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Abstract

In this article, we embed a model of disease spread into a Ramsey
model. A stock of pollution, viewed as a productive externality, affects
both the disease transmission and the consumption demand. An eco-
friendly government levies a proportional Pigouvian tax on production to
depollute. We show the coexistence of two steady states in the long run: a
disease-free and an endemic steady state. At the endemic steady state, a
higher green-tax rate always reduces the pollution level. In the short run,
we show the existence of limit cycles (through a Hopf bifurcation) as well
as more complex dynamics of codimension two (a Gavrilov-Guckenheimer
bifurcation). We complete the study with a numerical illustration of these
bifurcations and a new facet of the Green Paradox: a higher tax rate can
allow more scope for cycles by lowering the critical aversion to pollution
and, thus, contribute to destabilize the economy and promote intergener-
ational inequalities.

Keywords: SIS model, Ramsey model, pollution, transcritical bifur-
cation, Hopf bifurcation, Gavrilov-Guckenheimer bifurcation.

JEL Classification: C61, E32, 044.

1 Introduction

Bosi and Desmarchelier (2016a) study the role of pollution in disease transmis-
sion and the economic consequences in a growth model & la Ramsey.! In their
model, a pollution externality coming from production activities promote the

*Stefano BOSI acknowledges the financial support of the LABEX MME-DII.

!Tn the spirit of Goenka et al. (2014), Bosi and Desmarchelier (2016a) have embedded a
SIS model (Susceptible-Infected-Susceptible) into a Ramsey model. In epidemiology, the SIS
model remains very popular. The reader interested in a complete survey of this literature is
refereed to Hethcote (2009).



transmission of an infectious disease. The role of pollution on disease transmis-
sion was yet considered in the epidemiological literature.? In the long run, as in
Goenka et al. (2014), Bosi and Desmarchelier (2016a) recover a robust feature
of the SIS model: a disease-free steady state coexists with an endemic one. In
the short run, under dominant income effects, they find that a rise in the harm-
fulness of production can give birth to two successive limit cycles around the
endemic steady state, the one stable (through a supercritical Hopf bifurcation),
the other unstable (through a subcritical Hopf).

There is a literature on the destabilizing impact of pollution. Two main
mechanisms of pollution effect on macroeconomic volatility have been identi-
fied with either finite or infinite-lived agents: (1) when pollution increases the
consumption demand?® or (2) it is strongly inertial®. When these mechanisms
work together richer dynamics take place as shown by Bosi and Desmarchelier
(2016b): limit cycles arise through a Hopf bifurcation in a market economy a la
Ramsey. Despite the mathematical complexity, the economic interpretation for
cycles remains somewhat intuitive: a positive pollution effect on consumption
demand and a large pollution inertia play the role of a repulsive and a restoring
force respectively, giving rise to fluctuations.

Interestingly, Bosi and Desmarchelier (2016a) consider pollution as a flow
and assume that pollution does not enter the utility function. Since their frame-
work embeds a SIS model, the comparison with the existing literature is difficult.
To overcome this difficulty, we propose a new unified framework where the stock
of pollution is an externality affecting both the consumption demand and the
disease transmission. In addition, we introduce a proportional tax at the firm
level to finance depollution expenditures according to a balanced budget rule.
We try to understand whether the pollution effect on disease transmission can
change significantly the qualitative impact of a green tax on the steady state.

This unified approach leads to intersting results either in the short or in the
long run. In the long run, as in Bosi and Desmarchelier (2016a), we recover
the main feature of the SIS model: a disease-free steady state coexists with an
endemic one. In addition, we show that a higher green-tax rate always improve
the environmental quality by reducing the pollution level. In this sense, we find
a usual property of the competitive Ramsey model with pollution. In the short
run, around the endemic steady state, we recover one of the main result of the
literature: a Hopf bifurcation can occur if and only if pollution increases the
consumption demand and exhibits a strong inertia. Moreover, we recover the
complex dynamics pointed out in Bosi and Desmarchelier (2016a): a change in
the environmental impact of production generates the collision of the two steady
states through a transcritical bifurcation and the possible occurrence of two suc-
cessive limit cycles with opposite stability properties. Differently from Bosi and
Desmarchelier (2016a), we do not require the income effect to be too large in or-
der to observe the occurrence of these Hopf bifurcations. Surprisingly, the whole
is greater than the sum of the parts: the unified model leads to richer dynamics

2See Caren (1981) among the others.
3See Heal (1982), Itaya (2008), Fernandez et al. (2012) and Zhang (1999) among others.
4See Zhang (1999) and Seegmuller and Verchére (2004) among others.



absent from the existing literature on environmental Ramsey economies: when
the two steady states coalesce, the endemic one can be surrounded by a persis-
tent cycle through a Gavrilov-Guckenheimer bifurcation. Following Kuznetsov
(1998), this bifurcation can give rise to three different phenomena: (1) an in-
variant torus, (2) a preserved limit cycle, (3) a blown-up limit cycle. In our
paper, a computer simulation shows that the limit cycle is preserved.

