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Abstract

We introduce a new equilibrium concept, called the individually-consistent sequential equilibrium

(ICSE). This concept is more permissive than the sequential equilibrium (Kreps, Wilson (1982)) but
more demanding than the self-confirming one (Fudenberg, Levine (1993)). We require that players
share common beliefs on the actions planned to be played at all the information sets, but not on the
potential deviations. Therefore, in contrast to Kreps, Wilson (1982), we allow different players to have
in mind different perturbation systems, or alternative hypotheses. This is motivated by the fact that
beliefs about unobserved events are by essence not verifiable.
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1 Introduction

Myerson wrote that "the goal of game-theoretic analysis is to try to predict the path of play" (Myerson
(1991, p.38)), that is, to predict the strategies used by the different players, and therefore to predict
the outcome of strategic interactions. Several solution concepts have been developed, among which the
most famous is the Nash equilibrium. It is however well-known that the concept of Nash equilibrium
sometimes relies on incredible (or implausible) threats from the part of the players. That is, there are
some equilibrium strategy profiles that satisfy the definition of theNash equilibrium, but that intuitively
(or reasonably) should not be considered as such. The issue arises from the fact that there are no
restrictions placed on what players might play at out-of-equilibrium information sets.

In order to discard non-intuitive equilibrium strategy profiles, a vast program of equilibrium
refinements has been launched by Reinhard Selten (Selten (1965), Selten (1975)). Among these are
the subgame-perfect Nash equilibrium (SPNE, Selten (1965)), the (weak) perfect Bayesian equilibrium

(WPBE, discussed in Fudenberg, Tirole (1991), Bonanno (2016) or Watson (2016)), and the sequential

equilibrium (SE, Kreps, Wilson (1982)), which is technically close to the perfect equilibrium (PE, Sel-
ten (1975)). The sequential equilibrium is the solution concept commonly used to solve extensive-form
games. It requires consistency of beliefs at all information sets, even at those that find themselves out
of the (equilibrium) strategy path. Most importantly, the players are required to share the same beliefs
at out-of-equilibrium information sets, even about the numerical values of mathematical artifacts used
to generate perturbations of strategy profiles, which are arbitrary by nature.

Based on the insights provided by the self-confirming equilibrium concept (Fudenberg, Levine
(1993)), we argue for softer restrictions on out-of-equilibrium beliefs. Indeed, we argue that there is
no a priori basis for requiring players to agree on the probabilities of other players’ possible mistakes
(or deviations). Our solution concept, called the individually-consistent sequential equilibrium (ICSE),
accepts different perturbation systems for different players. Therefore, our concept is less demanding
than the sequential equilibrium, but stronger than the self-confirming one, because we require aminima

that the equilibrium strategy profile be a perfect Bayesian equilibrium of the game.
We proceed as follows. Section 2 introduces some notation and rapidly discusses the characteris-

tics of the sequential equilibrium. Section 3 introduces our solution concept with a particular example.
Section 4 discusses properties of our solution concept and possible extensions. Section 5 concludes.

2 Sequential Equilibrium

Let N represent a finite set of players (possibly comprising chance). Let T represent the set of all nodes
of a given game (with X the set of non-terminal (decision) nodes, and Z the set of terminal nodes). Let
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H denote the set of all possible information sets, with h ∈H a specific information set. LetHi ⊆H denote
the set of all possible information sets at which player i might be called upon to play.

For every h ∈Hi, we note Ah the set of actions available to player i at information set h. A pure

strategy for player i specifies one action at every of her information sets. Let Ai =⨉h∈Hi
Ah. That is, Ai

is the set of pure strategies available to player i, with typical element ai. A mixed strategy for player i is
a probability distribution over her set of pure strategies. We can write the set of all mixed-strategies for
player i as ∆(Ai).1 Therefore, the set of all possible mixed-strategy profiles is written ⨉i∈N ∆(Ai), with
typical element τ = (τi)i∈N . A behavioral strategy for player i is not a probability distribution over her
set of pure strategies, but a probability distribution over her possible actions, at each of her information
sets. That is, a behavioral strategy for player i is a member of ⨉h∈Hi

∆(Ah). The set of behavioral-
strategy profiles is therefore ⨉i∈N ⨉h∈Hi

∆(Ah), with typical element π = (πi)i∈N . Finally, let ui ∶Z →R+
represent player i’s payoff if terminal node z ∈Z is reached.

