Bureau
d'économie
théorique

et appliquée
(BETA)

UMR 7522

Bureau d’Economie
Théorique et Appliquée
BETA - UMR 7522 du CNRS

BETA Université de Strasbourg
Faculté des sciences économiques
et de gestion

61 avenue de la Forét Noire

67085 Strasbourg Cedex

Tél. : +33 (0)3 68 85 20 69

Fax : +33 (0)3 68 85 20 70
Secrétariat : Géraldine Del Fabbro
g.delfabbro@unistra.fr

BETA Université de Lorraine
Faculté de droit, sciences
économiques

et de gestion

13 place Carnot C.O. 70026
54035 Nancy Cedex

Tél. : +33(0)3 727420 70

Fax :+33 (0)3 7274 20 71
Secrétariat : Sylviane Untereiner
sylviane.untereiner@univ-lorraine.fr

http://www.beta-umr7522.fr

« Biodiversity, infectious diseases
and the dilution effect »

Auteurs
Stefano Bosi, David Desmarchelier, Manh Hung Nguyen

Document de Travail n° 2017 — 23

Septembre 2017

@ HE'E’UE&.%EE UNIVERSITE DE STRASBOURG




Biodiversity, infectious diseases
and the dilution effect

Stefano BOSI

EPEE, Université d’Evry, Université Paris-Saclay

David DESMARCHELIER
BETA, UMR CNRS 7522, Université de Lorraine

Manh Hung NGUYEN

Toulouse School of Economics, INRA, University of Toulouse

August 29, 2017

Abstract

Biologists point out that biodiversity loss contributes to promote the
transmission of diseases. In epidemiology, this phenomenon is known as
dilution effect. Our paper aims to model this effect in an economic model
where the spread of an infectious disease is considered. More precisely,
we embed a SIS model into a Ramsey model (1928) where a pollution
externality coming from production affects the evolution of biodiversity.
Biodiversity is assimilated to a renewable resource and affects the infec-
tivity of the disease (dilution effect). A green tax is levied on production
at the firm level to finance depollution according to a balanced budget
rule. In the long run, a disease-free and an endemic regime are possible.
We focus only on the second case and we find that the magnitude of the
dilution effect determines the number of steady states. When the dilution
effect remains low, there are two steady states with high and low biodi-
versity respectively. Conversely, when the dilution effect becomes high,
the steady state is always unique. Moreover, under a low dilution effect, a
higher green-tax rate always impairs biodiversity at the low steady state,
while this green paradox is over under a high dilution effect. In the short
run, limit cycles can arise in both the cases even if only a low dilution ef-
fect can lead to the occurrence of Bogdanov-Takens and generalized Hopf
bifurcations.

Keywords: dilution effect, pollution, SIS model, Ramsey model, local
bifurcations of codimension one and two.
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1 Introduction

Paleontologists report that planet Earth has experienced five mass extinctions
(also known as biotic crises) in the past 540 million years (Barnosky et al., 2011).
A mass extinction is conventionally defined as a change where more than three-
quarters of species disappear in a geologically short interval of time (Barnosky
et al., 2011). MacLeod (2013) points out a number of causes of these past
upheavals: tectonics, climate and sea-level changes, changes in ocean and at-
mosphere circulation patterns and large igneous province volcanism. According
to the scientific community, a sixth mass extinction is under way. Nevertheless,
it is not due to natural cycles as for the five other past biotic crisis but rather to
human activities. As pointed out by Ceballos et al. (2015), deforestation and
pollution are responsible of the global warming and the climate change at the
origin of this mass extinction.

The heavy loss of biodiversity of the sixth biotic crisis is not just an envi-
ronmental problem. It affects human well-being at a large extent. According to
Keesing et al. (2010), biodiversity loss promotes the transmission of infectious
diseases. For example, Allan et al. (2009) have reported that a low bird diversity
increases the human transmission of West Nile encephalitis. This negative cor-
relation is simply explained by Kessing et al. (2010): biodiversity loss reduces
predation and competition on reservoir hosts and increases the pathogen’s con-
centration in the remaining species (so-called dilution effect in epidemiology).
The benefits of biodiversity in disease transmission are well-known in practice.
According to Johnson and Thieltges (2010), in many African societies, cat-
tle is placed near housing to distract malaria-carrying mosquitoes from people.
Therefore, human pollution implies a biodiversity loss which promotes infectious
diseases and weakens production and economic growth at the end.!