In an environmental context, the existence of limit cycles entails not only a
kind of macroeconomic volatility but also intergenerational inequalities: some
generations enjoy ecological quality while others suffer from a highly polluted
environment. From the policy maker’s perspective, we study whether the green
tax can shelter the economy from unpleasant fluctuations. Numerical simu-
lations point out an ambiguous role of the green tax. However, we show that,
when the tax pressure is low, a higher rate can create more scope for limit cycles
by reducing the critical pollution aversion in the preferences. In other words,
an increase in the green-tax rate to finance depollution, can promote macroeco-
nomic volatility and, thus, intergenerational inequalities. This unpleasant effect
represents an extension of the Green Paradox literature. In a seminal work,
Sinn (2008) showed how a higher green tax can accelerate the global warming
and named this effect Green Paradox. In our case, the fiscal effect on macro-
economic volatility can be interpreted as a new facet of the Green Paradox (1)
because of the intergenerational inequalities and (2) because, in some part of
the limit cycle, the pollution level increases.

The paper is organized as follows: in section 2, we present the model; sections
3 and 4 focus on the equilibrium and the steady state respectively; the local
dynamics are studied in section 5, while the section 6 provides a numerical
illustration. Section 7 concludes.

2 The model

2.1 Disease

Epidemiologists use the SIS model to study the spread of endemic diseases.
Population (V) is divided in two classes: susceptible (S) and infective (I) with
S+ I = N. The proportion of susceptible and infective are given by s = S/N
and ¢ = I/N. 8 > 0 denotes the average number of adequate contacts (sufficient
to transmit the disease) of an infective per unit of time and S/N the probability
to face a susceptible during a contact. Thus, 8S/N is the average number of
adequate contacts with susceptibles of one infective per unit of time, while the
number of new infectives per unit of time is given by SIS/N. An infective
is seek during a period of time after which he recovers and becomes a new
susceptible (y = —I /I is the recovery rate in absence of new contamination, a
sort of exponential decay rate from infection). Indeed, the SIS model postulates
that the infection does not confer immunity. In the following, for the sake of
simplicity, we will omit the time argument t.
The evolution of S and I over time is simply given by:



. I
§ = xS+l (1)
. I

In an oversimplified world with no births, no deaths, no migrations, the
population remains constant over time. Therefore, N = S+ I gives S+ 1 =0
and equation (1) becomes:

§=(1—-s)(v—Ps) ®3)

As in Goenka et al. (2014), we assume that the labor force (L) consists only
of healthy people: L = S. Since | = L/N < 1, | inherits the dynamics of s:

I=1=10)(-280 (4)

We can see that (4) exhibits two steady state: [ =1 and [ = /8 with v < 8.
The first one is called disease-free because the disease disappears while the other
is called endemic because the disease persists. As seen above, some medical
evidence highlights the negative effects of pollution (P) on the immune system
(Caren (1981), Bauer et al. (2012)) and supports the theoretical assumption of
B and v and as increasing and decreasing functions of P respectively.

Assumption 1 The function 3(P) : Ry — Ry, is C% with 3 (P) > 0,
limp_oB(P) =0 and limp_, 1 B (P) = +o00. v(P) : Ry — Ry is also C?
with 4" (P) < 0, limp_q7v (P) = +00 and limp_, 1, v (P) = 0.

The following first-order elasticities capture the main informations about the
role of pollution:

PB' (P) _ Py (P)
B(P) v (P)

We introduce a measure of the pollution impact on the disease transmission:

eg (P) = <0

> 0 and e, (P)

d(P)=eg(P)—ey(P)>0

2.2 Preferences

The household earns a capital income rh and a labor income w, where r and
h denote respectively the real interest rate and the individual wealth at time t.
Income is consumed and saved/invested according to the budget constraint:

h<(r—&h+w—c (5)

In this model, healthy people work while sick people don’t. However, for
simplicity, we assume a perfect social security, that is a full unemployment
insurance in the case of illness. Healthy and sick agents earn the same labor



income @. L healthy people supply one unit of labor at a wage w. Under
a balanced-budget rule for social security, we obtain wN = wlL. Therefore,
w = wl.

Gross investments include the capital depreciation at the rate 6. For simplic-
ity, the population of consumers-workers is normalized to unity: N = 1. Such
a normalization implies L = Nl =1, K = Nh=h and h = K/N = kl.

Assumption 2 Preferences are rationalized by a non-separable utility func-
tion u (¢, P). First and second-order restrictions hold on the sign of derivatives:
ue > 0, up <0 and ue. < 0, jointly with the limit conditions: lim._g+ 4. = 00
and lime— 400 ue = 0.

Assumption 2 does not impose any restriction on the sign of the cross-
derivative u.p § 0. Following Michel and Rotillon (1995), the household’s
preferences exhibit a distaste effect (compensation effect) when pollution de-
creases (increases) the marginal utility of consumption. If the household wishes
to consume in a pleasant environment, a higher pollution level lowers its con-
sumption demand (u.p < 0) giving rise to a distaste effect (Michel and Rotillon,
1995). Conversely, the household may decide to increase its consumption de-
mand to compensate the utility loss due to a higher pollution level (u.p > 0):
in this case, a compensation effect arises (Michel and Rotillon, 1995).

