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Abstract

This paper examines the link between oil and renewable energy markets.
To this end, on the one hand, we identify high and low volatility states of
oil markets, using the regime-switching EGARCH (1,1) model, and analyze
its effects on the renewable energy market. On the other hand, we develop a
methodology to identify positive and negative oil shocks and investigate their
implications for renewable energy markets. We show that: (1) state shifts are
clearly present in the oil and renewable energy data; (2) the volatility links be-
tween oil and renewable energy markets are regime-dependent. When the oil
market is in a high-volatility regime, it exacerbates the volatility of renewable
energy markets, but in a low-volatility regime, it has no effect or a stabilizing
effect on the volatility of renewable energy market; (3) the results also reveal
that the renewable energy market reacts positively to extreme upward move-

ments of oil prices and negatively to extreme downward movements. These
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results have several implications in terms of policies, portfolio optimization

and risk management.
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1 Introduction

The relationship between the oil and renewable energy markets is a crucial issue
involving several actors with sometimes differing objectives. For governments, the
goal is firstly to limit fossil-fuel dependence and improve energy security. However,
they are also motivated by environmental protection concerns, the threats posed by
climate change and, in particular, by the need to successfully implement the 2015
Paris Agreement?. Consequently, mobilizing investment and financing in low-carbon
energy technologies, and especially in renewable electricity, is now central to imple-
menting the Paris Agreement OCDE [2016]. This would be mainly achieved through
institutional and individual investors, so it is crucial for them to have a sound un-
derstanding of the interactions between these markets, to enable them to optimize
their capital allocations. For investors, renewable energy provides an opportunity
to diversify their energy portfolios. In fact, in the light of fossil fuel scarcity and
environmental awareness, green energy-related assets have attracted considerable
attention and offer the market investment alternatives Gormus and Sarkar [2014].
Therefore, in terms of technology and maturity, investors are more interested in so-
lar and wind energy.

The trend for global renewable energy investments has been upward, led mainly by
solar and wind power. For example, between 2007 and 2008, solar energy increased
by 57% and wind energy rose by 22.4% (see Figure 1). A similar situation was
observed between 2010 and 2011 but with lower growth rates (49.5% for solar and
17.1% for wind). This performance was mainly attained in China, the Asia-Oceania
regions and Europe. In 2015, developing countries represented the majority ($156
billion) of the investment commitment to renewables, led by China ($102.9 billion),
India ($10.2 billion) and Brazil ($7.1 billion). Developed markets invested $130 bil-
lion in 2015, led by Europe ($48.8 billion), the United States ($44.1 billion) and

Japan ($36.2 billion) ®. However, the 18% decrease in investment in 2016 compared

2concluded by the 21st Conference of the Parties (COP21) of the United Nations Framework

Convention on Climate Change (UNFCCC).
3World Economic Forum, 2016. http://www3.weforum.org/docs/WEF_Renewable_

Infrastructure_Investment_Handbook.pdf



to 2015 was partly due to the Chinese economic downturn and to the drop in prices

of solar panels and other equipment.
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Figure 1: Global New Investment in Clean Energy by Sector

Source: Bloomberg New Energy Finance

Renewable energy and oil price stocks share differences and similarities, in terms
of investment opportunities. In this way, renewable energy investments must be sus-
tainable in order to improve their competitiveness against non- renewable energies.
As the costs of producing renewable energy come down while the costs of producing
fossil fuels rise, a substitution effect will occur between fossil fuel sources and re-
newable energy sources Sadorsky [2012b]. The links between the oil and renewable
energy markets have attracted a great deal of attention from researchers, investors
and public decision-makers. However, very little is known about the relationships
between clean energy stock prices and various other important macroeconomic vari-
ables Sadorsky [2012a], and these links have not been clearly established in the
literature. In fact, Henriques and Sadorsky [2008], Inchauspe et al. [2015] find a
weak dependence between oil prices and renewable energy returns while Reboredo
[2015], Reboredo et al. [2017], Bondia et al. [2016], Kumar et al. [2012], Sadorsky
[2012a], Managi and Okimoto [2013], found a significant relationship. The connec-

tion between oil and renewable energy markets seems to be more occasional than



permanent, and it is stronger during periods of uncertainty.

The main purpose of this paper is to assess the extent and evolution of the links
between oil and renewable energy markets. In other words, in the first part, we
identify high and low oil volatility periods and investigate their effects on renewable
energy markets. In the second part, we develop a strategy based on VaR violation,
in order to identify positive and negative oil shocks and investigate their implica-
tions for renewable energy markets. Our strategy allows us to evaluate whether the
transmission of oil price shocks is immediate or if it occurs a few days before or after
an oil market shock. These aspects could be addressed by the following questions:
how do renewable energy markets react to low and high oil price volatility? Do the
dates of high oil price volatility periods coincide with the dates of high renewable en-
ergy price volatility periods? How do renewable energy markets respond to extreme
upward or downward movements in oil prices? Does the renewable energy market
respond immediately? In other words, does the renewable energy market anticipate
oil price shocks? How quickly do oil price shocks dissipate?

We consider that there is an extreme movement (up or down) if the VaR (positive
or negative) is exceeded. This paper is related to the study by Reboredo [2015] who
investigates the systemic risk of oil prices on renewable energy stock prices. However,
(1) to the best of our knowledge, we introduce Regime-Switching EGARCH Models
into this context for the first time, in order to enable the oil price volatility process
to shift between high and low volatility states and analyze their impacts on the
renewable energy market. (2) Then, we focus on the impact of extreme oil price
movements on renewable energy returns, using dummy variables to capture extreme
upward or downward movements based on VaR violation. (3) Our methodology has
the advantage of dating the day of transmission extremely accurately, while also
enabling an assessment of whether oil price shocks are anticipated or are persistent.
To the best of our knowledge, our paper is the first empirical study to document
these issues. (4) Our study distinguishes and compares the effects of upward and
downward movements of oil prices on renewable energy markets.

Our empirical results show a positive link between oil and renewable energy



prices. In fact, the oil market is characterized by low and high volatility regimes.
When the oil market is in a low volatility regime, it has no effect on the SOLAR and
SPGCE index but tends to stabilize the volatility of TECH market. The results of
the WIND and ERIX index are different from those of other energy sectors. These
markets do not react immediately to oil price shocks, compared with other markets
(SOLAR, SPGCE, TECH). When the oil market is in a high volatility regime,
the WIND market reacts a few days later, which may coincide with the transition
from a high oil market volatility regime to a low volatility regime. However, these
results do not indicate whether the volatility is due to oil prices rising or falling.
We therefore identified upward and downward movements of oil prices, based on
VaR violation. The results obtained show that an extreme upward movement in oil
prices only has a significant positive impact on SOLAR and SPGCE returns. The
WIND, ERIX and TECH indexes do not react to extreme upward movements of oil
prices. However, downward movements of oil prices are highly negatively correlated
to renewable energy indexes. It is important to underline that the reaction of the
renewable energy market, following an oil market shock, seems to be immediate,
excepting the WIND index which reacts one day later. The TECH index anticipates
oil prices shocks one to two days before, while these shocks are not anticipated by
the other indexes (SOLAR, WIND, ERIX, SPGCE). Shock persistence varies among
renewable markets. For TECH, SPGCE and ERIX, the effect of the shock disappears
quickly. However, for SOLAR, shocks are more likely to persist for two to three days,
and at least five days for WIND. The remainder of this paper is organized in the
following manner. We present a review of the literature in Section 2 and describe the
methodological approach in Section 3. Section 4 describes the data and Section 5
presents the empirical results. We present our concluding remarks and implications

in Section 6.

