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Abstract: Stock price forecasting, a popular growth-enhancing exercise for investors, is 

inherently complex – thanks to the interplay of financial economic drivers which determine 

both the magnitude of memory and the extent of non-linearity within a system. In this paper, 

we accommodate both features within a single estimation framework to forecast stock prices 

and identify the nature of market efficiency commensurate with the proposed model. We 

combine a class of semiparametric autoregressive fractionally integrated moving average 

(SEMIFARMA) model with asymmetric exponential generalized autoregressive score 

(AEGAS) errors to design a SEMIRFARMA-AEGAS framework based on which predictive 

performance of this model is tested against competing methods. Our conditional variance 

includes leverage effects, jumps and fat tail-skewness distribution, each of which affects 

magnitude of memory in a stock price system. A true forecast function is built and new 

insights into stock price forecasting are presented. We estimate several models using the 

Skewed Student-t maximum likelihood and find that the informational shocks have permanent 

effects on returns and the SEMIFARMA-AEGAS is appropriate for capturing volatility 

clustering for both negative (long Value-at-Risk) and positive returns (short Value-at-Risk). 

We show that this model has better predictive performance over competing models for both 

long and/or some short time horizons. The predictions from SEMIRFARMA-AEGAS model 

beats comfortably the random walk model. Our results have implications for market-

efficiency: the weak efficiency assumption of financial markets stands violated for all stock 

price returns studied over a long period. 

 

Keywords: Stock price forecasting; SEMIFARMA model; AEGAS model; Skewed Student-t 

maximum likelihood; Asymmetry; Jumps. 
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“If you torture the data long enough, it will confess.” 

-  Ronald H. Coase, Essays on Economics and Economists 

 

1. Motivation and contextualization 
 

1.1 Motivation 

 

Stock price movements invariably reflects the impacts of (co-) movements of myriads of 

factors viz., social, economic, political, and environmental (such as changes in weather). 

Given that investors are predominantly psychology-driven decision-making agents, their 

decisions are often derived from the realm of incomplete information and bounded 

rationality. This is one of the many reasons, why despite several seminal contributions to the 

determinants of stock prices, the tendency to include newer factors are increasing every day.
1
 

A time series econometrician faces then an upheaval task: to study the series over a stretch of 

time, identify a reality-approximating pattern by using state-of-the-art method and produce a 

nice predictive performance of the model. Just as Ronald Coase pointed out (in the above 

quote), ‘if you torture the data long enough, it will confess’.  

 

Indeed, over the past three and a half decades since Engle (1982) and Bollerslev (1986), 

financial economists have moved along the non-stationary econometric trajectories and have 

offered numerous powerful competing forecasting models to uncover the real nature of stock 

price movements. Unfortunately, stock price is one such financial metric which is not driven 

by a single event’s momentum only (such as only political uncertainty or economic 

prosperity/recession, etc.). Rather, its ever-changing complex core that attracts anything 

‘psychological bound’ of investors, means that there will no single econometric approach that 

can unravel the real dynamic nature of stock price movements. However, amidst all these 

dynamisms, the best way to understand its movements is to model its variance as conditional 

-allowing in part, to be determined by past variances and in part, by other factors (the class of 

Fama-French models, for instance). In other words, in general stock prices can reveal some 

strength in ‘memory’ – an ability of the system to remember past shocks. Finally, all the 

various known and unknown factors determining investors’ sentiment also form a complex 

non-linear relationship. A preferable approach to produce realistic predictions would then be 

to combine both ‘memory’ and ‘non-linearity’ within a single modelling framework. This 

paper builds such a framework and aims to provide new insights into stock price movements. 

 

At its core, our approach lays emphasis on modelling ‘jumps’ in stock prices along with a 

possible path dependence. By assuming a jump process for stock prices, we allow random 

movements of prices at all scales, no matter how small. Such a model often combines the 

usual geometric Brownian motion for the diffusion and a space-time Poisson process for the 

jumps such that jump amplitudes are uniformly distributed. Arguably, stock prices exhibit 

extreme sensitivity to news, in addition to of course, the structural changes in financial and 

economic dynamics. Such a sensitivity can be regarded as response to ‘jumps’ the source of 

which can be both endogenous and exogenous. Irrespective of the sources, a jump in stock 

prices often reflect the path dependence nature of the series: to what extent a strong/weak 

memory of the system predicts its future movements. Hence, in the current paper, we 

                                                           
1
Some recent research investigates whether win or loss in a big match (such as football or rugby) 

leads to a rise/fall in stock prices the next day (Urquhart & Sakkas (2018)). 
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introduce a long-memory based conditional volatility model with asymmetry (and non-

linearity). Our approach (to be discussed in Section 2 in details) exploits learning mechanism 

of the stock price system with ‘memory’ and embeds asymmetric nature of shocks on the 

conditional volatility of stock prices. 

 

1.2 Identifying the missing link 

 

The classical variants of Generalized Autoregressive Conditional Volatility (GARCH) model 

are extensively employed in the empirical architecture of stock price volatility modelling 

(viz., symmetric GARCH: Engle (1982) and Bollerslev (1986), asymmetric GARCH, such as 

exponential GARCH (EGARCH):Nelson (1990) and Threshold GARCH (TGARCH): 

Glosten, Jagannathan& Runkle (1993) and Zakoian (1994); the asymmetric power GARCH 

(APGARCH): Ding, Granger & Engle (1993); STGARCH model with regime switching: 

Hagerud (1997a), Gonzalez-Rivera (1998)). For details on the evolution of different 

GARCH-type models, see Bollerslev (2009) and Zhang & Wei (2010). These GARCH 

variants are based on properties of symmetry, asymmetry, nonlinearity, stationarity, 

persistence and structural breaks, but recent innovations have shown that jumps as another 

fundamental property in volatility (see for example, Harvey (2013), Yaya1, Bada & Atoi 

(2016), Charles & Darné (2017) and Babatunde, Yaya, & Akinlana (2019)).  