Biodiversity has not only a positive impact on physical health through the
dilution effect, but also a positive influence on mental health. For instance,
as reported by Dean et al. (2011), biodiversity in cities has some psychoso-
cial benefits: recovery from stress, self-regulation of emotions, restoration of
attention fatigue and enhanced sense of community. In their study, Dean et al.
(2011) point out that these psychosocial benefits preserve mental health and
prevent a depressive behavior. Even if there is, to the best of our knowledge,
no empirical evidence about the effect of biodiversity on consumption demand,
its benefits on mental health suggest also a role in consumption. Indeed, less
biodiversity makes agents more depressive and can reduce their consumption
demand. Conversely, they can compensate the loss of pleasure by increasing
their consumption demand. The ambiguous effects of biodiversity on this de-
mand remind us those of pollution on consumption highligted by Michel and
Rotillon (1995). The novelty of our paper rests instead on the study of the
dilution effect.

Thereby, human activities pollute entailing global warming and climate
change which impair biodiversity. The loss of biodiversity affects physical health

Hllness is also recognized as one of the main causes of work absenteeism (Akazawa et al.,
2003).



through the dilution effect. This effect lowers labor supply and worsens mental
health affecting the consumption demand. Thus, a rise in economic activities
today implies a drop in these activities tomorrow through the loss of biodi-
versity. To represent the interplay between economics and nature in terms of
dilution effect, an interdisciplinary approach is needed: we focus on the effect
of biodiversity on the immune system.

There is a panoply of epidemiological models to describe the spread of in-
fectious diseases. In the spirit of Hethcote (2009), we apply the simplest model
to represent the change of the share of healthy people through time: the SIS
(Susceptible-Infective-Susceptible) dynamics are captured by two parameters:
(1) the probability of a susceptible individual to become ill after a contact with
an infected individual and (2) the recovery rate driving the lapse of time the
infected individual spends to recover from the disease. Dynamics are straight-
forward. A disease-free steady state coexists with an endemic one. When (1)
exceeds (2), the endemic steady state is stable while the other, unstable.

In our paper, we aim to bridge the gap between economy, ecology and epi-
demiology within a unified framework where the dilution effect is taken in ac-
count. More precisely, we embed the SIS model into a Ramsey model where the
production activities pollute and impair the biodiversity. Biodiversity is assim-
ilated to a renewable resource affecting the consumption demand and, in order
to capture the dilution effect, the household’s immune system. We introduce a
two-sided dilution effect assuming the probability to become ill as a decreasing
function of biodiversity and the recovery rate as an increasing function. As in
Goenka et al. (2014), we consider that the labor force only consists of healthy
people. Eventually, a green tax is levied on production at the firm level in order
to finance depollution according to a balanced budget rule.

The integration of the SIS model into a Ramsey model is not new and dates
back to Goenka and Liu (2012). They have considered a discrete time model
in which healthy people tune their labor supply through a consumption-leisure
arbitrage. In a continuous version of the model where labor supply is exclusively
driven by the number of healthy people, Goenka et al. (2014) address the
issue of optimal health expenditures. More recently, Bosi and Desmarchelier
(2016a) have reconsidered the continuous time version developed by Goenka
et al. (2014) to take in account the interplay between a flow of pollution and
infectious diseases. Bosi and Desmarchelier (2016a) have pointed out that, when
pollution becomes excessive, two limit cycles can appear (stable and unstable)
near the endemic steady state through a Hopf bifurcation.