2 Literature review

Promoting the Green economy is partly dependent on renewable energy deployment

and therefore on the performance and economic viability of companies operating



in this sector. Consequently, the identifying factors, which determine the perfor-
mance of these companies, have attracted the attention of many researchers. In this
context, oil prices are considered as one of the main factors that could impact the
returns of renewable energy companies. This is the idea behind many studies in
the literature Reboredo [2015],Reboredo et al. [2017]. Other authors include other
potential determinants, such as the technology market (Henriques and Sadorsky
[2008], Sadorsky [2012a], Inchauspe et al. [2015]), or the carbon market Kumar
et al. [2012]. However, the relationship between renewable energy market and tech-
nology market seems to have more consensus in the literature than the relationship
between renewable energy and oil markets. Indeed, the stock prices of technology
and alternative energy companies are highly and positively correlated (Henriques
and Sadorsky [2008]; Sadorsky [2012a]; Bondia et al. [2016]; Inchauspe et al. [2015];
Kumar et al. [2012]). Investors consider renewable energy and technology stocks to
be similar asset classes.

Regarding the relationship between oil and renewable energy prices, there is no
consensus in the literature.Henriques and Sadorsky [2008], Sadorsky [2012a], In-
chauspe et al. [2015] found a weak correlation while Kumar et al. [2012], Managi
and Okimoto [2013], Reboredo [2015] conclude that there is a significant positive
relationship.

Henriques and Sadorsky [2008], analyzes the relationship between oil prices, alter-
native energy stock prices, technology stock prices, and interest rates. Using vector
autoregressive (VAR) methodology, they show that renewable energy markets re-
act weakly to shocks resulting from the oil market. Sadorsky [2012a], extends this
analysis by taking into account the volatility spillover and shows that the dynamic
conditional correlations between clean energy stock and technology stock prices are
higher than those of clean energy stock and oil prices. Kumar et al. [2012] integrates
the carbon market into this analysis and shows a positive relationship between oil
and clean energy companies’ stock prices. However, carbon prices do not explain
the stock price movements of clean energy companies. Also, the results of this
study support the idea that investors do not see any difference between the assets

of clean energy companies and high tech companies. Taking structural changes into



account, Managi and Okimoto [2013] analyzes the relationships between oil prices,
clean energy stock prices, and technology stock prices. Using the Markov-switching
vector autoregressive (MSVAR), he shows that the oil market was characterized by
permanent structural changes between the end of 2007 and the middle of 2008, a
period in which oil prices rose sharply. The results obtained show a positive and
significant impact after the structural change. Focusing on the Chinese market, Wen
et al. [2014], aims to capture the spillover effects that occur in stock returns and
volatilities of new energy and fossil fuel companies. The results of this study show
that good news on the new energy stock market causes a drop in fossil fuel returns
on the following day, whereas good news about fossil fuel stock returns leads to a
rise in new energy returns on the subsequent trading day. However, negative news
about new energy (fossil fuel) stock returns causes larger changes in fossil fuel (new
energy) stock returns.

Reboredo [2015], studies systemic risk and dependence between oil and renewable
energy markets using copulas and the conditional value-at-risk, for the period from
30 December 2005 to 12 December 2013. Indeed, he initially uses different specifi-
cations of time-varying copula to analyze the dependence structure between oil and
renewable energy index returns. He then uses CoVaR to capture risk spillovers from
oil prices to renewable energy prices. The results show a positive correlation between
oil and renewable energy stock returns and conclude in favor of oil and renewable
energy market integration, given the evidence of symmetrical tail dependence. The
contribution of oil price dynamics to the downside and upside risk of renewable en-
ergy companies is around 30%. Reboredo et al. [2017] extends this analysis, using
wavelets and linear and non-linear Granger causality tests to investigate the depen-
dence and direction of causality between oil and renewable energy stock returns at
different time scales. The results for the January 2006 to March 2015 period reveal
a weak association between oil and renewable energy prices in the short term. In
the long term, the dynamics of this interaction gradually increased, with observed
differences between the global and sectoral index and between different periods. The
causality analysis concludes in favor of non-linear causality at both low and high fre-

quencies. However, they observed a unidirectional and bidirectional linear causality



according to the time scale. Inchauspe et al. [2015] is interested in this debate and
proposes a state-space multi-factor asset-pricing model to capture the influence of
oil prices, technology stocks and the MSCI World stock market index on renewable
energy stocks. The results indicate that oil prices are weakly correlated with re-
newable energy prices and that this relationship has been reinforced in recent years.
On the other hand, renewable energy returns are highly correlated with the MSCI
World Index and technology stock returns. Ferrer et al. [2018] has recently shown
that crude oil prices and financial markets have become highly efficient and that
shocks are transmitted very quickly from one market to another. This connectivity
is strengthened during periods of financial turmoil. Their results also show that
crude oil has a minor impact on the performance of renewable energy stocks. Other
authors have also been interested in this relationship Lundgren et al. [2018], Ahmad
[2017], Zhang and Du [2017], Sun et al. [2019], Dutta et al. [2018].

Our study is related to this literature and introduces Regime-Switching EGARCH
models to enable the oil price volatility process to shift between high and low volatil-
ity states. The distinction between calm periods and periods of turbulence seems
to be important because it allows us to assess how renewable energy markets react
under different regimes (low or high volatility). In this paper, we also use a strategy
based on VaR violation to capture extreme movements in oil prices and compare
the effects of upward and downward movements of oil prices on renewable energy

markets.

3 Methodology

3.1 Model specification

This section aims to present an intuitive method for identifying extreme upward and
downward movements in oil prices and analyzing the effects of oil prices on renewable
energy stock prices. It is based on the oil market Value-at-risk (VaR) calculation.
The VaR technique can be applied to such risky assets in order to quantify losses in

each asset or commodity. It measures the maximum loss in value of a risky portfolio



that would be expected to occur due to changes in market prices over a period, for a
given confidence interval. Several variants of VaR approaches exist in the literature.
However, in this study, the Gaussian method is employed. The efficiency of the VaR
estimates depends on the accurate approximation of the return series distribution.
The Gaussian method, for instance, assumes that L(l) ~ N(uL(l), 0*L(l)), where
L(1) is the loss function over a time period 1 and pL(l) , 0?L(l) denote respectively
the mean and the variance for this loss distribution. The VaR for a confidence level
« can be given then by:

P(L(l) > VaRi) < 1—a (1)

Consider a series of observed losses on the oil market L;({°") with ¢ =1,....,n and
Var,ou being the maximum loss of oil stock prices that would be expected over a
period 1, for a given confidence level . Defining the event 19! > VaR,.0u as the
violation, which means that a situation in which the observed loss at the date t

exceeds the anticipated VaR, we denote a dummy variable D; such that:

Dy = 1if 19> VaRypen

D, = 0 otherwise
In other words, this variable is 1 if there is an extreme movement in the oil market
and 0 otherwise. We can thus define D), D, as dummy variables respectively
capturing extreme upward and extreme downward movements. We use an ARMA-
GARCH specification to study the reaction of the renewable energy market following

extreme upward and downward movements in oil prices. The general form of the

GARCH (p,q) model Bollerslev [1986] is given by:
Ty =+ € (2)
e~ N(0, 67) and

p q
ol =w+ Z i€+ Z Bio7; (3)
i=1 j=1

Where r; is the returns at time t, p is the mean value of the returns, ¢ is
the error term at time t, ¢ is the order of ARCH process, p is the order of the

GARCH process, o2 is the conditional variance at time t, and w is the unconditional
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variance. Hence, the volatility response to market movements is measured by «;,
whereas the persistence of shocks on conditional variance is given by 3;. Unlike the
GARCH model, the EGARCH model Nelson [1991] allows positive (upside) shocks
and negative (downside) shocks to have different effects on volatility.