 

The GARCH models are not robust enough to capture these large changes in financial 

time series, and therefore, they underestimate the magnitude effect of the returns. Andersen, 

Bollerslev & Dobrev (2007) originally propose non-parametric approaches based on 

Brownian Semi-Martingale for detecting jumps, but these methods cannot predict stock 

market volatility. Due to the presence of occasional jumps, Harvey & Chakravarty (2008) and 

Harvey (2013) propose Generalized Autoregressive Score (GAS) models - a class of 

observation driven time series models, where the time-varying parameters are functions of 

lagged dependent values and past observations. The parameters are stochastic and predictable 

given the past. These models capture these occasional jumps in financial time series with 

symmetric and asymmetric variants, using the score of the conditional density function to 

drive the dynamics of the time-varying parameter (see real, Koopman & Lucas (2013) and 

Creal, Schwaab, Koopman & Lucas (2014)).The distribution of innovations in GAS models 

are non-normal and the conditional variance is taken from the conditional score of the 

distribution with respect to the second moment. 

Stock prices often exhibit complex dynamic properties and needs to be adequately flexible 

to describe its important characteristics. The GAS models have proved to be more robust in 

modelling and predicting fat tail and skewed data (Yaya, Bada &Atoi (2016), Opschoor, 

Janus, Lucas & Van Dick (2018) and Makatjane, Xaba & Moroke (2017)). To take into 

account conditional asymmetry, leverage effect and heavy tails, Laurent, Lecourt & Palm 

(2016)propose AEGAS model (also called Beta-Skew-t-AEGARCH), as an extension to 

GAS (Creal et al (2013)) by introducing time-varying parameters in the class of non-linear 

models with its exponential specification. This new class of volatility model is robust to 

outliers and occasional jumps by using the Skewed Student-t distribution to account for the 

occurrence of large changes in volatility. In the AEGAS model, the mechanism to update the 

parameters over time is provided by the scaled score of the likelihood function (Tafakori, 

Pourkhanali & Fard (2018)). 

For the applications of the GAS models to economic and financial time series see, for 

example, Creal, Koopman & Lucas (2013) who present two examples to illustrate their GAS 

modeling framework based on square root information matrix scaling with Moody's credit 
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rating data. Thus, Huang, Wang & Zhang (2014) compare the Realized ARCH and Realized 

GAS model under Gaussian and t distribution assumptions for the financial return and daily 

realized variance. Muela (2015) compare the performance of several Beta-skewed-t-

EGARCH specifications in terms of Value at Risk on eight closing daily returns. On the other 

hand, Koopman, Lucas, & Scharth (2016) study the forecasting performance of nonlinear 

non-Gaussian state-space models, generalized autoregressive score models and 

autoregressive conditional moment models for predicting the volatility of twenty Dow Jones 

index stocks and five major stock indices over a period of several years. Olubusoye & Yaya 

(2016) investigate persistence and volatility pattern in the prices of crude oil and other 

distilled petroleum products for the US and the UK petroleum pricing markets. Whereas, 

Yaya,  Bada&Atoi (2016) estimate volatility in the Nigerian Stock Market using the Beta-

Skew-t-AEGARCH model and compare its forecasting performance over some other 

volatility models. Salisu (2016) employs the Beta-Skew-t-EGARCH framework proposed to 

model oil price volatility. Makatjane, Xaba, Moroke (2017) empirically investigate the 

behavior of the time-varying parameter by estimating the GAS model to the South Africa 

Sanlam stock price returns. Müller & Bayer (2017) propose a likelihood ratio test to select the 

Beta-Skew-t-EGARCH model with one or two volatility components and give an empirical 

illustration devoted to the DAX log-returns. Charles &Darné (2017) analyze volatility models 

in the presence of jumps in two crude-oil markets and evaluate the forecasting performance 

of the volatility models using the model confidence set approach, Finally, Tafakori, 

Pourkhanali & Fard (2018) evaluate the accuracy of several 100 one-day-ahead value at risk 

(VaR) forecasts for predicting Australian electricity returns using asymmetric exponential 

generalized autoregressive score (AEGAS) models. 

The class of score-driven models have also recently become popular for analyzing 

financial time series, but these last works ignore the existence of dynamic behavior, 

especially long memory, in the conditional mean. Several studies find that the short-memory 

is contaminated by deterministic trend. Beran& Feng (2002a,b) incorporate a nonparametric 

deterministic trend on the ARFIMA model (SEMIFAR).Then,Feng, Yu & Beran 

(2007)combine the SEMIFAR model with GARCH errors to allow for time-varying 

conditional variance. Chikhi, Péguin & Terraza (2013) propose the SEMIFARMA model 

with HYGARCH errors to analyze the persistence of informational shocks in Dow Jones 

returns. Combining semiparametric long memory (SEMIFARMA) models with asymmetric 

exponential GAS (AEGAS) errors would provide a flexible class of model to capture the long 

memory structure in the conditional mean and the occasional jumps in the score-driven 

volatility, which includes leverage effect and fat tail-skewness distribution. Harvey (2013), 

among others, specify the GAS models with the heavily tailed and skewed conditional 

probability distribution. These models perform better than the classical GARCH models with 

larger values of log-likelihoods. Blasques, Koopman & Lucas (2014a) and Lambert & 

Laurent (2000, 2001) suggest using the maximum likelihood based on the skewed Student-t 

density proposed by Fernandez & Steel (1998) to estimate this GAS family of models. 

As noted earlier, an imposing characteristic of a conditional volatility model is its memory 

characteristics. If and when the system reveals certain patterns (such as herding), this means 

that some time series observations within the price data depict certain degree of associations 

(in our case, it can be certain magnitude of dependence between past and present). Led by 

this, the main objective of this paper is to propose a mixture of long memory structure with 

nonparametric deterministic trend and the occasional jumps, leverage effect and fat tail-

skewness distribution in the daily stock price returns. Our approach – the SEMIFARMA-

AEGAS model – is employed to three stock markets data, such asArgentina, Saudi Arabia 

and France. Our strategy thus, is to combine and estimate the SEMIFARMA model with 



5 

 

asymmetric exponential GAS (AEGAS or Beta-Skew-t-AEGARCH) errors using Skewed 

Student-t maximum likelihood. 