We introduce the first and second-order elasticities:

cu. Pu
(gcaEP) = < ) P>

u u

Clce Pu.p
Ecc EcP — Ue Ue (6)
- CUpc Pupp

€pPc EpPP wp wp

According to Assumption 2, . > 0 and ep < 0. —1/e.. represents the
intertemporal elasticity of substitution in consumption while e.p captures the
effect of pollution on the marginal utility of consumption. Typically, if e.p > 0
(< 0), pollution and consumption are complement (substitute) for households.

The illness lowers labor supply and the individual income in turn. The agent
maximizes the intertemporal utility function

/ e %u (¢, P) dt (7)
0
under the budget constraint (5), where 6 > 0 is the rate of time preference.

Proposition 1 The first-order conditions of the consumer’s program are given
by a static relation

= uc(c, P) (®)

a dynamic Euler equation and the budget constraint (1), now binding:
fr=p(0+35—r) 9)
h=(r—86h+w —c (10)



jointly with the transversality condition lim;_ o, e % pu (t)h(t) = 0. p denotes
the multiplier associated to the budget constraint.

Applying the Implicit Function Theorem to the static relation u = u. (¢, P),
we obtain the consumption function ¢ = ¢ (u, P) with elasticities
pde 1 Pdec  ecp

B8 2 c0and =25 =
cdu  Ece < U an c dP Eece

(11)

2.3 Firms

The firm chooses the amount of capital and labor to maximize the profit taking
as given the real interest rate r as well as the wage rate w. In addition, the
government levies a proportional tax 7 € (0,1) on polluting production F (k;, ;)
of firm j to finance depollution expenditures.

Assumption 3 The production function F : Ri — Ry is C?, homogeneous
of degree one, strictly increasing and concave. Inada conditions hold.

The profit maximization maxg; v, [F (Kj, Lj) —rK; —wL; — 7F (K}, L;)]

entails the following first-order conditions:
r=1—=7)f (k) and w=(1—7)[f (kj) = k;f" (k;)]

where k; = K;/L; is the capital intensity and f (k;) = F (k;,1) the average
productivity of the firm j.

All the firms share the same technology and address the same demand for
capital.
Proposition 2 Let k = K/L with K = Z‘j]:l K; and L = Z'j]:l L;. In aggre-
gate terms, Y = F (K, L) and profit mazimization yields

r=1-7)p(k) andw=(1-71)w (k) (12)
with p (k) = f' (k) and w (k) = f (k) — kf' (k).

We introduce the capital share in total disposable income and the elasticity
of capital-labor substitution:

_ rk _ kf' (k) _ J'(k) [kf (k) _
«)= T = T 0= T T Y e W
In addition, we determine the elasticities of factor prices:

kp' (k) _ 1-a(k) and kw' (k) _ a (k)
p (k) o (k) w(k)  o(k)

2.4 Government

The government uses all the tax revenues to finance depollution expenditures
(@) according to a balanced budget rule:

G=71F(K,L) (13)




2.5 Pollution

The aggregate stock of pollution P is a pure externality coming from production.
The government takes care of depollution through the abatement expenditures
G. The pollution accumulation follows a linear process:

P=—aP +bY —mG (14)

a > 0,b >0 and m > 0 capture respectively the natural rate of pol-
lution absorption, the environmental impact of production and the pollution
abatement efficiency. Because N = 1, process (14) becomes in intensive terms:
P = —aP + (b —m7)Lf (k). The linear process (14) is widely used in the liter-
ature.’

3 Equilibrium
At the equilibrium all markets clear (good, capital and labor). Noticing that
Eho

k- h 1
and considering (4), (12), (14) and Proposition 1, we obtain a four-dimensional
dynamic system.

fro= fi(wkL,P)=pl0+06—(1-1)p(k)] (15)
ko= fo(uk,,P)=[(1—-7)p(k) = d]k+(1—7)w(k) - (“7 A _ z (I, D)
I = fs(uk,0,P)=1z(,P) (17)
P = fi(uk1,P)=—aP+(b—mr)lf (k) (18)
with 11

2(LP)=—— D[ (P)-B(P)l

In this system, three variables are predeterminate (k, [ and P), while p is a
jump variable. Equations (15) and (16) represent the Ramsey model, equation
(17) captures the SIS dynamics, while equation (18) adds the environmental
layer. Our framework bridges two strand of literature: environmental economics
and epidemiology.

4 Steady state

At the steady state, all variables remain constant, that is =k =[= P = 0.
Equation (15) gives the Modified Golden Rule (MGR) Assumption 3 cntalls a
unique capital level (k*) at the steady state:

k*:p_1(9+5) (19)

1—7

5See Heal (1982) or Seegmuller and Verchére (2004) among others.



Equations (19) and (18) at the steady state give

_b—mr

P . If(k*)=P(@) (20)

In order to have a positive stock of pollution at the steady state we introduce
an additional hypothesis.

Assumption 4 b — m7 > 0.

Equation (17) gives the labor supply at the steady state. According to
equation (4), there are multiple values of | # 0 satisfying equation (17) at the
steady state. Nevertheless, for a given value of [ # 0, we observe that equation
(16) leads to a unique positive consumption level at the steady state:

¢ = [0k + (1 - 1)w (k)] > 0

Reconsidering Proposition 1, we find that, for a given [ # 0, there is a unique
positive shadow price of capital at the steady state:

w=u.(c",P(1) >0 (21)

Summing up, we see that the existence as well as the unicity /multiplicity of
a steady state for this economy depends upon the number of stationary values
[ € (0,1) satisfying
1—

0, P() =g =0

with g (I) =~ (P (1)) =B (P (I))l. Assumption 1 allows us to prove the existence
of a unique positive value of labor supply.

