -4.518 -4.533+ 

HQ -4.659 -4.650 -4.669+ -4.647 -4.636 -4.651+ -4.579 -4.566 -4.584+ -4.546 -4.536 -4.549+ 

JB stat. 941980* 1492100* 267450* 419670* 5743400* 8497900* 2624.4* 3035.1* 6102.6* 5201000* 7276700* 11241000* 

ARCH(1) 0.231** 0.043** 0.119** 0.024** 0.0001** 0.024** 1.586** 2.717** 2.594** 0.0061** 0.0003** 0.012** 

Notes: Model 1: ARFIMA-GAS. Model 2: ARFIMA-EGAS. Model 3: ARFIMA-AEGAS. * indicates a rejection of null hypothesis of normality. ** 
indicates an acceptance of null hypothesis of homoscedasticity at the 1%. level. The values in parentheses are the Student statistics. + indicates the 
optimal Schwarz (SC) and the optimal Hannan-Quinn (HQ). 
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Figure 3 – Residual analysis for ARFIMA-AEGAS (TASI returns) 

 

 

 

Figure 4 – Residual analysis for ARFIMA-AEGAS (Merval returns) 
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Figure 5 – Residual analysis for ARFIMA-AEGAS (CAC SMALL returns) 

 

 

 

Figure 6 – Residual analysis for ARFIMA-AEGAS (AUD returns) 
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Figure 7 – Residual analysis for ARFIMA-AEGAS (CAD returns) 

 

 

 

Figure 8 – Residual analysis for ARFIMA-AEGAS (EUR returns) 
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Figure 9 – Residual analysis for ARFIMA-AEGAS (GBP returns) 
 

 

 

Figure 10 – Residual analysis for ARFIMA-AEGAS (USD returns) 
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Table 7 – BDS test on standardized residuals 

 

m TASI Merval 
CAC 

SMALL 
AUD CAD EUR GBP USD 

2 
0.700 

(0.483) 

-1.283 

(0.199) 

-0.262 

(0.793) 

0.432 

(0.665) 

0.979 

(0.327) 

1.213 

(0.224) 

-1.398 

(0.161) 

1.214 

(0.224) 

3 
0.994 

(0.320) 

-0.104 

(0.916) 

1.021 

(0.307) 

-0.167 

(0.866) 

0.623 

(0.532) 

0.548 

(0.583) 

1.327 

(0.184) 

0.570 

(0.568) 

4 
1.281 

(0.200) 

0.221 

(0.824) 

0.876 

(0.380) 

-0.401 

(0.688) 

0.289 

(0.771) 

0.040 

(0.967) 

0.762 

(0.445) 

-0.007 

(0.994) 

5 
0.993 

(0.320) 

0.595 

(0.551) 

0.986 

(0.324) 

-0.449 

(0.653) 

0.195 

(0.845) 

-0.319 

(0.749) 

0.321 

(0.747) 

-0.293 

(0.768) 

6 
0.799 

(0.423) 

0.692 

(0.488) 

0.938 

(0.348) 

-0.307 

(0.758) 

0.029 

(0.976) 

-0.662 

(0.507) 

0.037 

(0.970) 

-0.400 

(0.688) 

7 
0.594 

(0.552) 

0.754 

(0.450) 

0.901 

(0.367) 

-0.129 

(0.896) 

-0.123 

(0.901) 

-0.743 

(0.457) 

-0.060 

(0.952) 

-0.399 

(0.689) 

Notes: The numbers in the parenthesis are the critical probabilities. The BDS statistics are 
calculated by the fraction of pairs method with equal to 0.7. m represents the embedding 
dimension. 

