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Abstract

This paper studies how the government should design a linear inflation contract to
deal with the time-inconsistency problem arising from incentives for the central bank
to exploit the inflation-output tradeoff with an overambitious output-gap objective
when private expectations are based on adaptive learning. An intertemporal trade-
off due to learning leads the central bank to accommodate less the effect of inflation
expectations and cost-push shocks on inflation. An optimal linear inflation contract is
able to achieve many of the benefits, i.e., reducing inflation bias and stabilization bias,
resulting from central bank conservatism and inflation targeting rules. The government
can impose either a long-term or a short-term contract. The first is equivalent to
appointing a hawkish central banker. The second implies that inflation penalty rate
should be adjusted for inflation expectations in each period, and could be positive
or negative, i.e., the central banker should shift between hawkish and dovish stances
depending on inflation expectations and the speed of learning.
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1 Introduction

In the theory of monetary policy, conventional wisdom holds that discretionary monetary
policy could lead to an inflation bias, defined as an excess of inflation over the socially optimal
level (Kydland and Prescott 1977, and Barro and Gordon 1983). The inflation bias and the
associated time-inconsistency problem stem from the fact that central banks (CB) optimally
respond to the wrong incentive structure while targeting a level of output that exceeds the
natural rate. Furthermore, in New Keynesian models, the time-inconsistency problem could
give rise to a dynamic phenomenon called stabilization bias (Svensson 1997, and Clarida, Gali
and Gertler 1999)." Tt means that the inflation volatility is higher out of steady state under
discretionary monetary policy than under commitment. The explanation is that monetary
policy under commitment, by reducing the response of inflation to cost-push shocks, can
subdue expected inflation, thus making stabilizing inflation less costly in terms of future
output contraction. Both inflation bias and stabilization bias can be reduced or fully offset
by delegating monetary policy to an independent and conservative central banker (Rogoff
1985, and Lohmann 1992) or adopting inflation targeting regimes where the government
penalizes the central banker for deviating from targets (Svensson 1997, and Walsh 2003).
Despite their effectiveness in reducing these biases, such approaches might not be socially
optimal in models incorporating a trade-off between inflation prevention and stabilization
policy (Chortareas and Miller 2007).

A strand of the literature treats monetary policy delegation as a principal-agent prob-
lem and proposes a CB contract, i.e., a linear inflation contract, to eliminate the trade-off
between inflation reduction and stabilization policy and hence the inflation bias (Persson

and Tabellini 1993, Walsh 1995).2 The basic idea of this “contracting” approach is that the

"Dennis and Séderstrém (2006) have quantified this bias in various forward-looking New-Keynesian mod-
els with rational expectations.

2Frattianni, Von Hagen and Waller (1997) have compared various institutional arrangements designed
to eliminate these biases and have found that CB independence and inflation contracts work best. Candel-
Sanchez and Campoy-Mifiarro (2004) and Chortareas and Miller (2007) have discussed the implications of
the cost of inflation contract. Several studies have examined how linear inflation contracts are affected by
uncertainty about the CB’s output target (Muscatelli, 1999), about preference weights that the CB put on



government, as the principal, designs an optimal incentive scheme for the central banker with
the intention of obtaining monetary policy outcomes equivalent to those under credible com-
mitment. Generally, such scheme includes an efficient punishment (or transfer) mechanism
that, by sufficiently raising the welfare costs of surprise inflation, counteracts the central
banker’s tendency to conduct a more accommodative monetary policy.

Insofar this principal agent literature is built on the hypothesis of rational expectations
(RE). The practicality of policy recommendations resulting from this literature might be
limited since this hypothesis requires private agents to have a very good understanding of
the economic structure and a great capacity of computation. As Woodford remarks (2013),
familiar results in the theory of monetary policy obtained with this hypothesis could be
challenged by alternative approaches to the specification of the expectations of economic
decision makers. One of the most significant issues that have emerged in recent monetary
policy literature is about how private expectations formed using learning algorithms would
change the optimal design of monetary policy and institutions compared to RE. The mech-
anism that underlies the findings from studies examining this issue is that learning gives
rise to an intertemporal trade-off, leading the CB to accommodate less the effect of inflation
expectations and cost-push shocks on inflation than at the RE equilibrium (Molnar and San-
toro 2014, Mele, Molnar and Santoro 2014, Airaudo, Nistico and Zanna 2015). Introducing
a non-linear inflation contract with negative inflation penalty helps the CB reduce the unde-
sirable effect of distortions introduced by adaptive learning on the stabilization bias (André
and Dai 2017). One might wonder if this result holds with a linear inflation contract.

The intention of our paper is to study how adaptive learning could change the well-known
findings, in the literature on optimal inflation contracts, regarding the design of punishment
or transfer mechanism and the dynamics of endogenous variables. As in this literature, we

assume that both the government and the CB share the same preferences over inflation and

its inflation and output stabilization objectives (Beetsma and Jensen 1998, and Muscatelli 1998, 1999), or
about the central banker’s responsiveness to incentive schemes (Chortareas and Miller 2003). In addition to
transparency issue, Dai and Spyromitros (2012) consider if model robustness affects the design of inflation
contract and Ciccarone and Marchetti (2012) think about common agency.



output fluctuations. To achieve the inflation target with an inflation contract, incentives for
the central banker must be strong enough. The government must thus implement an inflation
penalty if the central banker does not respect the goal previously fixed. Moreover, such
punishment mechanism has to be conceived to allow the CB to offset distortions introduced
by the learning behavior of the private sector.

The main findings of our paper are as follows: (1) Under adaptive learning, the govern-
ment can adopt either a long-term or a short-term approach to inflation contract. (2) Under
long-term approach, the optimal inflation penalty rate is positively related to the output-gap
target and its sensitiveness to the latter is substantially smaller under learning than under
RE, particularly when the learning gain is high. (3) Under short-term approach, the optimal
penalty rate depends on both the output-gap target and private agents’ inflation expecta-
tions. The government should reset in each period the terms of the contract since optimal
inflation penalty rate can be either positive or negative according to the learning gain and
the sign of the deviation of inflation expectations from the inflation target.

Our paper contributes to a growing literature that focuses on the effects of learning in
macroeconomic models, in particular the strands of literature investigating the consequences
of adaptive learning for monetary policy decisions. These studies emphasize that learning has
significant implications for monetary policy analysis and design. Marcet and Nicolini (2003)
find that the learning process matches remarkably well some major stylized facts observed
during the hyperinflations in the 1980’s. Slobodyan and Wouters (2012) report that inflation
expectations based on small forecasting models replicate well the survey evidence, and the
model with an inertial Taylor rule fits the data better under adaptive learning than under
RE. Several studies, e.g., Bullard and Mitra (2002), and Evans and Honkapohja (2003, 2006),
assert that Taylor rules, while ensuring determinacy under RE, can generate instability if
private expectations slightly deviate from rationality and are formed using adaptive learning
algorithms. The fact that departures from RE increase the potential for economic instability

has led some authors such as Ferrero (2007), Gaspar, Smets and Vestin (2010), Marzioni



(2014), Moore (2014), and Airaudo, Nistico and Zanna (2015) to highlight the importance of
anchoring inflation expectations and advocate for a more aggressive response of the interest
rate policy to expected inflation under learning than under RE.

The rest of the paper is organized as follows. The next section sets up the model. Section
3 establishes the closed-form solution to the model under RE. Section 4 gives the equilibrium
solution under constant-gain learning and analyzes how learning influences the equilibrium.
Section 5 examines the design of optimal inflation contracts. Section 6 investigates the
implications of decreasing-gain learning for the design of optimal inflation contracts. Section

7 discusses some possible extensions. The last section concludes.

2 The model

The economic environment is described following a standard micro-founded Keynesian model
featuring optimizing private-sector behavior and nominal price rigidities that has been ex-
tensively used in the recent literature on monetary policy (Clarida, Gali and Gertler 1999).
We formulate monetary policy in terms of control over the output gap, i.e., output relative
to the flexible-price equilibrium level. This allows us to neglect the goods market equilibrium
condition. Adopting an alternative modelling approach that takes account of this condition
and explicitly treats the nominal interest rate as monetary policy instrument to achieve
output and inflation targets, will not alter our main results.