Lemma 3 At the steady state, there is a unique | > 0 such that g (1) = 0.

The following proposition is an immediate consequence of Lemma 3 and
provides a complete picture of the steady states.

Proposition 4 Let I* be a solution of g (1) = 0.

(1) If I* > 1, there is a unique steady state given by (u, k, 1, P) = (u*, k*, 1, P*)
(disease-free steady state).

(2) If 0 < I* < 1, there are two steady states:

(2.1) (u, k, 1, P) = (u*, k*, 1, P*) (disease-free steady state),

(2.2) (p,k, 1, P) = (u*, k*,1*, P*) (endemic steady state).

If I* = 1, the endemic steady state coalesces with the disease-free steady
state.

We expect the occurrence of a transcritical bifurcation: the endemic steady
state collides with the disease free steady state at [* = 1.

Since the main goal of our paper is to describe the pollution impact on a per-
sistent disease, we focus on the endemic steady state. The following proposition
consider the impact of the green tax rate on the endemic steady state.



Proposition 5 The impact of T on the endemic steady state is given by

T Ok* T o
k¥ or _1—Tl—a<0
T Ol* d T Ok*
*or _¢m§87>0
T OP* 1 7 Ok*
Por  irdkoor
T o 1+1—0(1—a)(9+5) T Okr T ol
c* 0T o 0+(1—-a)d | k*or I*Or
and
T OW* 70" T OP*

Wror  ear TP or (22)

where o = a(k), o = o (k), B =F(P), v =7(P), d=d(P), ec = (¢, P),
Ep =E¢€p (c7 P); €cc = €cc (c7 P); EcP = EcP (Cy P) and

1— _
am-—mr _ g

k)=
w k) = o+ o b—mr

are evaluated at the endemic steady state.

Let us provide some intuition. Since the green tax is levied on the production
level, a higher tax rate gives incentives to lower the production level and to
reduce the capital intensity in the long run. Moreover, a lower production level
implies also lower pollution emissions while a higher green-tax rate means at
the same time a higher depollution level. Thus, a higher green-tax rate always
lowers the pollution level in the long run. According to Assumption 1, we know
that pollution promotes the transmission of infectious diseases and, therefore, a
higher green-tax rate lowers the pollution level and increases the labor supply
at the end.

In the case of a Cobb-Douglas technology (o = 1), we disentangle the impact
on consumption:

lac :lak +18l (23)
c* Ot k* or  I* Ot
This impact remains ambiguous (indeed, the impacts on capital and labor supply
are negative and positive respectively). To provide a clearcut interpretation, we
consider an additional assumption.

Assumption 5 b —m > 0.

Assumption 5 means that the environmental impact of production (b) ex-
ceeds the depollution efficiency (m).

Proposition 6 (consumption) In the case of a Cobb-Douglas technology, un-
der Assumption 5, the green tax has a negative impact on consumption:

T Oc*

c* Ot

<0




Under Assumption 5, the negative impact on capital dominates the positive
impact on labor supply. Indeed, the green tax has a moderate effect on pollution
reduction because of the low depollution efficiency. This moderate effect entails
a limited improvement of the immune system and an increase of labor supply
too small to compensate the drop in capital intensity.

Proposition 7 (welfare) In the case of a Cobb-Douglas technology, under As-
sumption 5, the green tax is welfare-improving if and only if

e (24)

When households overvalue the environmental quality with respect to con-
sumption, the ratio —e p /e, becomes sufficiently large to exceed the RHS in (24).
In this case, the increase in the utility due to the drop in pollution dominates
the decrease due to the drop in consumption (see Proposition 6) and, thus, the
green tax turns out to be welfare improving.

5 Local dynamics

We focus on the endemic steady state to show how the interplay between the
ecological and the epidemiological sides affects the economic equilibrium. To
capture the dynamics, we linearize the dynamical system (15)-(18) around the
endemic steady state. The Jacobian matrix J is given by

r % ofr 9fr 9fi
ofs  Ofs 0fs Of

<

Il
S
=
>
=
S
=
>
=

ou
Ofs Ofs Ofs Ofa
L 5. Bk Al B8P

[0 (0+6) Lk 0 0
I 0 (k+B=-NTF Z25+(B-7) 5
0 0 v-8 (v—8) %
0 aaml ark —a

where pu, k, I, « = a(k), 0 = o(k), 8 = B(P), vy =~v(P), d = d(P), ecc =

€ee (¢, P), ecp = €cp (¢, P),

0+1—a(k)]d
a (k)

0+6b—mr

(k) = 1—7 aa(k)

>0 and 7 (k) = >0 (25)

are evaluated at the endemic steady state. Notice that

O . P P
k*l* - K* andﬂ-(k )7 k:*l* - K*

k (k™) =

are the aggregate consumption and pollution on aggregate capital measuring
the relative size of consumption and pollution in the whole economy.

