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Abstract

In ecology, one of the simplest representation of population dynamics
is the logistic equation. This basic view can be enriched by considering
two important variables : (1) the maximal population density Nature can
support (carrying capacity) and (2) the critical density threshold under
which the population disappear (Allee effect). The economic literature on
biodiversity and renewable resources ignores both these variables. Evi-
dence suggests also that these variables are affected by the pollution level
due to economic activity. Indeed, a degraded environment is unsuitable
for wildlife and reduces the carrying capacity, while the climate change
entails the habitat fragmentation and, lowering the wildlife reproduction
possibilities, raises the Allee effect. The present paper aims to incor-
porate both endogenous carrying capacity and Allee effect in a Ramsey
model augmented with biodiversity as a renewable resource. Our ex-
tended framework enables us to study the effect of a Pigouvian tax on
anthropogenic mass extinction. We find that, when the household over-
values biodiversity with respect to consumption, a higher green-tax rate
is beneficial in three respects entailing: (1) a lower pollution and a higher
biodiversity, (2) a welfare improvement and (3) a less likely mass extinc-
tion.

Keywords: Allee effect, carrying capacity, pollution, Ramsey model,
logistic dynamics, Hopf bifurcation.

JEL Classification: E32, O44.

1 Introduction

A number of economists have studied the dynamics of renewable resources and
biodiversity in models of capital accumulation. To the best of our knowledge,
the seminal paper on the interaction between artificial and natural capital accu-
mulation in a Ramsey model is Beltratti et al. (1994). These authors consider
the renewable resource as a productive input and a pollution externality com-
ing from consumption and impairing the resource evolution. They show that



the saddle-path stability is preserved under the assumption of a small resource
impact on production. Ayong Le Kama (2001) revisits their work taking in ac-
count production instead of consumption as source of pollution. As in Beltratti
et al. (1994), he recovers the saddle-path stability, but without the restrictive
assumption of a small resource effect on production.

In Wirl (2004), the renewable resource is no longer productive but enters the
utility function, which is separable in consumption and resource. Using a logistic
function (& la Pearl-Verhulst) to represent the inverted-U-shaped reproduction
function of Nature, he finds two steady states: the one along the upward-sloping
branch of this function, the other along the downward-sloping branch. Wirl
(2004) points out the occurrence of a limit cycle around the lower steady state
through a Hopf bifurcation and the absence of complex dynamics around the
higher one. More recently, Bosi and Desmarchelier (2018b) revisit Wirl (2004) in
two respects considering: (1) a market economy instead of a central planner, (2)
a non-separable utility function. They reach an opposite conclusion: only the
higher steady state (along the decreasing branch of the reproduction function)
can be surrounded by a limit cycle. They also find a saddle-node bifurcation if
the environmental impact of production is sufficiently large. In this case, the
two steady states collide and disappear. Eventually, they show that the joint
occurrence of saddle-node and Hopf bifurcation gives rise to a parasitic loop
when the two steady states coalesce through a Bogdanov-Takens bifurcation.

All these results rest on a simple representation of reproduction function:
the logistic equation. Such unsophisticated mechanics misses two important
features of population dynamics and biodiversity. On the one hand, Nature
does not support an infinite number of individuals and faces a carrying capac-
ity.! On the other hand, since the Allee (1931) pioneering work, biologists are
aware that below a critical density level, many plants and animals experience
an extinction vortex. This density threshold is precisely known as Allee effect.
Following Courchamp et al. (1999) the prevailing interpretation of this effect is
the shortage of receptive mate encounters during the mating period when the
density is too low.

There is little doubt that pollution induced by economic activities affects
both the carrying capacity and the Allee effect. Indeed, a degraded environment
is recognized as a low biodiversity area. For example, according to Celli and
Maccagnani (2003), pollutants as pesticides are responsible for bees extinction
generating a stress for many plants and compromising in turn their survival
(Memmott et al. (2004)). It is reasonable to expect that the carrying capacity
is a decreasing function of pollution. In addition, pollution seems to influence
the Allee effect. As reported by Brook et al. (2008) among others, pollution
reduces the fertilization success. It is justified to define the Allee effect as an
increasing function of pollution.

Taking into account both the carrying capacity and the Allee effect, and
the joint effect of pollution becomes relevant to represent an anthropogenic
mass extinction. Indeed, if the carrying capacity falls below the Allee threshold

I'See Courchamp et al. (1999) among others.



because of man-made pollution, then Nature will support a lower biodiversity
level than what is needed to ensure biodiversity regeneration, and will enter an
extinction vortex induced by polluting economic activities. There is a lot of
evidences of such an anthropogenic mass extinction (see Barnosky et al. (2011)
and Ceballos et al. (2015) among others).