The model is then completed by a principal-agent framework in which the government
delegates monetary policymaking to the CB with the help of a linear inflation contract.
We close the model by specifying the learning algorithm used by private agents to form
expectations.

The supply side of the economy is characterized by a forward-looking Phillips curve:

T = BE; T + Kx + ey, (1)



where 7; is the inflation rate, £} w1 the expected rate of future inflation, x; the output gap,
e; ~ N(0,0.) a serially uncorrelated supply or cost-push shock. The expectation operator
E} represents private expectations conditional on information set available at time ¢, with
the asterisk denoting that private agents may form RE or not. The parameter 5 € (0, 1)
is the discount factor. The parameter s stands for the output-gap elasticity of inflation
and captures the effects of the output gap on real marginal costs and hence on inflation.
Underpinnings to (1) are that in an environment with monopolistically competition, each
firm’s price-setting decision is derived from an explicit optimization problem. When a firm
has the opportunity, it sets the nominal price of its product to maximize profits subject to
the constraint on the frequency of future price adjustments as defined in Calvo (1983).

The expected social loss function is specified in terms of variances of inflation and the

output gap as follows:
+oo

1 4 5
Li = 5@2& [7ips + o (@i — 7)) 2
=0

where o > 0 is the relative weight assigned to output stabilization. The public knows the
true value of o as well as inflation and output gap targets. The latter are set to zero and
T > 0 respectively. The fact that the society has an output-gap target above its potential
level, set to zero in this model, implies the presence of an inflation bias. In the absence of
an inflation contract, a CB that shares the government’s objective function would conduct
discretionary monetary policy that would not avoid the time-inconsistency problem and the
associated inflation bias. The government, as benevolent social planner, imposes on the
central banker an inflation contract stipulating that she or he receives a monetary transfer

payment from the government according to a rule, i.e.,
T=1—1m (3)

where 7 is fixed in a way to ensure the CB’s participation and 7 is the penalty rate associated

with inflation (Walsh 1995). Such a payment can be either considered as the direct income



of the central banker or as the budget of the CB.
To implement optimal discretionary monetary policy, the CB solves the following prob-

lem:

. IR -
min LtCB = 53&23[0‘ (@ers — 5U>2 + 7Tt2+z' — & (10 — Tme4)], (4)
i=0

Tt

subject to the constraint imposed by the structure of the economy, i.e., the Philips curve (1).
The parameter ¢ indicates the extent to which the central banker cares about the incentive
scheme relative to the social welfare loss. The participation constraint is assumed to hold
such that the CB accepts the contract. Inflation contract, by imposing a penalty rate linked
to inflation, is designed such that the higher this penalty rate is, the costlier it is for the CB
to adjust inflation to achieve the overambitious output-gap target.

Private agents are assumed to follow a learning algorithm as in Marcet and Nicolini
(2003), and Molnar and Santoro (2014). This assumption relies on the idea of a limited
rationality among private agents, which corresponds to a restrained knowledge of the process
governing the evolution of endogenous variables. To improve their decisions, private agents
may recursively estimate a Perceived Law of Motion (PLM) in the terminology of Evans and
Honkapohja (2001), which is consistent with the law of motion that the CB follows under

RE, by using the following deterministic learning algorithm:

Eim =a = a1 + i(mer — a—q), (5)

where y; € (0, 1) is the learning gain that could be constant (sections 4 and 5) or decreasing
(section 6).> The learning gain defines the speed of integration of new data into current
expectations. The learning algorithm (5) establishes a positive relationship between inflation
expectations and last period inflation. Given that past inflations depend on past shocks,

inflation expectations based on learning contain a share of past inflation shocks.

3Compared to decreasing-gain learning, constant-gain learning has a better analytical tractability of the
model. This explains why our paper mainly focuses on constant-gain learning.



Using (5), we rewrite (1) as:
= B lai—1 + v (m—1 — ar—1)] + KTy + €. (6)

Equation (6) relates the current inflation to the current cost-push shock, the current output-

gap, and the past values of inflation and of expected inflation.

3 Rational expectations equilibrium

The interest of this section resides in providing a benchmark equilibrium solution and optimal
inflation contract based on the assumption that the private sector forms rational inflation
expectations conditional on information available at time ¢. They serve as a reference point
for the discussion about the equilibrium solution in section 4 and the optimal inflation
contract obtained under learning in section 5.

Solving the minimization problem of the CB under discretion gives the following targeting

rule:

1
Ty = —% (xy — ) — 5{7. (7)

Condition (7) indicates that the equilibrium solution of inflation and the output gap now
depends on inflation penalty rate. A positive inflation penalty rate, by making costlier for
the CB to adjust inflation to achieve the output-gap target, implies a lower output and hence
a decrease in the output gap.

For given inflation expectations, solving (1) and (7) yields the Actual Laws of Motion

(ALMs) that govern the evolution of inflation and the output gap at the equilibrium:

af 1 K2 ak @
= ——F; - = T+ e, 8
i o+ K2 Mas 20z+/<;2§7—+oz+n2 atr2 " (8)
ol 1 k€ a K
- P pr -z - . 9
o o+ K2 £+ 204+/12T+04+/€2x a+n26t 9)



The system of equations (1) and (7) has a unique non-explosive RE equilibrium (REE)
solution, called the “minimal state variable” solution (McCallum 1983), in terms of state
variable e; as well as 7 and z. Under RE, i.e., Ef = E}, the solution of 7, takes the form:
m = (o + C1e;. Since cost-push shocks are serially uncorrelated, i.e., Eie;rq = 0, it follows

that Fymyy = (o + (1Eei 1 = (o Using the method of undetermined coefficients yields

(o7 ~ I'€2 _ o
Co = a(l—ﬁ)-h-g?x - z[a(1_3)+52]f7', and Cl = .

Substituting the solution of £y, into (8)-(9), we obtain the REE solution corresponding

to the optimal discretionary monetary policy:

ak ~ 1 K2
T iR 2alp et T are (10)
 al-p) - 1 (1-P)k .
" mx_ime_a_{_ﬁzet. (11)

The optimal inflation penalty rate is determined by minimizing (2) taking account of the

solutions of 7, and z; given by (10)-(11) as:

B 200K ~
" e A (12

This result is obtained under the RE hypothesis and in the presence of inflation bias. The
government should set a penalty rate that balances between mitigating inflation and stabi-
lization biases. As a result, the optimal inflation penalty rate is positively related to the
output-gap target. Thus the higher the target is, the higher the inflation penalty rate.

To observe if the linear optimal inflation contract offsets the inflation bias, we insert (12)

into (10)-(11). It yields:*

4The solution under discretion differs from that under constrained commitment (commitment to a rule)
or unconstrained commitment (with timeless perspective). Consider for example the equilibrium under
constrained commitment, the equilibrium solution can be obtained using the method of undetermined coef-
ficients as in Clarida, Gali and Gertler (1999). In this case, the government should set the optimal inflation
penalty rate as 7 = 20‘(51’;‘3)%, and the equilibrium solutions for inflation and the output gap are m, = _Fe;.
and z; = fﬁet. Thus, if the output-gap target is positive, it is obvious from comparing the previous
results with (13)-(14) that inflation is inefficiently stabilized under discretion, i.e., the variance of inflation
under discretion is greater than under commitment. This bias, which is known as the stabilization bias,




ak(1—=p5) - o)
a(l—ﬁ)z—i—/ﬁ?x—i_oz—i—m?
a(l—-p)?2 K
a(l—ﬁ)2+/12x_a+/§2

Tt €, (13)

er. (14)

Ty

Thus under RE, even with an optimal linear inflation contract, the inflation bias cannot
be fully neutralized, unless the output-gap target is null. This is due to the forward-looking

inflation expectations present in the New Keynesian Phillips curve.?