The remainder of this article is organized as follows: Section 2 focuses on presentation of 

the SEMIFARMA-AEGAS model used throughout our study. Section3 outlines the daily 

price data of Argentinean, Saudi and French stock markets and discusses their statistical 

properties. Our estimation results are shown in section 4. In section 5, we evaluate the 

forecasting performance of best fitting GAS Models in stock markets, including the 

semiparametric long memory in the conditional mean equation. We thus try to compare the 

predictive quality of SEMIFARMA-GAS, SEMIFARMA-EGAS and SEMIFARMA-AEGAS 

models with that of a random walk. The last section concludes the paper. 

 

2. The SEMIFARMA model with AEGAS errors 
 

We specify a semiparametric fractionally autoregressive moving average 

(SEMIFARMA)model (Beran & Feng (2002a) and Chikhi, Péguin & Terraza (2013)) with 

asymmetric exponential generalized autoregressive score (AEGAS(1,1)) errors, also called 

Beta-Skew-t-AEGARCH (Creal, Koopman & Lucas (2013), Harvey (2013, 2014), Harvey & 

Sucarrat (2013)and Laurent, Lecourt & Palm (2016)) defined as follows 

{ }
ttt

dd
BxgYBBB εθφ )()()1()1)(( 12 =−−−                                     (1)  

with     , 0t t t tz     ε σ σ= >  (2)  

and 2 2

1 1 1 1 1 1log logt t t tu Iσ ω α γ ϕ σ− − −= + + + (3) 

with ( )2 2
2

0 12

( 1)
(1 ) 1   1 ( )

( 1) ( 1)

kd k k

k

k k

d
B B c d B

k d k

∞ ∞

= =

Γ +− = − = −
Γ + Γ − +∑ ∑  ; 1 2 2( )c d d= , 

2 2 2 2

1
( ) (1 )

2
c d d d= −  and (.)Γ is the gamma function. Furthermore, the roots of polynomials 

p

p
BBBB φφφφ −−−−= ....1)( 2

21  and
q

q BBBB θθθθ −−−−= ....1)( 2

21 in the lag operator with 

degrees p and q respectively, are outside the unit circle. B is the lag operator, 1d  is an integer: 

{ }1,01 ∈d , tx
t

= is the trend and [ ]:  0,1g R→ is the smoothing function, which represents a 

nonlinear deterministic trend. The process is stationary and invertible,
2

1
 

2

1
2

<<− d . The long 

memory is included in the mean equation (1) through the parameter 2d . 

The estimation of nonparametric deterministic trend function
( )tg x

is based on the kernel 

method using the following model (see Hall &Hart (1990), Ray & Tsay (1997) and Beran 

(1999)): 

ttt

d
XxgYB +=− )()1( 1                                                  (4)  

where tX is a long memory stationary errors if
2

0d >  and short memory errors if
2

0d = . We 

consider the polynomial kernel defined by: 

∑
=

=
τ

α
0

2)(
l

l

l xxK  with 1≤x         (5) 
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and 0)( =xK  if x >1. Here we have { }0,  1,  2,  ...τ ∈ and the ια  coefficients are such that 

∫
−

=
1

1

1)( dxxK  (see Beran & Feng (2002a, 2002b) for details on the estimation method). 

The interest of SEMIFARMA models for financial series lies mainly in their ability to 

capture the long memory dynamics and the nonlinear deterministic trend in the conditional 

mean. For the Skewed Student-t distribution in the conditional variance (see Hansen (1994), 

Lambert & Laurent (2000, 2001) and Theodossiou (2002)) 

( ) ( )*

1 sgn 1t t tI z u− = − +                                                  (6) 

with                                              ( )
2

2

1

1
tE I

ξ
ξ

−=
+

   (7) 

where                 
( )
( ) ( )

*1
1    if    0,1, ,

2 t

t t

t tI

t

z z
u z SKST

g

ν
ξ ν

ν ξ
+

= −
−

�    (8) 

t
I is an indicator measure asymmetry defined as 

( ) ( ) ( )* * *
sgn 0 0t t t tI z I z I z= = ≥ − <                                     (9) 

where                                    *

t tz sz m= +    (10) 

and                                         
( )

*2

2
1

2 t

t
t I

z
g

ν ξ
= +

−
   (11) 

1
2

12

2

m

ν ν
ξ

ν ξπ

− Γ −    = −    Γ  
 

                                             (12) 

2 2

2

1
1s mξ

ξ
 = + − − 
 

                                                 (13)            

where ξ  is the asymmetry parameter and ν  is the degree of freedom of the distribution. 

For a GAS(1,1) model, the equation for time-varying parameters 2

t tψ σ=  is the 

autoregressive function 1 1 1 1t t t
B Aψ ω ψ κ− −= + + . Harvey & Chakravarty (2008) and Creal, 

Koopman & Lucas (2013) propose to update the time-varying parameters with 
t t t

Sκ = ∇  

where 
t

∇  is the score with respect to the parameter 
t

ψ  with 

( )1 1log | , , ,X ; /t t t t t t tf Y Yψ ψ θ ψ− −∇ = ∂ ∂  and 
t

S  is a time-dependent scaling matrix. The 

Normal-GARCH model corresponds to a Normal-GAS(1,1) (i.e. (0,1)
t

z N�  with 

1 1 1 1 12,  ,  
t

S A Bα α β= = = + , 2

t tψ σ=  and ( )2 20.5 1t t tz σ∇ = − ). Note that 2

1 1t tu z −= −  is 

proportional to the score of the conditional distribution of 
t

ε  with respect to 2

1tσ − .For the 

choice of time dependent scaling, Creal, Koopman & Lucas (2013) recommend using 1
t

S =  

or ( ) 1
'

1t t t tS E
−

−= ∇ ∇  while Harvey & Chakravarty (2008) set 2
t

S = .  
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Some authors suggest using the Skewed Student-t innovation distribution. Lambert & 

Laurent (2000, 2001) apply and extend the skewed-Student density proposed by Fernandez & 

Steel (1998) to the GARCH framework. The procedure for Maximum Likelihood Estimation 

(MLE) of GAS family models was presented in Blasques, Koopman & Lucas (2014a). The 

strong consistency and asymptotic normality of maximum likelihood are also studied. 