We characterize the equilibrium either in the long or the short run. In the
long run, as in the standard SIS model, a disease-free regime coexists with the
endemic one. In the endemic case, two steady state can coexist and display two
different levels of biodiversity. A paradox emerges under a moderate dilution
effect at the steady state with low biodiversity: a higher green-tax rate lowers the
biodiversity. This counter-intuitive effect is similar to the static green paradox
pointed out by Bosi and Desmarchelier (2017a).2 Conversely, a green-tax rate

2In Bosi and Desmarchelier (2017a), a static green paradox is a positive relation between



always lowers the biodiversity level at the steady state with higher biodiversity.
Interestingly, the static green paradox is ruled out by a strong dilution effect.
In the short run, we show that both the dilution effects (low and high) are
compatible with the existence of a Hopf bifurcation around the high-biodiversity
steady state when preferences exhibit a complementarity between biodiversity
and consumption. Focusing on codimension two, we show also that a Bogdanov-
Takens bifurcation can occur only under a low dilution effect, as well as two
generalized Hopf bifurcations.

The rest of the paper is organized as follows. Section 2 introduces the model.
Sections 3 derives the equilibrium system. Sections 4 and 5 focus on the long
and short-run dynamics. A numerical illustration with isoelastic fundamentals
is provided in section 6. Section 7 concludes.

2 Model

2.1 Disease

Epidemiologists use the SIS model to study the spread of endemic diseases.
Population (V) is divided in two classes: susceptible (S) and infective (I) with
S+1 = N. We consider a wide range of infectious diseases, not a specific one. So
the infective class cover many different illnesses. The proportion of susceptible
and infective are given by s = S/N and ¢ = I/N. 8 > 0 denotes the average
number of adequate contacts (sufficient to transmit the disease) of an infective
per unit of time and S/N the probability to face a susceptible during a contact.
[ increases in the transmissibility due to the virulence and pathogenicity of
microbes, which increases in turn in the loss of biodiversity. Thus, 8S/N is
the average number of adequate contacts with susceptibles of one infective per
unit of time, while the number of new infectives per unit of time is given by
BIS/N. An infective is seek during a period of time after which he recovers and
becomes a new susceptible (y = —I /I is the recovery rate in absence of new
contamination, a sort of exponential decay rate from infection). The recovery
rate decreases with the virulence and, so, with the loss of biodiversity. Notice
that the SIS model postulates that the infection does not confer immunity. In
the following, for the sake of simplicity, we will omit the time argument t.
The evolution of S and I over time is simply given by:

. I
§=—f~S+l (1)
. I

In an oversimplified world with no births, no deaths, no migrations, the
population remains constant over time. Therefore, N = S+ I gives S+1 =0

the green-tax rate and the pollution level at the steady state while, in the seminal contribution
by Sinn (2008), this paradox is a positive relation along the transition path.



and equation (1) becomes:

§=(1—=s)(v—Bs) ()

As in Goenka et al. (2014), we assume that the labor force (L) consists only
of healthy people: L = S. Since | = L /N < 1, [ inherits the dynamics of s:

I=(1-1)(y-pl) (4)

We can see that (4) exhibits two steady state: | = 1 and | = v/ with
~v < B. The first one is called disease-free because the disease disappears while
the other is called endemic because the disease persists.

Let B denotes biodiversity (species). Following Keesing et al. (2010) or
Johnson and Thieltges (2010) among others, a biodiversity lost promotes infec-
tious diseases (dilution effect). That is, § = (B) and v = v (B) according to
the following assumption.

Assumption 1 8 (B) < 0 and v/ (B) > 0 with limg_of8(B) = oo,
limp_.oo B(B) =0, limp_o7y(B) =0 and limp_. v (B) = 0.

Definition 1 (dilution effect) The dilution effect is given by
d(B)=¢ey(B)—¢eg(B) >0

where
ep(B) = %J;? <0 and e, (B) = B;V(g)?)

are the first-order elasticities.

>0

As we will see later, this effect has dramatic consequences on epidemiological
and economic dynamics.

Isoelastic case

If 5 (B) = AgB®# and vy (B) = A, B, the dilution effect is constant: d =
ey —eg > 0.

2.2 Preferences

The household earns a capital income rh and a labor income w, where r and
h denote respectively the real interest rate and the individual wealth at time t.
Income is consumed and saved/invested according to the budget constraint:

h<(r—0)h+w—c (5)

In this model, healthy people work while sick people don’t. However, for
simplicity, we assume a perfect social security, that is a full unemployment
insurance in the case of illness. Healthy and sick agents earn the same labor
income w. L healthy people supply one unit of labor at a wage w. Under
a balanced-budget rule for social security, we obtain wN = wlL. Therefore,
w = wl.