4 Equilibrium with constant-gain learning

As generally recognized in the learning literature (Evans and Honkapohja 2009), private
agents use more likely a constant-gain learning algorithm if they believe in possible structural
changes in the near future.®

The focus of this section is twofold. We first analyze how constant-gain learning and
inflation penalty rate interact with macroeconomic stabilization compared to the benchmark
case where private agents form RE, and then examine how the government should design
inflation contract to deal with inflation bias and stabilization bias. The CB sets policy under

discretion.

becomes larger if shocks are persistent. If the over-ambitious output-gap target is absent, the stabilization
bias disappears for white noise shocks even under discretion.

®Using a static Phillips curve such as 7, = 7§ + kx¢ + €;, with 7¢ representing the expected inflation rate
for the current period based on information available in the previous period. It is easy to show that even
under discretion, the optimal inflation contract fully eliminates the inflation bias due to an overambitious
output-gap target. Comparing this result with that obtained in the standard New Keynesian model leads
to the idea that the stabilization bias is a dynamic phenomenon.

6We relax the assumption that the learning gain is constant by assuming in section 6 that it decreases
with time. The appeal for decreasing gain resides in the idea that as time goes by, private agents are more
experienced with learning process and are hence more confident in their expectations. As the learning gain
decreases from 1 to 0 over time, the economy behaves as if it jumps from one dynamic path with higher
constant learning gain to another one with lower constant learning gain (Molnar and Santoro 2014, André
and Dai 2017).



4.1 Optimal monetary policy rule

The Lagrangian of the CB’s optimization problem is:

+oo
L0 = Etzﬁi {5 o (e — B +mh — (o — Ti4i)]
i=0
_)\l,tJri [7Tt+i - Bat+i — RTt4i — et+i]

_)\2,t+i [at+z‘+1 — Qg4 — Vititl (7Tt+z‘ - at+i)]} )

where \;;, with i—1, 2, are Lagrange multipliers associated with (1) and (5), respectively.
The first-order conditions of the CB’s optimization problem are obtained by deriving the

Lagrangian with respect to xy, a; 11 and 7

0% 0] ~
8_3375 =0 < )\17t:_;(xt_x)7 (15)
0L
5g. =0 € Ao = BB 1 + (1 — Yeg2) Aop] (16)
At+1
0% 1
0—7& =0 & >\1,t =Ty + 557' + ’Yt-i-l)\?,t- (17)

Solving (15)-(17) for 4441 = 7 = 7, we obtain the optimal rule for intratemporal and

intertemporal trade-off between inflation and the output gap:

af 1 —~(1-p)]

K

m=B(1=7) B — (00— 0) + (B = %) -5 [1—B( =) ér. (18)

The CB follows this rule when conducting discretionary monetary policy.

4.2 The equilibrium and the effect of learning

There exists a unique non-explosive equilibrium solution corresponding to the CB’s control

problem under constant-gain learning (Appendix A.1). The ALM for inflation is given by:
T = clay + dPe + OFET + 297, (19)

10



where

con2
. po+p2(cf) -0,
b
d;:rg = cg - c9 >0’
K2+ a+ay2B? (B =)+ (1 —v){af — (o + k) '}
21 =61 =)
g _
Sk 5% <0,
T P ’

with

® = a+r’+ayl—y1-0)]—B1+cHy) [(a+r) (1—7)+ayb],
po = af{l—=pB(1—-7)[L—-~(1-p)} >0,
po= === —al=5){1-F1-~1-p)} —po—p2 <0,

po = W{al—v(1-pB)+r*(1—7)}>0.

. . explosive evoluti . on i eiv :
The solution for ¢ ensuring a non-explosive evolution of inflation is given b

<9 — —P1— Pl — 4papo (20)

" 2py

5.) and that ¢ < 1 (see appendix A.1), current inflation rises pro-

: cg .
Since ¢ € (0; 55

portionately less than inflation expectations (a;). Inflation expectations in (5) are related to
past inflation, hence to past cost-push shocks through the Phillips curve (1). Consequently,
current inflation is influenced by the CB’s policy responses to past shocks. An increase in
learning gain 7 has two opposite effects on ¢%9. The learning algorithm (5) indicates that,
if v increases, there exists a positive feedback from current inflation 7; to future inflation
expectations a;;1, and hence an incentive for the CB to lower ¢, i.e., the positive feedback
from a; to m in (19). Nevertheless, higher v dampens the effect of a; on a;;q, therefore

increasing ¢ without reducing social welfare. The first effect always dominates the second

11



such that % < 0 (Appendix A.2).

The effect of cost-push shocks on current inflation is negatively related to the learning

gain because the denominator of d? is decreasing in 7 given that 85,39 < 0. Inflation penalty

rate is negatively correlated with inflation and this correlation, represented by the feedback

0

coefficient ©%9 < 0, is strengthened as 7 rises, i.e., @j‘g < 0. This can be explained by the

0

fact that higher learning gains enhance the integration of information about past inflations
into private agents’ expectations such that inflation penalty is more effective in reducing
inflation. An increase in the output-gap target generates higher inflation with its effect

. . . . . . . =
being reinforced by an increase in learning gain, i.e., 29 > 0 and ag)ﬂ > 0.
Y

The ALM of the output gap is obtained by substituting m; given by (19) into (1):

= clay+ dle, + OFET + 297, (21)
where ¢ = —1(8 — ¢¥), d¥ = —1(1 —d¥) , ©% = 1OY and 2 = L1029 An increase

in inflation expectations calls the CB to set a monetary policy with the aim of reducing
current inflation. Nevertheless, an increase in inflation expectations leads to higher inflation

and lower output, ie., ¢ < ai’iz and ¢ < —Oﬁ’zQ. Notice that (1) implies an increase in

current inflation smaller than that of inflation expectations and hence lower future inflation

expectations according to the learning algorithm (5). The feedback effect of cost-push shocks

on the output gap is negative. It is positively correlated with that on inflation, i.e., gj—%Z > 0,

odg?
Oy

and hence decreases with learning gain v, i.e., < 0. Inflation penalty negatively affects

the output gap, i.e., © < 0. As with the ALM for inflation, the effect increases with higher

9957

o < 0. The feedback effect of an increase in the output-gap target

learning gain, i.e.,

on the output gap is positive, i.e., 299 > 0, and decreases as the learning gain increases,

09257

22 < 0.

The learning gain is the critical determinant of the time horizon within which private

agents’ beliefs converge to RE. It thus affects the persistence of inflation and the stance of

12



monetary policy. Setting v = 0, i.e., inflation expectations are constant over time such that

a; = a;_1, we obtain:

¢ of
@ = 2 22
. a
= 23
2
K
oY — " 24
T 2 (a+ K?)’ (24)
. aK
N9 = P (25)

For v = 0, (19) is reduced to the form given by (8). This corresponds to the case of
exogenously given inflation expectations. All feedback coefficients (i.e., (22)-(22)) are equal
to those observed under RE in (8). Tt is straightforward to show that this is also true for
the ALM for the output gap. Given that future expected inflation is set equal to the past
one, i.e., a;+1 = a;, past shocks cannot induce inflation persistence.

In the case where v = 1, i.e., inflation expectations become static such that a,, = 7,

we get:

{2 +a+ap?} - \/{/{2 +a+ o) — 40288

i 2032 ’
a

K2+ a+aB?(B—c7)
1 K>
20+ r2— a2 (14— B)
ar (1—f3?)
a+r2—aB(1+c?—p5)

Private agents form expectations on the basis of a time horizon that increasingly shortens
when ~ approaches 1. For v = 1, inflation is self-sustained by past inflation that becomes
the only determinant of private agents’ inflation expectations.

For standard parameter values, i.e., f§ = 0.99, k = 0.024, a = 0.048 and ¢ = 0.157,

13



Figures 1 and 2 show how the feedback coefficients of the ALMs for inflation and the output

gap change with ~, respectively.
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Figure 1: The feedback coefficients of the ALM for inflation.

