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Abstract: 

This paper analyzes the cyclical behavior of CAC 40 by testing the existence of 
nonlinearity through a logistic smooth transition AR model with logistic smooth transition 
GARCH errors. We study the daily returns of CAC 40 from 1990 to 2018. We estimate 
several models using nonparametric maximum likelihood, where the innovation distribution is 
replaced by a nonparametric estimate for the density function. We find that the rate of 
transition and the threshold value in both the conditional mean and conditional variance are 
highly significant. The forecasting results show that the informational shocks have transitory 
effects on returns and volatility and confirm nonlinearity. 
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Introduction 

Over the last twenty years, the interest in nonlinear time series models has been 
surely increasing. The presence of nonlinearity in financial series has important 
implications especially concerning the property of weak efficiency of markets. 
Indeed, if a series exhibits nonlinear structure, this implies significant nonlinear 
dependencies between the observations (Chikhi & Bendob (2018)). In applications to 
financial time series, models, which allow for regime-switching behavior have been 
most popular, especially the class of smooth transition autoregressive (LSTAR) 
models, popularized by Teräsvirta (1994), has enjoyed great success. A lot of work in 
this area has been devoted to estimation, specification, testing and applications such 
as forecasting (Potter (1999), Van Dijk et al. (2002b), Wahlström (2004), Chikhi & 
Diebolt (2009), Abedile & Shangodoyin (2006) and Umer, Sevi & Sevil (2018)). 
Smooth transition models may be appropriate to provide a privilege framework for the 
study of asymmetric stock market fluctuations. These models justify the sources of 
non-linearity of stock price adjustment by the presence of transaction costs. 

For the history and applications of the STAR model to economic and financial time 
series see, for example, Granger & Teräsvirta (1993) and Teräsvirta (1994) who 
classify market into two phases of recession and expansion. Thus, Teräsvirta & 
Anderson (1992) forecast quarterly OECD industrial production series with STAR 
model. Sarantis (1999) tests nonlinearities in real effective exchange rates for 10 
major industrialized countries and evaluates forecast accuracy of STAR model over 
the random walk model. Eitrheim & Teräsvirta (1996) evaluate the specification of 
STAR model by introducing a Lagrange multiplier (LM) test for the hypothesis of no 
error autocorrelation and LM-type tests for the hypothesis of no remaining 
nonlinearity and that of parameter constancy. Wahlström (2004) compares forecasts 
from the LSTAR model to those from a linear autoregressive model. In turn, Chikhi & 
Diebolt (2009) analyze the cyclical behavior of the German annual aggregate wage 
earnings using LSTAR model and show that the observed German annual aggregate 
wage movements appear as the result of transitory exogenous shocks. On the other 
hand, Zhou (2010) studies the STAR model in the presence of structural break in 
industrial production index of Sweden. Tayyab, Tarar & Riaz (2012) evaluates the 
suitability of the Smooth transition autoregressive (STAR) models specification for 
real exchange rate Modeling. Adebile & Shangodoyin. (2006) propose an alternative 
representation of the original version of the logistic STAR model. Whereas, Umer, 
Sevil & Sevil (2018) compare the performance of smooth transition autoregressive 
(STAR) and linear autoregressive (AR) models using monthly returns of Turkey and 
FTSE travel and leisure index. For review of threshold time series models in finance, 
see also Chen, So & Liu (2011). 

The limitation of these works is that they don’t capture the nonlinearity structure in 
the conditional variance. The assumption of white noise on the LSTAR model 
residuals ignores the presence of conditional heteroskedasticity; however, the 
financial series are generally characterized by a time-varying volatility that can be 
modeled by ARCH-type models (Engle (1982) and Bollerslev (1986)) that is often 
used to study the behavior of asset returns or innovations of the ‘parent’ model. 
Franses, Neele & Van Dijk (1998) and Lundbergh & Terräsvirta (1999, 2000) 
describe the nonlinear dynamics in both the conditional mean and the conditional 
variance by combining the Smooth Transition Autoregressive (STAR) models 
(Granger &Teräsvirta (1993) and Teräsvirta (1994)) with GARCH errors (Bollerslev 
(1986)) and with the Smooth Transition GARCH errors (Hagerud (1997) and 
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Gonzalez-Rivera (1998)), which have been widely used in forecasting. Thus, some 
authors have used the STGARCH or the STAR-STGARCH to study financial time 
series. Concerning the STGARCH model, several authors have introduced these 
specifications (Hagerud (1997), Gonzalez-Rivera (1998), Anderson et al. (1999) and 
Medeiros & Veiga (2009)) widely used in models of conditional mean, to model the 
asymmetric response of conditional variance to positive and negative news. Lubrano 
(2001) uses a Bayesian approach to estimate the STGARCH model. Yaya & Shittu 
(2016) model banks share prices using the STGARCH to capture nonlinear, 
asymmetric and symmetric properties of Nigerian banks stocks and to determine the 
volatility behavior of each bank. Regarding the STAR-STGARCH modeling, Chan, 
Marinova & McAleer (2002) analyses trends in the development of more ecological-
friendly technologies using STAR-GARCH model. Chan & McAleer (2003) 
investigate several empirical issues regarding quasi-maximum likelihood estimation 
of STAR models with STGARCH errors. They show that different algorithms 
produce different estimates for the same model in the presence of extreme 
observations and outliers. Reitz & Westerhoff (2007) propose an empirical 
commodity market model with heterogeneous speculators using STAR-GARCH 
model. Pavlidis, Paya& Peel (2010) examine the impact of conditional 
heteroskedasticity and investigate the performance of several heteroskedasticity 
robust versions. The mean-variance equations are then compounded as STAR-
GARCH model. Guo & Cao (2011) develop a smooth transition GARCH model with 
an asymmetric transition function, which allows for an asymmetric response of 
volatility to the size and sign of shocks, and an asymmetric transition dynamics for 
positive and negative shocks. Chan & Theoharakis (2011) estimate m-regimes STAR-
GARCH model using quasi-maximum likelihood (QMLE) with parameter 
transformation. Ben Haj Hamida & Haddou (2014) propose to study exchange-rate 
dynamics for the Maghreb countries using the STAR-STGARCH model. Finally, 
Livingston & Nur (2018) use the Bayesian inference for the smooth transition 
autoregressive STAR(k)–GARCH (l, m) models. 