Gross investments include the capital depreciation at the rate . For simplic-
ity, the population of consumers-workers is normalized to unity: N = 1. Such
a normalization implies L = Nl =1, K = Nh=h and h = K/N = kl.

Let w(c, B) be the utility function of the representative household. We
assume that biodiversity affects marginal utility of consumption (u.p # 0). If
biodiversity increases the consumption demand, biodiversity and consumption
are complement (u.p > 0): it is the case when households like to consume
in a pleasant environment, in presence of a large biodiversity. Conversely, if
biodiversity lowers consumption demand, then biodiversity and consumption
are substitutable: in this case, the household compensates the utility loss due
to a loss of biodiversity by increasing her consumption demand (u.p < 0). For
now, we do not impose any restriction.

Assumption 2 Preferences are rationalized by a non-separable utility func-
tion u (¢, B). First and second-order restrictions hold on the sign of derivatives:
ue >0, ug > 0 and u.. <0, jointly with the limit conditions: lim._, ¢+ u. = 00
and lim._ 4 u. = 0.

We introduce the second-order elasticities:

Clce Bu.p
Ece Ec¢B _ Ue Ue 6
- CUB. Bupp ( )

€Bc €BB “us un

—1/e.. represents the intertemporal elasticity of substitution in consumption
while e, captures the effect of biodiversity on the marginal utility of consump-
tion. Typically, if e.g > 0 (< 0), biodiversity and consumption are complement
(substitute) for households.

The illness lowers labor supply and the individual income in turn. The agent
maximizes the intertemporal utility function

oo
/ e %u(c,B) dt (7)
0
under the budget constraint (5), where 6 > 0 is the rate of time preference.

Proposition 2 The first-order conditions of the consumer’s program are given
by a static relation

= uc(c, B) (®)

a dynamic Euler equation and the budget constraint (1), now binding:
= (0+5—7) (9)
h=(r—38h+wl —c (10)

jointly with the transversality condition lim;_o, e % pu (t)h(t) = 0. p denotes
the multiplier associated to the budget constraint.

Applying the Implicit Function Theorem to the static relation p = u. (¢, B),
we obtain the consumption function ¢ = ¢ (u, B) with elasticities
pde 1 B de  epBe

PO 2 —gand 2% =
cdu gcc< an c dB Ece

(11)



2.3 Firms

The firm chooses the amount of capital and labor to maximize the profit taking
as given the real interest rate r as well as the wage rate w. In addition, the
government levies a proportional tax 7 € (0,1) on polluting production F (k;, ;)
of firm j to finance depollution expenditures.

Assumption 3 The production function F : R2 — Ry is C?, homogeneous
of degree one, strictly increasing and concave. Inada conditions hold.

The profit maximization maxr; v, [F' (K}, Lj) —rK; —wL; — 7F (Kj, L;)]
entails the following first-order conditions:
r=(1=7)f (k) and w= (1—7)[f (k;) — k; ' (k;)]

where k; = K;/L; is the capital intensity and f (k;) = F (k;,1) the average
productivity of the firm j.

All the firms share the same technology and address the same demand for
capital.

Corollary 3 Let k = K/L with K = ijl Kjand L = Z}‘le L;. In aggregate
terms, Y = F (K, L) and profit mazimization yields

r=01-7)pk) andw=(1-7)w(k) (12)
with p (k) = f' (k) and w (k) = f (k) — kf' (k).

We introduce the capital share in total disposable income and the elasticity
of capital-labor substitution:

rk _kf (k)
(L=7)f(k)  f(k)
In addition, we determine the elasticities of factor prices:

kp' (k) — 1—af(k) d ko' (k) «a(k)

w (k)
kw' (k)

a(k) = and o (k) = a (k)

pk) o) o) o)

2.4 Government

The government uses all the tax revenues to finance depollution expenditures
(@) according to a balanced budget rule:

G =1F(K,L) (13)

2.5 Biodiversity

The biodiversity is viewed as a renewable natural resource. Following Ayong Le
Kama (2001) and Wirl (2004) the dynamics of natural resource is given by

B=g(B)-P (14)



where ¢g (B) and P represent the reproduction function and the pollution level
respectively. In the following, we will refer to (14) as reproduction function in
a broad sense.