Consequently, we propose the Skewed Student-t maximum likelihood to estimate a 

SEMIFARMA model jointly with AEGAS (Beta-t-EGARCH) error from the Skewed 

Student-t distribution using the BFGS algorithm (Broyden (1970), Fletcher (1970), Goldfarb 

(1970) and Shanno (1970)) implemented by Laurent (2013). The Skewed Student-t log-

likelihood function is written as 

( ) ( )1 2
log log 0.5log 2 log log s

12 2
L T v

ν ν π
ξ

ξ

  
  +    = Γ − Γ − − + +         

      + 
   

 

( ) ( )2

22

1

0.5 log 1 log 1
2

t

T
It

t

t

sz m
σ ν ξ

ν
−

=

  + − + + +  −    
∑                                           (14) 

where 

1 if  

1 if  

t

t

t

m
z

s
I

m
z

s

 ≥ −= 
− < −


                                                     (15) 

And optimized with respect to the unknown dynamic parameters, contained in the vector

( )'

2 1 1 1 1 1, ,..., , ,..., , , , ,p qdψ φ φ θ θ ω α γ ϕ= andν in the first order model(For details on skewed 

student density see Lambert & Laurent (2001)and For the GAS estimation see Blasques, 

Koopman & Lucas (2014a, 2014b, 2014c)). 

 

3. Data characteristics  
 

For our empirical exercise, we consider stock market indices of three selected markets. 

The stock indices considered are TASI (Saudi Arabia), Merval (Argentina), and CAC 

SMALL (France). The data sample of Saudi Arabia is from January, 2000 to October, 2018 (

5000T = ); the data sample of the Argentina is from May, 2002 to January, 2019 ( 4093T =
)and the data of France cover a historical period from January, 1999 to July, 2018 ( 4999T =
). Daily stock prices of Merval are collected from Yahoo finance https://fr.finance.yahoo.com 

and the data series of TASI and CAC SMALL are drawn from 

https://www.investing.com.Unit root tests results (Philips & Perron (1988), Kwiatkowski, 

Phillips and Elliott, Rothenberg & Stock (1996)) show that all the logarithmic series are 

characterized by a unit root (see Table 1). The logarithmic series are finally differentiated to 

obtain the daily percentage returns at time t (see Figure 1) 

( )1100 ln lnt t tr P P −= × −
 

where tP  and 1tP − are daily stock price at two successive days t  and 1t − , respectively. 
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Table 1 – Identifying non-stationarity in the series 

 

Series Test 
Logarithmic Returns 

Test stat. Critical value Test stat. Critical value 

TASI 

PP -1.959 -2.861 -65.532 -1.94 

KPSS 0.349 0.463 0.297 0.463 

ERS 0.010 3.26 70.105 3.26 

Merval 

PP 3.177 -1.94 -60.989 -2.862 

KPSS 1.762 0.463 0.102 0.463 

ERS 0.014 3.26 220.245 3.26 

CAC 

SMALL 

PP 1.371 -1.94 -55.891 -1.94 

KPSS 1.720 0.463 0.113 0.463 

ERS 0.011 3.26 40.361 3.26 

Note: The asymptotic critical value at 5%are computed using Mackinnon’s (1990) method. The 

table reports the results of Philips-Perron unit root test. We accept the unit root hypothesis 
0H

for daily logarithmic series and reject it for daily returns. For Philips-Perron, Elliott-Rotenberg-

Stock (ERS) and KPSS tests, the spectral estimation is based on the Bartlett kernel using the 

Andrews bandwidth. For KPSS test,
0H  is the null hypothesis of stationarity. 

 

 

Figure 1 –Evolutions of stock market indices and returns 
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Interesting observations emerge: from Figure 1, we note some sharp jumps and volatility 

clustering in the stock returns. As shown in Table 2, Argentina and Saudi Arabia show the 

highest risk, as measured by the standard deviation (2.023% and1.416% respectively) 

followed by France (0.867%). All series exhibit negative skewness. The observed asymmetry 

may indicate the presence of nonlinearities in the evolution process of all returns. In addition, 

all series also show excess kurtosis: the Jarque-Bera test (Jarque&Bera (1987) strongly 

rejects the null hypothesis of normality. On the other hand, there is an ARCH effect in the 

data since the ARCH-LM statistic is greater than the critical value of chi-square distribution 

with 1 degree of freedom at 1%. for all series. 

 

Table 2 – Summary statistics for daily stock market returns 
 

Countries Std. Dev (%) Skewness Kurtosis JB stat. ARCH(1) 

Saudi Arabia 1.416 -0.88 13.447 23382.58
***

 327.632
***

 

Argentina 2.023 -0.376 6.302 1956.21
***

 147.009
***

 

France 0.867 -0.948 9.170 8677.555
***

 415.59
***

 

Note: *** indicates a rejection of null hypothesis of normality and homoscedasticity at the 1% level. 

 

In Table 3, we present the BDSBDS (Brock et al. (1996)) statistics to gauge whether stock 

returns are non-linear in nature. As evident, the BDS statistics are strictly greater than the 

critical value at 5% for all the embedding dimensions and thus all stock returns are non-

linearly dependent. Moreover, the variance ratio statistic (Lo & Mac Kinlay (1988)) is 

significant for all stock returns as well: the critical probabilities are less than 0.05 for joint 

test Max |z| (at period 2) and the runs statistic is greater than the critical value of normal 

distribution at 5% (see Table 4). Consequently, we reject the random walk hypothesis, 

indicating that stock market price can be predicted in the short term. The weak efficiency 

assumption of financial markets seems violated for all series. 
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Table 3 – BDS test results on the stock market returns 
 

m 
Saudi Arabia Argentina France 

BDS stat. Prob. BDS stat. Prob. BDS stat. Prob. 

2 24.1248 0.0000 11.8887 0.0000 23.4456 0.0000 

3 30.6071 0.0000 16.1949 0.0000 29.8697 0.0000 

4 34.9670 0.0000 18.7195 0.0000 33.5874 0.0000 

5 39.0515 0.0000 20.8757 0.0000 37.0353 0.0000 

6 43.4160 0.0000 22.7408 0.0000 40.4203 0.0000 

7 48.3278 0.0000 24.4674 0.0000 43.9935 0.0000 

8 53.8998 0.0000 26.3077 0.0000 48.0178 0.0000 

9 60.6845 0.0000 28.1552 0.0000 52.6945 0.0000 

10 68.4637 0.0000 30.3447 0.0000 57.9909 0.0000 

Note: The BDS statistics are calculated by the fraction of pairs method with ε equal to 0.7. m 

represents the embedding dimension. 