 

5.  Forecasting performance 

To determine which model provides a reasonable explanation of cyclical behavior of stock 

returns, some diagnostic tests are performed at the outset. We first use the estimation results 

to compute Out-of-Sample value-at-Risk for the long and short trading position for 

confidence levels 95% and 99%, respectively. The results presented in Table 8 report the 

success/failure ratio, the Kupiec likelihood ratio (Kupiec (1995)) and the statistics for the 

dynamic quantile test (Engle &Manganelli (2004)). The LR statistics has the distribution 2  

with one degree of freedom. The critical value of the Kupiec test for the most frequently 

adopted significance level 0.05 equals to 3.8415. The null hypothesis is rejected if the 

likelihood ratio exceeds the critical value (Piontek & Papla (2004)). For the ARFIMA model 

with skewed-Student AEGAS errors, the null hypothesis of the test is not rejected both in 

case of underestimating of potential loss and in case of overestimating VaR for the short and 

long positions, it means that the null hypothesis of Kupiec likelihood ratio test can be 

accepted for 99% and 95% confidence levels. However, the dynamic quantile Engle-
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Manganelli test results indicate that the out-of-sample VaR forecast for all the daily returns 

obtained by the ARFIMA-GAS and ARFIMA-EGAS models gives unsatisfactory results and 

consequently fails this test for short and long trade positions. It seems that the ARFIMA-

AEGAS is appropriate for capturing volatility clustering for both negative (long Value-at-

Risk) and positive returns (short Value-at-Risk) for all series. The ARFIMA-AEGAS 

specification seems to be adequate to model the return series for both long Value-at-Risk and 

short Value-at-Risk. It should be noted that the null hypothesis of correct unconditional 

coverage is rejected for the classical ARFIMA-EGARCH and the dynamic quantile Engle-

Manganelli test, in this model, gives unsatisfactory results for short and long trade positions. 

Figure 11 illustrates the relation of the Value-at-risk with the return of prices. The upper 

line is the maximal amount that can be lost with a confidence level 97.5% over the period of 

time taken into consideration, when the business events are not favorable for the business 

activity (see Cera, Cera & Lito (2013)). The calculation of VaR through the use of the 

skewed-Student AEGAS model for the returns, has also advantages of the nature of 

forecasting the values of the VaR in the future. If the other factors remain constant, then the 

AEGAS model gives a very high level of approximation with the real values of the VaR. 
 

Table 8 – Out-of-Sample Value-at-Risk Backtesting 

 

Series Model Position Kupiec LR test Test of E.M 

TASI 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.940 8.323 0.003 19.394 0.003 

0.99 0.989 0.034 0.852 6.685 0.350 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.053 1.424 0.232 22.315 0.001 

0.01 0.011 0.777 0.377 5.666 0.461 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.950 0.050 0.821 20.942 0.001 

0.99 0.992 3.591 0.058 5.654 0.462 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.046 1.171 0.279 7.651 0.264 

0.01 0.008 2.045 0.152 7.116 0.310 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.944 3.109 0.077 12.099 0.059 

0.99 0.992 2.508 0.113 5.548 0.475 
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Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.046 1.319 0.250 9.783 0.134 

0.01 0.009 0.149 0.698 10.176 0.117 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.956 4.369 0.036 26.405 0.000 

0.99 0.996 27.028 0.000 20.536 0.002 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.049 0.0008 0.976 5.743 0.452 

0.01 0.010 0.034 0.852 2.898 0.821 

Merval 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.942 4.432 0.035 7.819 0.251 

0.99 0.988 0.963 0.326 8.024 0.236 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.051 0.123 0.725 11.569 0.072 

0.01 0.010 0.003 0.952 3.776 0.706 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.94 0.845 0.357 2.632 0.853 

0.99 0.989 0.003 0.952 9.126 0.166 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.047 0.649 0.420 8.362 0.212 

0.01 0.008 0.551 0.457 5.103 0.530 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.942 1.992 0.158 8.207 0.223 

0.99 0.992 1.992 0.158 6.019 0.420 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.050 0.018 0.891 1.196 0.977 

0.01 0.008 0.823 0.364 7.895 0.245 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.951 0.194 0.659 42.611 0.000 

0.99 0.994 8.050 0.004 13.402 0.037 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.048 0.194 0.659 13.804 0.031 