Some authors assume that the innovations follow the Normal distribution, which 
cannot accommodate fat-tailed properties commonly existing in financial time series. 
Many existing studies point out that this problem can lead to inconsistent estimates. 
The Student’s t-distribution and General Error Distribution (GED) can be the two 
most popular alternatives with the intension of capturing the heavy-tailed returns. 
However, in most cases, the innovation distribution is unknown and often replaced by 
a nonparametric estimate and thus the estimation procedure becomes semiparametric 
(see Pagan & Ullah (1999) and Di & Gangopadhyay (2014)).  

Our research, in contrast to studies that use parametric Gaussian distribution, 
Student’s t-distribution or General Error Distribution (GED), employs nonparametric 
maximum likelihood method to estimate semi-parametrically our model. We apply 
this technique to explain cyclical behavior, examine informational shocks and 
describe the nonlinear dynamics in CAC 40 returns using LSTAR-LSTGARCH 
models. The short-term predictability of CAC 40 index provides evidence for 
inefficiency of Paris stock market (in a weak level) with limited rationality, which 
emerges arbitrage opportunities. 
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The paper is structured as follows. Next section outlines the daily CAC 40 price 
data and discusses its statistical properties. Section 3 is devoted to semiparametric 
modelling of the daily return series of CAC 40; we compare the predictive quality of 
AR-GARCH, LSTAR-GARCH and LSTAR-LSTGARCH models with that of a 
random walk. The last section concludes. 

 

1. Dataset used and its statistical properties 

The data used in this paper consists of the daily closing CAC40 price index 
downloaded from ABC Bourse (https://www.abcbourse.com/marches/) covering a 
historical period from January 2, 1990 to November 30, 2018 including 7340 
observations. In order to better understand the characteristics of the CAC40 series, it 
is necessary to examine some descriptive statistics. As is usual in financial time 
series, the linear and nonparametric unit root tests are employed to test the stationarity 
behavior (Kwiatkowski, Phillips, Schmidt & Shin (1992), Breitung (2002), Elliott, 
Rothenberg & Stock (1996)).The corresponding results are presented in table 1. All 
the unit root tests accept at the 5% level the hypothesis stating that the logarithmic 
CAC40 series contain a unit root. It is therefore concluded that the series is finally 
differentiated to obtain the daily percentage returns of CAC40 at time t (see figure 1) 

( )1100 ln lnt t tr P P −= × −
 

Where tP  and 1tP −  are daily CAC40 price at two successive days t and 1t −  
respectively. 

 
Figure 1 –Daily CAC40 (Level and returns) 

 
In order to test the presence of structural breaks and identify the dynamics of 

asymmetric adjustment, we use other unit root tests (Lee & Strazicich (2004) and 
Enders & Granger (1998)). For the returns of CAC40, the Lee-Strazicich LM unit root 
test strongly reject the null hypothesis in favor of trend stationarity with one break. 
Also, the stationarity is confirmed by the result of asymmetric unit root and linearity 
test proposed by Enders & Granger (1998)) based on the threshold autoregressive 
(TAR) models. According to the test results in table 1, we reject the null hypothesis of 
equality 0 1 2:H ρ ρ=  and the series of returns exhibits TAR type asymmetric 

adjustment. The joint F-statistic φ  and the maximum t-statistic between 1 0ρ =  and  
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2 0ρ =  (t-max) confirm these results and the process is concluded to be statistically 

nonlinear stationary with asymmetric dynamics. It is possible that this apparent 
nonlinearity could be due to structural breaks or outliers, as described in the Lee-
Strazicich unit root test results. 

Table 1 – Unit root tests 

 
Unit root tests 

Test Logarithmic Returns 
ERS 
:0H Unit root 

0.0075 
(3.26) 

20.9229 
(3.26) 

Breitung 
:0H Unit root 

0.00001 
(0.0104) 

0.0525 
(0.0104) 

KPSS 
:0H  Stationarity 

0.1242 
(0.146) 

0.0618 
(0.463) 

Asymmetric unit root and linearity test for dailyreturns of the CAC40 

   Returns 

Enders-Granger 
:0H Unit root 

Selected lags 1 
Attractor -0.0145 

t-max -48.6895 
φ  1965.3915 

1 2ρ ρ=  5.9869 

Unit root test with structural break 

 Break type  Logarithmic Returns 

Lee-Strazicich 
:0H Unit root 

Crash (A) 
τ  

-1.9994 
(-3.23) 

-40.9447 
(-3.23) 

Break point 10/28/1997 08/28/2000 
Selected lags 5 4 

Break (C) 
τ  

-2.6614 
(-3.9857) 

-41.6379 
(-4.0126) 

Break point 06/04/1998 12/24/1999 
Selected lags 5 4 

Notes: (.): The asymptotic critical value at 5%.The table reports the results of Breitung's 

nonparametric unit root test, which only gives the critical values for T = 100, T = 250 and T 

= 500. Therefore, the critical values used here are the ones for n = 500.  We accept the unit 

root hypothesis 0H for daily logarithmic series and reject it for daily returns. τ is the 

minimum Lee-Strazicich test statistic. For Elliott-Rotenberg-Stock (ERS) and KPSS tests, the 

spectral estimation is based on the Bartlett kernel using the Andrews bandwidth. 1ρ and 2ρ  

are coefficients of first lag values of each regimes. φ is the joint F-test for 1 2 0ρ ρ= = . t-

max is the larger of the two t-statistics on 1 0ρ =  and 2 0ρ = . 