 

 

Table 4 – Variance Ratio Estimates and Test Statistics of Random Walk Hypothesis for 

stock market returns 
 

Countries 
Variance Ratio test Runs test 

Value p-Value Runs stat. p-Value 

Saudi Arabia 12.6863 0.0000 -6.0105 0.0000 

Argentina 16.2340 0.0000 -1.9789 0.0478 

France 14.700 0.000 -10.9891 0.0000 

Note: p-Value of variance ratio statistic represents a probability approximation using 

studentized maximum modulus with parameter value 4 and infinite degrees of freedom 

 

These previous tests highlighted the presence of significant non-zero autocorrelations in 

the short term and lead us to reject the i.i.d hypothesis. However, it is impossible to exploit 

these autocorrelations to establish speculative rules leading to abnormal profits. Given this 

situation, we test the presence of autocorrelations by considering longer horizons. By plotting 

the periodogram of this series (see Figure 2) (with Parzen window), we note that this is a sign 

of long-memory since the spectral density is concentrated around low frequencies and tends 

to infinity when the frequency tends to zero. 
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Figure 2 –Periodograms of daily returns 

 

 

Table 5 – Results from the ARFIMA(0,d,0) estimation  

ondaily returns 
 

Countries 
GPH RH 

d t-stat. Prob. D t-stat. Prob. 

Saudi Arabia 0.0427 3.1925 0.0014 0.0291 2.9098 0.0036 

Argentina 0.0494 3.1294 0.0018 0.0346 3.1335 0.0017 

France 0.1634 12.2010 0.0000 0.1495 14.947 0.0000 

Note: RH: Robinson-Henry. GPH: Geweke-Porter-Hudak. d is the estimated Long memory parameter 

with a power of 0.8. 

 

From Table 5, it is clear that all the daily series of stock returns are generated by a long 

memory process. The values of Student statistic (with a power of 0.8) are strictly greater than 

the critical value of normal distribution at 5%. In addition, the memory parameter estimated 

by a Gaussian semiparametric method (Robinson & Henry (1999)) is positive and significant. 

The estimation results are confirmed by the GPH (Geweke & Porter-Hudak (1983)) method. 

The presence of a long memory indicates that agents can anticipate their returns to a 

sufficiently long-time horizon and the return will not revert to its fundamental value. 
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4. Main results  
 

In this section, we present and discuss the results from SEMIFARMA model jointly with 

GAS, exponential GAS and asymmetric exponential GAS errors. The estimation procedure is 

semiparametric in nature. In the first step, we incorporate an initial estimate of the nonlinear 

deterministic trend function, the optimal window and the cross-validation criteria (in equation 

(4)) by the nonparametric kernel methodology to produce a long memory stationary residuals. 

In the second step, we use the residuals to estimate the conditional mean and the conditional 

variance parameters. This estimation procedure is based on the Skewed Student-t maximum 

likelihood using the BFGS algorithm. As there are some sharp jumps in the volatility, it will 

be interesting to take into account this asymmetry in volatility estimation (see Salisu (2012), 

Yaya (2013) and Yaya & Gil-Alana (2014)).For the time dependent scaling tS , we use the 

choice of Harvey & Chakravarty (2008) by setting 2tS = .To facilitate inference about the 

null hypothesis of symmetry, we estimate log( )ξ . 

We estimate several models with different lags, such as a SEMIFARMA (p, d, q) jointly 

with a GAS(1,1), EGAS(1,1) and AEGAS(1,1) model. For each model, we calculate both 

Schwarz (1978) and Hannan & Quinn (1979) information criteria and the ARCH-LM 

statistic. The results of the model estimations by the Skewed Student-t maximum likelihood 

method are shown in Table 6. We find that the coefficients of the three models are highly 

significant. The information criteria are minimum for the SEMIFARMA-AEGAS model and 

the asymmetric parameter γ  is statistically significant at 5% level, indicating negative shocks 

imply a higher next period variance than positive shocks of the same magnitude. In addition, 

long memory coefficient for the equation of the mean illustrated in Figure 3, 4, 5 is also 

significant for all studied stock return series. The series of the SEMIFARMA-AEGAS 

residuals (see Figure 3, 4, 5) are characterized by the absence of conditional 

heteroskedasticity: there are no remaining ARCH effects in all the estimated models since the 

ARCH-LM statistics are strictly less than the critical value of 2

1χ at 5%. It should be noted that 

the normality assumption of residuals is rejected because the Jarque-Bera statistics are strictly 

greater than the critical value of 2

2χ at5% (see also Figure 3, 4, 5). The conditional standard 

deviation is characterized by an asymmetric dynamics with some sharp jumps for all series. 

Moreover, the series of standardized residuals show no dependence structure where the BDS 

statistics, reported in Table 7, are strictly less than the critical value of normal distribution at 

the 5% level for all embedding dimensions. 

 

Table 6 – Skewed Student-t maximum likelihood estimation – BFGS algorithm– 

 
 Saudi Arabia Argentina France 

Parameters Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

d  
0.061

 

(5.089) 

0.062 

(5.301) 

0.085
 

(6.866) 

0.132 

(3.254) 

0.041 

(3.347) 

0.054 

(4.203) 

0.133 

(7.191) 

0.163 

(12.96) 

0.160 

(8.008) 

1φ  
-0.828

 

(-7.066) 

-0.833 

(-8.142) 

-0.853
 

(-10.18) 

0.652 

(6.370) 
- - 

0.048 

(2.120) 
- 

0.044 

(1.842) 

1θ  
0.845

 

(7.710) 

0.850 

(8.937) 

0.867
 

(11.06) 

-0.744 

(-8.649) 
- - - - - 

opth
)

 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 

IMSE 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 1.087 

ω  
0.021

 

(4.368) 

2448.375 

(3621.) 

3122.605
 

(-6255.) 