0.01 0.009 0.174 0.676 21.842 0.001 

CAC 

SMALL 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.944 3.120 0.077 15.434 0.017 

0.99 0.989 0.369 0.543 6.423 0.377 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.054 2.292 0.129 49.431 0.000 
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0.01 0.011 0.780 0.377 2.973 0.812 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.950 0.024 0.875 11.092 0.085 

0.99 0.992 2.504 0.113 3.584 0.732 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.047 0.895 0.344 35.281 0.000 

0.01 0.009 0.459 0.497 2.401 0.879 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.948 0.385 0.534 7.001 0.320 

0.99 0.992 2.504 0.113 9.054 0.170 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.051 0.310 0.577 10.862 0.092 

0.01 0.008 2.041 0.153 5.045 0.537 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.957 6.936 0.008 19.044 0.004 

0.99 0.995 16.572 0.000 13.699 0.033 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.054 2.104 0.146 11.117 0.084 

0.01 0.009 0.459 0.497 2.401 0.879 

AUD 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.946 0.322 0.569 21.712 0.001 

0.99 0.995 5.405 0.020 4.410 0.621 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.024 0.009 0.924 8.946 0.176 

0.01 0.001 3.533 0.060 6.913 0.328 

ARFIMA- 

EGAS 

Short 

position 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.943 1.358 0.243 26.682 0.000 

0.99 0.994 3.451 0.063 14.854 0.021 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.043 1.273 0.259 21.169 0.001 

0.01 0.011 0.166 0.683 22.664 0.000 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.941 2.284 0.130 12.509 0.051 

0.99 0.993 1.539 0.214 9.982 0.189 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.045 0.567 0.451 1.958 0.962 

0.01 0.012 0.827 0.363 4.910 0.670 

ARFIMA- Short Quantile Success Kupiec Prob. Stat. Prob. 
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EGARCH positions 0.95 0.935 5.835 0.015 38.497 0.000 

0.99 0.988 0.437 0.508 51.943 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.053 0.336 0.562 26.482 0.000 

0.01 0.017 6.416 0.011 48.476 0.000 

CAD 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.931 9.471 0.002 37.063 0.000 

0.99 0.986 1.329 0.248 8.906 0.178 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.054 0.664 0.414 58.803 0.000 

0.01 0.011 0.437 0.508 41.287 0.000 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.938 4.163 0.041 12.139 0.058 

0.99 0.990 0.072 0.787 6.008 0.422 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.045 0.544 0.460 7.909 0.244 

0.01 0.009 0.072 0.787 6.008 0.422 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.941 1.950 0.162 6.910 0.438 

0.99 0.992 0.897 0.343 7.339 0.394 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.045 0.567 0.451 1.625 0.977 

0.01 0.011 0.437 0.508 8.254 0.310 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.944 0.869 0.351 17.687 0.007 

0.99 0.992 0.897 0.343 1.161 0.978 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.044 1.005 0.315 31.486 0.000 

0.01 0.010 0.022 0.880 29.148 0.000 

EUR 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.945 0.664 0.414 50.389 0.000 

0.99 0.993 1.539 0.214 20.183 0.002 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.044 1.005 0.315 28.003 0.000 

0.01 0.011 0.437 0.508 27.631 0.000 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.940 2.913 0.087 12.536 0.051 

0.99 0.995 5.405 0.020 17.940 0.006 
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Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.043 1.509 0.219 7.925 0.243 

0.01 0.011 0.557 0.455 1.984 0.921 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.947 0.212 0.644 3.018 0.883 

0.99 0.993 2.383 0.122 5.293 0.624 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.042 1.575 0.209 11.420 0.076 

0.01 0.011 0.166 0.683 10.682 0.153 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.933 7.552 0.005 46.656 0.000 

0.99 0.988 0.437 0.508 28.331 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.055 0.869 0.351 54.501 0.000 

0.01 0.015 3.456 0.063 71.428 0.000 

GBP 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.956 1.509 0.219 16.860 0.009 