A system of beliefs is a function µ ∶X → [0,1] such that, ∀h ∈H,Σx∈hµ(x) = 1. That is, a system
of beliefs associates to each node x in an information set h a number between 0 and 1 that has to be
interpreted as representing the relative probability of the player finding herself at that specific node x,
given that she finds herself in that specific information set h. Beliefs are usually assumed to be common
knowledge, and are therefore the same between the players (see Fudenberg, Tirole (1991, p.240)). We
will later discuss this assumption, and call for softer restrictions.

Different solution concepts place different restrictions on what the players’ beliefs can be. The
weak Perfect Bayesian Equilibrium (WPBE) is the weakest refinement. It states that strategies should
be sequentially rational,2 and that players’ beliefs should obey Bayes’ rule "whenever possible". In the
WPBE, Bayes’ rule needs to be applied at every information set that happens with positive probability,
given π = (πi)i∈N .3 The SE requires consistency of beliefs at all information sets, even at those that
find themselves out of the (equilibrium) strategy path. To generate beliefs that are consistent (or ra-
tional) at every information set, Kreps, Wilson (1982) require that the belief vector µ be the limit of a
sequence of belief vectors derived from Bayes’ rule applied to a sequence of fully mixed strategy profiles
(strategy profiles that put positive probability to every action in every information set). Let’s denote by

⨉h∈H∆0(Ah) the set of all fully mixed behavioral strategies. Formally, a pair (µ,π) is consistent if and
only if there exists some sequence (µ̂k, π̂k)∞k=1 such that:

1Formally, ∆(Ai) = {p ∶Ai →R∣Σa∈Ai
p(a) = 1 and p(a) ≥ 0,∀a ∈Ai}.

2Sequential rationality requires that players, given their beliefs, choose the action(s) that maximize their expected payoffs at
every information set they might be called upon to play. We denote by i(h) the decision-maker at information set h, and by −i(h)
all decision-makers at every other information set (including i). Formally, we say that a strategy profile π = (πi)i∈N is sequentially
rational at some information set h, for a given system of beliefs µ, if the following condition holds:

E[ui(h)∣h,µ,πi(h),π−i(h)] ≥E[ui(h)∣h,µ,π̃i(h),π−i(h)],∀π̃i(h) ∈∆(Ah).
We say that a strategy profile π is sequentially rational given µ if it is sequentially rational at all information sets, given the
beliefs.

3The Perfect Bayesian Equilibrium (PBE) requires (at least) that the strategy profile be a WPBE in every strict subgame of
the original game. Sometimes, stronger restrictions are imposed; see Fudenberg, Tirole (1991).
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1. π̂k ∈⨉h∈H∆0(Ah),∀k ∈ {1,2,3, ...},

2. µ̂kh(x) =
P (x∣π̂k

)

Σ
y∈h

P (y∣π̂k)
,∀h ∈H,∀x ∈ h,∀k ∈ {1,2,3, ...},4

3. πi(h)(ah) = lim
k→∞

π̂ki(h)(ah),∀i ∈N,∀h ∈Hi,∀ah ∈Ah,
5

4. µh(x) = lim
k→∞

µ̂kh(x),∀h ∈H,∀x ∈ h.

A SE is defined to be any pair (µ,π) that is consistent and sequentially rational (Kreps, Wilson
(1982, p.872)).6

What is crucial in the concept of SE is that the players are required to implicitly agree on the
value of the ε used to generate perturbations of the strategy profiles. That is, while the ε are arbitrary
in nature (they only represent mathematical artifacts), players still need to share the same beliefs about
their numerical values. Kreps, Wilson (1982, p.873) justify this in the following way. Players begin the
game with some (finite) sequence of hypotheses about how the game will be played. Their "primary
hypothesis" is π. If ever they find themselves at an information set that was supposed to happen with
zero probability, they will attempt to apply their "second most likely hypothesis" to try to understand
how they might have arrived there. If this second hypothesis fails, then they attempt to apply their
"third most likely hypothesis", and so on, until their situation can be rationalized. These alternative
hypotheses are actually beliefs about the values of the ε’s, that is, about the likely deviations of the other
players. The strongest requirement is what they call lexicographic consistency, which is based on the
following argument: "if there are rational secondary hypothesis, they should be unanimously held, just
as in the primary hypothesis [π]" (Kreps, Wilson (1982, p.874)). Therefore, in their view, there must
exist a consensus among the (rational) players about the different perturbation probabilities, or else the
strategy profile can not be considered as a SE.