Proposition 1. An increase in learning gain reduces the feedback coefficients on inflation
expectations and cost-push shocks in the ALMs for inflation and the output gap. The higher
s the learning gain, the further away are these coefficients from their corresponding ones
under RE. These effects are independent of inflation penalty rate.

Proof. It follows from the definition of ¢, d¥ ¢ and dZ¥ that the feedback coefficients on
inflation expectations and cost-push shocks in the ALMs for inflation and the output gap
are not function of inflation penalty rate. For the effect of an increase in v on these feedback

coefficients, see Appendix A.2.0

Linear inflation contract affects the dynamic effects of inflation expectations and cost-
push shocks through shifting the dynamic path of inflation and the output gap. In compar-

ison, non-linear inflation contract affects the dynamic effects of inflation expectations and

14
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Figure 2: The feedback coefficients of the ALM for the output gap.

cost-push shocks by changing the slope of the dynamic path of inflation and the output gap
(André and Dai 2017).

Proposition 2. An inflation contract with positive inflation penalty rate allows offsetting to
a certain extent the effect of an overambitious output-gap target on inflation and the output
gap. An increase in learning gain strengthens this offsetting mechanism by lowering the
negative feedback coefficients of inflation penalty rate and the positive feedback coefficients of
the output-gap target in both ALMs for inflation and the output gap.

Proof. It is straightforward to see from the definition of ©, 299, ©% and (299 that the
feedback coefficients on inflation penalty rate and the output-gap target in the ALMs for
inflation and the output gap are of opposite signs. Appendix A.2 shows the effect of an

increase in <y on these feedback coefficients.O

It emerges from the comparison between the ALMs obtained under RE ((8)-(9)) and
the ALMs obtained under learning ((19) and (21)) that learning alleviates (strengthens)

the feedback effect of inflation expectations on the ALM for inflation (the output gap), i.e.,

9 < %’?{2 (¢ < —ai’zz respectively). As regards to the feedback coefficients on e;, an

15



increase in learning gain induces a weaker (stronger) response of inflation (the output gap)

to current cost-push shocks than under RE since dff < -2 (dY < — ).

Figure 3 shows that in the event of a positive inflation penalty shock, the higher the
learning gain is, the larger the deviation of inflation expectations, inflation and the output
gap from their steady state values, and the lower their persistence over time. This is ex-
plained by the fact that the higher is the learning gain, the less are past shocks taken into
account in the formation of inflation expectations. Moreover, higher learning gain induces a

stronger response of endogenous variables. This allows them to converge to their steady-state

equilibrium at a higher rate in the first periods following the inflation penalty shock.
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Figure 3: The impulse response function (IRF) for expected inflation, inflation and the
output gap following an inflation penalty shock.
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5 Optimal inflation penalty rate under constant-gain learn-
ing

In an economic environment where private agents are learning, the government can either
sign a long-term contract with the central banker, which can be incorporated in the CB’s
statutes, or a short-term contract with the central banker, which can be periodically reviewed
and adjusted. These two approaches are quite different since the first is independent of the
evolution of private expectations formed with learning while the second is not. Moreover,
the first approach implies a unique contract for every future central banker, while the second
can be considered as an instrument that allows the government to closely monitor the central
banker in each period. For each type of contract, we find closed-form solutions that may

converge or not to the RE solution.

5.1 Long-term contracting

A long-term contract implies that the government will not change the terms of the contract
over time, making the inflation penalty rate independent of short-run values of endogenous
economic variables. Such a contract aims at maximizing the steady-state social welfare and
allows the central banker to manage at her/his discretion the intertemporal trade-off induced
by adaptive learning.

In the steady state characterized by m;; = 7 = a;; = a; and e;; = e;; = 0, the social

— Y
welfare loss function can be rewritten using these steady-state conditions, ¢ = b ;
K
09 =109, 29 =109 (19) and (21) as:
1 Oy 097\ 2 1 — B)[Ow9 9 \?
L?: 7T£T+Cgﬂx +O[ ( ﬁ)[ 7T£7_cg+ ﬂﬂ_l_ . (26)
2(1-p) 1 —cx k(1 — )

The government sets 7 to minimize the social welfare loss (26). This leads to the optimal
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inflation penalty rate:

ar(l = B)(1 =) — [a(l = B)* + w725

= 27
’ (T~ B + w2] 67 0
In the case where v = 0 so that ¢ = ﬁiz, 0y = —2(;—;2) and (279 = -2 the optimal
penalty rate is
2 ~
= L (28)

[a(1 =B+
We notice that the optimal penalty rate given by (28) is identical to the one obtained
under RE given by (12).

Using standard parameter values, the optimal inflation penalty rate (27) is drawn in

Figure 4.
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Figure 4: Optimal inflation penalty rate under long-term contracting approach.
It follows straightforwardly from Figure 4 that the optimal penalty rate decreases with

learning gain. This observation leads to the following proposition:

Proposition 3. The optimal inflation penalty rate in the long-term inflation contract is

positively related to the output-gap target and decreases with learning gain. When the learning
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gain is zero, the optimal inflation penalty rate is equal to the one obtained under rational
erpectations, and as the learning gain approaches unity, the inflation penalty rate tends to

ZEero.

The fact that the optimal penalty rate decreases with learning gain can be explained by
the reinforcing effect of an increase in learning gain on the integration of information about
past inflations into private agents’ expectations, making inflation penalty more effective in

reducing inflation.

5.2 Short-term contracting

In the case of short-term contracting, the government takes private expectations as given and
sets 7 to minimize the social welfare loss during the lifetime of a one-period contract. The
ALMs for inflation and the output gap are dependent on the output-gap target, inflation
penalty rate and learning gain. This indicates that the contribution of their respective
volatility to the social welfare loss is function of these parameters. Substituting (19) and

(21) into the social welfare loss function (2) yields:
12 (a
L5 = 35 {0 — B + OFr + (20 — k)i + [P0 + OFEr + QFF) (20)
i=0

The optimal inflation penalty rate results from minimizing (29):

a (29 — k) + k229 a(f—c9) — K2
— T T s T 30
' OFc(a+r) T 0FE(atr) (30)

When ~ — 0, the optimal inflation penalty rate is such that

7 — 0. (31)

The optimal inflation penalty rate tends to zero when private agents ignore their expecta-
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tions errors. This result can be explained by the fact that when v — 0, inflation expectations
are entirely exogenous (equal to the inflation target) and will not be affected by the inflation
penalty rate set by the government, thus making inflation penalty ineffective in affecting pri-
vate agents behaviors. This is a distinguished feature of the short-term contracting approach
under adaptive learning compared to the long-term one (28) and the inflation contract under
RE (12).

For standard parameter values and for a; = +1, = 1, and £ = 1, Figure 5 illustrates
how the short-term optimal inflation penalty rate evolves with learning gain. We observe
that the optimal inflation penalty rate is positive and constant under RE. However, under
adaptive learning, depending on the deviation of private expectations from the steady-state
inflation rate, the optimal inflation penalty rate can be either positive or negative. It is
positive if private inflation expectations undershoot the steady-state inflation rate, and wice
versa. For a given (positive or negative) deviation of inflation expectations and for standard
parameter values, the optimal inflation penalty rate is sensitive to a change in the learning
gain when the latter is small (i.e., v < 0.2).

Both the composite coefficient associated with  and a; in (30) are negative. The first
component in (30) is negative given that the output-gap target is positive and the second
component is either positive when a; < 0 or negative when a; > 0. This explains why the
optimal inflation penalty rate is strictly decreasing in v for a; > 0 but is first increasing in
v and then decreasing in v for a; < 0 when ~ is high enough (see Figure 5). Proposition 4

summarizes these results.
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Figure 5: Optimal inflation penalty rate under short-term contracting approach.