0.131 

(3.071) 

3163.216 

(-4113.2) 

4088.578 

(3655.4) 

2.080 

(5.662) 

429516.9 

(8572.4) 

486854.93 

(29930.1) 
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1α  
0.231

 

(10.01) 

0.219 

(13.26) 

0.213
 

(14.75) 

0.136 

(6.084) 

0.127 

(10.11) 

0.128 

(11.02) 

0.201 

(10.92) 

0.174 

(14.31) 

0.145 

(13.80) 

1ϕ  
0.999

 

(151.2) 

0.973
 

(2086.1) 

0.966
 

(2078.2) 

0.969 

(86.12) 

0.960 

(2122.3) 

0.948 

(1976.01) 

0.971 

(115.8) 

0.956 

(2342.2) 

0.951 

(2599.3) 

γ  - - 
0.0748

 

(8.779) 
- - 

0.050 

(6.355) 
- - 

0.067 

(10.02) 

Asymmetry 
0.117

 

(7.551) 

0.122 

(7.916) 

0.099
 

(6.487) 

0.090 

(4.625) 

0.090 

(4.649) 

0.079 

(4.148) 

0.188 

(10.16) 

0.183 

(10.31) 

0.159 

(8.573) 

Tail 
3.969

 

(14.80) 

0.062 

(14.44) 

4.274
 

(14.10) 

6.637 

(8.705) 

6.723 

(8.746) 

6.723 

(9.031) 

7.524 

(9.526) 

7.196 

(10.56) 

7.358 

(10.79) 

SC -6.472 -6.476 -6.490
** 

-5.174 -5.178 -5.186
** 

-7.180 -7.182 -7.198
** 

HQ -6.479 -6.482 -6.498
+ 

-5.181 -5.184 -5.193
+ 

-7.185 -7.187 -7.205
+ 

JB stat. 11278.2
* 

10320.6
* 

7765.5
* 

1165.1
* 

1148.3
* 

1309.9
* 

765.83
* 

821.01
* 

749.86
* 

ARCH(1) 0.447
* 

0.418
*
 2.641

*
 1.140

*
 0.041

*
 0.213

*
 0.236

*
 0.096

*
 0.932

*
 

Note: Model 1: SEMIFARMA-GAS. Model 2: SEMIFARMA-EGAS. Model 3: SEMIFARMA-AEGAS. * indicates a rejection of null 

hypothesis of normality and homoscedasticity at the 1%. level. The values in parentheses are the Student statistics. + indicates the 

optimal Schwarz (SC) and the optimal Hannan-Quinn (HQ). IMSE: Minimum Integrated Mean Squared Error. opth
)

 is the estimated 

optimal bandwidth. 

 

Figure 3 – Residual analysis for SEMIFARMA-AEGAS (TASI returns) 
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Figure 4 – Residual analysis for SEMIFARMA-AEGAS (Merval returns) 

 

 

 

Figure 5–Residual analysis for SEMIFARMA-AEGAS (CAC SMALL returns) 

 

 

 



15 

 

 

Table 7 – BDS test on standardized residuals of SEMIFARMA-AEGAS 

 

m 
Saudi Arabia Argentina France 

BDS stat. Prob. BDS stat. Prob. BDS stat. Prob. 

2 0.7001 0.4838 -1.2838 0.1992 -0.2621 0.7932 

3 0.9941 0.3202 -0.1049 0.9165 1.0214 0.3070 

4 1.2814 0.2000 0.2214 0.8248 0.8766 0.3807 

5 0.9938 0.3203 0.5953 0.5516 0.9864 0.3239 

6 0.7998 0.4238 0.6928 0.4884 0.9386 0.3479 

7 0.5940 0.5525 0.7548 0.4504 0.9014 0.3674 

8 0.2839 0.7765 0.8061 0.4202 0.7143 0.4750 

9 0.1329 0.8942 0.7069 0.4796 0.6689 0.5035 

10 -0.0555 0.9557 0.7315 0.4644 0.5744 0.5656 

Note: The BDS statistics are calculated by the fraction of pairs method with ε equal to 0.7. m 

represents the embedding dimension. 

 

5. Forecasting performance 
 

To determine which model provides a reasonable explanation of cyclical behavior of stock 

returns, some diagnostic tests are performed at the outset. First, we use the estimation results 

to compute in-sample value-at-Risk for the long and short trading position for confidence 

levels 95% and 99%, respectively. The results presented in Table 8 report the success/failure 

ratio, the Kupiec likelihood ratio (Kupiec (1995)) and the statistics for the dynamic quantile 

test (Engle & Manganelli (2004)). The LR statistics has the distribution 2χ  with one degree of 

freedom. The critical value of the Kupiec test for the most frequently adopted significance 

level 0.05 equals to 3.8415. The null hypothesis is rejected if the likelihood ratio exceeds the 

critical value. For the SEMIFARMA model with skewed-Student GAS and skewed-Student 

AEGAS errors, the null hypothesis of the test is not rejected both in case of underestimating 

of potential loss and in case of overestimating VaR for the short and long positions, it means 

that the null hypothesis of correct unconditional coverage can be accepted for the 95% and 

99% levels of confidence. However, the dynamic quantile Engle-Manganelli test results 

indicate that the in-sample VaR forecast for the daily TASI and CAC SMALL returns 

obtained by the SEMIFARMA-GAS model gives unsatisfactory results and consequently 

fails this test at95% confidence level for short and long trade positions. It seems that the 

SEMIFARMA-AEGAS is appropriate for capturing volatility clustering for both negative 

(long Value-at-Risk) and positive returns (short Value-at-Risk) for all series. 

Figure 6 illustrates the relation of the Value-at-risk with the return of stock prices. The 

upper line is the maximal amount that can be lost with a confidence level 97.5% over the 

period of time taken into consideration, when the business events are not favorable for the 

business activity (see Cera, Cera & Lito (2013)). The calculation of VaR using skewed-

Student AEGAS model has also advantages of the nature of forecasting the values of the VaR 

in the future. If the other factors remain constant, then the AEGAS model gives a very high 

level of approximation with the real values of the VaR. 
  