0.99 0.994 4.003 0.045 15.021 0.020 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.048 0.065 0.798 16.827 0.009 

0.01 0.005 4.003 0.045 3.439 0.751 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.948 0.049 0.823 28.309 0.000 

0.99 0.990 0.148 0.700 36.951 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.051 0.117 0.732 36.828 0.000 

0.01 0.009 0.148 0.700 41.838 0.000 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.948 0.117 0.732 13.398 0.062 

0.99 0.988 0.437 0.508 4.491 0.721 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.053 0.336 0.562 0.313 0.999 

0.01 0.009 0.013 0.908 5.987 0.424 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.937 4.324 0.037 23.42 0.000 

0.99 0.985 2.649 0.103 57.256 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.056 1.101 0.294 32.181 0.000 
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0.01 0.016 5.344 0.020 68.21 0.000 

USD 

ARFIMA- 

GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.952 0.245 0.620 7.672 0.263 

0.99 0.994 2.853 0.091 2.609 0.856 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.043 1.220 0.269 9.955 0.126 

0.01 0.007 0.662 0.415 7.954 0.241 

ARFIMA- 

EGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.949 0.010 0.918 27.312 0.000 

0.99 0.989 0.022 0.880 30.484 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.044 1.005 0.315 22.822 0.000 

0.01 0.011 0.166 0.683 100.37 0.000 

ARFIMA- 

AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.950 0.0003 0.985 2.447 0.931 

0.99 0.989 0.022 0.880 1.816 0.969 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.044 1.005 0.315 1.624 0.977 

0.01 0.011 0.437 0.508 10.684 0.152 

ARFIMA- 

EGARCH 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

0.95 0.941 2.284 0.130 33.257 0.000 

0.99 0.988 0.437 0.508 56.183 0.000 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

0.05 0.049 0.0003 0.985 22.004 0.001 

0.01 0.015 4.356 0.036 68.377 0.000 

Notes: In the Dynamic Quantile Regression, p=5.E.M: Dynamic Quantile Test of Engle and 
Manganelli (2004). 
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Figure 11 – Out-of-Sample Value-at-Risk forecasts 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 

 

 

 

 

 

 

 

 

 

We further probe these results by performing the Out-of-sample tests of forecasting 

accuracy using the minimum loss functions on ARFIMA-GAS, ARFIMA-EGAS, ARFIMA-

AEGAS and ARFIMA-EGARCH for skewed Student-t distribution and the random walk 

model. The forecast evaluation measures used include root mean square error (RMSE) and 

mean absolute error (MAE). The forecast performance and the corresponding ranking for all 

the models are summarized in Tables 9 and 10. The results indicate that, whatever the 

forecast horizon, the random walk model is beaten by all the other models. It is also observed 

that the ARFIMA-AEGAS model tend to have better predictive results comparing to 

ARFIMA-EGAS and ARFIMA-GAS with some time horizons. We see that asymmetry 

effects with jumps detected on volatility seem to improve the volatility forecasts. For all 

series, the ARFIMA-AEGAS model outperforms the classical ARFIMA-EGARCH. This can 

be explained by the fact that the ARFIMA-EGARCH model specifically captures the long-

memory in the conditional mean and asymmetries in the volatility, which are taken into 

account exponentially and completely neglects the outliers and occasional jumps. 

Furthermore, the model rankings presented in Table 10, indicate that the skewed-Student 

AEGAS is the preferred model for all returns. The GAS models capture the asymmetric 

behavior and the volatility clustering phenomenon in the presence of long-run dynamic 

dependencies in the conditional mean equation. 
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Table 9 – Comparison of predictive qualities 
 

Series Equation Horizon Criteria ( 310 )  
ARFIMA-
EGARCH 

ARFIMA-
GAS 

ARFIMA-
EGAS 

ARFIMA-
AEGAS 

Random 
Walk 

TASI 

Conditional 
mean 

15 days RMSE 2.1130 0.6696 0.6696 0..6575 3.9077 
MAE 14.320 14.280 14.310 13.690 18.542 