Proposition 4. When private agents are learning, the optimal inflation penalty rate of a

short-term inflation contract is decomposed into two components. The component associated
with the output-gap target is always negative. The component associated with expected infla-
tion is positive for a; < 0, and vice versa. The optimal inflation penalty rate is positive if

private expected inflation undershoots enough the inflation target and positive otherwise.

If the government sets the inflation penalty rate in each period, it also has to examine
the sign of the deviation of private agents’ expectations whereas under the pre-committed
contract, it has only to take into account the output-gap target to fix the optimal inflation
penalty rate. The level of optimal inflation penalty rate depends on the type of contract
chosen in the first place, the learning gain, and finally, in the case of short-term contract,
the deviation of private agents’ inflation expectations from the inflation target. Indeed,
under long-term contracting approach, the penalty rate remains positive, meaning that to
deal with the inflation bias at the steady-state equilibrium, the learning behavior of private

agents implies the appointment of a hawkish central banker but less than under RE. Whereas
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under short-term contracting approach, according to the sign of the deviation of private
inflation expectations from the inflation target, the government can prefer either a hawkish
or a dovish central banker.

Under adaptive learning, the linear inflation contract is quite different from the non-linear
inflation contract studied in André and Dai (2017). When the overambitious output-gap
target is absent, i.e., ¥ = 0, the optimal penalty rate of a linear inflation contract should be
set to zero under both long-term and short-term contracting approaches at the steady state,
and can be either positive or negative under short-term contracting approach out of steady
state, while the optimal inflation penalty rate is always negative in the case of a non-linear
contract. For comparison, the optimal penalty rate is always equal to zero under RE when

z = 0.

6 Equilibrium and inflation contract under decreasing-
gain learning

The previous results are obtained under the assumption of constant-gain learning. In this
section, we relax this assumption to show that our main results are still valid under the
assumption of decreasing-gain learning. Indeed, constant-gain learning is more suitable
in a time-varying environment because frequent structural changes rationalize an ongoing
learning effort by private agents when forming expectations. However, if private agents
confidently believe that the environment is stationary, modelling their learning behavior
with a decreasing-gain rule is more appropriate since a steady state does not need continuing
learning effort.” To model decreasing-gain learning, we substitute the parameter v, in the

algorithm (5) by v, = % , which decreases over time. Indeed, 7 = 1if ¢t =1 and 4 — 0 as

"In practice, agents can shift from one approach to another. Most economic agents would begin to learn
with a decreasing-gain learning as the first step in the expectations process before stabilizing the learning gain
parameter. As shown by Milani (2014), private agents seem to have often switched to constant-gain learning,
with a high gain, during most of the 1970s and until the early 1980s, before reverting to decreasing-gain
learning.
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t — 400. More precisely, the decreasing-gain learning assigns increasingly lower weights to
historical data as time goes by.

We solve the model using the same resolution method as in the case of constant-gain
learning (Appendix A.3) and demonstrate that all feedback coefficients are bounded as t —
+oo (Appendix A .4).

The ALM for inflation takes the following form:

T = Ci?tat + dfr?tet +OTET + 29T (32)
where
o B {a — (1 — y41) [a(l + Ye15) <5 - C:lrg,]t+1> - Cfr?t+1’%2} }
Cﬂ',t -_— )
o+ K2 (1 — 5%+1Ci‘f}t+1) + By (1 + Byig1) (5 - Ci?t-i—l)
d¥, = — .
Tt T ’
a+ K2 (1 - 5%+1Ci?t+1> + By (14 Byee1) (/B - C:ir?tJrl)
ot _ 1 51— F)
mt ’
2a+ K2 + af?yn (I +7%418) =8 (1 + Cg&ﬂ%ﬂ) [+ K2 + aye1 8]
o _ _ ar [(1— B) — ]

mt T

a+ k24 af?y (1+9418) — 8 (1 + C;ir?t+1’>’t+1> [ + K2 + a1 0]

The ALM for the output gap is:

_ dg dg dg dg ~
Ty = s + des + O58T + 2,57, (33)
dg 1 dg dg 1 dg dg __ 1dg dg __ 1 ~Hdg
where iy = — (8 — 7)), dify = — (1 = d%)) , O3 = O7, and 2.5 = (27

We remark that the feedback coefficients under decreasing-gain learning are similar to

the ones obtained under constant-gain learning for v, € (0,1). This similarity allows us to
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discuss the implications of decreasing-gain learning by referring to those of constant-gain
learning.

The steady state is reached as t — +o00 and v, ., — 0. As a result, inflation expectations
become constant, i.e., there are no more expectations errors to be corrected through learning
and private agents stop learning. The steady state is characterized by a constant value for
inflation expectations. The feedback coefficients in the ALM for inflation, i.e., cfft, di{’t, @flft
and _Q;f?t, obtained for ;. — 0 are identical to ¢%, d%9, ©% and 2% given by (22)-(25). In
this particular case, since the learning gain is close to zero, the feedback effects of inflation
expectations and current cost-push shocks on inflation are near to their maximum and the
same is true for the feedback coefficients in the ALM for the output gap.

The assumption of decreasing-gain learning implies that, as long as the learning process
is not terminated and the economy is not in the steady state, private agents will adjust
their expectations by correcting past expectations errors. This makes possible for the CB to
influence their future expectations in order to take advantage of distortions due to learning.
To improve social welfare across the transitory learning equilibria compared to the REE, the
government sets time-varying inflation penalty rate that depends on the type of contract and
the evolution of learning-gain parameter in a way that the learning equilibrium converges as
close as possible to the REE.

Under decreasing-gain learning, the effects of cost-push shocks, expected inflation, infla-
tion penalty rate and the output-gap target on inflation and the output gap replicate more or
less those observed under constant-gain learning. Due to the fact that the learning coefficient
decreases as time goes by under decreasing-gain learning, the impact made by learning on
the equilibrium decreases over time. Hence, inflation penalty rate evolves with the learning
gain that decreases from unity to zero as time goes by. In the limit case where ~, = 0, the
CB cannot anymore manipulate private expectations and the possibility for the government
to improve social welfare by appointing a liberal or dovish central banker disappears.

Before the learning gain coefficient tends to zero, decreasing-gain learning induces a devi-
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ation of the equilibrium solution from a more efficient REE and thus suggests the possibility
for the government to improve social welfare by setting a long-term inflation contract (section
5.1) or a short-term inflation contract (section 5.2). Since the learning gain is decreasing over
time, we conclude that the government cannot fix an invariable inflation penalty rate for all
periods. As a result, the government has to change the inflation penalty rate in each period.
However, the government can either set the path of inflation penalty rate under long-term
contracting approach or the one under short-term contracting approach. Notice that infla-
tion penalty rate under both approaches varies with decreasing learning gain. The difference
is that under a long-term inflation contract, the government accounts for the change in learn-
ing gain but ignores the short-run issues of discretionary monetary policy, notably raised by
managing the intertemporal trade-off and manipulating private expectations to improve the
short-run macroeconomic stabilization, while under a short-term inflation contract, these
short-run issues are taken into account by the government.

The above discussion allows us to formulate the following proposition by the similarity
with the setting of inflation penalty rate under contracting approaches examined in section

5:

Proposition 5. As time goes by, the learning coefficient v, decreases from unity to zero,
implying that the feedback coefficients on inflation expectations, cost-push shocks, inflation
penalty rate and the output-gap target in both ALMs increase over time. For a given volatility
of inflation expectations and cost-push shocks, the optimal inflation penalty rate will increase
from zero to the level that the government would set at the REE if it desires to replicate
the long-term contract. Under the short-term approach, the optimal inflation penalty rate
evolves from a positive or negative value according to past expected inflation rates to a value

not far away from zero over time.
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7 Discussion

Our results account for the way and the extent to which an optimal linear inflation contract
can correct the stabilization bias and the inflation bias under adaptive learning. Learning
gives the CB the possibility to manipulate private expectations, and implies that the govern-
ment has to design inflation contracts that are quite different from these under RE. These
contracts are conceived with the aim of attaining the level of stabilization bias achieved
under discretionary monetary policy with RE. The model can be promisingly extended in
several directions.