Considering the joint effect of pollution on the carrying capacity and the
Allee threshold is also relevant to understand the role of green policies in the
anthropogenic mass extinction. For this purpose, we build a Ramsey model
where a pollution externality, viewed as a stock coming from production, affects
the evolution of a renewable resource (interpreted as biodiversity) through both
the carrying capacity and the Allee effect. The government levies a simple
Pigouvian tax on production activities to finance depollution. In the long run,
the economy exhibits multiple regimes: a steady state with zero biodiversity
corresponding to a mass extintion, and two steady states driven by the carrying
capacity and the Allee effect respectively. The fiscal authority is concerned by
the equilibrium transitions to these steady states. In the short run, we observe
the possibility of both transcritical and Hopf bifurcations. The Hopf bifurcation
can occur only near the steady state governed by the carrying capacity and
entails the emergence of a limit cycle around. The transcritical bifurcation
can occur when the inertia of pollution stock is sufficiently large. In this case,
the Allee threshold meets the carrying capacity and the mass extinction takes
place. Interestingly, when households overvalue the biodiversity with respect to
consumption, a higher green-tax rate has a triple benefit: (1) a lower pollution
jointly with a higher biodiversity, (2) a welfare improvement and (3) a mass
extinction less likely.

The paper is organized as follows: section 2 presents the model, sections 3,
4 and 5 study respectively the equilibrium, the steady state and the welfare.
Dynamics are analyzed in section 6 and illustrated through a simulation in
section 7. Section 8 concludes the paper. All the proof are gathered in the
Appendix.

2 The model

2.1 Firms

Each firm chooses the amount of capital and labor to maximize the profit taking
as given both the real interest rate r and the wage rate w. In addition, the gov-
ernment levies a proportional tax 7 € (0,1) on polluting production F (K, L,)
of firm j to finance the maintenance of natural resource.

Assumption 1 The production function F : R — Ry is C?, homogeneous
of degree one, strictly increasing and concave. Inada conditions hold.

The profit maximization maxg, 1, [F (Kj, Lj) —rK; —wL; — 7F (K}, L;)]
entails the following first-order conditions:

r=1-7)f (k) and w = (1—7)[f (k;) = k; " (k;)]



where k; = K;/L; is the capital intensity and f (k;) = F (k;,1) the average
productivity of the firm j.

All the firms share the same technology and address the same demand for
capital.

Corollary 1 Let k= K/L with K = ijl K; and L = Z;‘]=1 L;. In aggregate
terms, Y = F (K, L) and profit mazimization yields

r=01-7)pk) andw=(1-7)w(k) (1)
with p (k) = f' (k) and w (k) = f (k) — kf' (k).

We introduce the capital share in total disposable income and the elasticity
of capital-labor substitution:
w (k)
kw' (k)

vk kf(k)
L—7)f(k) — f(k)

In addition, we determine the elasticities of factor prices:

a(k) = and o (k) = a (k)

ko' (k) :_1fa(k) and ko' (k) a(k)

p (k) o (k) wk) o (k)

2.2 Households

The representative household earns a capital income rh where h denotes the
individual wealth at time ¢ and a labor income wl with [ = 1 (inelastic labor
supply). Thus, the household consumes and saves her income according to the
budget constraint: _

c+h<(r—=90)h+w (2)

where A denotes the time-derivative of wealth. The gross investment includes
the capital depreciation at the rate 9.

Let u (¢, N) be the utility function of the representative household where N
represents an aggregate renewable resource which can be assimilated to the bio-
diversity level. We assume that biodiversity affects marginal utility of consump-
tion (u.y # 0). If biodiversity increases the consumption demand, biodiversity
and consumption are complement (u.y > 0): it is the case when households
like to consume in a pleasant environment, in presence of a large biodiversity.
Conversely, if biodiversity lowers consumption demand, then biodiversity and
consumption are substitutable: in this case, the household compensates the
utility loss due to a loss of biodiversity by increasing her consumption demand
(ueny < 0). For now, we do not impose any restriction.

Assumption 2 Preferences are rationalized by a non-separable utility func-
tion u (¢, N). First and second-order restrictions hold on the sign of derivatives:
ue >0, uy > 0 and u.. < 0, jointly with the limit conditions: lim._,g+ ue, = 00
and lim.— 4o u. = 0.



We introduce the second-order elasticities:

CUce Nucn
Ece EcN _ uzc Ue (3)
= UNe N
ENe ENN Coe SN

—1/e.. represents the intertemporal elasticity of substitution in consumption
while e,y captures the effect of the natural resource on the marginal utility
of consumption. Typically, if e,y > 0 (< 0), then the natural resource and
consumption are complement (substitute) for households.

In a Ramsey model, the representative household maximizes an intertempo-
ral utility functional:

/ e (e, N) dt
0

under the budget constraint (2) where # > 0 denotes the rate of time preference.

Proposition 2 The first-order conditions of the consumer’s program are given
by a static relation
p=1uc.(c,N) (4)
a dynamic Euler equation
= (0+6—7) (5)
and the budget constraint (2), now binding,

h=(r—38h+w—c (6)

jointly with the transversality condition lim;_.o. e~ (t)h(t) = 0. p denotes
the multiplier associated to the budget constraint.