In the EGARCH (p,q) model, the conditional variance is given by:
ot = w+ 8;(|z1| = Blze]) + aiei_y + Bilnoi, (4)

2;_; is white noise and w, J, «, [ are the parameters. The parameter § captures the
asymmetry effect. Taking into account the dummy variable D, in the mean equation

according to ARMA (m,n)-EGARCH(1,1), we can model:

m n 5
i = ¢o + Z Gire—i + € + Z Ojer—; + Z ceDf (k) (5)
i=1 j=1 j==5
m n 5
rRE — 6o + Z GiTi_i + € + Z e + Z e Dy (k) (6)
i=1 j=1 J==5
Ino} = w+ 8|z | = Ellzeal]) + ey + Bilno} (7)

Where r¥ is the continuously compounded daily returns of the renewable energy
stock, (k) (D; (k)) is a dummy variable which is 1 when the day t occurs within
day k relative to the extreme movement date, the day before or after the extreme
movement date, and 0 otherwise, with k € {-5, -4, -3, -2, -1, 0, +1, +2, +3, +4,
+5}. For example, & = —1 means one day before the extreme movement date,
k = +1 means one day after the extreme movement date and k& = 0 means the
extreme movement date, and so on. The sequence of events around the extreme

movement date is explained by the following diagram:

-5 =4 =3 =3 -1 0 = |
Pravs before the exrreme Exframe Pavs afier. ..
Movemenrs dare Movements dare

Figure 2: Sequence of events of extreme movements
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3.2 Implications

The renewable energy market’s response to oil market shocks depends on the degree
of integration of these markets. We can draw several implications from the above-
mentioned model:

1- Since the renewable energy market adjusts according to oil price fluctuations, the
coefficients associated with extreme price-movement periods (coefficients for k£ = 0)
must be non-zero: Market integration hypothesis.

17- The effect of oil price fluctuations varies according to whether oil prices rise or
fall. The coefficients for k¥ = 0 must be positive in the case of extreme upward
movements in oil prices, and negative in the case of extreme downward movements
in oil prices: Positive dependence hypothesis

17i- During days before an extreme movement period, the effect of oil prices on re-
newable energy markets might be null or non-null: the coefficients for k£ = - 5 to
-1 might be significant or non-significant according to the degree of integration of
renewable energy and oil markets: If the coefficients for £ = - 5 to -1 are significant,
it means that the renewable energy market anticipates oil market shocks: Anticipa-
tion effect.

1w- If the renewable energy market is slow to react to oil market shocks, the coef-
ficient associated with extreme movement periods (coefficient for k = 0 ) will be
zero, with the market reaction occurring after the periods of extreme movement
(coefficient for k = 2, 3,... ).

v- If the renewable energy market responds to oil market shocks at k and the asso-

ciated coefficients for k+1, k+2,... are significant: Persistence effect.

4 Data

In this paper, we examine global and sectoral renewable energy data. We use Brent
oil prices as a proxy for the oil market. Daily data are used, ranging from 02/01 /2006
to 30/11/2016. The global renewable energy indexes used for this study are the
S&P Global Clean Energy Index (SPGCE) and the European Renewable Energy

Index (ERIX), which cover the major companies operating in the renewable energy
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field worldwide. The ERIX index is composed of the ten largest companies in the
renewable energy fields, including the wind, solar, biomass and water sectors. For
SPGCE, it includes 30 companies from around the world. To capture the specificities
of individual renewable energy sectors, we use three sectoral indexes: the NYSE
Bloomberg Global Solar Energy Index (SOLAR), the NYSE Bloomberg Global Wind
Energy Index (WIND) and the NYSE Bloomberg Global Energy Smart Technologies
Index (TECH). The SOLAR index includes companies operating in the solar energy
value chain, including the manufacture of photovoltaic or solar thermal components
and equipment, and the financing, development and operation of solar projects.
The WIND index includes companies specializing in wind energy, including in the
manufacture of generating equipment and the financing, development, and operation
of wind projects. Finally, the TECH index includes companies operating in the
advanced transportation, digital energy, energy efficiency, and energy storage sectors.
All the renewable energy data originated from Bloomberg, and oil price data were

obtained from the US Energy Information Agency (EIA) database.
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Figure 3: log(price) dynamics for Brent oil and renewable energy indexes.

In order to analyze the effects of oil prices on renewable energy prices, the returns
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of series r; are calculated according to continuously compounded rates of return as

follows: r; = log( i

5 1), where P, and P,_; are prices of the current and previous

period, respectively.

The dynamics of renewable energies and oil prices (Figure 3) show that they are
highly volatile. The renewable energy market is characterized by a downward trend
from 2008 to 2013 and an upward trend from 2013.

Table 1 shows the descriptive statistical results. The high values of the kurtosis
statistic suggest that the distribution of returns have fat tails. All renewable en-
ergy returns are skewed to the left and to the right for oil prices. In addition,
the Jarque-Bera Statistic rejects the normality hypothesis for all series and the
Ljung-Box statistic indicates strong evidence of autocorrelation in squared returns.
The value of standard deviations confirms the presence of volatility in these mar-
kets, but it is more pronounced in the oil market. The autoregressive conditional
heteroskedasticity-Lagrange multiplier (ARCH-LM) statistic indicates the presence
of ARCH effects in all series.

Our descriptive analysis detects the presence of ARCH effect in all return series.
Therefore, the volatility of renewable energy and crude oil markets can be appropri-

ately estimated using the GARCH family models.
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Table 1: Descriptive statistics

Excess returns

Solar Wind ERIX TECH SPGCE Oil

Mean 0.00019  0.00004 —0.00003  0.00048 —0.00039 —0.00094
Median 0.00017  0.00056  0.00053  0.00056 —0.00039  0.00000
Minimum  —0.12630 —0.13950 —0.14990 —0.11480 —0.14970 —0.20560
Maximum 0.51900  0.12190  0.14590  0.11750  0.18090  0.25180

Sd 0.02063  0.01551 0.02032  0.01809  0.02025  0.03965
Skewness ~ —0.51450 —0.81540 —0.44360 —0.0966 —0.48470  0.02821
kurtosis 6.929 17.900 6.610 5.108 11.510 4.051
JB 10? 08.26" 141.50* 02.81* 158.30* 21.18* 19.50*

LB?*(20)10% 43.91* 39.61* 41.16* 07.36™ 14.56" 12.50*
ARCH-LM 743.6* 795.8" 763.9 963.9* 340.8* 402.3*

JB is the the Jarque-Bera test statistic. LB? is the Ljung-Box statistic for the squared returns
serial correlation. ARCH-LM is Engle’s LM test for heteroskedasticity. (*) indicates rejection of
the null hypothesis at the 1% level.