10



To avoid any ambiguity, we consider explicit functional forms:

pP-n 1—¢
£ (k) = Ak® and u (c, P) = %

This implies that o = 1 jointly with e.. = —¢ and e.p =1 (e — 1).

In the spirit of Bosi and Desmarchelier (2016a), we consider the following
specification of the pollution effects on health:

8 = BgP® and v = B, P

with eg > 0 and €, < 0 (Assumption 1).

We evaluate the Jacobian matrix around the endemic steady state (I = /).
Applying the methodology introduced by Bosi and Desmarchelier (2017), we
compute the sums of minors:

T = 6—a+y-p

Sy = (ﬂ—v)[a+ad(1_a)—9]—ae—[aan(1—g)+(1—a)(9+5)]§
Sy = <1a><e+5><a+ﬁv>§+a<5v>[e<1+d>+an<nljd)}
D = (1-a)(0+8) (- +d) = (26)

Proposition 8 A transcritical bifurcation generically occurs if and only if 8 =
5.

Unsurprisingly, a transcritical bifurcation occurs when g = . Indeed, in
this case, [* = 1 and then, the endemic steady state and the disease-free steady
state coalesce. The existence of a transcritical bifurcation means that the two
steady state exchange their stability properties at the bifurcation point.

When 8 = v, D = 0. According to Kuznetsov (1998), this leads to three
possible cases: (1) an elementary saddle-node bifurcation, (2) a transcritical
bifurcation or (3) a pitchfork bifurcation. In case (1), two steady state collide
and disappear. In case (2), two steady state coalesce and separate again, while
exchanging their stability properties. In case (3), three steady states coalesce
into one which inherits the stability properties of the laterals. According to
Proposition 4, there are always two steady states, meaning that a transcritical
bifurcation occurs when 3 = .

Since Heal (1982), it is known that a limit cycle can arise (through a Hopf
bifurcation) when a pollution externality affects the consumption demand. The
following proposition highlights a similar mechanism.

Let
by = (ﬂ—v)[a—@ﬁ—ad(l—a)]—a@—(l—a)(0+6)g (27)
_ (I-a)(@+8)(@+B—-—7)2+a(B—7)[0(1+d) — akrd]
bs = 0—a+~y—p (28)

6In our model, there are two steady states before and after the bifurcation: I = 1 and
I =1* = v/B. In mathematical terms, [* coexists with [ = 1 even when v > 8, but becomes
meaningless in economic terms.

11



Proposition 9 If a < 0 (strong pollution inertia), a limit cycle generically
arises through a Hopf bifurcation at

€ 1 0—a v —
= 1 E_+/E? +4D—— 29
T 5—12a0m<+7—,3>< * + 9—@) (29)

provided that ng > 0, where

v-8

E. = ——(bs—b2)—0
0_@(3 2) 3
1=B
E, = ——(bs—
+ g, (03— b2) + s

Proposition 8 shows the possibility of a transcritical bifurcation (exchange of
stability properties of two steady state), while Proposition 9 shows the possibil-
ity of a limit cycle (through a Hopf bifurcation) near the endemic steady state
(see the end of the section for an economic interpretation). What does it happen
when the endemic steady state is surrounded by a limit cycle and collides with
the disease-free steady state? In other terms, when the the conditions fot the
two bifurcations hold together? The simultaneous occurrence of a transcritical
bifurcation and a Hopf bifurcation gives rise to codimension-two bifurcations:
either the Bogdanov-Takens or the Gavrilov-Guckenheimer bifurcation. The
Bogdanov-Takens bifurcation entails the destruction of the preexisting limit cy-
cle while the Gavrilov-Guckenheimer the persistence of a cycle. The next two
propositions clarify what of these two bifurcations take place in our model.

Proposition 10 A Bogdanov-Takens bifurcation is impossible around the en-
demic steady state.

Proposition 11 Let ¢ > 1 and 0 > a jointly with f = ~. A Gavrilov-
Guckenheimer bifurcation generically arises if and only if
B _ 0 £+(1—a)(9+5)
n_nGG_oz(s—l) K a(0—a)

Notice that ngq > 0.

Proposition 12 A double-Hopf bifurcation is impossible around the endemic
steady state.

A limit cycle arises through Hopf bifurcation only if n; > 0. Therefore, we
need to know whether the pollution level increases (¢ > 1) or decreases (e < 1)
the consumption demand. However, this information is not enough to know the
sign of ;. We know that both 7y and 14 belong to the same Hopf bifurcation
curve in the (a,n)-space. Since a < 6 (strong pollution inertia), 5o > 0 if and
only if ¢ > 1. A necessary (but not sufficient) condition for a Hopf bifurcation
to occur for critical values close to 74 is that pollution raises the consumption
demand. In this case, we can interpret the existence of a limit cycle around

12



the endemic steady state. Let the economy be at the steady state at time ¢
and assume an exogenous rise in the pollution level entailing two effects: (1) a
drop in the labor supply because the infectious disease becomes more pervasive,
and (2) an increase in the consumption demand (¢ > 1). These effects imply
lower savings and a lower capital intensity. Then, the production level lowers
and the pollution level as well. In other terms, a positive pollution effect on
consumption demand and a negative impact on labor supply jointly generate an
endogenous cycle: a higher pollution level today implies a drop in the pollution
level tomorrow.