Applying the Implicit Function Theorem to the static relation (4), we obtain
the consumption function ¢ = ¢ (u, N) with elasticities
w Oc 1 N Oc &N

e =-—"—<0and —=— =
cou scc< an c ON Eee

(7)

2.3 Biodiversity

Biodiversity behaves as a biological population. According to Courchamp et al.
(1999) among others, population dynamics can be described by the following

single equation:
. N N
N=N|(—-1][1-—
(=) 0-2) ®

where N is the population while A and C represent respectively the Allee effect
(the positive correlation between population density and individual fitness) and
the carrying capacity (the number of people, animals, or crops a region can
support without environmental degradation). In his seminal work, Allee (1931)
observed a decrease in the growth rate of many animals and plant when they
reach a sufficiently low density. According to Courchamp et al. (1999), the



dominant interpretation of this effect has been introduced by Allee himself: the
shortage of receptive mate encounters during the mating period when density is
too low. For instance, Brook et al. (2008) show that environmental pollutants
reduce fertilization success and exacerbate the Allee effect. Formally, A is an
increasing function of the pollution level P. Conversely, habitat degradation
implies a lower carrying capacity. Formally, C' is a decreasing function of pollu-
tion. The following assumption sums up the pollution effects on the Allee effect
and the carrying capacity.?

Assumption 3 A= A(P) and C = C (P) with A’ (P) > 0and C’ (P) <0.

We introduce the first-order elasticities of the Allee effect and the carrying
capacity: ) )

€4 = Lj(j(vl)j) >0and e¢ = 7Pg(;§)) <0

Example In the bifurcation analysis, we will consider locally isoelastic func-

tions (around the steady state):

A(P)= AP®* and C (P) = CP*° (9)
A and C are constant if e4 = e¢ = 0.

We remark that equation (8) implies three steady states: Ny =0, Ny = A
and Ny, = C.

If A and C are constant and A < C, then Ny and N, are stable while Ny
is unstable. This means that, if Ng < N < Nj, a mass extinction is underway
(Allee effect). However, if N > Nj, wildlife is preserved and the system con-
verges to the highest steady state No. If A and C' are constant and A > C, Ny
and N; are stable while N5 is unstable.

If A and C are no longer constant and depend on P (Assumption 3), dy-
namics become more complex. In particular, the pollution channel can promote
the occurrence of persistent cycles as we will see in section 6.

2.4 Government

The government spends all the tax revenues to finance depollution expenditures
G according to the following balanced budget rule:

G=71F(K,L) (10)

2.5 Pollution

The aggregate stock of pollution P is a pure externality coming from production.
The government takes care of depollution through the abatement expenditures
G. The pollution accumulation follows a linear process:

P=—aP +bY —mG (11)

2Models with a renewable resource and pollution often consider the following logistic law
augmented by a linear effect of pollution: N = N (1 —N) — &P with 0 < £ < 1 (see Wirl
(2004) among others). Equation (8) differs because the pollution impact passes through the
carrying capacity and the Allee effect, that, thus, become endogenous variables.



a > 0,b>0and m > 0 capture respectively the natural rate of pollution ab-
sorption, the environmental impact of production and the pollution abatement
efficiency. We normalize the population to the unity: L = 1, and the process
(11) becomes in intensive terms: P = —aP 4 (b — m7) f (k). The linear process
(11) is commonly adopted in the literature.

3 Equilibrium

At the equilibrium all markets clear (good, capital and labor). Observing that
k = K/L = h, we obtain a dynamic system of equilibrium equations representing
the interaction between the economic, environmental and biological spheres.

Proposition 3 Equilibrium dynamics are driven by a four-dimensional system:

fo="Jf1 (R, N, P) = p[0+6—(1—=7)p (k) (12)
k= fa(uk,N,P)=[(1=7)p(k) - 6]k +(1—T)W()—C(M7N) (13)

N=f3(u,k,N,P):N[A(P } [1 } (14)
) f

P=fy(u,k,N,P) = —aP + (b—mr (15)

In this system, p is a jump variable while £, N and P are predeterminate.
Equation (12) and (13) represent the underlying Ramsey model, while equations
(14) and (15) capture respectively the evolutions of biodiversity and pollution.
With respect to the existing literature, pollution is view as a stock rather than a
flow and both the carrying capacity and the Allee effect are introduced in terms
of biodiversity.3

4 Steady state

Stationarity requires: 1 = k = N = P = 0. Equation (12) gives the capital
intensity at the steady state:

k*=p1(9+5>>0 (16)

1—-7
Replacing (16) into (15) gives the pollution level at the steady state:

b—mrt

P =

f (k) (17)

a

Assumption 4 7 < b/m.
Assumption 4 ensures that P* > 0.

3See, among others, Ayong Le Kama (2001), Wirl (2004) and Bosi and Desmarchelier
(2018b).



Considering (14), the three possible biodiversity levels at the steady state
are given by:
N():O, N1:A(P*) and NQZC(P*) (18)

From equation (16), we obtain the consumption of steady state:
cF=0k"+(1-71)w(k") (19)
Finally, for a given level of N, (4) gives the shadow price of consumption:
1 = e (¢, N*)

where N* is equal to Ny, N1 or Ns.
Summing up, we get the following proposition.

Proposition 4 Let Assumptions 1 to 4 hold.

(1) If A(P*) # C(P*), there are three steady states: (u*,k*, P*, N;) with
i=0,1,2.

(2) If A(P*) = C(P*), there are two steady states: (u*,k*,P*,Ny) and
(/’L*7k*ap*aN1) = (/J/*7]{I*,P*,N2).

We expect the occurrence of a transcritical bifurcation when A (P*) =
C (P*) (see below section 6).

In the following, for notational simplicity, if there is no ambiguity, we omit
the asterisk to denote the steady state values, and we leave aside the steady
state Ny with wildlife annihilation and consequent mankind disappearance to
focus on regimes with human survival.