5 Empirical results

This section aims to present the empirical results of renewable energy market volatil-
ity (5.1) and analyze their reaction to oil market shocks (5.2). Indeed, in the first
step, we use a GARCH model to measure renewable energy market volatility (5.1.1).
We then introduce Regime-Switching GARCH Models to enable the volatility pro-
cess to shift between regimes (5.1.2). This approach will be used to identify high and
low volatility periods in the oil market and analyze their effects on the renewable
energy market (5.2.1). In section (5.2.2), the methodology developed in section (3)
is used to identify positive and negative shocks and investigate their implications for

the renewable energy market.
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5.1 Renewable energy market volatility modeling
5.1.1 GARCH modeling

We estimated GARCH and EGARCH models and we selected the best model accord-
ing to the Akaike information criterion (AIC) and the log-likelihood statistics. The
no-correlation hypothesis was verified by the Ljung-Box test. For all indexes, except
for TECH, the GARCH specification seems to be the best. The results obtained for
the GARCH model are shown in Table 2. The coefficients are highly significant for
all renewable energy markets. In addition, [ is close to 1 for all markets, suggesting
high persistence of shocks. The ARCH effect as measured by « is significant for all
markets apart from the SOLAR market. The asymmetric coefficient § is positive

and statistically significant for the TECH index.

Table 2: Estimation of GARCH(1,1)

Renewable energy returns

Coeffi SOLAR WIND ERIX SPCGE TECH
w 0.00001**  0.00001***  0.00001***  0.00001** —0.10044***
(0.00000)  (0.00000)  (0.00000)  (0.16516)  (0.00753)
a 0.07224**  0.11490***  0.09713"*  0.09783** —0.03870***
(0.00886)  (0.00795)  (0.00606)  (0.01031)  (0.01357)
B 0.91523**  0.84401***  0.87038"*  0.88413"*  (0.98697***
(0.01128)  (0.00981)  (0.00835)  (0.01169)  (0.00093)
5 0.13848"*
(0.02081)
Loglikelihood 7483.57 8300.25 7474.14 7799.54 5312.96
AIC ~52606  —5.8349  —5.2540  —5.4828  —5.4760
LB2(15) 5.284 20.74 9.21 9.72 19.86
ARCH test 5.113 19.42 9.41 9.61 20.4

Standard deviations are in parentheses.*** Significant at 1%, ** Significant at 5%, * Significant at
10%. For the wind index, the EGARCH(1,1) model presents traces of heroscedasticity, which is
why we used a GARCH model that took better account of the non-constancy of variance. For
ERIX index, the EGARCH model seems to be the best, but the asymmetry coefficient is not

significant so the GARCH specification is used.

It appears from this analysis that renewable energy markets are highly volatile
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and the GARCH (1,1) model seems better for describing the characteristics of series?.
The Ljung-Box statistic rejects the autocorrelation hypothesis of squared returns.
The ARCH-LM test indicates the non-rejection of the null hypothesis. The TECH
index is characterized by a positive asymmetry, suggesting that it is more responsive
to positive innovations of returns than negative innovations with the same magni-
tude.

In addition, Figure 4 shows that renewable energy returns are characterized by high
and low volatility periods. Consequently, the Markov switching model seems appro-

priate for taking account of the variability of market conditions.
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Figure 4: Dynamics of renewable energy and oil price returns

5.1.2 Evidence from the Markov Switching GARCH

Financial series are characterized by quiet and turbulent periods, often with volatil-
ity clusters. The GARCH models presented in section (5.1), (despite their ability
to describe the characteristics of financial series) have certain weaknesses related
to the presence of structural changes in the volatility of returns (Diebold [1986],
Lamoureux and Lastrapes [1990]). Indeed, Diebold [1986] and Lamoureux and Las-

4Except for the TECH index, in which we use the EGARCH model
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trapes [1990] attribute the high persistence of shocks to conditional variance due
to structural change. The Markov switching model proposed by Hamilton [1988] is
therefore an alternative for considering the effects of structural change in financial
and economic time series. However, this model may not capture all characteristics
of variance Cai [1994]. This weakness of the Markov switching model is taken into
account by Cai [1994], which combines the Markov switching model of Hamilton
[1988] with the ARCH model of Engle [1982]. Gray [1996] and Dueker [1997] extend
this approach to GARCH model. As in Henry [2009], we examine an EGARCH
and GARCH specification in which we allow the parameters of the model to switch
between different regimes in order to describe the behaviors of renewable energy and
oil markets.

As in Catania et al. [2018], we assume that 7, has a zero mean. The conditional
variance of r; follows a GARCH model (equation 8) for SOLAR, WIND, ERIX,
SPGCE and an exponential GARCH model for TECH (equation 9):

Ryt = o + al,kef,l + Brhi,i—1 (8)

agr > 0, oy > 0 and By > 0 to ensure positivity. The covariance-stationarity in

each regime is obtained by requiring that oy, + 8 < 1.

In(hie) = aog + a1 (|26 1] — El|zrel]) + coner | + Buln(his 1) 9)

€ | U1 —> N(0, hy) where s, € {1,2}.

This specification takes into account the leverage effect, where past negative ob-
servations have a larger influence on the conditional volatility than past positive
observations of the same magnitude. There is no parameter positivity constraint
and the model allows for two unconditional variances: high unconditional variance
and low unconditional variance.

The regime-switching is assumed to follow a first-order Markov process with transi-
tion probability: P(s; = j|s;—1 = i) = Pj;, defined as the probability that the regime
switches from state i at t-1 into state j at t. We can thus write:

P(s; =1|s4_1=1) = P4

P(s; =2|s4_1=1) = Py
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P(s; = 2|81 =2) = Py

P(sy=1|s;_1 =2) = Py

Where Py is the transition probability for state s; = 1 conditional on state 1 and
Py the transition probability for state s; = 2 conditional on state 2. Py (Pp2) is
the transition probability for state s; = 2 (1) conditional on state 1 (2). The basic
principle of this model is to enable the model parameters to switch between different
regimes or states. The regime is highly persistent if P; is close to 1.

The MS-GARCH (1,1) estimates are given in Table 4. A comparison of the perfor-
mances of the MS-GARCH (1,1) and GARCH (1,1) models concludes in favor of the
former. Indeed, Table 3 shows that the loglikelihood value of the MS-GARCH (1,1)
model is greater than that of the GARCH (1,1) model for all series. For SOLAR, the
loglikelihood value is 7483.57 for the GARCH (1,1) model and 7549.97 for the MS-
GARCH (1,1) model. The same observation can be made for all series. In addition,

~ —

the likelihood ratio (LR) statistic obtained by: LRstat = 2 x (logL(0) — logL(0))

~

is highly significant for all series, where L(#) is the likelihood of the unconstrained
model and logL(f) is the likelihood of the constrained model. The null hypothesis
(that the GARCH (1,1) model is the correct model) is rejected for all markets and
according to AIC statistics, the MS-GARCH (1,1) model is the best. Therefore, the
MS-GARCH (1,1) model describes the data more accurately than the GARCH(1,1)
model.

As presented at the beginning of this section, it is assumed that the Markov switch-

ing model allows the switching of the conditional variance between two regimes.

19



Table 3: Summary statistics for EGARCH and MS-GARCH models

Clean energy returns

Coefficients SOLAR WIND ERIX SPCGE TECH

Log-likelihood

GARCH(1,1) 7483.57  8300.25  T474.14  7799.54  5312.96
MS-GARCH(1,1) 7549.97  8351.6516 7503.99  7841.26  5340.75
LR Statistics

LR stat 132.8%*  102.80"*  59.7* 83.4** 55.58"**
AIC

EGARCH(1,1) —5.26064 —5.8349  —5.2540 —5.4828  —5.4760

MS-EGARCH(1,1) —15083.94 —16687.30 —15666.52 —14991.98 —10661.51
Number of paramet.
EGARCH(1,1) 3 3 3 3 4

MS-EGARCH(1,1) 8 8 8 8 10
*** Significant at 1%, ** Significant at 5%, * Significant at 10%. For the TECH index, we compare

the EGARCH (1,1) with MS-EGARCH(1,1) model.