Table 2 reports the descriptive statistics and shows that daily CAC 40 return series 
exhibit significant negative skewness and leptokurtosis. The Jarque-Bera test (Jarque 
& Bera (1987)) confirms the non-normality of the distribution (see also Figure 2). 
Rejection of normality partially reflects the dependencies in the moments of returns 
series. The observed asymmetry may indicate the presence of nonlinearities in the 
evolution of daily returns. In addition, the ARCH-LM test result shows that CAC 40 
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returns are characterized by the presence of ARCH effect according to the results of 
normality test. 

 
Table 2 – Summary statistics for daily CAC 40 returns 

 

Skewness Kurtosis Jarque-Bera ARCH(1) ARCH(2) 
-0.0643 
(0.0244) 

7.7141 
(0.0000) 

6812.2497 
(0.0000) 

266.678 
(0.0000) 

559.677 
(0.0000) 

Notes: (.): The p-Value. We reject the assumption of normality H0because the Jarque-

Bera statistic is greater than the critical value of chi-square distribution with 2 

degrees of freedom at 5%. Moreover, we reject the homoscedasticity assumption H0 

(There is an ARCH effect in the data because the ARCH-LM statistic is greater than 

the critical value of chi-square distribution with 1 and 2 degrees of freedom at 5%.). 
 

Figure 2 – Kernel estimation of density 
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Table 3 – BDS test results on the series of  returns 

 

m BDS stat. Prob. 

2 14.435 0.000 
3 20.366 0.000 
4 25.028 0.000 
5 28.659 0.000 
6 31.977 0.000 
7 35.498 0.000 
8 39.342 0.000 
9 43.481 0.000 

10 48.015 0.000 
11 53.405 0.000 
12 59.501 0.000 
13 66.603 0.000 
14 74.874 0.000 
15 84.543 0.000 

Notes: The BDS statistics are calculated by the 

fraction of pairs method with ε equal to 0.7.m 

represents the embedding dimension. The BDS 

statistics are strictly greater than the critical 

value at 5%for all the embedding dimensions. 
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As seen in table 3, the random walk hypothesis is clearly rejected and the returns 
of CAC 40 are non-linearly dependent. The BDS (Brock et al. (1996)) test generally 
brings out the presence of significant non-zero autocorrelations in the short term. This 
test leads us to reject the i.i.d hypothesis, but do not detect the presence of long 
memory structure. Given this situation, we test the presence of dependencies by 
considering longer horizons. As it is observed from Table 4, test results for fractional 
integration show the evidence that the process is anti-persistent and return series 
exhibits short-term memory, but it does not have the behavior of ARMA. The 
memory parameter estimated by the Andrews-Guggenberger (Andrews & 
Guggenberger (2003)), Robinson-Henry (Robinson & Henry (1998)) and the GPH 
(Geweke & Porter-Hudak (1983)) methods is negative and significant. The absence of 
a long memory indicates that agents can only anticipate their returns to a short time 
horizon. Indeed, the observed movements appear as the result of transitory exogenous 
shocks which affect the Paris market. 

 
Table 4 – Results from the ARFIMA(0,d,0) estimation  

on daily CAC 40 returns 
 

 GPH Robinson-Henry Andrews-Guggenberger 

d
)

 -0.0058 -0.0185 -0.0591 

Student statistics -3.6173 -2.2482 -3.35400 

Notes: d
)

is the estimated Long memory parameter with a power of 0.8. 

 
In order to verify the existence of an underlying nonlinear structure in CAC 40 

stock returns and detect the nonlinear behavior of volatility, we use the Hinich 
bispectrum test (Hinich & Patterson (1989)) for linearity and Gaussianity and the 
Tsay test for neglected nonlinearities (Tsay (1986, 1991, 2001), Tiao & Tsay  (1994) 
and Luukkonen, Saikkonen & Terasvirta (1988)). In view of Table 5, the Gaussianity 
and the linearity statistics are strictly greater than the critical value of standard normal 
and that of chi-square distribution at 5%, with two degrees of freedom, respectively. 
We reject the null hypothesis of linearity and Gaussianity. In addition, the Tsay test 
result confirm nonlinearity because the F-statistics are greater than the critical value at 
5%. We find evidence of threshold behavior in the returns and volatility series. It is 
due to the large variance change in the time period. Consequently, these results 
indicate the presence of strong nonlinear structure in the evolution process of returns 
and volatility and confirm those of the Enders-Granger unit root test, which rejects the 
linear hypothesis in favor of the nonlinearity and asymmetry assumptions. The series 
very likely has TAR behavior. 

 
Table 5 – Hinichbispectrumand Tsaytests for linearity 

 

Series 
Hinichbispectrum test Tsay test 

Frame 
Size 

Lattice 
Points 

Test 
Quantile 

Linearity Gaussianity 
4

TsayF  

Returns 85 462 0.80000 
8.7268 

(0.0000) 
6263.8270 
(0.0000) 

6.3586 
(0.0000) 

Volatility 85 462 0.800 
1056.706 
(0.0000) 

169638.125 
(0.0000) 

31.1934 
(0.0000) 
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Notes: The numbers in the table are nonparametric Hinich bispectral test statistics with the null 

hypothesis H0 of linearity and Gaussianity, obtaining the chi-squared statistic for testing the 

significance of individual bispectrum estimates by exploiting its asymptotic distribution. The numbers 

in the parenthesis are critical probabilities.
4

TsayF is the Tsay Ori-F test for neglected non-linearities in 

an autoregression. We test more specifically against STAR using 4 lags. 