The government can introduce and tune the green tax to mitigate the global
warming and promote biodiversity. However, since Sinn (2008), we know that
a higher green-tax rate can exacerbate instead of mitigate the global warming,.
Such a counter-intuitive effect, known as Green Paradox (GP) since the Sinn’s
pioneering work, can arise in many contexts. According Jensen et al. (2015),
the GP can occur (1) when agents behave strategically in the resource mar-
kets (Gerlagh and Liski, 2011), (2) when resource and capital markets interact
(Van der Meijden et al., 2015) or (3) when future policies are uncertain (Hoel,
2010). Recently, Bosi and Desmarchelier (2017a) have introduced a slightly
different notion of GP* and shown that it can arise in a Ramsey model when
pollution comes from consumption, while Bosi and Desmarchelier (2018a) have
also pointed out that this kind of GP can occur when the economy lies on the
decreasing branch of an Environmental Kuznets Curve (EKC).?

To highlight the impossibility of a long-run GP in our context, we derive the
impact of a green-tax rate (constant over time) on the pollution level of steady
state.

4More focused on the long run than the short run and based on the comparative statics
instead of the dynamics.
®The EKC is an inverted-U-shaped relation between income and pollution.



Proposition 5 The impact of T on the steady state is given by the following
elasticities:

z%__ T o
kor 1—-71-—«
T dP T 0k mT

Par “%kor b—mr "
7 ON7 T OP
N oor “Apar <O
T ON, T 0P
N oor CPar "
T Oc 1 1—-«al 70k 1—-ab+4
caTy([(”“’”) o |kvor T a 1_T><0

where a = a(k), o = o (k), v =~ (k) and
_0+6[l—a(k)] ¢

v(k) = —— B %

Proposition 5 shows that a higher green tax always lowers the pollution
level. Thereby, our context rules out the static GP introduced by Bosi and
Desmarchelier (2017a). However, if the ultimate goal of a higher green tax is
to promote the natural resource, another kind of GP arises around N; (let us
call it the "Biodiversity Paradox" (BP)). Indeed, Proposition 5 points out that
a higher green-tax rate lowers the biodiversity level V7 in any case. Conversely,
the green tax always improves the biodiversity level Ny (here, no room for the
BP).

On the one side, how pollution shapes the Allee effect (¢4) creates the BP
around N7, while, on the other side, the impact of pollution on the carrying
capacity (e¢) rules out the BP around Na.

The effects of the tax rate on the other variables are trivial. Since the tax
is levied on production, a higher rate gives an incentive to reduce the activities,
lowering in turn the stock capital and, at the end, the consumption possibilities.

5 Welfare analysis

We have seen the opposite effects of a green tax on biodiversity around N; and
Ns. Even an environment-friendly government mainly interested in sheltering
or increasing the biodiversity, has to take care of the impact of consumption
on social welfare. In this section, we try to understand whether a biodiversity-
oriented policy is really compatible with a welfare target.

Because of the representative household, welfare and utility maximizations
are equivalent. We evaluate the social welfare at the steady state:

(c(r), Ni(7))

W, (7) = /000 e u(e(r),N; (1)) dt = Y g (20)



with ¢ = 0,1, 2.
We introduce the first-order elasticities of preferences to capture both the
effect of consumption and biodiversity on the household’s utility:

Cle
ec=—and ey =
U

Differentiating (20), we compute the taxation impact on welfare as a new
elasticity:5
TW! (1) 7 (T) TN/ (7)
=E&c EN7 /N
W, (1) c(T) N; (1)

(21)

Proposition 6 Let Assumptions 1 to 4 hold. At the steady state given by N1,
a higher green-taz rate always reduces the welfare (biodiversity paradoz), while,
at the steady state given by Na, a higher rate improves the welfare if and only

if:

- TNé((T))
c No(T
0< o~ <=M (22)

c(7)

The interpretation of the BP in Proposition 6 is straightforward. Indeed,
around the steady state given by Ni, according to Proposition 5, a higher tax
rate always lowers both the consumption and the biodiversity level, entailing in
turn a drop in the welfare level. Focus now on N,. According to Proposition
5, a higher tax rate always increases biodiversity and reduces the consumption
demand. The first effect (biodiversity) raises the welfare while the second one
(consumption) lowers it. Hence, the welfare effect of the green tax is ambiguous.
Interestingly, €./en captures the slope of the indifference curve: condition (22)
is satisfied when the slope of the indifference curve is sufficiently flat. This
occurs when the representative household overvalues biodiversity with respect
to consumption. In such a case, a higher green-tax rate allows the government
to reach two objectives simultaneously: to increase both the biodiversity and
the welfare level.

6 Local dynamics

Reconsidering Proposition (4) jointly with Assumption 3, we see that N7 and
Ny move in opposite directions when pollution increases. In other words, the
Allee threshold and the Carrying capacity approach one another as the pollution
level rises. More precisely, according to (17), given k of steady state, the larger
the pollution inertia (the lower a), the higher the pollution level. Thus, we
expect the existence of a critical value of pollution inertia such that Ny and N»
collide. Formally, such configuration corresponds to a transcritical bifurcation
and represents a situation where the carrying capacity meets the Allee effect. In

6Notice that we do not exclude a negative value for u, ., ex or W; (7). Consider for
instance the isoelastic specification (26) in section 7 with € > 1.