We have only considered discretionary monetary policy when agents are learning. An
alternative approach is that the CB conducts policy under full commitment, with RE and
perfect knowledge about the economy, and the private sector is learning about the values of
the parameters prevailing in equilibrium and knows that the CB is fully committed. Accord-
ing to Mele, Molnar and Santoro (2014), the optimal monetary policy under commitment
drives the economy far from the RE commitment equilibrium, and to the RE discretionary
equilibrium. It would be interesting to study the implications of this result for the design of
optimal inflation contract.

A limitation that can rise in the present model is that learning agents cannot rationally
infer about the future actions of the CB even if information about such actions are available.
One extension of our model could be to introduce heterogeneous beliefs including both ratio-
nal and learning expectations as Honkapohja and Mitra (2006). It is likely that, according
to the proportion of agents who are learning, the inflation contract could be more or less
similar to the one we obtain when all agents are learning.

Another promising extension is to consider the persistence of shocks, which is an impor-
tant source of stabilization bias, and the CB’s fear for model misspecification as in Tillmann

(2009).® The latter has shown that the optimal degree of conservatism increases with the

8 Alternative approaches to model misspecification could follow Leitemo and Séderstrém (2008) who
consider a misspecification term in each equation of the structural model of a small open economy or as
Giannoni (2007) who consider parameter uncertainty.
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degree of uncertainty about such persistence. Indeed, introducing model uncertainty re-
inforces the argument in favor of the adoption of learning algorithm by private agents to
compute expectations since such an approach is more appropriate for forming expectations
in uncertain environments. One central research issue here is to understand how optimal
monetary policy delegation is affected by learning and fear for model misspecification. Tt is
likely that the learning algorithm amplifies the effects of the persistence in cost-push shocks,
encouraging the government to choose a CB that is less conservative or impose a smaller
inflation penalty rate than under RE.

It is documented that the first difference of inflation negatively depends on its own lag,
and the sticky-price New Keynesian models emphasizing the role of firms’ forward-looking
pricing behavior cannot match with the stylized fact (Rudd and Whelan 2006). This finding
justifies the incorporation of an inertial term into the New Keynesian Phillips curve as in
Fuhrer and Moore (1995). The implications of learning for monetary policy in terms of E-
stability in this kind of model have been studied by Evans and McGough (2005). It would
be fruitful to examine the optimal design of monetary delegation and its implication for the
dynamics of endogenous variables when agents are learning in such a model. As shown by
Steinsson (2003), with the backward-looking term, it is optimal to endure a much larger
contraction of the output gap to avoid getting too much inflation into the system while
gradually bringing inflation back to its target instead of the overshooting that characterizes
the purely forward-looking case. This implies a higher degree of interest rate inertia as
illustrated by policies of both the Bundesbank and the Federal Reserve in the early 1990s
and an attenuation of the aggressiveness in monetary policy implied by learning, and could
thus dampen the effects of learning on inflation penalty rate.

High degree of interest rate inertia evidenced by empirical observations could be alterna-
tively attributed to the optimal choice of a CB optimizing with an objective of interest rate
smoothing. Woodford (2003) advocates that it is optimal to delegate monetary policy to a

discretionary CB with this type of objective. Considering the issue of learnability, Bullard
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and Mitra (2007) have shown that interest-rate smoothing help alleviating problems of inde-
terminacy of stationary RE equilibria. By attenuating the aggressiveness in monetary policy
caused by learning, optimal interest-rate smoothing will induce similar effect on optimal

monetary delegation as the above-discussed hybrid New Keynesian Phillips curve.

8 Conclusion

The fact that private agents form inflation expectations using adaptive learning algorithm
dramatically changes the logic in the design of linear inflation contracts. This paper reveals
the new logic through analyzing the implications of adaptive learning for the delegation of
monetary policy decisions by the government to a central banker with the help of a linear
inflation contract.

Compared to the rational expectations equilibrium, learning dampens (strengthens) the
responses of inflation (the output gap) to a change in inflation expectations and cost-push
shocks. The higher the learning gain is, the larger such effects will be. An inflation penalty
rate that is linearly indexed on the deviation of inflation from its target does not modify the
feedback effects of inflation expectations and cost-push shocks on inflation and the output
gap. However, without accounting for its indirect effect, a positive inflation penalty rate
is able, as under rational expectations, to offset to some extent the inflation bias and the
stabilization bias introduced by the presence of an overambitious output-gap target imposed
by the society on the central banker.

An optimal inflation contract fully taking into account the equilibrium effects of private
agents’ learning behavior is quite different from that based on rational expectations. The
government can choose between a long-term inflation contract, aiming at the long-term social
optimum, and a short-term contract that gives— the flexibility to adjust the terms of the
contract to private agents’ inflation expectations to improve social welfare in the short-run.

In the case of long-term contract, the optimal inflation penalty rate is positive and increases
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from zero to the level set under rational expectations, as the learning gain decreases from
unity to zero.

If the short-term contract is adopted, the optimal inflation penalty rate is function of
both the output-gap target and private agents’ inflation expectations. Imposing an optimal
short-term inflation contract when private agents are learning means that, given that inflation
expectations are evolving over time, the government should face the challenge to reset in each
period the terms of the contract to maximize social welfare. The inflation penalty rate can
be either positive or negative depending on the learning gain and the sign of the deviation
of inflation expectations from the inflation target.

Furthermore, an optimal linear inflation contract is quite different from an optimal non-
linear inflation contract under adaptive learning. In the absence of an output-gap target
different from its potential level, an optimal non-linear inflation contract implies that the
central bank should be dovish, meaning that the government has to impose a negative
inflation penalty rate intending to correct the distortions introduced by learning on the
stabilization bias. In contrast, an optimal linear inflation contract is able to correct such
distortions by discretionarily changing the sign of inflation penalty rate. The main results

obtained under constant-gain learning remain valid under decreasing-gain learning.
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A Appendix

A.1 Equilibrium solution of inflation under constant-gain learning

Using (1) and (5), we obtain:

1 1 1
T = —m — B—a, — —ey, (A-l)
K K K
1 3 1
Tpp1 = =Ty — — [ap +y(m — ar)] — —ewa. (A.2)
K K K

Substituting z; and ;4 respectively given by (A.1) and (A.2) into (18) and arranging
terms lead to

Eymiy = Ajyme + Avgpar + AT + A + P ey, (A.3)
with

_ at Rt ayPl—(1 =P
A= T AT R A=) (A-4)

4, = AP -B0-yL-101-H]

Bl A= BT} (4-5)
_ K21 =B (1—7)]
R ¥ P TR s e gy (A-6)
ar{l— B[l (1B}
A= Bl A0 - A+ (-] A
P = a (A.8)

B{al—A(1 =B+ (1 -7}

where A;3 and P; are coefficients related to exogenous variables in this equation.
According to the proposition 1 from Blanchard and Kahn (1980), the solution of the

ALM for inflation takes the following form:

T = cYa, + d¥%; + OYET + 097 (A.9)
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We obtain with the help of (5) and (A.9):

Eimi =7 [(1—y)ay +ym] + ©FET + 297 (A.10)

Using (A.10) to eliminate Eym; in (A.3) and arranging terms yield:

. [AlchrZVCfi(}ql—l v)]aﬁcigvp_l e Q;Ii: j j: fl % (A1
This implies that:

& = AIQC;ZWC%(;; M (A.12)

df = C%P%AM, (A.13)

0y = ﬁ, (A.14)

0 = ﬁ. (A.15)

Gathering (5) and (A.3), while using (A.1) to substitute x;, we obtain:
By = Z + Ay + Piey,

where

A€t + Ay A A P
Y = [ﬂ-tv at]: Z = 135 a ) A= ! . s and P = !