 

3. Semiparametric modelling 

In order to describe the nonlinear dynamics in both the conditional mean and the 
conditional variance, the modelling of CAC 40 series could be turned towards smooth 
transition autoregressive models (Lukkonen, Saikkonen & Terasvirta (1988), 
Teräsvirta & Anderson (1992), Tiao & Tsay(1994) and Teräsvirta (1994)) which 
could be combined with smooth transition GARCH errors (Gonzales-Riviera (1996), 
Hagerud (1997) and Chan & McAller (2003)) using nonparametric maximum 
likelihood, where the innovation distribution is unknown and replaced by a 
nonparametric estimate for the density function (Pagan & Ullah (1999) and Di & 
Gangopadhyay (2014)). In practical terms, we estimate AR, LSTAR jointly with 
GARCH and LSTGARCH models. The estimation procedure becomes 
semiparametric. These semiparametric approaches require two steps. In a first step, 
we incorporate an initial estimate of the model parameter to produce a residual. In a 
second step, we use the residuals to estimate the nonparametric likelihood, which is 
after maximized to obtain the final estimate of the model parameter. 

We first use the nonlinear least square method based on the Gauss-Newton 
algorithm to estimate the LSTAR model (Van Dijk, Teräsvirta & Franses (2000)). We 
select the appropriate transition variable (Öcal & Osborn (2000)). The first stage in 
the modeling cycle is to test linearity against LSTAR nonlinearity by selecting a 
linear model with residuals using sum of squared residuals. The selected linear model 
obtained by the general-to-specific procedure and based on the mentioned criteria is 
assumed to form the null hypothesis for testing linearity (Chikhi & Diebolt (2009)). 
The LSTAR linearity test is carried out for different candidate transition variables. If 
the linearity is rejected against LSTAR, we select the appropriate transition variable 
and proceed to estimate the LSTAR parameters. The linearity tests and the grid search 
results are displayed in Table 6. 

 

Table 6 – The linearity tests and Grid search results for the specification of the 

STAR model 

 

Transition 
variable 

F F4 F3 F2 
Suggested  

model 
γ  c  SSR 

1tr − * 0.0000* 0.0003* 0.0000* 0.0682 LSTAR2 0.7558 -0.0740 0.0990 

2tr −  0.00001* 0.0000* 0.3504 0.6342 LSTAR1 1.3603 0.5544 1.3513 

Notes:
γ

 is the rate of transition. c is the threshold variable. SSR: Sum of squared residuals. F is the 

fisher statistic. 
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There is clear evidence that the linearity is clearly rejected in three out of four 
cases. The strongest evidence of LSTAR nonlinearity occurs when 1tr −  

is used as the 

transition variable. However, the grid search results show that SSR is minimized 
when 1tr −  

is considered as the switching variable (see also Figure 3).  

 

Figure 3 – Graphical representation of grid search for start values 

 

The results of the LSTAR model estimation by the Gauss-Newton are shown in 
Table 7. The results suggest that daily stock returns are generated by a nonlinear 
process. Some coefficients of linear and nonlinear part (Figure 5) are significantly 
different from zero. We also find that the rate of transition and the threshold variable 
in the transition function (Figure 4) are highly significant because the student statistics 
are greater than the critical value at significance level 5%. These last results confirm 
the nonlinearity in the conditional mean. 

After estimating the model parameters, we evaluate it using misspecification tests. 
We focus here on testing serial dependence in the residuals and the ARCH effect. We 
note that the residuals (Figure 6) are not characterized by a Gaussian distribution and 
are leptokurtic (Figure 7). The asymmetry may indicate the presence of nonlinearities 
in the residuals or the squared residuals. However, these residuals can be modeled by 
GARCH models because the presence of an ARCH effect is confirmed by the result 

of the ARCH-LM test on LSTAR residuals ( 2 2263.6 (112 )nR χ= > ). Furthermore, as 

seen in Table 8, the series of the LSTAR residuals show strong nonlinear 
dependencies where the BDS statistics are strictly greater than the critical value1.96 
for all the embedding dimensions. 

 
Table 7– Estimation results of LSTAR model by nonlinear OLS 

 

Parameters 
LSTAR 

Estimates t-statistics 

10φ
)

 
-0.04944 -0.8104 

11φ
)

 -0.32429 -1.4184 

12φ
)

 -0.8729 -2.474 

20φ
)

 
0.0497 0.8104 
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21φ
)

 1.0187 1.4578 

22φ
)

 0.8829 2.4794 

γ  0.8097 5.3813 
c

 -0.0739 -7.6421 

JB statistic 
5437.8527 

(0.000) 
 

Skewness -0.1542  
Kurtosis 7.2063  

ARCH(8) 
263.612 
(0.000) 

 

Notes:JB: Jarque-Bera statistic. 10φ
)

, 11φ
)

, 12φ
)

 are the 

parameters of linear part. 20φ
)

, 21φ
)

, 22φ
)

are the 

parameters of nonlinear part. 