In Bosi and Desmarchelier (2016a), the pollution is a flow affecting only the
labor supply (through its effects on the pervasiveness of disease). In their model,
a Hopf bifurcation occurs only when ¢ becomes very large. In our model, condi-
tions for a limit cycle are less demanding (¢ > 1 rather than a very large value)
because the positive impact of the stock of pollution on consumption demand
contributes to promote the occurrence of endogenous cycles. In addition, we
observe richer dynamics: a Gavrilov-Guckenheimer bifurcation can give rise to
different complex phenomena. A simple local analysis based on the Jacobian
matrix is not sufficient to disentangle these cases involving higher-order terms
of the Taylor expansion. Instead, a numerical simulation based on the original
nonlinear system will allow us to shed light on the type of complex dynamics at
work.

6 Simulation

In the last section, we have characterized the occurrence of local bifurcations.
Nevertheless, even if we know that Hopf and Gavrilov-Guckenheimer bifurca-
tions are possible in the model, our analytical approach based on the Jacobian
matrix, is uninformative about the stability of the cycles or the occurrence of
more complex dynamics. The limit cycle arising through the Hopf bifurcation
can be stable or unstable, while the Gavrilov-Guckenheimer bifurcation can give
rise to different scenarios: (1) a torus, (2) a preserved limit cycle after a Hopf
bifurcation or (3) a "blown-up" limit cycle (see Section 8.5 in Kuznetsov (1998)
for more details). These complex dynamics depend on the higher-order terms of
the Taylor expansion and can be simulated using MATCONT, considering the
original non-linear system instead of its first-order approximation.”

Local bifurcations are characterized in Propositions 8, 9 and 11, and occur
at some critical value for 8, v or n. Since 7 is the main economic information,
capturing the pollution impact on consumption demand, we keep it as principal
bifurcation parameter. v and (8 capture the epidemiological side of the model
but depend on the pollution level and can not fixed exogenously. Conversely, a
is an exogenous variable driving the pollution level: it is eligible as additional
bifurcation parameter to study the bifurcations of codimension-two.

"MATCONT is an equilibrium continuation package for MATLAB.
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Focus on a standard parametrization:

Parameter

A

Bg

B

~

€s

Ey

Value

1

1

1

1

-1

0.33

0.025

0.01

0.015

0.001

0.001

a, 0 and 0 take usual quarterly values while the low value of elasticity of
intertemporal substitution (1/e < 1) captures the so-called compensation effect
(ecp > 0). 7, b and m satisfies Assumption 4.

According to (29), to each value of ny may correspond multiple values of a.
If we fix ny = 11.617, we obtain a = 0.002881863 and a = 0.00295. In other
terms, we expect to detect two Hopf bifurcations at these two values for a such
that both the pairs (a (ny),ny) belong to the same Hopf bifurcation curve in
the (a,n)-plane. This curve is analytically given by

€ 1
e —12aak

it (0) = ()= Ota)

0-a 3 (a)
1+——— | [ E_(a E2 (a) +4D (a

el <)+¢+() W
) (31)
where 8 (a) = 8(P(a)) and 4 (a) = v (P (a)), and it is geometrically repre-
sented in Figure 1 by MATCONT, where H, GH, BP and ZH denote re-
spectively a Hopf, a Generalized-Hopf, a transcritical (Branch Point) and a
Gavrilov-Guckenheimer (Zero-Hopf) bifurcation.

125

4zH

105 T vl

I I I 1 1 I I

10
2.88 2.89 29 291 292 293 2.94 295
a x10°?

Fig. 1. Equilibrium continuation
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We perform an equilibrium continuation. We fix n = 11.617 and we move
along the horizontal line H BP in Figure 1 from the left to the right, by increas-
ing a from the lower Hopf critical point (H with a = 0.00295) to the higher
Hopf critical point (H with a = 0.0028818558) and, eventually, to the transcrit-
ical critical value (BP with a = 0.002952). The following table summarizes the
codimension-one bifurcations and provides also their steady state values.

[ Bifurcation | Hopf (H) | Hopf (H) || transcritical (BP) |
[ a [ 0.0028818558 [ 0.00295 [ 0.002952 |
IR [ —2.307495 %105 [ 8.388102%10° [ |
1t = 0.054460537 1 = 0.039004 1t = 0.03857979
Steady stat k = 27.835574 k = 27.835574 k = 27.835574
cacy state |y — 0.98403822 I = 0.999490 =1
P = 1.0080777 P = 1.000255 P=1
A = —0.0195198 A = —0.00140323 A =0
Eivemvalucs | A2 = 0:0105472 A2 = 0.00794332 A2 = 0.00751033
& A3 = —0.0179195i A3 = —0.0138706i A3 = —0.000231292 — 0.0136657:
A4 = 0.0179195i A4 = 0.0138706i As = —0.000231292 + 0.0136657

The lower Hopf bifurcation is supercritical and the corresponding limit cycle
around the endemic steady state in Figure 2 is stable (negative first Lyapunov
coefficient 7).

1.0088

| 0.9832 1.0074 P

Fig. 2. Stable limit cycle
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Conversely, the higher Hopf bifurcation is subcritical and the corresponding
limit cycle around the endemic steady state in Figure 3 is unstable (positive ;).