For all of the considered series, the observed heterogeneity in the estimated
coefficients, as well as the unconditional volatility dynamic, suggest the existence
of a low-volatility state (regime 1) and a high-volatility state (regime 2). In fact,
the unconditional volatility for regime 1 is 0.150, 0.066, 0.192, 0.140 for SOLAR,
WIND, SPGCE and ERIX respectively, and for regime 2, it is evaluated at 0.775,
0.718, 0.855, 1.108 for the same index. Regime 1 can be interpreted as the normal
state and regime 2 as a period of uncertainty.

The analysis per sector shows that for SOLAR, the GARCH term estimated at
B is significantly high in both regimes, which means that volatility stocks are highly
persistent in regimes 1 & 2. The a7, is positive and statistically significant and a7
is also positive but not significant. This suggests that incoming news is more likely
to amplify volatility in regime 1 than in regime 2. The analysis of the estimated

coefficients for other sectors (ERIX, WIND, SPGCE) shows that the low volatility

state is more sensitive to incoming news than the high volatility state, but this effect
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is more accentuated for the WIND index. The GARCH coefficient B is significantly
high for all series and for both regimes, excepting the TECH index for regime 1,
where the estimated coefficient is 0.4419***: these markets are characterized by an
extremely high degree of volatility persistence and shocks are more likely to persist in
regime 1 than regime 2, except for the TECH index. The asymmetry coefficients are
negative and statistically significant for TECH in both regimes. d; and ds measure
the regime duration. Regime 1 lasts for an average of 28 days while regime 2 lasts
from 2 to 47 days with an average of about 16 days. Regime 1 is more persistent for

all series except for the TECH index.

Table 4: Estimates of the Markov-switching GARCH model

Clean energy returns

Coethi SOLAR WIND ERIX SPCGE TECH
Qo1 0.0000*** 0.0000*** 0.0000*** 0.0000"*  —5.0750™**
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
Q2 0.0001** 0.0000 0.0000** 0.0000**  —0.3204***
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
11 0.0156* 0.0283*** 0.0241* 0.0063**  —0.1309***
(0.0114)  (0.0203)  (0.0254)  (0.0031)  (0.0000)
012 0.0707 0.1981* 0.0992 0.0781 0.0787**
(0.0587) (0.1494) (0.0797) (0.1343) (0.0000)
91 —0.1445%**
(0.0000)
092 —0.1066***
(0.0000)
b1 0.9716™** 0.9388*** 0.9403** 0.9838*** 0.4419*
(0.0031)  (0.0118)  (0.0103)  (0.0020)  (0.0000)
Ba 0.9068*** 0.7897** 0.8881*** 0.9185* 0.9564***
(0.0151)  (0.0106)  (0.0104)  (0.0062)  (0.0000)
Py 0.9746™ 0.6628** 0.9633*** 0.9760*** 0.9712***
Py 0.8515"** 0.5355** 0.8729** 0.8850*** 0.9788***
dy 35 3 27 40 35
dsy 7 2 8 14 47
Loglikelihood 7549.97 8351.65 7503.99 7841.26 5340.75
AIC —15083.94 —16687.30 —15027.05 —15666.52 —10661.51
LB*(15) 3.541 21.75 15.51 8.993 10.93
ARCH test 3.481 21.16 15.75 8.967 10.86

The standard deviations are in parentheses. *** Significant at 1%, ** Significant at 5%, * Significant

at 10%. The MS-EGARCH (1,1) is estimated for the TECH index.
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Figure 5 describes the association between high and low probability regimes
and the conditional volatility of the renewable energy markets. These markets are
relatively dominated by low volatility periods. Indeed, during the studied periods,
the transition probability of remaining in regime 2 is several times closer to zero than
one. The TECH and SPGCE indexes are more volatile compared to other indexes.
However, the WIND index switches very frequently between high volatility and low
volatility states. The 2006-2010 period was marked by increased volatility and the
switching between high and low volatility was more frequent during this period.
This phenomenon was more pronounced during the recent global financial market
crisis, when renewable energy investments dropped significantly due to uncertainties

in the financial markets.
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5.2 The relationship between renewable energy stocks and
oil prices

5.2.1 Asymmetric volatility spillovers between oil and renewable energy

markets

Section (5.1.2) shows that the renewable energy market is characterized by quiet
periods marked by low volatility, but also by periods of turbulence. The same
characteristics are observed in the oil market. The following question then arises:
how do high and low volatility states in the oil market affect the renewable energy
market? To answer this question, we will adopt the same approach as Chiang et al.
[2011]. More precisely, we incorporate the conditional variance obtained by MS-
EGARCH(1,1) model estimates for oil into the conditional variance equation for the

renewable energy index, such that:
it = o + i Giri—i + € + zn: Oicr (10)
i=1 Jj=1
€ir | Qi1 —> N(0, hy)
Ino; = w+ 8;(|z-1] — El|z-1]]) + cu€;_y + Bilnop_ + Nihey Ay (11)

Where r2F is the continuously compounded daily returns of the renewable energy
stock, h,; is the conditional variance, obtained by the MS-EGARCH(1,1) model
estimates for oil, and o7 is the conditional variance of the renewable energy market.

1, is a dummy variable, such that:

Iy=1 if prob(s; =1|%_1) >0.5 (12)

I;=0 if prob(s; =1|Q-1) <0.5 (13)
And:

Io=1 if prob(sy =2|%_1) >0.5 (14)

I;=0 if prob(s; =2|Q_1) <0.5 (15)

Equations (12) and (13) describe a low-volatility regime for the oil market while
equations (14) and (15) describe a high volatility regime for the same market.

lnaf =w ~+ 0;(|zi-1] — E[|ze-1]]) + aief_l + Bilnatz_l + Now-Tr i 14 (16)

24



lnaf =w+ 6;(|zi-1] — E[|ze-1]]) + aief_l + Bilnaf_l + Mnigh-Pry-1a (17)

Aiow describes how oil market volatility affects the renewable energy market when it
is in a state of low volatility. A, describes the oil market’s impact on the volatility
of renewable energy markets when it is in a state of high volatility.

Figure 6 shows the time-varying probability of the oil market remaining in regime 2
and we observe that the probability is sometimes close to one, and sometimes close
to zero. If the probability is smaller than 0.5, the volatility remains low, and if the

probability is larger than 0.5, the volatility remains high.
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Figure 6: MS-EGARCH (1, 1) estimation for oil

Table 5 gives the results of volatility spillover between the oil and renewable
energy markets. The ARCH effect coefficient « is significant for all series except for
SOLAR. The g parameter is close to 1, suggesting the persistence of shocks. The
asymmetry coefficient is positive and significant for all series. The results obtained
also reveal that Ayg, is positive and statistically significant for all indexes, except
for the ERIX and WIND indexes. This result suggests a transmission of volatility
from the oil market to the renewable energy market. When the oil market is in the
high volatility regime, it exacerbates the volatility of the renewable energy market
(SOLAR, SPGCE, TECH). However, this effect is greater for the TECH and SPGCE
indexes.