 

Figure 4 – Transition function of LSTAR model versus diff_ln_w_1 (upper 

panel) and over time (lower panel) 
 

 

 

Figure 5 – Linear and nonlinear parts 
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Figure 6 – LSTAR residuals 
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Figure 7 – Kernel estimation of density 
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Table 8 – BDStest resultsonLSTAR residuals 

Dimension BDS Statistic Prob. 
2 14.1960 0.0000 
3 20.1338 0.0000 
4 24.9032 0.0000 
5 28.5496 0.0000 
6 31.8905 0.0000 
7 35.4227 0.0000 
8 39.2732 0.0000 
9 43.4164 0.0000 

10 47.9529 0.0000 

Notes: The BDS statistics are calculated by the 

fraction of pairs method with ε equal to 0.7. m 

represents theembedding dimension. 
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It is likely that the conditional variance is characterized by a nonlinear structure. 
The financial asset prices often exhibit nonlinear heteroscedastic behavior. For this 
reason, we first test the GARCH specification against the alternative of LSTGARCH.  
Table 9 shows that the volatility of the CAC 40 returns series is adequately captured 
by the Logistic Smooth Transition GARCH-type model. The values of the critical 
probabilities reported in Table 9 argue in favor of an LSTGARCH model. At this 
stage, we will study the conditional variance of CAC 40 returns by combining 
LSTAR model with LSTGARCH errors using nonparametric maximum likelihood. 
The nonlinear models with LSTGARCH errors provide a flexible class of model to 
describe the nonlinear dynamics in both the conditional mean and the conditional 
variance.  

 

Table 9 – LM test for GARCH against the alternative of LSTGARCH 

Model LM 

GARCH 
0.0988 

(0.7802) 

LSTGARCH 
298.385 
(0.000) 

Notes: (.): The critical probabilities. 

 

Table 10 – Semiparametric estimation using BHHH algorithm 

Parameters AR-GARCH 
LSTAR-
GARCH 

LSTAR-
LSTGARCH 

11φ
)

 
0.0447 

(3.5466) 
0.0803 

(4.1937) 
0.0807 

(1.5339) 

12φ
)

 
-0.0254 

(-2.1878) 
0.0988 

(1.9787) 
-0.2464 

(-2.1050) 

21φ
)

 - 
2.4454 

(1.3424) 
-0.0696 

(-1.1426) 

22φ
)

 - 
5.5373 

(1.9849) 
0.2647 

(2.3089) 

meanγ)  - 
0.0048 

(2.5750) 
2.6857 

(2.7420) 

meanc
)

 - 
8.3744 

(3.4476) 
0.4608 

(2.5078) 

1ω)  
0.0279 

(6.1009) 
0.0276 

(7.3094) 
0.0130 

(0.6663) 

1α)  
0.0921 

(10.5674) 
0.0915 

(14.6011) 
0.0541 

(7.7581) 

1β
)

 
0.8936 

(91.3457) 
0.8943 

(127.3119 
0.8809 

(12.9342) 

2ω)  - - 
0.0105 

(0.0825) 

2α)  - - 
0.0073 

(6.3264) 

2β
)

 - - 
0.9146 

(8.3100) 
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vol.γ)  - - 
0.1817 

(2.3796) 

.volc
)

 - - 
1.5726 

(3.4263) 
L -11689.4394 -11686.2592 -11542.1713 

Notes: (.): The t-statistics. 11φ
)

, 12φ
)

, 21φ
)

, 22φ
)

 are the estimated STAR 

parameters. meanγ) is the estimated rate of transition (STAR). meanc
)

represents the estimated threshold value of STAR model. 1ω) , 1α) , 1β
)

, 2ω) , 2α)

, 2β
)

 are the estimated LSTGARCH parameters. vol.γ) is the estimated rate of 

transition (LSTGARCH). .volc
)

is the estimated threshold value of LSTGARCH 

model. L represents the estimated likelihood function. 

 

In view of Table 10, we find that the likelihood function is at maximum for the 
LSTAR-LSTGARCH model and the coefficients of this model are generally 
significant. In addition, the rate of transition and the threshold value in both the 
logistic smooth transition autoregressive and logistic smooth transition GARCH are 
significantly different from zero. The estimation results confirm that the conditional 
variance, which captures the heterogeneous and the volatility clustering is 
characterized by a nonlinear dynamics with regime switching behavior. It is shown 
that the GARCH parameter of nonlinear part is positive and statistically significant. 
this implies that positive shocks (appreciation) produce high volatility than negative 
shocks (depreciation) of the same magnitude. The parameter of linear part is positive 
and statistically significant. It means that the model manages to capture the temporal 
dependence of the conditional variance. In addition, the sum of GARCH parameters 
in both the linear and the nonlinear part is less than 1.There is still volatility clustering 
indicating support for asymmetry. Thus, we find that a negative shock increases the 
conditional variance more than a positive shock of the same magnitude. This 
highlights the asymmetric effect of unexpected shocks on conditional volatility. The 
transition parameter is generally quite high. This implies, in principle, that the speed 
of adjustment with respect to the equilibrium is faster. On the other hand, the 
coefficient of the threshold delay in the linear part of LSTAR is positive and that of 
nonlinear part is negative. These two parameters determine whether the weak and 
wide deviations have returned to the mean and the inclusion of transaction costs 
suggests that the large deviations of the long-run equilibrium, have a strong tendency 
to deviate from the equilibrium. The stock price will tend to move to the average price 
over time (mean-reversion). The LSTAR-STGARCH model is stable overall. 