Following Wirl (2004) and Bella (2010), we specify g (B) as a Pearl-Verhulst
logistic function: g (B) = B(1 — B) with 0 < B < 1.

Interestingly, since ¢’ (B) = 1 — 2B, the maximal sustainable yield occurs at
B =1/2. Wirl (2004) has pointed out that limit cycles can occur if and only if
B < 1/2 (the maximal sustainable yield) at the steady state.

To simplify the presentation, we assume as in Itaya (2008) or in Fernandez
et al. (2012) that pollution is a flow coming from production activity:

P=aY - bG (15)

where a and b capture respectively the environmental impact of production and
the depollution efficacity.

Considering (13), (14) and (15), we find the natural resource accumulation
law.

B=B(1—B)—aF (K,L)+brF (K,L) (16)

A negative net pollution requires an additional assumption.
Assumption 4 a > br.

3 Equilibrium

We normalize the population (N = 1) and we obtain the natural resource accu-
mulation law:

B=B(1-B)+(br—a)lf(k)
At the equilibrium, all the markets clear. This leads to the following propo-

sition.

Proposition 4 Equilibrium dynamics are driven by a four-dimensional dy-
namic system:

p=plo+5—(1—7)p (k) (17)
k:[(177-);)(1@)76]k+(177)w(k)7@sz(l,B) (18)
[=1z(l,B) (19)
B=B(1-B)+(br—a)lf (k) (20)

with
1-1

2(LB) = [y (B) - B(B)I] ——

jointly with the transversality condition.

We observe that the shadow price p is a non-predetermined variable, while
k, l and B are predetermined.



4 Steady state

At the steady state allthe variables remain constant: [ = k=1I1=B=0. From
equation (17), we obtain the Modified Golden Rule (MGR):

0+0

- (21)

p(k) =

Assumption 3 ensures the invertibility of p. The capital intensity at the steady
state given by k= p~' (0 +6) /(1 —71)) > 0.
Focus now on equation (19). At the steady state, z (I, B) = 0, that is

(1= (B)-B(B)]=0

with solutions

—~

7 (B)
(B
We recover one of the main feature of the SIS model: two steady states
coexist: [ = 1 is the disease-free steady state, while [ = ~(B) /8 (B) is the
steady state with an endemic disease.
Since z (I, B) = 0 at the steady state, equation (18) gives simply the con-
sumption level:

l—lorl_

Q

c=1[1—7)f (k) — k] (22)

We know that k is unique and positive at the steady state. Thus, given [,
according to equation (22), there is a unique and positive value of ¢. Moreover,
(8) implies that, given ¢ and B, there is a unique and positive shadow price u.

Finally, at the steady state, the natural resource accumulation law (20)
becomes

B2~ B+(a—br)lf(k)=0 (23)

with roots
Blz%{l—\/lf (a—br) lf()} (24)
Bgzl[1+\/1— (a—b7) lf()} (25)

Given [, the existence and multiplicity of steady states depend on the exis-
tence of real roots By and By. Compare now the disease-free and the endemic
regime.

4.1 Disease-free steady state

At the disease-free steady state, the disease no longer exists and all the labor
force is emplyed, that is | = 1.



Proposition 5 Letl =1.

(1) If 1 —4(a —br) f (k) <0, there are no steady states.

(2) If 1 —4(a—0br) f (k) > 0, there are two steady states with 0 < By <
1/2 < By < 1.

And if 1 —4(a—br) f (k) =0, By = By = 1/2.

In this case, the disease does not persist in the long run. In other words, the
dilution effect has no effect on the steady state. The same case is considered in
Bosi and Desmarchelier (2017b) and, for the sake of brevity, reader is referred
to this paper for a dynamics analysis. The added value of the current paper
concerns instead the other case: the endemic regime.

4.2 Endemic steady state

Focus on the endemic steady state:

l=~(B)/B(B)

From (23), the stationary biodiversity level satisfies

_ B(B) _
%(B):B(lfB)W*(a*bT)f(k)>0 (26)
¢ (B) > 0 requires B € (0,1).
We notice that
By (B) 1-2B
©(B)  1-B

where d (B) = ¢, (B) — e (B) > 0 captures the dilution effect. The magnitude
of dilution effect matters for the steady state multiplicity.