0 vy 1—7 0

The above system is subject to two boundary conditions: ay and lim |E;m | < co. The
S$— 00

eigenvalues of A are (1 —+) and the two eigenvalues of A;:

A A
A = 11 2 (A.16)

A ]
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We can show that A; has an eigenvalue inside and one outside the unit circle. Among
infinite stochastic sequences of ¢ satisfying (A.12), we focus on a non-explosive solution,
i.e., the solution corresponding to the eigenvalue of A; inside the unit circle.

It is straightforward to show that the trace and determinant of A; are both positive.
Thus, for A; to have two real eigenvalues (i1, j12), one inside and one outside the unit circle,

it is sufficient to show that (1 — p;)(1 — p2) < 0. This is equivalent to:
p + 2 > 1+ papio. (A.17)

Knowing that p; + ps is equal to the trace of A; and pyps equal to its determinant, we

rewrite (A.17) as:

a+ k2 +ayp?[1 — (1 - B)] B a+ k4 ayf? 1 —y(1 - )]
TG I Gy O L P W iy gy ey
+a6{1—6(1—7)[1—7(1—ﬁ)l}7
Blal =vy(1=B)]+rK2(1 -7} "

(1—=7)

After simplification, we get:

a(l=p){1-BL—-y1 =P} ++*[1-B(L~7)]>0,

which is always verified given that g € (0,1) and v € (0,1).
Rewriting (A.12) as ¢&9¢¥y — c¢9 A1, — Ajp+ ¢9(1 — v) = 0 and substituting A;; and Ajo

by their expression, we obtain:

pg(cfrg)2 +p1c? +po =0 (A.18)
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with

po = af{l=p1-7)[1-71-75)}>0,
o= BA=-N{FA=7)+all =51 =B)} —arB[L =11 = )] —a -+,

pr = B {a[l—v(1 =) +r*(1-7)}>0.

We rewrite py as pr = =% [L — B(1 —7)] = a(l — 8) {1 = B[L —7(L = B)]} - po — pa. it
follows immediately that p; < 0. Then, it is straightforward to show that the discriminant
of the polynomial (A.18) is positive.

To characterize the two solutions of ¢, we rewrite (A.18) as:

9 = _pO +p2 (C7CTQ>2
Y41

™

(A.19)

Il
—~
—~

ﬁﬁ
:‘%
~—

2
As f(c%9) is strictly increasing for ¢ € [0, 1] with f'(c9) = —ﬂcﬁg > 0 for ¢ € [0, 1].

b
To prove f(c9) :[0,1] — (0,1), it is sufficient to show that f(0) > 0 and that f(1) < 1. It
is straightforward to see that f(0) = 0~ 0 and
h
f(l) _ Do + P2

g T MY G ) B G Y e ) | W

Since f(c9):[0,1] — (0,1) and f(c%¥) is strictly increasing, it follows from the theorem
of Brouwer that there exists one unique solution of ¢ in the interval (0,1). This solution

corresponds to

o — D _ 4
9 — P1 P1 P2Po (A.20)

™ 2p2

—p1-+4/P? —4p2po

T is larger than unity, which is excluded to

The other possible solution ¢ =

avoid an explosive evolution of inflation.
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Substituting Aqy, A3, A4 and P; into (A.13)-(A.15) leads to:

(07

R ) R T Y o R Py S
W _1R0-5(7)
0% = 5 () <0, (A.22)
cg __ Oé:‘i{l—ﬂ[]_ _7(1_5)]}
09 = 0 >0, (A.23)

where ®(7) = a+ £+ ay8? [1 —y(1 = B)] = B (1 +c#7) [(a + £%) (1 =) + af].
The common denominator of ©% and 2%, i.e., ®(7), is positive for v =0 and 7 = 1. We

have ®(1) > ®(0) and

0 = B{all- - 0)+ R = A0} + e [0+ #7) — o]
+8 (5—029)—788639 [(a+ &%) (1 =)+ ay8] > 0.

It follows that ®(y) > 0, for 0 <y < 1.

We now show that f(c%9) : [0; -225] — (0; -22;). Knowing that f(0) > 0 and substituting

 otk?  at-k?

<9 by aﬁ‘f# into the function f(c%) defined by (A.19), we find

2 af +r2 ap
foBy _ mrmlEe]l | wee {5+ 2o} (A.24)
o+ K2 D1 —D1 ' '
Using pp = “0p, - 00y o = — 20y 24255 and the definition of p, pi,

34



and po given above, we rewrite the denominator in (A.24) as

—p1 = &L= Bl=)]+a(l=p){1-F[L—v(1-B)}+po+p
= [1-B1 - +al-B){1-B[1-(1-7)}

a(l— K2 a4-r2 a(l— K
— Iy g + APy + 22y

= —(1-PB)p2+ O‘*“ Po + a“gfiﬁ” P2+ 2555

= Pp2+ alg Po (A.25)

Substituting the above expression of —p; into (A.24), we obtain:

Oéﬁ aiiz {a+n Po + aszpz} Ozﬂ
orea ) = 22,120 ot
T b+ Ipo+ ey AT
2
Given that f'(c¥9) = —ﬂccg > 0 for ¢ € [0,1], f(c¥9) is strictly increasing in the interval
P1
[O; a+52] This property and the fact that f(c9) : [0; ﬁ’iz] — (0; aiiz) imply that there

is a unique solution for ¢ so that 0 < ¢ < a+’i2.

The case where v = 0. Substituting v = 0 into (A.4)-(A.8) and using the results in
(A.12)-(A.15), we obtain:

9 = af
s 27
o+ K
do = —2
T - 27
o+ K
2
oy = -~
T 2 (a+ K?)
09— ar
™ 2
a—+ K
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The case where 7 = 1. Inserting v = 1 into (A.4)-(A.8) and using the results in
(A.12)-(A.15) lead to:

{2 +a+ap?} — \/{FLQ + o+ a/83}2 — 40233

/-

Cr 20032 ’
d¥9 = a

4 K2+ a+aB?(f—cf)

2

o - 1 .

T 2a+ k2 —af2(1+c? —B)
09 — ak (1 _52)

a+rZ—afP(l+cF —-5)

A.2 The effect of an increase in learning gain

Deriving pg, p1 and p, and using (A.25) yield:

0

8%2 = Blal-29y1-pB)]+r*(1-27)}.
0

8%0 = af[2-6)(1—) +8] >0,

o _ 5%_M%

o oy oy

Deriving the solution of ¢¢9 given by (A.20), we obtain:

pP1p2 Ip1 2p2p2  Opo p?—2p2po Op2
—P2 — DL PP TR0 4 | 4 e | 2
00;9 ( \/P?—4p2po O \/m Oy \/P?—4p2po &

vy 2p3

Op2 _ __10p +r2 Op .
P= - %a_»f deduced from (A.25), we get:

dcgd 1 (Fapl +G8202)7

Using

oy 2w\ 0y T ov
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where

_ —Pp1D2 1 1 pi— 2papo
F o e T P T B T e
b1 P2Po pr P2Po
2papo Pi — 2papo 42
G = _—4_ p1+\/ﬁ "a/;”;.
b1 — 4p2po b1 D2Po
Using (A.25), i.e., p1 = —fps — %gzpo, after fastidious arrangements of terms, we finally
obtain: ,
g 1- 5 (p o _ apo)
= 0hH —Pi o |-
v Bpav/pi — 4papo Oy Iy
Using ¢¥ < ﬁiz, we find: 1 — %520;19 > 1 - a;“gz off# = 0. To determine the sign of

H = po% — pl%—?, we first check its value for v = 1 and then the sign of its derivative
with respect to . For v = 1, we have : %—’? = af® > 0, %—1’71 = —B%(1 + pB) < 0,

p1 = — (k2 +a+af?) and py = aB. Tt is straightforward to show that for v = 1:
=—af’[1 - (K" +a)+ B(1 — aB?)]