The A\, coefficient is not significant for the SOLAR, SPGCE and ERIX index.
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When the oil market is in a normal state, it does not impact the renewable energy
market, but when there is new information (good or bad news) leading to significant
oil price fluctuations, the renewable energy market will not be unaffected. A surge
in oil prices seems to have short-term consequences on the renewable energy market
Managi and Okimoto [2013]. A, is negative and significant for the TECH index.
In a low volatility regime, the oil market tends to stabilize or triggers a drop in
TECH index volatility. The results for the WIND and ERIX indexes are different
from other energy sectors. Indeed, the Ap;q, coefficient is not significant, and the
Aiow coefficient is significant at 5% for WIND and 10% for the ERIX index. This
result could be explained by the fact that these markets do not react immediately
like other markets. In others words, when the oil market is in a high volatility
regime, the WIND market responds a few days later, which may coincide with the

oil market’s transition from a high volatility regime to a low volatility regime.
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Table 5: Volatility links between oil and renewable energy markets

Clean energy returns

Coeffi SOLAR WIND ERIX SPCGE TECH
u 0.00014 0.00082***  0.00032  —0.00001 0.00058**
(0.00016)  (0.00027)  (0.00027)  (0.00041)  (0.00028)
o 0.16988"*  0.41612"  0.36074™*  0.17014***
(0.01934)  (0.17607)  (0.04673)  (0.02262)
6, —0.31154*  —0.28983"" 0.01612
(0.04744) (0.02310)
0 0.01262
(0.02282)
0 0.06468***
(0.02459)
w —0.15246*  0.00000  —0.34376™* —0.15504™* —0.06116™"
(0.01066)  (0.00000)  (0.04300)  (0.01818)  (0.02072)
a —0.01173 0.11984™* —0.07679"* —0.04175™* —0.02841""
(0.00822)  (0.02465)  (0.01185)  (0.00984)  (0.00926)
3 0.98134™*  0.81736™*  0.95918"*  0.98152***  0.99127***
(0.00104)  (0.04334)  (0.00451)  (0.00177)  (0.00196)
5 0.14884"* 0.17069"*  0.16586™*  0.12332"*
(0.01388) (0.01670)  (0.01712)  (0.03536)
Ahigh 2.67005"  0.00000 1.77404 413862 4.46104"
(1.30295)  (0.00029)  (1.55096)  (1.30427)  (1.37369)
Aow 0.14497 0.00035***  0.47063*  0.06373  —0.27078**
(0.17844)  (0.00010)  (0.27660)  (0.20295)  (0.13264)
Loglikelihood ~ 7524.31 8332.3 7492.98 7839.54 5322.93
AIC ~52857  —5.8539  —5.2630  —5.5074  —5.4801
LB(15) 17.04 10.29 11.67 5.904 17.9
LB2(15) 7.328 23.61 12.67 12.61 18.98
ARCH test 6.836 22.69 13.17 12.35 19.38

Standard deviations are in parentheses. *** Significant at 1%, ** Significant at 5%, * Significant at

10%. Comparing the GARCH and EGARCH models shows that the EGARCH model is better for

all series other than the WIND index. The EGARCH (1,1) model presents traces of heroscedasticity,

which is why we use a GARCH(1,1) model as this takes better account of the non-constancy of

variance.
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5.2.2 Measuring connectedness from the perspective of extreme move-

ments

The dynamics of oil price returns confirm the unstable nature of the oil market, which
could impact renewable energy prices. Therefore, upward and downward movements
in oil prices are identified using the periods in which the VaR is violated, as shown
in Figure 7. It should be recalled that the VaR limit is ”violated” if a loss on a given

day exceeds the VaRggy.
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Figure 7: Extreme oil movements

Simple and partial correlograms reveal the presence of auto-correlation in all
series (the Ljung Box test confirms this result). We therefore used the Box Jenking
methodology to determine the appropriate ARMA (p,q) specifications for each series.
The models were chosen using the AIC and loglikelihood criteria.

The results obtained are shown in Tables 6 to 10. The first part of the tables shows
the estimated coefficients of the mean equation (ARMA model), followed by the
dummy variables used to capture the days before (c_1, c_o, c_3, c_4, c_5) and the
days after (¢1, ca, cs3, ¢4, c5) the extreme movement date (¢p). The coefficients c_q,
c_g, etc. precisely describe one day, two days, etc. before the extreme movement
date, and ¢y, c9, etc. describe one day, two days, etc. after the extreme movement
date. Finally, we present the coefficients related to the variance equation. The Ljung

Box autocorrelations test of the returns or squared returns for the first twenty lags
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does not invalidate the null hypothesis and the ARCH test does not invalidate the

homoscedasticity hypothesis.

Table 6: Estimation results for the Solar Energy Index

Effects of extreme oil movements

Coef. Upward Downward
. L 0.00005  (0.00050)  0.00049  0.000374
ARMA coefficients o 0.16866*** (0.01865)  0.16815*** (0.01824)
c_s —0.00019  (0.00232)  0.00287  (0.00227)
Days before the extreme ., —0.00156  (0.00235)  0.00125  (0.00235)
movement date c 3 —0.00385  (0.00238) —0.00382  (0.00233)
Ly —0.00168  (0.00232)  0.00176  (0.00236)
. —0.00136  (0.00227) —0.00105  (0.00235)
Extreme movement date ¢ 0.00674** (0.00237) —0.01456*** (0.00246)
e 0.00336*  (0.00182) —0.00701*** (0.00234)
Days after the extreme Cs 0.00283** (0.00076) —0.00452*  (0.00232)
movement date 3 0.00142** (0.00051)  0.00336  (0.00234)
Ca —0.00160  (0.00239) —0.00056  (0.00235)
s 0.00037  (0.00231) —0.00251  (0.00233)
w —0.12882** (0.00815) —0.12000*** (0.01470)
Vard _ a —0.01214  (0.00819) —0.01078*** (0.00816)
ariance equation 6 0.98331** (0.00099)  0.98447** (0.00171)
~y 0.15320*** (0.01378)  0.15006  (0.01811)
Log-likelihood 7529.22 7549.12
AIC _5.2829 -5.2968
LB(15) 17.52 15.96
LB*(15) 7.24 6.004
ARCH test 6.757 5.677

Standard deviations are in parentheses.

at 10%.

Significant at 1%, ** Significant at 5%, * Significant

The results obtained for the SOLAR index show that extreme upward (Upward

column) and extreme downward (Downward column) movements in oil prices would

positively impact the SOLAR market. The c_j, k=1 to 5 coefficients are not signif-

icant whatever the nature of oil price movements. The associated extreme upward

movement coefficient for oil prices ¢y is positive and statistically significant. This

coefficient is negative and statistically significant in the case of downward oil price
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movements. For coefficients related to days after the extreme movement date, ¢y,
Cy, C3 are only positive and statistically significant in the case of extreme upward
movements. For extreme downward movements in oil prices, only ¢; and ¢ are sig-
nificant and negative. It can be noted from these results that an extreme upward
movement in oil prices has a positive impact on SOLAR index returns, while a de-
crease negatively impacts it. However, a drop in oil prices has a greater impact on
the SOLAR market than a downward movement in oil prices. These results also
suggest that the SOLAR market does not anticipate the shocks induced by the oil
market and these shocks are more likely to persist in the case of upward movements
(three days) than downward movements (two days).