275l
099956

099954
099952 1.001

099942 09995

P

Fig. 3. Unstable limit cycle

As seen above, the lower and the higher Hopf bifurcation belong to the same
U-shaped curve. Since the corresponding limit cycles have opposite stability
properties (the one is stable while the other is unstable), we expect a generalized-
Hopf bifurcation taking place somewhere along the Hopf bifurcation curve when
the first Lyapunov coefficient crosses zero moving from I; = —2.307495% 1075 <
0 to {1 = 8.388102 % 10~° > 0. Indeed, at a generalized-Hopf critical point, the
Hopf bifurcation from supercritical becomes subcritical with [; = 0.

In order to draw the Hopf bifurcation curve, we relax n and we ask MAT-
CONT to represent all the points (a,n) at which a Hopf bifurcation occur (func-
tion (31) and Figure 1). As expected, MATCONT detects a generalized-Hopf
bifurcation (GH) in an intermediary point. The following table summarizes the
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relevant informations about the codimension-two generalized-Hopf bifurcation:

| Bifurcation | Generalized-Hopf (GH) |
Codimension two a = 0.0029417316
7 = 10.806627
[l [ —1.430066 * 10~° |
= 0.040481846
Steady state f: 02;573652517548
P =1.001913

A1 = —0.00545026
Ay = 0.0101273
A3 = —0.0134511¢
Ag = 0.0134511¢

Eigenvalues

where I, denotes the second Lyapunov coefficient.® I, # 0 ensures that the
generalized-Hopf bifurcation is non-degenerated (see Section 8.3 in Kuznetsov
(1998) for more details).

To complete the bifurcation analysis, we draw also the transcritical bifurca-
tion curve, that is, the set of points in the (a,7n)-space at which a transcritical
bifurcation arises. This locus is given by the vertical line in Figure 1. Inter-
estingly, when conditions for both the Hopf and the transcritical bifurcation
are jointly satisfied, the system undergoes a Gavrilov-Guckenheimer bifurcation
(ZH). The following table summarizes all the relevant informations:

H Bifurcation Type H Gavrilov-Guckenheimer (ZH) H
. . a = 0.002952
Codimension two n = 11.882664
s=—1
Normal form coefficients 6 = —7.575717 %102
E0)=1
1= 0.038579789
Steady state ?:_:127'835574
pP=1
A =0
i Iues A2 = 0.00704774
igenvaes A3 = —0.0141091
Ay = 0.0141091¢

Consider the coefficients of the normal form presented in the Section 8.5
of Kuznetsov (1998): s = —1 jointly with § = —7.575717 * 1072 < 0 means
that the limit cycle around the endemic steady state in Figure 4 is unstable,

SMATCONT computes Iz when a generalized-Hopf bifurcation is detected.
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while E (0) # 0 ensures that the Gavrilov-Guckenheimer bifurcation is non-
degenerated.”

27855
2785 _—
27845 s

2784

. 2783

278 /
27825 /

27 82~ e

278154 /

0000000001

1.00003
100002
100001

1
0.99999
0.99998

0
09999999999 099994 P

Fig. 4. Limit cycle at the GG bifurcation point

In sections 4 and 5, we have considered the destabilizing effect of pollution.
A limit cycle means also a fluctuation in pollution associated to intertemporal
inequality. Indeed, in this case, some generation enjoys a low pollution level
while the following experiences a high level. A government interested in in-
equality reduction can tune the green tax to avoid any bifurcation giving rise
to cycles. Figure 5 represents the bifurcation value 1y as a function of 7 in the

YMATCONT computes s, § and E (0) when a Gavrilov-Guckenheimer bifurcation is de-
tected.
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interval (0,0.2) according to calibration (30) with a = 0.00295.

35

Fig. 5. ny depending on 7

The curve in Figure 5 is generated by (29) and illustrates the ambiguous
impact of taxation on the Hopf critical value. If we assume that low values for
the aversion to pollution 77 are more plausible, then the introduction of a green
tax (with rates around 1%) can promote the occurrence of undesirable cycles for
future generations. In addition, the ambiguous effect of taxation on macroeco-
nomic stability can be compatible with the its unambiguous impact on capital
intensity, labor supply and pollution level (Proposition 5). In other terms, a
well-intentioned policy for a cleaner world may lead to a higher macroeconomic
volatility and a larger intertemporal inequality. This unpleasant consequence
could be reinterpreted as a new form of green paradox.

7 Conclusion

In this paper, we have developed a unified framework, at the crossroad of econ-
omy, ecology and epidemiology, where a pollution externality, coming from pro-
duction, affects both the spread of infectious diseases and the consumption
demand. We have embedded a standard SIS model into a Ramsey model. This
unified framework allows us to recover either in the short or the long run some
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important results of different strands of literature: (1) on the epidemiological
side, the coexistence of a disease-free and an endemic steady state; (2) on the
ecological side, the possible occurrence of limit cycles when pollution increases
the consumption demand and pollution has a strong inertia. Moreover, the
complex interplay between the pollution effect on disease transmission and con-
sumption demand implies richer dynamics, namely the occurrence of a Gavrilov-
Guckenheimer bifurcation. To convince the reader about the plausibility of our
theoretical results, we have provided a numerical illustration of the preservation
of the limit cycle after the Gavrilov-Guckenheimer bifurcation. Finally, we have
pointed out the ambiguous role of a green tax: a higher green-tax rate can lower
the Hopf bifurcation degree of pollution aversion in the utility function, making
the occurrence of limit cycles more likely. In this sense, a heavier green tax
intended to clean the environment, can promote the macroeconomic volatility.
Such unpleasant effect of the green tax can be viewed as a new facet of the
Green Paradox.