10



this case, from a biological point of view, a mass extinction takes place: Nature
can not support more individuals than the critical number needed to regenerate
the biodiversity. Now, let us prove this intuitive conjecture.

To analyze the local dynamics, we linearize the dynamical system (12)-(15)
around each non-trivial steady state (N7 or Na).

Let T, D, Sy and S3 be respectively the trace, the determinant, the sums of
minors of order two and three of the Jacobian matrix (given in the proof of the
following lemma in the Appendix).

Lemma 7 The sum of minors of the Jacobian matriz of system (12)-(15) eval-
uated around the steady states with positive biodiversity level N1 and Na, is
given by

T=0+¢—a

3229(<p—a)—ag0+(1_a)(9+5)8l

S3= (9~ a) (1) (0+9) - — ablp + 79 (6.4 ) 5 - =

D =—ap(1-a)(0+3) -

where

_ N B N B N N B
7T AP) [1 C(P)} c(P) [A(p) 1] (23)
_Nea | N Nec [ N
¢A(P)[C(P) } C(P)[A(P) ] (24)

i determines the sign of D and, interestingly, N = N; = Ny implies D =0
(transcritical bifurcation).

From Proposition 4, we know that the economy has three steady states.
From an ecological point of view, N = Ny = C (P) is the most desirable when
the carrying capacity exceeds the Allee effect and Nature can sustain a higher
biodiversity level than what is needed for regeneration. Conversely, if the carry-
ing capacity is lower than the Allee effect, a mass extinction occurs. When the
carrying capacity meets the Allee effect, we get a critical point: C (P) = A (P).
In the following, we will focus only on the first case: C (P) > A (P).

Notice that kb
—mT
(0+9) I

= ax
we obtain

T=0+¢p—a

Sy =0(p—a)—ap+(1—a)(0+0) L

ce
3

ng(cpfa)(lfoz)(9+5)gl+aa'yw — by

cN

ECC
_ 2

D=-ap(l—a)(@+d) —

Ece

11



Proposition 8 If the carrying capacity exceeds the Allee effect at the steady
state Ny (C (P*) > A(P*)), then local indeterminacy is excluded around Ns.

Proposition 9 If the carrying capacity exceeds the Allee effect (C (P*) > A(P*))
and a < 0 (strong pollution inertia), there is no room for local indeterminacy
around Ni.

Propositions 8 and 9 shows that an equilibrium trajectory converging to Ny
or Ny is locally unique. This result rules out the possibility of self-fulfilling
prophecies from a local perspective.

As seen before, the restriction C'(P*) > A(P*) makes sense. Indeed,
C (P*) < A(P*) means that the carrying capacity is less than the survival
threshold of the species. Courchamp et al. (1999) implicitly suppose C (P*) >
A (P*). The transcritical bifurcation requires A (P*) = C' (P*) and implies that
N; becomes stable when C (P*) < A (P*): thus, the stability of Ny corresponds
to a biological contradiction such that C' < N < A implies N > 0 according to
(8).

Let

1

EATEC
)

Proposition 10 Consider the isoelastic functional forms (9). A transcritical
bifurcation generically occurs at a = a*.

Q\‘ hN

= 0-mn) 1 ) (

where k is the steady state value.

The existence of a transcritical bifurcation is not surprising. Indeed, an
increase in the pollution inertia (a lower a) raises the pollution level of steady
state (see (17)) while Assumption 3 implies an increase of the Allee effect (N7)
jointly with a decrease in the carrying capacity (N2). Thus, when a decreases,
N; and N, approach one another. a* is precisely the critical value such that
the carrying capacity meets the Allee effect. In this respect, a* represents the
threshold below which a mass extinction occurs: when a falls below a*, then
A (P*) > C (P*) and then Nature experiences a level of biodiversity lower than
what is needed for its regeneration.

Focus now the effect of the green tax on the mass extinction threshold:

7 Oa* T 0k mT

a* Ot _agﬁib—mT

(25)

In other words, a higher tax rate, lowering a*, increases the critical value of
pollution inertia at which a mass extinction occurs. Thus, a simple Pigouvian
tax can contribute to shelter the economy from a catastrophe. In terms of
comparative statics, when household overvalues the biodiversity with respect to
consumption (condition (22)), a higher green-tax rate can have a triple benefit:
(1) a reduction in the pollution level jointly with an increase in the biodiversity
according to Proposition 5, (2) a welfare improvement according to Proposition
6) and (3) a less likely anthropogenic mass extinction according to (25).

12



In continuous time, persistent cycles can appear around the steady state
through a Hopf bifurcation. In our environmental context, the limit cycles
arising through this codimension-one bifurcation can be reinterpreted as biodi-
versity fluctuations over time.”

Let
- Ece 2
CN Z aacg (TS2 —20—T,/52 — 4D)
+ — _Cec _ 2 _
eV = Gas <T52 20+ T1/S2 4D)

with Q= (¢ —a) (1 —a) (0 + 6)v/ecc — abe.