30 days RMSE 1.6140 0.5105 0.5105 0.5105 4.9842 
MAE 10.670 10.591 10.581 10.570 21.637 

90 days RMSE 1.2119 0.3657 0.3657 0.3661 15.2770 
MAE 7.4460 7.4310 7.4310 7.4770 23.6330 

Conditional 
Volatility 

15 days RMSE 0.0744 0.0239 0.0240 0.0312 - 
MAE 0.4593 0.4506 0.4578 0.5890 - 

30 days RMSE 0.0519 0.0168 0.0167 0.0167 - 
MAE 0.3624 0.3033 0.2901 0.2899 - 

90 days RMSE 0.0334 0.0105 0.0107 0.0001 - 
MAE 0.1775 0.2046 0.1618 0.1578 - 

Merval 

Conditional 
mean 

15 days RMSE 2.1450 0.6782 0.6822 0.6781 2.7683 
MAE 17.620 17.320 17.500 17.300 21.799 

30 days RMSE 1.8290 0.5792 0.5793 0.6868 3.7974 
MAE 15.990 14.030 14.030 17.810 24.014 

90 days RMSE 0.8192 0.8185 0.8184 0.7859 3.8292 
MAE 19.680 19.670 19.670 19.605 25.198 

Conditional 
Volatility 

15 days RMSE 0.0455 0.0415 0.0719 0.0144 - 
MAE 0.3885 0.3853 0.6960 0.3808 - 

30 days RMSE 0.0711 0.0167 0.0220 0.1986 - 
MAE 0.6641 0.4724 0.6487 0.6266 - 

90 days RMSE 0.0413 0.03521 0.0357 0.0350 - 
MAE 0.8165 0.6254 0.7382 0.6124 - 

CAC 
SMALL 

Conditional 
mean 

15 days RMSE 0.6906 0.2185 0.2185 0.2180 1.6950 
MAE 5.7240 5.6550 5.6620 5.6260 9.3980 

30 days RMSE 0.6602 0.2087 0.2088 0.2087 1.7310 
MAE 5.2210 5.2200 5.2210 5.2190 9.4243 

90 days RMSE 0.6120 0.1928 0.1931 0.1931 1.8044 
MAE 4.7870 4.7740 4.7780 4.7780 9.9630 

Conditional 
 Volatility 15 days RMSE 0.0083 0.0081 0.0073 0.0080 - 

MAE 0.0640 0.0607 0.0606 0.0632 - 
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30 days RMSE 0.0071 0.0068 0.0068 0.0067 - 
MAE 0.0452 0.0446 0.0387 0.0316 - 

90 days RMSE 0.0063 0.0059 0.0057 0.0056 - 
MAE 0.0608 0.0548 0.0450 0.0437 - 

AUD 

Conditional 
mean 

15 days RMSE 0.0823 0.0821 0.0823 0.0812 0.1829 
MAE 0.0283 0.0282 0.0292 0.0267 0.1263 

30 days RMSE 0.0605 0.0452 0.0713 0.0600 0.1857 
MAE 0.0198 0.0183 0.0194 0.0191 0.1298 

90 days RMSE 0.0404 0.0401 0.0415 0.0382 0.1975 
MAE 0.0184 0.0170 0.0174 0.0161 0.1332 

Conditional 
Volatility 

15 days RMSE 0.0263 0.0260 0.0262 0.0255 - 
MAE 0.0077 0.0071 0.0069 0.0064 - 

30 days RMSE 0.0184 0.0182 0.0165 0.0166 - 
MAE 0.0038 0.0031 0.0014 0.0023 - 

90 days RMSE 0.0115 0.0106 0.0109 0.0095 - 
MAE 0.0053 0.0024 0.0015 0.0014 - 

CAD 

Conditional 
mean 

15 days RMSE 0.0734 0.0722 0.0732 0.0716 0.1684 
MAE 0.0253 0.0245 0.0250 0.0236 0.1192 