Figure 8 shows higher volatility persistence of LSTGARCH. When the level of the 
true conditional standard deviation changes, the LSTGARCH switches from the low-
volatility (high-volatility) state to the high-volatility (low-volatility) state. Hence, the 
LSTGARCH model is more flexible than the GARCH model in accommodating 
different sizes of shocks. 
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Figure 8 – Comparison of estimates of conditional standard deviations 

 

 
In order to evaluate the forecasting performance of fitting LSTAR-LSTGARCH 

Model in French stock market, we use the mean square error (MSE) and the mean 
absolute error (MAE). Table 11 contains statistical comparisons of out-of-sample 
forecasts provided by the AR-GARCH, LSTAR-GARCH, LSTAR-LSTGARCH and 
the random walk models. It is observed that MSE and MAE criteria generally give the 
same results. We find that the three models outperform the random walk model in all 
forecasting time horizons. The LSTAR-LSTGARCH model tend to have better 
predictive results comparing to LSTAR-GARCH and AR-GARCH in 2, 10, 20, 30  
days. The LSTAR-LSTGARCH is beaten by the LSTAR-GARCH only in one day. 
Moreover, values of MSE and MAE criteria increase with horizons of 20 and 30 
because all the models take into account the short-term memory in the conditional 
mean equation and the conditional volatility, considering that the criteria increase 
with the long prediction horizons. In other words, the predictive power for daily CAC 
40 returns reflects the impossibility to forecast up to the longest horizon.  

Table 11 – Out-of-sample forecast statistics 

 Horizon Criteria 
AR-

GARCH 
LSTAR-
GARCH 

LSTAR-
LSTGARCH 

Random 
Walk 

Conditional 
mean 

(Returns) 

1 day 
MSE 0.00067 0.00056* 0.00062 0.0512 
MAE 0.08124 0.07883* 0.07892 0.1295 

2 days 
MSE 0.00091 0.00087 0.00075* 0.0725 
MAE 0.02536 0.02212 0.02200* 0.1485 

10 days 
MSE 0.00050 0.00046 0.00035* 0.1618 
MAE 0.05765 0.05689 0.05676* 0.2481 

20 days 
MSE 0.00085 0.00081 0.00079* 0.2284 
MAE 0.05835 0.05743 0.05731* 0.3078 

30 days 
MSE 0.00174 0.00163 0.00119* 0.2814 
MAE 0.06341 0.06332 0.06225* 0.3954 

Conditional 
variance 

(Volatility) 

1 day 
MSE 0.00052 0.00048 0.00036* - 
MAE 0.07206 0.07177 0.07165* - 

2 days 
MSE 0.00045 0.00029* 0.00041 - 
MAE 0.06635 0.06559* 0.06571 - 

10 days 
MSE 0.00043 0.00038 0.00027* - 
MAE 0.05642 0.05601 0.05589* - 



15 

 

20 days 
MSE 0.00090 0.00086 0.00077* - 
MAE 0.08633 0.08512 0.08503* - 

30 days 
MSE 0.00145 0.00125 0.00108* - 
MAE 0.10334 0.09841 0.09132* - 

In order to test the statistical significance of the forecasting improvements of 
LSTAR-LSTGARCH predictions over the LSTAR-GARCH on one hand and the 
random-walk on the other hand, we can use also the tests based on the asymptotic test, 
the sign tests, the Wilcoxon's test and the Morgan-Granger-Newbold test (Diebold & 
Mariano (1995)). The null hypothesis is the equal predictive accuracy of the two 
models. The results are reported on Tables 12. 

 
Table 12 - Comparing predictive accuracy: Diebold-Mariano test 

 

Test of equal accuracy 1S  2S  3S  MGN 

LSTAR-LSTGARCH 
versus LSTAR-GARCH 

- 1.62 
(0.10) 

- 13.05 
(0.00) 

- 5.77 
(0.00) 

- 20.62 
(0.00) 

LSTAR-LSTGARCH 
versus Random walk 

- 0.63 
(0.10) 

-7.11 
(0.00) 

- 5.69 
(0.00) 

- 10.18 
(0.00) 

The p-values are given in parentheses. 1S : Asymptotic test statistic,  2S : Sign test 

statistic, 3S : Wilkoxon test statistic, MGN: Morgan-Granger-Newbold test statistic,. A 

positive (negative) sign of the statistics implies that model B dominates (is dominated by) 

model A.. The prediction horizon used is 30. These tests are based on absolute forecast 

errors. 

As seen in Table 12, the p-values clearly indicate that the null hypothesis of equal 
accuracy of the three models is strongly rejected. It is observed that different 
predictive accuracy are accepted because the p-values are less than 0.05, it means that, 
in this case, the LSTAR-LSTGARCH model beat the LSTAR-GARCH and the 
random walk process. The Diebold-Mariano statistics are, in most cases, significant, 
meaning that there is a difference in the forecasts computed from the LSTAR-
GARCH and LSTAR-LSTGARCH models. A negative sign of the statistics implies 
that LSTAR-GARCH model is dominated by LSTAR-LSTGARCH model. The 
nonlinearity effects detected on volatility seem to improve the volatility forecasts. 
Indeed, the sign of the statistics is negative, implying that the nonlinearities observed 
on volatility provide a better volatility forecast. 

Given that the daily CAC 40 returns are characterized by the presence of nonlinear 
dynamics in the equations of the mean and by the asymmetric effects in the 
conditional volatility, the LSTAR-LSTGARCH modelling allows computation of 
better forecasts than the other models and the random walk. The returns are short-term 
predictable. The agents cannot anticipate their returns to a long time horizon. Indeed, 
the observed movements appear as the result of transitory shocks, which affect the 
Paris stock market. The CAC 40 returns will come back to their previous fundamental 
value and the shock will be persistent in the short term. This suggests that it will be 
possible a priori to establish remunerative strategies on the Paris stock market. In 
addition, the series is characterized by the existence of nonlinearities in the volatility. 
Consequently, there is an asymmetric impact of positive and negative information on 
the level of future variance and the weak efficiency assumption of financial markets 
seems violated for daily CAC 40 returns. 