16 

 

Table 8 – In-sample Value-at-Risk Backtesting 

 

Series Model Position Kupiec LR test Test of E.M 

TASI 

SEMIFARMA

-GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9443 3.2023 0.0735 13.641 0.0339 

99% 0.9906 0.1843 0.6676 7.6106 0.2680 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0500 0.00001 0.9974 15.732 0.0152 

1% 0.0104 0.0805 0.7765 6.2444 0.3963 

SEMIFARMA

-AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9455 1.9929 0.1580 6.165 0.4087 

99% 0.9922 2.6400 0.1042 11.975 0.0625 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0502 0.0046 0.9457 1.1967 0.9770 

1% 0.0108 0.3166 0.5736 6.3905 0.3808 

Merval 

SEMIFARMA

-GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9437 3.1967 0.0737 6.1385 0.4078 

99% 0.9890 0.3980 0.5281 8.0615 0.2336 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0503 0.0100 0.9201 9.7045 0.1376 

1% 0.0100 0.00015 0.9899 3.8000 0.7037 

SEMIFARMA

-AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9425 2.5468 0.1072 7.8775 0.2472 

99% 0.9885 0.8708 0.3507 3.1235 0.7932 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0481 0.3007 0.5834 7.7516 0.2568 

1% 0.0085 0.9096 0.3402 3.3311 0.7662 

CAC 

SMALL 

SEMIFARMA

-GAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9443 3.2141 0.0730 15.674 0.0156 

99% 0.9892 0.3182 0.5726 6.3717 0.3828 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0516 0.2735 0.6009 39.501 0.0000 

1% 0.0108 0.3182 0.5726 2.5601 0.8616 

SEMIFARMA

-AEGAS 

Short 

positions 

Quantile Success Kupiec Prob. Stat. Prob. 

95% 0.9447 2.7794 0.0954 10.027 0.1204 

99% 0.9894 0.1807 0.6707 12.896 0.0857 

Long 

positions 

Quantile Failure Kupiec Prob. Stat. Prob. 

5% 0.0526 0.7112 0.3990 10.212 0.1160 

1% 0.0092 0.3289 0.5663 2.3858 0.8810 

Note: In the Dynamic Quantile Regression, p=5.E.M: Dynamic Quantile Test of Engle and Manganelli (2002). 
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Figure 6 – In-sample Value-at-Risk forecasts 

 

 

 

We further probe these results by performing the Out-of-sample tests of forecasting 

accuracy using the minimum loss functions on SEMIFARMA-GAS, SEMIFARMA-EGAS, 

SEMIFARMA-AEGAS for skewed Student-t distribution and the random walk model. The 

forecast evaluation measures used include mean square error (MSE) and mean absolute error 

(MAE). The MSE criterion is a quadratic scoring rule which measures the average magnitude 

of the error and the MAE criterion is more robust to outliers since it does not make use of 

square. 
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Table 9 – Comparison of predictive qualities 
 

Series Equation Horizon 
Criteria 

(
310−

)  

SEMIFARMA-

GAS 

SEMIFARMA-

EGAS 

SEMIFARMA-

AEGAS 

Random 

Walk 

TASI 

Conditional 

mean 

1 day 
MSE 0.0956 0.0960 0.0929 0.1202 

MAE 9.7780 9.8050 9.6390 12.597 

15 days 
MSE 0.4484 0.4484 0.4324 0.8241 

MAE 14.320 14.331 13.690 18.542 

30 days 
MSE 0.2607 0.2607 0.2607 0.9687 

MAE 10.591 10.590 10.581 21.637 

90 days 
MSE 0.1338 0.1338 0.1341 1.2364 

MAE 7.4310 7.4310 7.477 23.633 

Conditional 

Volatility 

1 day 
MSE 0.00089 0.00015 0.000086 - 

MAE 0.09467 0.1226 0.09307 - 

15 days 
MSE 0.000574 0.000576 0.000979 - 

MAE 0.4506 0.4578 0.589 - 

30 days 
MSE 0.000283 0.000282 0.000281 - 

MAE 0.3033 0.2901 0.2899 - 

90 days 
MSE 0.000111 0.000115 0.0001105 - 

MAE 0.2046 0.1618 0.1578 - 

Merval 

Conditional 

mean 

1 day 
MSE 0.1016 0.09825 0.00007446 0.0372 

MAE 10.08 9.912 0.1127 12.615 

15 days 
MSE 0.460 0.4655 0.4599 0.5903 

MAE 17.32 17.50 17.30 21.799 

30 days 
MSE 0.3355 0.3357 0.4718 0.6360 

MAE 14.03 14.03 17.81 24.014 

90 days 
MSE 0.6701 0.6698 0.6711 0.6877 

MAE 19.67 19.67 19.68 25.198 

Conditional 

Volatility 

1 day 
MSE 0.000155 0.000222 0.0016 - 

MAE 0.3941 0.4713 0.2729 - 

15 days 
MSE 0.000210 0.00517 0.00173 - 

MAE 0.3853 0.696 0.3808 - 

30 days 
MSE 0.000281 0.000485 0.03948 - 

MAE 0.4724 0.6487 0.6266 - 

90 days 
MSE 0.00124 0.00128 0.00123 - 

MAE 0.6254 0.7382 0.6124 - 

CAC 

SMALL 

Conditional 

mean 

1 day 
MSE 0.000765 0.00108 0.000717 0.0231 

MAE 0.8749 1.042 0.847 2.5210 

15 days 
MSE 0.04776 0.04755 0.04777 0.4831 

MAE 5.626 5.662 5.670 9.3980 

30 days 
MSE 0.04358 0.0436 0.04357 0.5344 

MAE 5.220 5.221 5.219 9.4243 

90 days 
MSE 0.03721 0.03731 0.03731 0.6471 

MAE 4.774 4.778 4.778 9.963 

Conditional 

 Volatility 

1 day 
MSE 0.00002704 0.00002944 0.00004703 - 

MAE 0.06858 1.042 0.052 - 

15 days 
MSE 0.00006873 0.00006864 0.00006953 - 

MAE 0.06079 0.06066 0.06321 - 

30 days 
MSE 0.00004585 0.00004657 0.00004616 - 

MAE 0.0446 0.0387 0.04169 - 

90 days 
MSE 0.00004061 0.00003346 0.00003291 - 

MAE 0.05485 0.04506 0.043766 - 
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Table 10 – Model rankings 

 

Tables 9 and 10 report the forecast performance and the corresponding ranking for all the 

models. The results indicate that, whatever the forecast horizon, the random walk model is 

beaten by all the other models. We note that all the errors aren't of the same magnitude since 

the values of MSE are less than those of the MAE. It is also observed that MSE and MAE 

criteria generally give the same results. The SEMIFARMA-AEGAS model tend to have 

better predictive results comparing to SEMIFARMA-EGAS and SEMIFARMA-GAS with 

some time horizons. Furthermore, the model rankings presented in Table 10, indicate that the 

skewed-Student AEGAS is the preferred model for all stock returns. This model captures the 

asymmetric behavior and the volatility clustering phenomenon in the presence of long-run 

dynamic dependencies and nonparametric deterministic trend in the conditional mean 

equation. 