We argue that this requirement is too strong. Indeed, there seem to us to be no a priori basis for
requiring players to agree on the probabilities of other players’ possible mistakes (or deviations).7 This is
why we advocate for softer restrictions, by combining the insights provided by the sequential, as well as
the self-confirming equilibrium (SCE, developed by Fudenberg, Levine (1993)). Fudenberg and Levine
justify their concept by seeing it as the end result of a process of learning, in which players repeatedly
observe the other players’ actions (and thereby revise their beliefs about other players’ strategies using
only the observation of previous play), but never observe what happens (or would happen) at information
sets that are never reached. Once this process of learning leads to an equilibrium (the SCE), players need
to have correct expectations about what the others will play (the observed actions), but not necessarily

4With P (x∣⋅) being computed using Bayes’ rule.
5i(h) represents the player playing at information set h.
6For a definition of sequential rationality, see Kreps, Wilson (1982, p.871-2).
7If we consider deviations as signalling something, as in the case of forward induction, then this argument does not apply.

However, in the case of the SE, ε’s are explicitly considered as perturbations, and therefore potential mistakes made by the players.
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about what players might play at contingencies that never arise. Moreover, because out-of-equilibrium
play is never observed, different players need not have the same beliefs about what the others would do,
would they reach a zero probability information set.

3 An Example of Individually-Consistent Sequential Equilibrium

This section introduces our solution concept with an example. Consider the following three-player game;
particularly, consider the strategy profile {C1,B2,B3}, which can be seen as the socially optimal situa-
tion. Probabilities at every node are represented in brackets.

Player 1

(5.99,10,10)

C1

<1 - α>

<ι>

(0,6,0)

B3

(6,3,1)

A3

B2

<δ>

(0,5,3)

B3

(1,4,4)

A3

A2

B1

<α>

<γ>

(1,0,4)

B3

(0,1,1)

A3

B2

<β>

(6,4,2)

B3

(6,2,3)

A3

A2

A1

Player 2

Player 3

Figure 1: An example illustrating our solution concept.

The strategy profile {C1,B2,B3} is a Nash equilibrium of the game. It is however not a sequential
equilibrium of the game. To see why, we need to perturb the strategy profile, and evaluate whether
player 2’s and player 3’s actions are indeed best responses to C1, given consistent beliefs at their respec-
tive information sets. The perturbed scenario is {(1−εk0 −εk1)C1+ε

k
1B1+ε

k
0A1,(1−εk2)B2+ε

k
2A2,(1−εk3)B3+

εk3A3}. Consistency requires that εk0/(εk0 +εk1)→α, αεk2 →β, (1−εk2)α→ γ, εk2(1−α)→ δ and (1−εk2)(1−α)→ ι

when the εk go to 0. It is therefore necessary that β = δ = 0, γ = α, ι = 1−α, and α can be any num-
ber in [0,1]. Given the actions of the other two players, player 2 would be willing to play B2 only if
6(1−α) ≥ 5(1−α)+ 4α, or α ≤ 1

5 . Player 3 would be willing to play B3 only if 4α ≥ (1−α)+α, or α ≥ 1
4 .

Given that α cannot simultaneously be greater than 1
4 and smaller than 1

5 , players’ actions can not be
reconciled with shared consistent beliefs, and the strategy profile therefore can not be considered as
a sequential equilibrium. In fact, there does not exist any sequential equilibrium that supports the
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strategy C1 for player 1 (and therefore supports the socially optimal arrangement).8

The key particularity of our solution concept is that we accept different perturbation systems
for different players. It follows that the strategy profile {C1,B2,B3} is a solution of the game with
respect to our notion of equilibrium, given that the only feature that prevents it from being a sequential
equilibrium is that player 2 and player 3 (need to) have different beliefs about the numerical values of
the perturbations εk0 and εk1 . Consider the following situation: let’s assume that for player 2, α = 1

5 (and
so 1−α = 4

5 ), while for player 3, α = 1
4 (and so 1−α = 3

4 ). This might the case if player 2 and player 3
have in mind the following perturbed scenarios: {(1−2εk −8εk)C1 +8εkB1 +2εkA1,(1− εk)B2 + ε

kA2,(1−

εk)B3 + ε
kA3} for player 2, and {(1−3εk −9εk)C1 +9εkB1 +3εkA1,(1− εk)B2 + ε

kA2,(1− εk)B3 + ε
kA3} for

player 3. While the beliefs about the values of the perturbations are different between the two players,
having these particular beliefs makes both B2 and B3 best responses to C1, and to the action played
by the other. Note here that player 2’s and player 3’s beliefs are still going in the same direction: both
believe that it is more likely that player 1 might deviate to B1 rather than to A1; the difference is only
in relative terms. We discuss notions of distance and direction of beliefs in the following section.