16 

 

4. Concluding Remarks 

We investigated the presence of nonlinearities in the CAC 40 returns. We proposed 
a semiparametric estimation for LSTAR with LSTGARCH errors. We implemented 
the nonparametric maximum likelihood method to estimate exactly this class of 
models by taking into account the phenomenon of persistence and nonlinearity for the 
conditional variance. From the results, informational shocks have transitory effects on 
volatility and the LSTAR-LSTGARCH model shows a clear superiority over the AR-
GARCH and LSTAR-GARCH models for short horizons. Specifically, the forecasts 
of the logistic smooth transition model show a clear improvement compared to the 
random walk model at all horizons; consequently, low efficiency of financial markets 
seems violated for the CAC 40 returns studied over a short period. Thus, recent works 
on semiparametric modeling through LSTGARCH process may provide new evidence 
to better understand the nonlinear dynamics and the asymmetric character of financial 
series. 

The agents have heterogeneous behaviors that vary according to their initial 
endowments, their individual constraints and their usual activities. In addition, 
transaction costs are not only variable from one agent to another and based on 
transaction orders, but they can also define specific thresholds for each investor. The 
LSTAR-LSTGARCH model can reproduce the regime-switching behavior in the 
presence of heterogeneous transaction costs and distinct expectations of agents. The 
smooth transition between regimes can be attributed to the transaction volumes and 
heterogeneity of investor expectations. 

 

References 
 

Adebile, O. A. & Shangodoyin, D.K. (2006). Forecasting performance of logistic STAR 
model: an alternative version to the original LSTAR models. Model Assisted Statistics and 
Applications, 1(3), 139-146. 

Anderson, H. M., Nam, K. & Vahid, F. (1999). Asymmetric nonlinear smooth transition 
GARCH models. Rothman, P., editor, Nonlinear time series analysis of economic and 
financial data, Kluwer, Boston, 191-207. 

Andrews, D. W. K. & Guggenberger, P. (2003). A Bias-Reduced Log-Periodogram 
Regression Estimator for the Long-memory Parameter. Econometrica, 71, 675-712.  

Ben Haj Hamida, H. & Haddou, H. (2014). Dynamique de la Volatilité du Taux de Change 
dans les Pays du Maghreb: Une Approche non Linéaire. International Conference on 
Business, Economics, Marketing & Management Research, 2, 81-86. 

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of 
Econometrics, 31, 307-327. 

Breitung, J. (2002). Nonparametric Tests for Unit Roots and Cointegration. Journal of 
Econometrics, 108, 343-364.  

Brock, W.A., Dechert, W.D., Scheinkman, J.A & LeBaron, B. (1996). A Test for 
independence Based on the Correlation Dimension. Econometric Reviews, 15, 197-235. 



17 

 

Chan, F., & McAleer, M. (2003). Estimating smooth transition autoregressive models with 
GARCH errors in the presence of extreme observations and outliers. Applied Financial 
Economics, 13(8), 581-592. 

Chan, F., & Theoharakis, B. (2011). Estimating m-regimes STAR-GARCH model using 
QMLE with parameter transformation. Mathematics and Computers in Simulation. 81 (7), 
1385-1396. 

Chan, F., Marinova, D., & McAleer, M. (2002). STAR-GARCH Models of Ecological 
Patents in the USA. International Congress on Environmental Modelling and Software. 

Chen, C. W. S., So, M. K. P.& Liu, F. C. (2011). A review of threshold time series models in 
finance. Statistics and Its Interface, 4, 167–181. 

Chikhi, M., & Bendob, A. (2018). Nonparametric NAR-ARCH Modelling of Stock Prices by 
the Kernel Methodology. Journal of Economics and Financial Analysis, 2, 105-120. 

Chikhi, M., & Diebolt, C. (2009). Transitory Exogenous Shocks in a Non-Linear Framework: 
Application to the Cyclical Behaviour of the German Aggregate Wage Earnings. 
Historical Social Research, 34(1), 354-366. 

Di, J., & Gangopadhyay, A. (2014). One-step Semiparametric Estimation of the GARCH 
Model. Journal of Financial Econometrics, 12(2), 382–407. 

Diebold, F. X., & Mariano, R. S. (1995). Comparing Predictive accuracy. Journal of Business 
and Economic Statistics, 13, 3, 253-263. 

Eitrheim, Ø., & Teräsvirta, T. (1996). Testing the adequacy of smooth transition 
autoregressive models. Journal of Econometrics, 74(1), 59-75. 

Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient Tests for an Autoregressive 
Unit Root. Econometrica, 64, 4, 813–836. 

Enders, W., & Granger, C. W. J. (1998). Unit-Root Tests and Asymmetric Adjustment with 
an Example Using the Term Structure of Interest Rates. Journal of Business and Economic 
Statistics, 16, 304-311.  

Engle, F. R. (1982). Autoregressive conditional heteroskedasticity with estimates of the 
variance of United Kingdom inflation. Econometrica, 50 (4), 987–1007. 

Franses, P. H., Neele, J. & Van Dijk, D. (1998). Forecasting Volatility with Switching 
Persistence GARCH Models. Econometric Institute Report, EI-9819. 

Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long-memory time 
series models. Journal of Time Series Analysis, 4, 221-238.  

Gonzales-Riviera, G. (1996). Smooth Transition GARCH Models, Working Paper. 
Department of Economics, University of California at Riverside. 

Gonzalez-Rivera, G. (1998). Smooth-Transition GARCH Models.Studies in Nonlinear 
Dynamics & Econometrics, 3(2), 1-20. 

Granger, C & Teräsvirta, T. (1993). Modelling Non-Linear Economic Relationships. Oxford 
University Press. 