In order to test the statistical significance of the forecasting improvements of 

SEMIFARMA-AEGAS predictions over the SEMIFARMA-GAS and the random-walk, we 

can also use the asymptotic test, the sign tests, Wilcoxon's test and the Morgan-Granger-

Newbold test (Diebold & Mariano (1995)). As seen in Table 11, the p-values clearly indicate 

that the null hypothesis of equal accuracy of the three models is strongly rejected. It is 

observed that different predictive accuracy are accepted because the p-values are less than 

0.05, it means that, in this case, the SEMIFARMA-AEGAS model beat the SEMIFARMA-

GAS and the random walk process. The Diebold-Mariano statistics are significant, meaning 

that there is a difference in the forecasts computed from the SEMIFARMA-GAS and 

SEMIFARMA-AEGAS models. A negative sign of the statistics implies that SEMIFARMA-

GAS model is dominated by SEMIFARMA-AEGAS model. The results indicate that 

asymmetry effects detected on volatility seem to improve the volatility forecasts. Indeed, the 

sign of the statistics is negative, implying that the asymmetry effects with jumps observed on 

volatility provide a better volatility forecast. Consequently, the price movements appear as 

the result of lasting shocks which affect the Saudi, Argentinean and French stock markets; in 

other words, the consequences of a shock will be sustainable, the TASI, the Merval and the 

CAC SMALL returns will not come back to their previous fundamental value. The shock of 

stock returns will be persistent in the long term and the volatility exhibits nonlinearity and 

asymmetry effects with jumps. 

Series Criteria 
SEMIFARMA-

GAS 

SEMIFARMA-

EGAS 

SEMIFARMA-

AEGAS 

Random 

walk 

TASI 
MSE 2 2 1 3 

MAE 2 2 1 3 

Merval 
MSE 1 3 2 4 

MAE 2 3 1 4 

CAC 

SMALL 

MSE 2 2 1 3 

MAE 2 2 1 3 



20 

 

Table 11 –Comparing predictive accuracy: Diebold-Mariano test 

 

Series Test of equal accuracy 1S  2S  3S  MGN 

TASI 

SEMIFARMA-AEGAS 

versus SEMIFARMA-GAS 

-1.13 

(0.87) 

-2.97 

(0.00) 

-4.11 

(0.00) 

-7.03 

(0.00) 

SEMIFARMA-AEGAS 

versus Random walk 

-3.48 

(0.00) 

-10.22 

(0.00) 

-8.38 

(0.00) 

-9.25 

(0.00) 

Merval 

SEMIFARMA-AEGAS 

versus SEMIFARMA-GAS 

-0.72 

(0.76) 

-2.76 

(0.00) 

-1.95 

(0.05) 

-4.02 

(0.00) 

SEMIFARMA-AEGAS 

versus Random walk 

-5.71 

(0.00) 

-5.62 

(0.00) 

-3.40 

(0.00) 

-6.11 

(0.00) 

CAC 

SMALL 

SEMIFARMA-AEGAS 

versus SEMIFARMA-GAS 

-1.01 

(0.84) 

- 4.52 

(0.00) 

- 2.71 

(0.01) 

- 3.62 

(0.00) 

SEMIFARMA-AEGAS 

versus Random walk 

-3.76 

(0.00) 

-5.22 

(0.00) 

- 3.36 

(0.00) 

- 6.07 

(0.00) 

Note: The p-values are given in parentheses. 1S : Asymptotic test statistic,  2S : Sign test 

statistic, 3S : Wilkoxon test statistic, MGN: Morgan-Granger-Newbold test statistic. A positive 

(negative) sign of the statistics implies that model B dominates (is dominated by) model A. The 

prediction horizon used is 90. These tests are based on absolute forecast mean errors. 
 

 

6. Conclusions 
 

In this paper, we have combined path-dependence nature of stock price with asymmetric 

volatility estimated characterized by jumps. A SEMIFARMA model with skewed-Student 

AEGAS errors, we argued, has the potential to capture long-range persistence with 

nonparametric deterministic trend in the conditional mean and asymmetric jumps and 

volatility clustering in the conditional variance. This model offers better features of the 

dynamic volatilities and exploits nonlinear and asymmetric structures to model the existence 

of time-varying parameters. In this regard, we use the scaled score of the likelihood function. 

In addition, the asymmetric exponential GAS model serves as an extension of the GARCH 

family models which assume that the conditional distribution does not vary over time. It 

exploits the full likelihood of information. Taking a local density score step as a driving 

mechanism, the time-varying parameters increase and produced a clear indication of a 

leptokurtic behavior and a heavy tails in the financial series. 

Our empirical exercise focused on the behaviour of the time-varying parameter by 

estimating the SEMIFARMA-AEGAS model with the Skewed Student-t maximum 

likelihood. From the dynamic quantile Engle-Manganelli test results, the in-sample Value-at-

Risk forecast obtained by the SEMIFARMA-AEGAS model gives satisfactory results at 90% 

and 95% confidence level for short and long trade positions. Using the minimum loss 

functions, the SEMIFARMA-AEGAS model shows a clear superiority over all the other 

models. Particularly, the forecasts of the SEMIFARMA-AEGAS model show a clear 

improvement compared to the random walk model at all horizons. The observed movements 

appear as the result of lasting and asymmetric shocks, which affect the French, Argentina and 

Saudi markets. Consequently, recent works on volatility modeling through asymmetric 

exponential GAS process, which captures volatility clustering for both negative and positive 

returns, seem particularly promising and may provide new evidence to better understand the 

nonlinear and asymmetric dynamics of financial series. 
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