4 Characteristics of the Individually-Consistent Sequential Equilibrium

Our solution concept is motivated by the fact that beliefs about unobserved events are by essence not
verifiable. We accept the idea that there exists a consensus on the actions players play and plan to play
at their information sets (the shared primary hypothesis according to Kreps, Wilson (1982)), but we do
not require that the players share common beliefs on the other actions.

Formally, what distinguishes our concept from the SE is that we do not require the existence of
only one sequence of perturbed strategy profiles on which all players need to agree, but allow for different
perturbation systems for different players. Therefore, a pair (µ,π) is individually-consistent if and only
if there exist some sequences (µ̂i

k, π̂i
k
)∞k=1 such that, ∀i ∈N :

1. π̂ik ∈⨉h∈H∆0(Ah),∀k ∈ {1,2,3, ...},

2. µ̂khi(x) =
P (x∣π̂i

k
)

Σ
y∈h

P (y∣π̂i
k)
,∀h ∈H,∀x ∈ h,∀k ∈ {1,2,3, ...},9

3. πi(h)(ah) = lim
k→∞

π̂kj,i(h)(ah),∀j ∈N,∀h ∈H,∀ah ∈Ah,

4. µhi(x) = lim
k→∞

µ̂khi(x),∀h ∈H,∀x ∈ h.

An individually-consistent sequential equilibrium (ICSE) is any pair (µ,π) that is both individually-
consistent and sequentially rational.

8The proof can be found in the Appendix.
9µ̂hi(x) denotes player i’s beliefs at information set h.
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The beliefs of a same player are consistent, in that her beliefs, at every information set, derive
from a same system of perturbations. Nothing precludes different players from sharing the same beliefs
about the numerical values of the perturbation parameters, but we do not require that they have to do
so. Players agree on the planned actions; they may only disagree on the beliefs assigned to actions that
are never played or planned to be played. The idea is that, given that these actions are never observed,
no player has any real information about them. So, in the above example, player 2 may think that player
1, if deviating from C1, plays A1 and B1 with the probabilities 2

10 and 8
10 , whereas player 3 may think

that player 1 plays A1 and B1 with the probabilities 3
12 and 9

12 . Even if player 2 knows player 3’s beliefs,
she is not compelled to change her beliefs, given that player 3 has no more information than herself,
so she might be right and he might be wrong. In the same way, player 3, even if he knows player 2’s
beliefs, is not compelled to change his beliefs, given that player 2 has no more information than himself,
so he might be right and she might be wrong. It derives from this fact that there is no reason to be more
restrictive on beliefs.

Yet, if players belong to the same community and feel ill at ease when having opposite beliefs, we
may possibly introduce some restrictions, based on notions of direction and distance.

As a matter of example, if we require beliefs to go in the same direction (as was the case in the
studied example), then players might be less likely to try to converge on the same beliefs, and this
even if they have the opportunity to communicate; this might justify the acceptance of different beliefs.
If player 2 believes that player 1 is more likely to deviate towards B1 than towards A1 (in the above
example, α = 1

5 and 1−α = 4
5 ) and then learns that player 3 believes the same thing (even if the weights

placed on the perturbation parameters are different; in the above example, α = 1
4 and 1−α = 3

4 ), she might
be less likely to revise her beliefs compared to a situation in which she learns that player 3 believes a
deviation towards A1 is more likely (assuming accuracy motives from the part of the players).

Requiring a same direction of beliefs amounts to ordering the beliefs at each information set in
the same way, i.e., to add a fifth property:

5. ∀h ∈H,∀x and x′ ∈ h,∀i and j ∈N , if µhi(x) ≥ µhi(x′), then µhj(x) ≥ µhj(x′).