Proposition 11 In the case of the isoelastic functional forms (9) with C (P*) >
A (P*) (a carrying capacity higher than the Allee effect), a limit cycle generically
arises near Ny through a Hopf bifurcation if and only if e.n = EjN.

To understand why a limit cycle can surround N5, we need to know the sign
of 5jN. A numerical simulation provided in the next section shows that, under a
plausible calibration, aer < 0. Hence, a larger substitutability between biodi-
versity and consumption in terms of household’s preferences seems to promote
the occurrence of limit cycles. We can interpret this as follows: assume that the
economy is in the steady state Ny at the beginning and consider a sudden rise in
the pollution level. According to Assumption 3, the carrying capacity decreases
and, the biodiversity as well (remind that No = C (P)). Since biodiversity and
consumption are substitutable (EjN < 0), households compensate the drop in
utility due to the poorer biodiversity with an increase in their consumption
demand. Accordingly, their savings lower and the aggregate capital level in
turn, entailing a contraction in production and pollution at the end. Thus, a
decrease in pollution follows the initial increase giving rise to the emergence of
endogenous fluctuations.

Proposition 12 Consider the isoelastic functional forms (9). Assume that
C(P*) > A(P*) (a carrying capacity higher than the Allee effect). Through
the Hopf bifurcation, the 3D-saddle-path stable steady state No becomes 1D-
saddle-path stable.

Proposition 12 shows how the economy looses its stability through the Hopf
bifurcation. Before and after the Hopf bifurcation, the equilibrium is saddle-
path stable. However, since the dynamic system (12)-(15) involves three prede-
termined variables (precisely, k, P and N), the equilibrium stability requires at
least a 3D stable manifold.

For now, we have considered only codimension-one bifurcations (transcritical
and Hopf bifurcations). What happens when both of them take place in a neigh-
borhood of a critical pair of parameters (codimension two)? In continuous time,

"The codimension is the number of parameters involved in the bifurcation.
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only three codimension-two bifurcations can be detected studying the eigenval-
ues of the Jacobian matrix: the Bogdanov-Takens, the Gavrilov-Guckenheimer
and the double-Hopf bifurcations.® However, in our ecological context, all these
classes of bifurcations are ruled out, as we are now going to show.

Proposition 13 Consider the isoelastic functional forms (9). There is no room
for a Bogdanov-Takens bifurcation.

The impossibility of Bogdanov-Takens bifurcation is quite interesting. Bosi
and Desmarchelier (2018b) have shown that a Bogdanov-Takens bifurcation can
arise in a Ramsey model with pollution viewed as a flow and a renewable resource
whose reproduction obeys a standard logistic equation. Representing pollution
as a stock seems more pertinent for some class of damages we are concerned
by, such as the global warming. Moreover, the joint assumption of the Allee
effect and the carrying capacity makes the picture even more realistic. Thus, a
more realistic representation seems to reduce the dynamic complexity typically
associated to a Bogdanov-Takens bifurcation.

Proposition 14 There is no room for a Gavrilov-Guckenheimer bifurcation.

Both Bogdanov-Takens and Gavrilov-Guckenheimer bifurcations imply the
simultaneous occurrence of transcritical and Hopf bifurcations. Unsurprisingly,
in our paper, these bifurcations are impossible. To grasp this point, focus for
simplicity on the case of the isoelastic utility function (26) presented in section
7. As you can see checking the proof of Proposition 10, ¢ = ¥ = 0 when
the transcritical bifurcation occurs, while, giving a look to Proposition 11, in
the isoelastic case considered, ejN vanishes when ¢ = ¢ = 0. Therefore, the
simultaneous occurrence of Hopf and transcritical bifurcations is excluded.

Finally, we consider a codimension-two bifurcation involving a four-dimensional
center manifold with, again, a negative but interesting result.

Proposition 15 When N = Ny with C (P*) > A(P*) (carrying capacity
higher than the Allee effect), a double-Hopf bifurcation is impossible.

7 Simulations

We have characterized analytically the dynamics around steady state No with
the larger biodiversity and shown, in particular, the possibility of both tran-
scritical and Hopf bifurcations. To convince the reader, let us illustrate these
complex phenomena through a computer simulation. For this purpose, we adopt
isoelastic preferences:

(C Nn)lfs

u(ce, N) = 1%

(26)

jointly with isoelastic Allee threshold and carrying capacity (see (9)).

8See Bosi and Desmarchelier (2017b) among others.
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‘We obtain

[ €oe  EoN } _ [ - n(l-g) (27)

ENe ENN l—e n(l-¢)—1

Using (4), we get the explicit consumption function

l1—e

c(p,N)=p =N"=

For simplicity, we assume a Cobb-Douglas technology, that is y = f (k) =
Ak® with A > 0 and « € (0,1). This implies that o = 1.
Under these specification, the steady state becomes

L [aA(l—T)]ll”

0+9
p_ bfmTAka
ﬂ:C—ENﬁ(l—E)

c=0k+(1—-71)(1—a)Ak"

with - -
N(] = 07 N1 = AP®* and N2 = CPpe°

According to Proposition 11 and the matrix (27), a Hopf bifurcation arises
near N, provided that C (P*) > A (P*), if and only if:

e TSy—20+T./S2—4D

e—1 2aay1

n="nu=

We perform an equilibrium continuation using the MATCONT package for
MATLAB to illustrate the occurrence of a transcritical and a Hopf bifurcations
around Ns.