Guo, Z. F.,& Cao, L. (2011). An Asymmetric Smooth Transition GARCH 
Model.International  Journal of Applied Mathematics, 41(4). 

Hagerud, G. E. (1997). Specification Tests for Asymmetric ARCH. Working paper series in 
Economics and Finance. Department of Finance, Stockholm School of Economics. 

Hinich, M. J., & Patterson, D. M. (1989). Evidence of nonlinearity in the trade-by- trade stock 
market return generating process. In W. A. Barnett, J. Geweke and K. Shell (eds.), 
Economic Complexity: Chaos, Sunspots, Bubbles and Nonlinearity International 
Symposium in Economic Theory and Econometrics, 383-409. Cambridge: Cambridge 
University Press. 



18 

 

Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression 
residuals. International Statistical Review 55, 163–172. 

Kwiatkowski, D., Phillips, P., Schmidt, P., & Shin, Y. (1992). Testing the Null Hypothesis of 
Stationary Against the Alternative of a Unit Root: How Sure are we that Economic Time 
Series have a Unit Root?. Journal of Econometrics, 54, 159-178. 

Lee, J., & Strazicich, M. (2004). Minimum LM Unit Root Test with One Structural Break. 
Working Papers, No 04-17. Department of Economics, Appalachian State University. 

Livingston, J., & Nur, D. (2018). Bayesian inference for smooth transition autoregressive 
(STAR) model: A prior sensitivity analysis. Communications in Statistics - Simulation and 
Computation, 46(7). 

Lubrano, M. (2001). Smooth Transition GARCH Models : a Bayesian Perspective. 
Recherches Economiques de Louvain - Louvain Economie Review, 67(3), 257-287. 

Lundbergh, S., & Teräsvirta, T. (1999). Modelling economic high-frequency time series with 
STAR-STGARCH models. Working Paper Series in Economics and Finance, Stockholm 
School of Economics, 291, SSE/EFI. 

Lundbergh, S., & Teräsvirta, T. (2000). Forecasting with smooth transition autoregressive 
models. Working Paper Series in Economics and Finance, Stockholm School of 
Economics, 390, SSE/EFI. 

Luukkonen, R., Saikkonen, P., & Terasvirta, T. (1988). Testing Linearity against Smooth 
Transition Autoregressive Models. Biometrika, 70, 491-499. 

Medeiros, M., & Veiga, A. (2009). Modeling Multiple Regimes in financial  Volatility with a 
Flexible coefficient GARCH(1,1) Model. Econometric Theory, 25(1), 117-161.  

Öcal, N., & Osborn, D.R.(2000). Business cycle non‐linearities in UK consumption and 
production. Journal of Applied Econometrics, 15(1), 27-43. 

Pagan, A., & Ullah, A. (1999). Nonparametric Econometrics. Cambridge University Press. 

Pavlidis, E. G., Paya, I., & Peel, D. A. (2010). Specifying Smooth Transition Regression 
Models in the Presence of Conditional Heteroskedasticity of Unknown Form. Studies in 
Nonlinear Dynamics & Econometrics, 14(3), 1-40. 

Reitz, S., & Westerhoff, F. (2007). Commodity price cycles and heterogeneous speculators: a 
STAR–GARCH model. Empirical Economics (Springer), 33(2), 231-244. 

Robinson, P. M. & Henry, M. (1998). Long and Short Memory Conditional 
Heteroscedasticity in Estimating the Memory Parameter of Levels. Discussion paper 
STIDERC. Econometrics EM/98/357, London School of Economics and Political Science. 

Sarantis, N. (1999). Modeling non-linearities in real effective exchange rates. Journal of 
International Money and Finance, 18(1), 27-45. 

Tayyab, M., Tarar, A., & Riaz, M. (2012). Application of Smooth Transition autoregressive 
(STAR) models for Exchange Rate. Mathematical Theory and Modeling, 2(9), 30-39. 

Teräsvirta, T., & Anderson, H. (1992). Characterizing Nonlinearities in Business Cycles 
Using Smooth Transition Autoregressive Models. Journal of Applied Econometrics, 7(S), 
S119-36. 

Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition 
autoregressive models. Journal of the American Statistical Association, 89(425), 208–218. 

Tiao, G. C., & Tsay, R.S. (1994). Some advances in non-linear and adaptive modelling in 
time-series. Journal of Forecasting 13, 109-131. 

Tsay, R. S. (1986). Nonlinearity tests for time series. Biometrika, 73(2), 461–466. 

Tsay, R. S. (1991).Detecting and Modelling nonlinearity in Univariate time series. Statistica 
Sinica, 1, 431-451. 



19 

 

Tsay, R. S. (2001). Analysis of Financial Time Series: Financial Econometrics. John Wiley & 
Sons. 

Umer, M., Sevil, T., & Sevil, G. (2018). Forecasting performance of smooth transition 
autoregressive (STAR) model on travel and leisure stock index. Journal of Finance and 
Data Science, 4(2), 90-100.  

Van Dijk, D., Teräsvirta, T & Franses, P. H. (2002). Smooth Transition Autoregressive 
Models: A survey of recent developments. Econometric Reviews, 21(1), 1-47. 

Wahlström, S. (2004). Comparing forecasts from LSTAR and linear Autoregressive models. 
Mathematical Statistics Stockholm University. 

Yaya, O. S. & Shittu, O.I. (2016). Specifying Asymmetric STAR models with Linear and 
Nonlinear GARCH Innovations: Monte Carlo Approach. Journal of Modern Applied 
Statistical Methods, 13(1), 410-430. 

Zhou, J. (2010). Smooth Transition autoregressive Models: A study of the industrial 
production index of Sweden. Working Paper. Department of Statistics. UPPSALA 
Universitet. 

 
 

 