Unlike the SOLAR index, the ERIX and TECH indexes (see Table 10 in the ap-
pendix) do not react to extreme upward movements in oil prices. However, they
respond negatively to extreme downward movements in oil prices. The ¢ is es-
timated at —0.01221"** for ERIX, —0.00717** for TECH and —0.01456** for the
SOLAR; therefore, the effects of extreme downward movements in oil prices are
more pronounced for the ERIX index than for the SOLAR and TECH indexes. The
results also reveal that the ERIX index does not anticipate shocks and that they are
not persistent, whereas for the TECH index, shocks are anticipated one to two days

before they occur, but they do not persist.
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Table 7: Estimation results for the ERIX Energy Index

Oil extreme movement effects

Coef. Upward Downward
. m 0.00034  (0.00035)  0.00054  (0.00030
ARMA coefficients o 0.35845"* (0.06292)  0.30893  (0.12254
0, —0.28877** (0.06444) —0.23364  (0.12262
c_s —0.00257  (0.00207)  0.00043  (0.00240
Days before the extreme  _, —0.00144  (0.00256) —0.00089  (0.00246
movement date c_3 —0.00025  (0.00250) —0.00234  (0.00247
c_o —0.00036  (0.00248) —0.00317  (0.00245
c_ —0.00133  (0.00243)  0.00343  (0.00243
Eztreme movement date cq 0.00363  (0.00255) —0.01221*** (0.00250
e 0.00466*  (0.00254)  0.00049  (0.00246
Days after the extreme o —0.00326  (0.00325) —0.00011  (0.00256
movement date c3 0.00043  (0.00248)  0.00412* (0.00241
cy 0.00058  (0.00247) —0.00256  (0.00247
cs —0.00215  (0.00246) —0.00410  (0.00257
w —0.26959** (0.02592) —0.26748*** (0.02642
Vari y o —0.07663** (0.01157) —0.07161*** (0.01147
ariance equation s 0.96609** (0.00316)  0.96632** (0.00321
v 0.17031** (0.01650)  0.17129** (0.01644
Log-likelihood 7496 7507.4
AIC -5.2588 -5.2668
LB(15) 11.2 12.55
LB?(15) 13.4 12.97
ARCH test 13.78 13.33

Standard deviations are in parentheses. *** Significant at 1%, ** Significant at 5%, * Significant

at 10%.

As for the SOLAR index, the results obtained for the SPCGE index point to-

wards a broad transmission of oil market shocks to this index. The response of

the SPGCE index varies according to the nature of the shock: it reacts positively

(0.00696***) to extreme oil price rises and negatively (—0.01289***) to extreme down-

ward movements. A drop in oil prices has more impact and its effects are slow to

disappear, lasting from two to four days. Like the SOLAR and ERIX indexes, these

results also suggest that shocks induced by the oil market are not anticipated by the
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SPGCE index.

The results for the WIND index (see appendix) confirm those obtained with the

GARCH model.

The WIND index does not react to extreme rises or falls in oil

prices. Its response comes one day later and tends to persist for at least five more

days. This result suggests that the integration of other markets is more complete

than that of the wind market.

Table 8: Results obtained for the SPCGE Energy Index

Effects of extreme oil price movements

Upward Downward
m —0.00010  (0.00014) 0.00034 (0.00027)
ARMA coefficients o 0.16422**(0.01709)  0.16685***(0.01906)
s —0.00023  (0.00213) 0.00057 (0.00194)
Days before the oil c_ —0.00158 (0.00217) 0.00189 (0.00202)
price movement date _ —0.00339* (0.00189) —0.00042 (0.00126)
_ 0.00083 (0.00051) 0.00062 (0.00060)
_ —0.00300 (0.00203) 0.00122 (0.00202)
Oil extreme movement date cg 0.00696***(0.00214) —0.01289***(0.00208)
Days after the extreme c1 0.00252  (0.00210) —0.00433** (0.00203)
o ca 0.00226  (0.00209) —0.00410** (0.00204)
oil price movement cs 0.00050  (0.00216) 0.00237 (0.00175)
date c4 0.00018  (0.00207) —0.00285**(0.00100)
cs —0.00002 (0.00207) —0.00308  (0.00204)
w —0.13747*(0.01803) —0.13051***(0.01621)
, _ o —0.04306*(0.00992) —0.04324***(0.00959)
Variance equation 3 0.98292*%(0.00209)  0.98384**(0.00188)
v 0.17147%(0.01998)  0.16333*(0.01901)
Log-likelihood 7843.05 7860.07
AIC -5.5036 -5.5155
LB(15) 5.605 6.075
LB%(15) 13.72 13.49
ARCH test 13.33 12.980

Standard deviations are in parentheses. *** Significant at 1%, ** Significant at 5%, * Significant

at 10%.

Overall, the results show a positive relationship between oil and renewable energy

prices and vary according to the renewable energy sector and the direction of the
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extreme oil price movement: upward or downward. This result could be explained by
a substitution effect. As technical improvements occur, alternative energy becomes
relatively inexpensive, and because oil becomes relatively expensive, this leads to

substitution in certain areas Managi and Okimoto [2013].
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Figure 8: Oil and renewable energy market analysis

After showing that when the oil market is in a low volatility regime, it has no
impact or a stabilizing effect on renewable energy volatility, but the oil market causes
more instability in renewable energy markets when it is in a high volatility regime
(Figure 8), we can summarize the findings of the connectivity analysis as follows:
(1) renewable energy indexes are more responsive to extreme downward movements
in oil prices than to extreme upward movements. In fact, among the considered
indexes, only the SOLAR and SPGCE indexes are sensitive to extreme upward and
downward movements in oil prices. The other indexes (ERIX, TECH, WIND) are
only sensitive to extreme downward movements in oil prices. This effect is probably
due to the fact that the SOLAR energy index has a longer development record
than other new-energy sectors and that solar energy assets are widely accepted in

fossil fuel-based energy portfolio investments Reboredo [2015]. (2) renewable energy
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seems to respond immediately to oil price shocks; the renewable energy and oil
sectors experience the same booms and crashes together Reboredo [2015], which
suggests that the oil and renewable energy markets seem to be integrated. (3) the
results also reveal that renewable energy markets do not anticipate oil market shocks
(except for the TECH index which anticipates oil price shocks one to two days before
they occur). The persistence of shocks from upward or downward movements in oil
prices varies from market to market. Oil price shocks are not persistent for TECH,
SPGCE and ERIX: their effects disappear quickly, but they are more likely to persist
for the SOLAR index (three days for upward movements and two days for downward

movements) and the WIND index (tending to persist at least five days later).

6 Conclusion

The relationship between the oil and renewable energy markets is subject to much
discussion in the literature, but a consensus on this issue has not yet been reached.
This paper aims to provide additional information using a Markov-switching GARCH
model and an intuitive methodology based on VaR violation. The results show a
positive link between oil prices and renewable energy indexes. The estimates of the
Markov-switching EGARCH model, show that the oil market is characterized by low
and high volatility regimes. Therefore, its effects on the renewable energy market
will depend on the state of the market: in a low volatility regime, the oil market has
no impact on the SOLAR and SPGCE indexes, but it tends to stabilize the TECH
market. For the WIND and ERIX indexes, the Ay, coefficient is not significant,
and the ), coefficeint is positive and significant at 5% for WIND and 10% for the
ERIX index. This result could be explained by the fact that these markets do not
react immediately like the other markets. When the oil market is in a high volatility
regime, the WIND market reacts a few days later, which may coincide with the
oil market’s transition from a high volatility regime to a low volatility regime. If
the oil market is in a highly volatile state, its effects on renewable energy markets
are significant. In fact, for all of the considered markets (excepting the WIND and

ERIX markets), we find that volatility spillover only occurs if the oil market is in a
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high volatility regime. This effect is greater for TECH and SPGCE. However, these
results do not indicate whether the volatility is due to a rise or fall in oil prices. This
information seems to be relevant, because the reaction of renewable energy markets
differs according to the nature of extreme movements in oil prices. Therefore, we
identified upward and downward oil price movements, and the results show that the
impact of extreme upward movements in oil prices is only positive and significant for
the SOLAR and SPGCE returns indexes. The WIND, ERIX and TECH indexes do
not react to extreme upward movements in oil prices. However, downward oil price
movements are highly negatively correlated to the renewable energy index. It is im-
portant to underline that the renewable energy market seems to react to oil market
shocks immediately, except for the WIND index, which reacts one day after their
occurrence. The TECH index anticipates oil price shocks one to two days before
they occur, while these shocks are not anticipated by the other indexes (SOLAR,
WIND, ERIX, SPGCE). The persistence of shocks varies between the renewable
energy markets: for TECH, SPGCE, and ERIX, the effects of the shocks disappear
quickly. However, for the SOLAR market, oil price shocks are more likely to persist
for two to three days and at least five days for WIND.