We adopt the following calibration:

[[Parameter [AT AT Ca [0 [0 [eleallec[r b [m ]
[Value [ T 1 [ 1 ][ 03300100252 L || 1] 001 ]000L]0.00L]
(28)

According to calibration (28), the transcritical bifurcation point is a* =
0.0029747. To implement the continuation, we choose a value of a close to a*
with C (P*) > A (P*), say a = 0.003.

(28) with a = 0.003 yields ny = 29.215. The continuation exercise requires
a value of 7 close to ny, say n = 28.5.

The equilibrium continuation is represented in Fig.1 in the parametric space
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{(a;n)}
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Fig.1. Equilibrium continuation

The curves H and BP are plotted by MATCONT point by point when,
respectively, a Hopf and a transcritical bifurcation (Branch Point) are detected.

Using the calibration (28) jointly with (a,n) = (0.003,28.5), we obtain the the
following starting point for the continuation:

H steady state H eigenvalues H
[ k=28.047 [ Ay = —0.039061 |
[ P=0.99155 ]| A2 = 0.029359 |
[ £ =0.15191 ]| A3 = —0.00020594 — 0.00652i ||
[ Ny =1.0085 [ Ay = —0.00020594 + 0.00652i |

We remark that C' (P*) = 1.0085 > A (P*) = 0.99155.

The steady state we are focusing on, is 3D-saddle-path stable. Lowering a
and keeping n = 28.5, MATCONT detects independently a transcritical bifur-
cation (BP in Fig.1) when a = 0.0029746531 =~ a*. At this point, the steady
state and the eigenvalues become:

H steady state H eigenvalues H
[ k=28.047 [ A =-0.026232 |
H pP= H = —0.00297465 H
H 1 =0.19347099 H A3 =0 H
H Ny =1 H Aq = 0.036232 H
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We remark that, at this point, C (P*) = A(P*) while, when a < a*,
C(P*) < A(PY).

Now, we keep a = 0.003 and we increase 1. Independently, MATCONT
detect a Hopf bifurcation (H) when n = 29.215163 =~ ng. At this point, the
steady state and the eigenvalues are given by:

H steady state H eigenvalues H
H k = 28.047 H A1 = —0.0392418 H
H P =0.99155031 H A2 = 0.0291258 H
H © = 0.15099091 H Az = —0.00653447i H
[ Ny =1.0085217 [| A4 = 0.00653447: ||

MATCONT also reports the corresponding first Lyapunov coefficient:
I = —3.861665 x 10~* < 0

Since I; < 0, the Hopf bifurcation is supercritical and the limit cycle arising
around the steady state is stable (see Fig. 2).

0.99156:
0.00156

0.991555
099155

0.99154

0.99154:

0.99153:

1.008535

28.05

1.008525 26.049

1.00852 28.048
28.047

1.008515

28.046

N

1.008505 25044

Fig.2. The stable limit cycle projected in the (k, N, P)-space

In Fig.1, the vertical line as well as the curve represent respectively both
couples (a,n) for which the transcritical and the Hopf bifurcations occur. That
is, for all (a,n) located on the left of the vertical line, the steady state is 2D-
saddle-path stable, for all (a,n) located above the curve, the steady state is
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1D-saddle-path stable while the space between the vertical line and the curve is
the parameter space for which the steady state is 3D-saddle-path stable.

To illustrate these stability changes and their sensitivity to the progressive
values of a, let us fix n = 35 and compute the eigenvalues at Nj:

[« 0.00297 | 0.00298 || 0.00299 |
[ A ][ —0-023009 | —0.029510 || —0.035163 |
[ Xz ]| 0.038029 | 0.034212 || 0.030553 ||

[ Xs ][ —0.006432 | —0.0006401 — 0.003112i ][ 0.000638 — 0.0051927 ||
[ A ] 0.001568 | —0.0006401 + 0.0031127 || 0.000638 + 0.005192i |

8 Conclusion

We have considered a competitive Ramsey model with a pollution externality
(viewed as a stock variable) coming from production and affecting the evolu-
tion of biodiversity (viewed as a renewable resource) through both the carrying
capacity of Nature and the Allee effect. Biodiversity influences in turn the
economy changing the marginal utility of consumption. In the long run, we
have shown that the economy has three steady states: one exhibits zero bio-
diversity while the two others are driven by the Allee effect and the carrying
capacity respectively. In the short run, we have proven the possible occurrence
of limit cycles through a Hopf bifurcation around the steady state governed
by the carrying capacity. Moreover, we have also pointed out the possibility
of a transcritical bifurcation. This bifurcation takes place under a sufficiently
high pollution inertia when the carrying capacity meets the Allee effect. In this
sense, we can reinterpret the transcritical bifurcation point as a mass extinction
threshold: below this tipping point the carrying capacity lowers the Allee effect.
In this case, Nature supports only a level of biodiversity lower than what is
needed for regeneration and Nature is dragged in an extinction vortex. By con-
sidering the impact of an environmental-friendly fiscal policy in the short and
long run, we have shown that a higher green-tax rate can have a triple benefit:
(1) a decrease in the pollution level jointly with an increase in biodiversity, (2)
a welfare improvement and (3) a less likely anthropogenic mass extinction.