Restrictions based on distance follow a similar logic. In the above studied example, player 3
believes that player 1, if deviating, plays A1 with probability 1

4 , whereas player 2 believes that player
1 plays A1 with probability 1

5 . Yet 1
4 and 1

5 are not very distant: they are both close to what could be
a virtual common probability 4.5

20 . Another way to express this small distance would be to look at the
payoffs. As a matter of fact, by replacing, in Figure 1, the underlined numbers 1 and 6 by 0.87 and 6.17
respectively, we get a game where players 2 and 3 can share the same beliefs about player 1’s deviation
(with α = γ = 4.5

20 ), that is to say a game where (C1, B2, B3) becomes a SE. Therefore, small differences in
outcomes may translate small differences in beliefs, in a way that has not been defined up to now.
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5 Conclusion

We introduce a new solution concept, called the individually-consistent sequential equilibrium (ICSE),
which combines the insights provided by the concepts of sequential (Kreps, Wilson (1982)) and self-

confirming (Fudenberg, Levine (1993)) equilibrium. While the sequential equilibrium requires lexi-

cographic consistency, our solution concept accommodates situations in which different players have in
mind different perturbations systems. This is motivated by the fact that beliefs about unobserved events
are by essence not verifiable.

Our concept is therefore more permissive than the sequential equilibrium, but more demanding
than the self-confirming one. Because we require sequential rationality, the ICSE always a minima

picks perfect Bayesian equilibria (PBE), while self-confirming equilibria need not even be Nash.
We discuss potential restrictions on beliefs, based on the notions of direction and distance. These

restrictions, while constraining the range of strategy profiles that can be considered as solutions, have
an intuitive flavor. Indeed, if we assume accuracy motives from the part of the players, then these
restrictions might actually justify the acceptance of different beliefs for different players. Further work
will generalize their properties.

Appendix

We show that there are no sequential equilibria supporting the action C1 for player 1 (and therefore the
socially optimal situation) in the game shown in Figure 1.

Case 1: Player 2 plays A2. Therefore player 1 plays A1.
Case 2: Player 2 plays B2.
(i): If player 3 plays A3, player 1 plays B1.
(ii): If player 3 plays B3, then player 1 might want to play C1, but we have already shown that

the beliefs that would support this equilibrium are not mutually consistent.
(iii): If player 3 plays A3 and B3, then γ = 1

4 , and so necessarily α = 1
4 . But then, player 2 would

prefer to play A2. To show this, first let r be the probability that player 3 plays A3. By playing A2, player
2’s expected payoff is 1

4(2r+4(1−r)+ 3
4(4r+5(1−r)) = 1

4(14r+19(1−r)). By playingB2, player 2’s expected
payoff is 1

4r+
3
4(3r+6(1−r)) = 1

4(10r+18(1−r)), which is strictly inferior to the expected gain of playing
A2.

Case 3: Player 2 plays A2 and B2.
(i): Player 3 plays A3. In this case, it would not be profitable for player 2 to randomize, given that

playing only A2 would allow her to always gain strictly more.
(ii): Player 3 plays B3. Given player 2’s indifference between A2 and B2, it is necessary that α = 1

5 .
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To show that with these beliefs, player 3 would want to deviate, first note q the probability that player
2 would play A2. Then by playing A3, player 3’s expected gain would be 1

5(1+2q)+ 4
5(1+3q) = 1

5(5+14q).
By playing B3, player 3’s expected gain would be 1

5(4−2q)+ 4
5(3q) =

1
5(4+10q), which is strictly inferior

to the expected gain player 3 would receive by playing A3.
(iii): Player 3 playsA3 andB3. Let r be the probability that player 3 playsA3, and q the probability

that player 2 plays A2. Let ε0 and ε1 be the perturbations associated to A1 and B1 respectively. The
expected gain of playing A2 for player 2 is ε0(2r+ 4(1− r))+ ε1(4r+ 5(1− r)) = ε0(4− 2r)+ ε1(5− r). The
expected gain of playingB2 for player 2 is ε0r+ε1(3r+6(1−r))= ε0r+ε1(6−3r). Equalizing these expected
gains yields ε0(4−2r)+ ε1(5−r) = ε0r+ ε1(6−3r), or ε0(4−3r) = ε1(1−2r).

The expected gain of playing A3 for player 3 is ε0(3q+(1−q))+ε1(4q+(1−q)) = ε0(1+2q)+ε1(1+3q).
The expected gain of playing B3 for player 3 is ε0(2q+4(1−q))+ ε13q = ε0(4−2q)+ ε13q. Equalizing these
expected gains yields ε0(1+2q)+ε1(1+3q)= ε0(4−2q)+ε13q, or ε0(3−4q)= ε1. It follows that ε1 = ε0(3−4q)=

ε0
4−3r
1−2r . Therefore, 3− 4q = 4−3r

1−2r , so 4q = 3− 4−3r
1−2r =

3−6r−4+3r
1−r = −1−3r

1−r , which is strictly inferior to 0; an
impossible event.
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