30 days RMSE 0.0546 0.0537 0.0537 0.0522 0.1721 
MAE 0.0182 0.0171 0.0180 0.0161 0.1248 

90 days RMSE 0.0426 0.0423 0.0437 0.0407 0.1855 
MAE 0.0208 0.0202 0.0202 0.0187 0.1363 

Conditional 
Volatility 

15 days RMSE 0.0207 0.0207 0.0201 0.0163 - 
MAE 0.0061 0.0059 0.0058 0.0033 - 

30 days RMSE 0.0146 0.0121 0.0141 0.0133 - 
MAE 0.0069 0.0032 0.0038 0.0042 - 

90 days RMSE 0.0112 0.0097 0.0090 0.0071 - 
MAE 0.0041 0.0021 0.0019 0.0012 - 

EUR 

Conditional 
mean 

15 days RMSE 0.0968 0.0962 0.0968 0.0945 0.1889 
MAE 0.0317 0.0313 0.0314 0.0295 0.1397 

30 days RMSE 0.0699 0.0697 0.0678 0.0699 0.2018 
MAE 0.0212 0.0211 0.0197 0.0212 0.1443 

90 days RMSE 0.0452 0.0450 0.0452 0.0441 0.2225 
MAE 0.0184 0.0182 0.0181 0.0172 0.1634 

Conditional 
Volatility 

15 days RMSE 0.0364 0.0360 0.0356 0.0340 - 
MAE 0.0100 0.0097 0.0088 0.0080 - 

30 days RMSE 0.0269 0.0257 0.0256 0.0248 - 
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MAE 0.0075 0.0063 0.0052 0.0051 - 

90 days RMSE 0.0154 0.0143 0.0148 0.0124 - 
MAE 0.0031 0.0023 0.0021 0.0015 - 

GBP 

Conditional 
mean 

15 days RMSE 0.0342 0.0342 0.0351 0.0311 0.1373 
MAE 0.0169 0.0165 0.0169 0.0128 0.0879 

30 days RMSE 0.0277 0.0276 0.0266 0.0244 0.1397 
MAE 0.0139 0.0134 0.0126 0.0113 0.1018 

90 days RMSE 0.0260 0.0260 0.0231 0.0242 0.1482 
MAE 0.0159 0.0153 0.0125 0.0131 0.1521 

Conditional 
volatility 

15 days RMSE 0.0040 0.0038 0.0035 0.0025 - 
MAE 0.0018 0.0018 0.0019 0.0014 - 

30 days RMSE 0.0029 0.0027 0.0027 0.0017 - 
MAE 0.0015 0.0009 0.0009 0.0007 - 

90 days RMSE 0.0048 0.0021 0.0042 0.0037 - 
MAE 0.0034 0.0012 0.0032 0.0028 - 

USD 

Conditional 
mean 

15 days RMSE 0.0993 0.0991 0.0992 0.0955 0.2032 
MAE 0.0328 0.0315 0.0314 0.0284 0.1453 

30 days RMSE 0.0718 0.0714 0.0681 0.0707 0.2105 
MAE 0.0212 0.0102 0.0062 0.0094 0.1566 

90 days RMSE 0.0477 0.0469 0.0462 0.0448 0.2312 
MAE 0.0182 0.0118 0.0137 0.0092 0.1721 

Conditional 
volatility 

15 days RMSE 0.0394 0.0378 0.0383 0.0384 - 
MAE 0.0125 0.0102 0.0104 0.0116 - 

30 days RMSE 0.0271 0.0265 0.0269 0.0244 - 
MAE 0.0055 0.0053 0.0061 0.0051 - 

90 days RMSE 0.0157 0.0155 0.0153 0.0145 - 
MAE 0.0036 0.0023 0.0022 0.0021 - 
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Table 10 – Model rankings 

 
 
 
 
 
 
 
 
 
 
 
 
 
Consequently, the price movements appear as the result of lasting shocks which affect the 

stock and Bitcoin markets. In other words, the consequences of a shock will be sustainable, 

the TASI, the Merval, the CAC SMALL and the Bitcoin returns will not come back to their 

previous fundamental value. The shock of returns will be persistent in the long term and the 

volatility exhibits nonlinearity and asymmetry effects with jumps. 
 