The results of this study have several implications in terms of policy and risk man-
agement. Fossil fuels and renewable energy are substitutable, and are therefore in
competition in certain areas. However, it should be noted that when the oil market
is in a low volatility regime, its impact on the renewable energy market is not sig-
nificant or tends to have a stabilizing effect. However, in a high volatility regime,
it increases the renewable energy market’s instability. Consequently, a subsidy pol-
icy can be envisaged when the oil market is experiencing a period of turbulence,
in order to boost the profitability of renewable energy companies. More precisely,
an upward movement in oil prices would encourage renewable energy investment
projects, while a drop in oil prices would have a negative effect on renewable energy
returns. A subsidy policy would thus control and focus on lower oil prices because
a rise in oil prices would stimulate investment in renewable energy. In terms of
hedging strategies, as demonstrated by Sadorsky [2012a], oil futures can be used to

hedge investments in clean energy stock prices.
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Appendix

Table 9: Estimation results for Wind Energy Index

Effects of extreme oil movements

Coef. Upward Downward
‘ m 0.00082*** (0.00028)  0.00103** (0.00028)
ARMA coefficients o 0.44046** (0.19650)  0.39928** (0.17730)
0, —0.34202*  (0.20633) —0.29942  (0.18494)
c_s 0.00027  (0.00180) —0.00245  (0.00180)
Days before the extreme ¢, —0.00363* (0.00186) —0.00267  (0.00177)
movement date c_3 —0.00025  (0.00182)  0.00265  (0.00179)
s —0.00295  (0.00180) —0.00051  (0.00181)
e —0.00200  (0.00185) —0.00190  (0.00183)
Extreme movement date ¢ —0.001409 (0.00188) —0.00095  (0.00185)
e —0.00068  (0.00185)  0.00267  (0.00180)
Days after the extreme ¢ 0.00263  (0.00180) —0.00815"* (0.00184)
movement date cs 0.00247  (0.00188) —0.00334* (0.00184)
4 0.00155  (0.00182) —0.00430** (0.00188)
cs —0.00141  (0.00187)  0.00379** (0.00185)
w 0.00001*** (0.00000)  0.00001*** (0.00000)
Vard _ o 0.12094** (0.00829)  0.12425"* (0.00834)
ariance equation B 0.83619*** (0.01017)  0.83217** (0.01061)
f)/
Log-likelihood 8327.44 8343.1
AIC -5.8442 -5.8552
LB(15) 10.17 9.5020
LB?(15) 21.09 0.125
ARCH test 19.93 19.68

Standard deviations are in parentheses. *** Significant at 1%, ** Significant at 5%, * Significant at
10%. For the wind index, the EGARCH (1,1) model presents traces of heroscedasticity; therefore,

we used a GARCH(1,1) model which took better account the non-constancy of variance.
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Table 10: Estimation results for TECH Energy Index

Effects of extreme oil movements

Coef. Upward Downward
. m 0.00049** (0.00024)  0.00064*** (0.00022)
ARMA coefficients 0 0.01530*  (0.00922)  0.02036 (00.01500)
0, 0.01790  (0.02169)  0.02216* (0.01159)
05 0.07085** (0.02047)  0.06723*** (0.01347)
5 0.00223  (0.00433)  0.00071  (0.00336)
Days before the extreme  _, —0.0021  (0.00330) 0.00158  (0.00184)
movement date c_ —0.00023  (0.00325)  0.00096  (0.00238)
c_ 0.00517  (0.00333)  0.00296*** (0.00068)
c_ 0.00669*  (0.00332) —0.01158** (0.00119)
Extreme movement date ¢ —0.00055  (0.00334) —0.00717** (0.00309)
e —0.00225  (0.00329)  0.00613** (0.00304)
Days after the extreme Ca —0.00214  (0.00326) —0.00167  (0.00310)
movement date cs —0.00306  (0.00324)  0.00186  (0.00332)
Cy 0.00013  (0.00323) —0.00176  (0.00324)
cs —0.00335  (0.00317) —0.00390  (0.00339)
w —0.10478** (0.01405) —0.09678** (0.02908)
Vard , oY —0.04227"** (0.01759) —0.03991** (0.01032)
ariance equation 6 0.98663** (0.00163)  0.98760*** (0.00328)
v 0.13997** (0.01884)  0.14311*** (0.03998)
Log-likelihood 5324.28 5331.12
AIC -5.4722 -5.4792
LB(15) 16.8 17.68
LB?(15) 16.92 15.88
ARCH test 17.48 16.35

Standard deviations are in parentheses.

at 10%.

kK k

Significant at 1%, ** Significant at 5%, * Significant
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Table 11: GARCH(1,1) estimations

Renewable energy returns

Coeffi SOLAR WIND ERIX SPCGE TECH
w 0.00001**  0.00001***  0.00001***  0.00001**  0.00000
(0.00000)  (0.00000)  (0.00000)  (0.00000)  (0.00000)
a 0.07224™*  0.11490"*  0.09713"*  0.09783"*  0.05852"*
(0.00886)  (0.00795)  (0.00606)  (0.01031)  (0.01549)
3 0.91523"*  0.84401***  0.87038"*  0.88413***  (.93534**"

(0.01128)  (0.00981)  (0.00835)  (0.01169)  (0.01657)
Loglikelihood 7483.57 8300.25 7474.14 7799.54 5311

AIC —5.2606  —5.8349  —52540  —5.4828  —5.4750
LB2(12) 5.284 20.74 9.21 9.72 15.99
ARCH test 5.113 19.42 9.41 9.61 16.48

Standard deviations are in parentheses.*** Significant at 1%, ** Significant at 5%, * Significant at

10%.

Table 12: EGARCH(1,1) estimations

Renewable energy returns

Coeffi SOLAR WIND ERIX SPCGE TECH
w —0.12434"* —0.37975"* —0.263890  —0.13489"* —0.10044""
(0.00671)  (0.06616)  (0.16516)  (0.00707)  (0.00753)
a —0.01159  —0.06782"* —0.06840  —0.03864™* —0.03870""
(0.00707)  (0.01198)  (0.11000)  (0.00881)  (0.00357)
3 0.983370"*  0.95500"*  0.96657***  0.98304**  0.98697**
(0.00086)  (0.00758)  (0.02096)  (0.00209)  (0.00093)
5 0.155920"* 0.19103***  0.16703 0.17672"*  0.13848"**
(0.01497)  (0.01850)  (0.10735)  (0.01928)  (0.01032)
Loglikelihood 7482.88 8305.8 7482.75 7797.5 5312.96
AIC —52594  —58381  —52593  —54807  —5.4760
LB2(12) 6.559 26.06** 12.94 12.17 19.86
ARCH test 6.15 25.79* 13.19 11.8 20.4

Standard deviations are in parentheses.*** Significant at 1%, ** Significant at 5%, * Significant at

10%.
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