Given that x and « are very small and 8 < 1 in the New-Keynesian literature, we have

H < 0. Deriving H with respect to 7 yields

OH _Opop  Op_ OpOpo 0w Opi O
oy Oy Oy bo 02y Oy Oy b 02y Po 0%y P 0%y

Deriving twice py and p; with respect to v for v € (0,1) leads to

82])0 2
= —2aB°(1—-p) <0,
- 51~ )
pr 2 2
= 20 a(l — + k“| > 0.
2 = 9 [a(1— )+ o]
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Using these second-order derivatives, we get

G = 2= H{1= Bl (L= ) + 208 [1 - L= )] >0

Consequently, given that H < 0 for v = 1 and %—g > 0 for v € [0, 1], we conclude that

ocd
— < 0.
vy
Using d%9 with respect to ~y yields:
ods —aB{T —vlafy+ (1 =) (a+n) % |

7 {2+ a+ a2 (B — )+ By(1 =) [af — (a+&2) ]}

Using ¢ < -2, we find that T = 2a87(8 — ¢¥) + (1 — 29) [af — (a + k)] >

a+r2?

2a8v(8 — ¢2) > 0, it follows that:
odss

<0.
vy

Using the definition of ¢, d¥ and dJ9, it is straightforward to show the sign of their

partial derivative with respect to ~.

Deriving (A.14) with respect to v gives :

005
2n

= s {aB =8+ [P +a(l=B)] 1 -7 [ B(L—)] -]}

+ayB(1=B)[2(1 = B) + By +y[1 = B (1L =] {1 =) [l = B)+r%] + B} aacig}‘

Given that it is impossible to analytically determine the sign of ngg, we have checked
that ag)j’g < 0 using standard parameter values, i.e., § = 0.99, k = 0.024 and o = 0.048.
Deriving (A.15) with respect to v and using ¢ < a:’iiz allow to show that:
0127 akfB (1 — B2k I
9y < - ﬁc(Iﬂ 5) {552 + B (2157) 7a+f2+67) — (1 + B7) [(a+ £*) (1 — ) + ayB] 5 } <0.
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A.3 Equilibrium solution under decreasing learning gain

Using (15) and (17) lead to

1 1 «
Aoy = ——— — — —2)]. A.26
2.t Yo T + 257' -+ - (Z’t IIT) ( )

Advancing in time (15) and the previous equation, and taking account of the fact that

the CB minimizes the expected welfare function, we get:

« ~
>\1,t+1 = —E (Etilft+1 — ZZ‘) (A27)

Aol = —

1 o ~
|:Et7Tt+1 + _57— + — (Etxt—&-l — 1') (A28)
Vi+2 2 K

Substituting As s, Arsr1 and Agyq given by (A.26)-(A.28) into (16), we obtain

o} -« 1— 1-— ~ 1-—
™= T (v — ) + BZtH ( %’J;ir(z 6)> (Eireer — ) + 775—0—1%6Et7rt+1
1 1— —
4+ By ( Vet2) %+2] ¢r (A.29)
2 V42
Using (1) and (5), we obtain:
1 1
Ty = —T¢ — éat — —€ (A30)
K K K
1 B
By = ;Eﬂtﬂ o las 4+ Y1 (T — @) - (A.31)

Using (A.30) and (A.31) and the expression of decreasing gain learning parameters, i.e.,

Veg1 = t%l, Vit = t%, and 1 — 41 = HLI, in (A.29), and arranging terms yield:

Eymiq = Ajyme 4+ Avgpar + AT + Ana + Pigey, (A.32)
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with

A = A.33
e af (1+ B75) + Br? ( )
aff —af?(l—75)(1+ 758)
Ay = L t;l (A.34)
af (1 +5t+1) + Bk
1 1-—
Ay = al i B) 5 (A.35)
2a5(1+6m) + Br
5 [(1-5) - &]
Ay = — T > (A.36)
af (1 + 6t+_1) + Bk
!
P,y = — : A37
b af (1+ Baq) + Ok ( )
The solution of the ALM of inflation takes the following form:
T = cd ay + d et + Q%¢r + N7 (A.38)
Using (5) and (A.38), we obtain:
Eymin = ¢y [(1 = yeqn)ae + yeame] + OFr + 0%, (A.39)

Using (A.39) and (A.32) to eliminate E;m; and arranging terms yield the equilibrium
solution of inflation. Comparing this solution with (A.38) gives the feedback coefficients for
the ALM of inflation:

dg Ay — (11— t+1)c7r t+1

Cot = , (A.40)
tJlrl mt+1 Allt
P
d%, = - Lt (A.41)
’ —A
1Cn t+1 11 t
A
d 13,
O =T T R (A.42)
1 1 T 11,
A
d 14
%= (A.43)

t+1 7rt+1 +1-— All,t

Inserting (A.33)-(A.37) into (A.40)-(A.43) yields:
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B{a = (=) [0t +708) (8- ) - etar?] }

s, = y P (A.44)
o+ K? (1 - 5%+1C7{?t+1> + BV (1 + 5%+1) (5 - Cw?t—i—l)
a + K2 (1 - 5%+1Cﬂ?t+1> + By (1 + Byegr) (5 - Cﬂ?tﬂ)
i K (1= )
dg __
0 = ) ; ; " ; . (A.46)
a+ k% + By (1 +918) — 8 <1 + Cw,t+1’7t+1> [a + K2 + ayg1 5]
1 _ _ Q2
Qi?t _ ak [(1 =) — By (A.47)

o+ K2+ af?y1 (14 v418) — B <1 + Ci!,]t+17t+l> [ 4 K2 + aypp1 ]

Gathering (5) and (A.32), while using (A.30) to substitute xz;, we obtain:
Eyyrir = Z + Awye + Prey,

where

Apr + AuF A, A P
Yt = [7Tt7 at]v Z = v a ) A= ! . s and P = !
0 I 0

t+1 t+1

The above system is subject to two boundary conditions: ay and lim |Eym | < co. The
S5—00

eigenvalues of A; are 1 — v, = H—Ll and the two eigenvalues of A ;:

A, A
Ay, = T’t 1“ . (A.48)
A

We can show that A;,; has a real eigenvalue inside and one outside the unit circle.
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A.4 The single stable solution under decreasing-gain learning

Our attention focuses on a non-explosive solution among infinite stochastic sequences satis-
fying equation (A.44). To put into evidence the properties of this solution, we consider the
value of c 9, when t — +o00. With the help of the boundary conditions hm Allt = = and

a(1-p)
tilin Ay = a%z

, we find that in the limit, cmt evolves according to:

.4 .o d
tkinooc”?t =B tLlErIloocﬂ?t+1 +(1=75)

A .49
o+ K2 ( )

The boundary condition imposed on inflation lim |m,,| < oo yields that lim g%, =
n—00 n—+4-o00 )
0. Using this condition and solving (A.49) forward yield one and only one bounded solution

for cdg

. d
lim ¢¥ = .
t—+o00 it o+ K2

Equation (A.49) yields

dg d
tEerooC7r t1 > tl}inoocwgt’ (4.50)
- dg Ckﬂ
meaning that when ¢t — 400, we get ¢, < .
T+ k?
et
We assume that c7r 1 < % for t = n + 1. It follows straightforwardly from (A.40)
a+k
that
n d
s Al?n — 47 Cent
Tn 1 A
n+1 Cr n+1 11L,n
dg Avon + CignAn n af
C7r,n+1 - dg 1 < 2
+ a+ kK

7T”'rH»l n+1

1
1 e | ol n
n+1la+ k2 ’ a+rin+1 ’
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Substituting Ajy, and A, given by (A.33)-(A.34), we obtain after some fastidious

computations:

o _ af (a+r’) =R — ) afs
Crn < o + K2 9 1 \2 ap3k2 < ( + 2) :
(Oé Tk ) + (n_-i-l) a+rk? o

dg - - . . . .
By recurrence, we conclude that ¢;?; is increasing with time and is bounded:

dg Oéﬁ

<
t
™ a4 k2T

c fort € [1,+00).

Given the definition of cii, %, digt, it is straightforward to find their limit and their

evolution over time.
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