8 Appendix

Proof of Proposition 1
The consumer’s Hamiltonian function writes

H=e"%u(e,P)+ N[(r—8)h+a—d

The first-order conditions are given by 0H/OX = (r — §) h+w—c = h, H/0h =
A(r—68) = -\ 0H/0c = e %u.~\ = 0. Setting u = e\, we find ji—0pu = %\
and, therefore, u(r —0 —60) = —j. Finally, the budget constraint becomes
binding because of the multiplier positivity. m

Proof of Lemma 3

(20) jointly with Assumption 1 yields lim;_.¢ g (I) = 400 and lim;_ 4o g () =
—o00. We observe that g is a continuous function. According to the Interme-
diate Value Theorem, there exists at least one value { > 0 such that g (I) = 0.
Monotonicity of g (I) for any I > 0 is a sufficient condition to get a unique
positive value. Monotonicity is also satisfyied under Assumption 1:

b—mrt

g )= [ (P)-18(P)] f(E)=B(P) <0

a

Proof of Proposition 4

Simply consider (19), (20) and (21) jointly with Lemma (3). m

Proof of Proposition 5

Totally differentiating system (15)-(18) at the endemic steady state, we ob-
tain
~1

z ok 0 (1-r)t= 0 0 —7
S 0 KtB—v d(B—7)+rL =2
%57; — cc 0 1 d cc 0
Lt 0 o 1 -1 o
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Moreover,

+o0 +oo 1
W = / e Py (c*, P*)dt = u(c*, P*)/ e Otdt = g (c¢*, P*)
0 0

]
Proof of Proposition 6
b > m implies ¢ < 1 and, then, according to (23),
70" 1+(1—p)d T Ok <0
ct Ot 1+d k* Ot
]
Proof of Proposition 7
According to (22) and (23),
T OW* 1+(1-¢)d 7 T Ok*
— = |e. — 32
W or % 1td  FP1td]F or (32)

Under Assumption 5, ¢ € (0,1). The RHS of (32) is positive iff (24) holds. =

Proof of Proposition 8

A bifurcation of the saddle-node family occurs if and only if D = 0 (see Bosi
and Desmarchelier, 2017). In our model, the type of bifurcation the system ex-
periences, is a transcritical because two steady states coalesce while exchanging
their stability properties (see Proposition 4). We observe that D = 0 if and only
ff=~ m

Proof of Proposition 9

According to Bosi and Desmarchelier (2017), a limit cycle generically arises
through a Hopf bifurcation if and only if

S T
Sy = 7+ S, D (33)

and T" and S3 have the same sign. We observe that Sy = asx + be and S5/1T =
x + b3, where

1+97a
as =
y=8
e—1 y—p3
x = aank

e O—a+y-—p

and by and b are given by (27) and (28).
Notice that ag, b, b3 and D do not depend of 7 because v* = ~ (P*),
B* = B (P*) and P* does not depend of n:

Therefore, (33) becomes

2+ (z+b3)z+y+2b3 =0
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where

—b
Y= and z = -2
1-— a9 — ag
The solutions are
—z— by +1/(z—bs)® — 4y
r+ = 9

Under the assumption a < 6, we have (z — b3)? — 4y > 0. We observe that

(53) B 7b37z:t (b372)2*4y
+

and, since y < 0, (S3/T)_ < 0 < (83/T), . The occurrence of a Hopf bifurcation
requires the same sign for T' and S3, that is S3/T > 0. Therefore, we consider
only (S3/T) .

The bifurcation point is given by

g a2 € a2 2
= —xy = bs — /(2 —b3)" — 4
= Y aar T T 1— ¢ 2aar [Z+ N (z=bs) y}

where the RHS does not depend of 7. This espression is identical to (29). =

Proof of Proposition 10

According to Bosi and Desmarchelier (2017), a Bogdanov-Takens bifurcation
occurs if and only if D = S5 =0. D = 0 implies 8 = v (see (26)) and, therefore,
Ss = (1—a) (0 +9)ar/e > 0, which violates the condition for a Bogdanov-
Takens bifurcation. m

Proof of Proposition 11

As shown in Bosi and Desmarchelier (2017), a Gavrilov-Guckenheimer bi-
furcation of a four-dimensional system generically arises if and only if D = 0
and S3 = T'Sy with S > 0. D = 0 if and only if 8 = . Solving S3 = T'S; for
1, we get 1 = ngq. In addition,

ak (1 —a) (04 9)

— 0
€ 0—a =

Sz (nga) =

because a < 6 by assumption. m

Proof of Proposition 12

At the endemic steady state, 8 > + and, therefore, D < 0. As shown in
Bosi and Desmarchelier (2017), a necessary condition for the occurrence of a
Double-Hopf bifurcation is generically D > 0. The proposition follows. m
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