9 Appendix

Proof of Proposition 2

We apply the Pontryagin’s maximum principle. The agent maximizes the
intertemporal utility functional under the budget constraint (2). Setting the
Hamiltonian H = e~ %u (¢, N) + A[(r — 8) h +w — ¢], deriving the first-order
conditions H/dc = 0, 0H/Oh = —\ and OH /O = h, and defining p = e’ we
get (4), (5) and (6). Notice that the second-order Arrow-Mangasarian conditions
are satisfied because Nature enters the utility function as an externality. m

Proof of Proposition 3

18



Consider (4), (5), (6) jointly with (1), (8) and (11). m

Proof of Proposition 5

Simply differentiate (16), (17), (18) and (19). m

Proof of Proposition 6

Apply Proposition 5 to expression (21). We have W/ () > 0 if and only if

- T]f[\f{((f))
0< = <-25 (29)

e(7)

If i = 1, then the RHS is negative: the right inequality in (29) is violated and,
therefore, W{ (1) < 0. If i = 2, then the RHS is positive: the right inequality in
(29) is satisfied if and only if (22) holds. m

Proof of Lemma 7

The Jacobian matrix is given by

ofi Ofi O8fi Of .

o Gr oy op 0 GieBE o o

J= af; %J;f % % = OH 0 S .
: P

0+6
BRG] Lo eome 0 S
Wherea—a(k) k:) and

— N 1 N N N 1

oo Tam | T om] o AP

or, equlvalently, (23), while 1 is given by (24) because, around N; or Nj, the
steady states we are interested in,

el -

‘We observe that

1= e =1- 5
pa=p(Nay)=1- ig’)i
A(P)

(M) =ea [0<P> - 1}

Yo =1 (N2) =ec {ZEQ —1}

because N3 = A (P*) and Ny = C (P*), and that, according to (7),
le c¢clk o k

cy =

Ece b kgu,ﬂ Ece
EcN C ce.N k eeN k

cw N ke N el N

CN = —
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Thus, we obtain

ofi 9fr 9fi 0f _

Pu R 9N 9P 0 (0+0)52F 0 0
J=1 ok o on ok | = 5 0 o N

9. Ok ON P ¥ P

Ofs  0fs 0fs Ofa 0 (b—mr) ¢+ 0 —a

op 0k ON 0P -7

]

Proof of Proposition 8

We observe that the system (12)-(15) has one jump variable (u) and three
predetermined variables (k, N and P). In this case, local indeterminacy arises
if and only if the four eigenvalues of J are stable implying D > 0 as a necessary
(but not sufficient) condition for local indeterminacy. However, C (P*) > A (P*)
entails o < 0, that is D < 0. m

Proof of Proposition 9

If C(P*) > A(P*), then ¢1 > 0 and D > 0. Three cases are possible: (1)
all eigenvalues are stable (local indeterminacy), (2) all eigenvalues are unstable
or (3) two eigenvalues are stable while the other two are unstable. a < 6 implies
T > 0 and rules out the first case (local indeterminacy). ®

Proof of Proposition 10

Consider functions (9). The two steady state coalesce when N = N; = No,
that is when a = a*, holding if and only if p =1 =2 =D =0. =

Proof of Proposition 11

According to Bosi and Desmarchelier (2017b), a Hopf bifurcation generically
arises in a 4D-system if and only if Sy = S3/T + DT/S3 with S5/T > 0.

Sz = S3/T + DT/Sg if and only if

Sy Sy+/S3—4D
T 2

that is if and only if .y = ECiN. Moreover,

S3 (Ec_zv) 1 /
53 (EZLN) 1
T —2[52—1—\/53—4D}

Since N = N, with C (P*) > A(P*), we get D < 0. Then, S5 (e_y) /T <
0<S3 (st) /T. Therefore, only EjN satisfies the inequality required for a Hopf
bifurcation. m

Proof of Proposition 12

Jointly consider Propositions 8 and 11. D < 0 means that at least one
eigenvalue is stable and at least one is unstable. The Hopf bifurcation concerns
the change in stability of two conjugate eigenvalues together. m

Proof of Proposition 13
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According to Bosi and Desmarchelier (2017b), a Bogdanov-Takens bifurca-
tion generically occurs in a 4D-system if and only if D = S3 = 0. According
to the proof of Proposition 10, D = 0 if and only if a = a*. In this case,
=91 =pa =1 =11 =1 =0. Then, S3 = —a(1—a)(@+)y/ecc >0
ruling out any Bogdanov-Takens bifurcation. m

Proof of Proposition 14

According to Bosi and Desmarchelier (2017b), a Gavrilov-Guckenheimer bi-
furcation occurs if and only if D = 0 such that S3 = T'Sy with S > 0. From
the proof of Proposition 10, we know that D = 0 if and only if a = a*. In this
case, Ny = A(P*) = Ny = C (P*). This implies ¢ = 0 and, in turn,

52:—a9+(1—a)(9+5)8l <0
]
Proof of Proposition 15
According to Bosi and Desmarchelier (2017b), a necessary (but not sufficient)
condition for a double-Hopf bifurcation is D > 0. Since N = Ny and C (P*) >
A(P*), then, D <0. m
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