 

6. Conclusions 

In this paper, we have combined path-dependence nature of stock price with asymmetric 

volatility estimated and characterized by jumps. An ARFIMA model with skewed-Student 

AEGAS errors, we argued, has the potential to capture long-range persistence in the 

conditional mean and asymmetric jumps and volatility clustering in the conditional variance. 

This model offers better features of the dynamic volatilities and exploits nonlinear and 

asymmetric structures to model the existence of time-varying parameters. In this regard, we 

use the scaled score of the likelihood function. In addition, the asymmetric exponential GAS 

model serves as an extension of the GARCH family models which assume that the 

conditional distribution does not vary over time. It exploits the full likelihood of information. 

Taking a local density score step as a driving mechanism, the time-varying parameters 

increase and produced a clear indication of a leptokurtic behavior and a heavy tail in the 

financial series. 

Series Criteria ARFIMA-
EGARCH 

ARFIMA-
GAS 

ARFIMA-
EGAS 

ARFIMA-
AEGAS 

TASI RMSE 4 2 3 1 
MAE 4 3 2 1 

Merval RMSE 4 2 3 1 
MAE 4 2 3 1 

CAC 
SMALL 

RMSE 3 2 2 1 
MAE 3 2 2 1 

AUD RMSE 4 2 3 1 
MAE 3 2 2 1 

CAD RMSE 4 2 3 1 
MAE 4 2 3 1 

EUR RMSE 4 2 2 1 
MAE 4 3 2 1 

GBP RMSE 4 2 3 1 
MAE 4 2 2 1 

USD RMSE 3 2 2 1 
MAE 3 2 2 1 
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Our empirical exercise focused on the behavior of the time-varying parameter by 

estimating the ARFIMA-AEGAS model with the Skewed Student-t maximum likelihood. 

From the dynamic quantile Engle-Manganelli test results, the Out-of-sample Value-at-Risk 

forecast obtained by the ARFIMA-AEGAS model gives satisfactory results at 99% and 95% 

confidence level for short and long trade positions. Using the minimum loss functions, the 

ARFIMA-AEGAS model shows a clear superiority over all the other models. Particularly, the 

forecasts of the ARFIMA-AEGAS model show a clear improvement compared to the random 

walk model at all horizons. The observed movements appear as the result of lasting and 

asymmetric shocks, which affect these financial markets. Consequently, recent works on 

volatility modeling through asymmetric exponential GAS process, which captures volatility 

clustering for both negative and positive returns, seem particularly promising and  may 

provide new evidence to better understand the nonlinear and asymmetric dynamics of 

financial series.  

The proposed ARFIMA-AEGAS model, as seen in our exercise, possesses better 

predictive power over conventional methods for both stock and Bitcoin prices. Its 

implications for Bitcoin market worthy of note: ‘memory’ forms an essential component in 

cryptocurrency market in order for us to model ‘sentiment’ of investors. Both volatility and 

memory – combined within a single framework, offers rich insights into the way asset prices 

evolve and can be predicted in the absence of a strong theoretical asset pricing framework, 

such as Bitcoin market. Finally, as there is a strong evidence of memory in these markets, we 

conclude that both stock and Bitcoin markets are relatively inefficient (weakly efficient), so 

that an investor can exploit partly some magnitudes of memory to predict future returns. But 

then, it is this memory, in interaction with market forces, which otherwise have different 

degrees of convergence rate to a steady state mean, make the ‘weak efficient’ character 

weakening further. An immediate consequence is that interactive memory can make the 

system appear as highly non-linear and unpredictable. A challenge remains to disentangle 

components of the asset price series with strong memory and the rest to be modelled non-

parametrically. This latter proposition can be a subject of further research. 
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