Isoelastic case

Let 5(B) = AgB® and v(B) = A,B° with a constant dilution effect
d=¢ey—¢e5>0and

d(B) (27)

B _2_danda =br + F 6

where k* is given by the MGR.

(28)

Proposition 6 (small dilution effect) Focus on the isoelastic case with 0 <
d < 1 and consider the endemic steady state I =~y (B) /5 (B).

(1) If a < a*, there are two steady states Bz and By such that 0 < Bz <
B* < By < 1.

(2) If a = a*, there is a unique steady state B*.

(3) If a > a*, there are no steady states.

Proposition 7 (large dilution effect) Focus on the isoelastic case with d >
1 and consider the endemic steady state | = v (B) /B (B). In this case, there
exists a unique steady state.

10



Propositions (6) and (7) highlight the role of dilution effect in the existence
and the multiplicity of steady states through the reproduction function of bio-
diversity: under a low dilution effect (0 < d < 1), the maximal sustainable yield
is given by B* € (0,1/2), while, under a large dilution effect (d > 1), B* ¢ [0, 1]
makes no longer sense.

The next section shows that the effect of the green tax on the endemic steady
state precisely depends on the magnitude of the dilution effect.

4.3 Comparative statics

Focus on the endemic steady state.

Proposition 8 Let Assumption 4 hold and B € (0,1). Focus on the qualitative
impact of T on the endemic steady state (I =~/3). We have

T dk
—— <0 29
Rdr = (29)
Moreover,
(1)ifo<d<1,
T dB
——>0& B> B*
B dr
T dl
-—>0& B> B*
I dr
d c (&
T S 0if (B<B" andd>—2) or (B> B* and d < —2°)
/J'dT Ecc Ecc
(2)ifd>1,
T dB
—— >0
Bdr =
T dl
-—— >0
I dr
Zd—u>0ifd<¥€BC
pdr Ecc

Proposition 8 deserves some economic interpretations.

The critical value of the dilution effect remains 1 as in Propositions 6 and 7.

First, we observe that 7 is levied on the production level. Thus, a higher
green-tax rate reduces production and income, entailing a lower capital level at
the end.

As seen above, a higher green tax rate always reduces the capital level in
the long-run, that is, a higher 7 always lowers the right-hand side of (26).

Let 0 < d < 1 (low dilution effect).

If, at the steady state, the economy is located along the upward-sloping
branch of ¢ (that is B < B*), this entails a lower biodiversity level. Conversely,
if the economy is located on the downward-sloping branch of ¢ (that is B > B*),

11



a higher tax level lowers the right-hand side of (26) and hence, increases the
biodiversity level at the steady state. Therefore, the effect of 7 on B depends
upon the slope of the reproduction function. The fact that a higher green-tax
rate impairs the biodiversity level (when B < B*) is counter-intuitive and refers
to the static Green Paradox introduced in Bosi and Desmarchelier (2017a and
2017b).

The impact of the green tax on the labor supply mimics that on the biodi-
versity level because of Assumption 1. Indeed, because of the dilution effect, a
lower biodiversity level implies a more infective disease (a higher § jointly with
a lower 7) which reduces the labor supply (I = ~/8).

Let d > 1 (high dilution effect).

In this case, @ is always a decreasing function of B (see the proof of Proposi-
tion 7). Hence, a higher tax rate lowers the right-hand side of (26) which always
leads to a higher biodiversity level.

Summing up, we observe that the Green Paradox (that is the negative impact
of the green tax on the biodiversity level) only occurs for low levels of biodiversity
(B < B*) and dilution effect (0 < d < 1).

It is worthy to notice that when the biodiversity becomes a prominent de-
terminant of human health because of a sufficiently large dilution effect (d > 1),
the unpleasant (static) Green Paradox is ruled out.

w is a shadow price (marginal utility of consumption: p = u. (¢, B)). From
an economic point of view, it is more interesting to characterize the impact of
the green tax on consumption than on this unobservable variable.

We observe that

0+1—a(k(r))]d
a(k(r))
In order to provide a clear-cut comparative statics, we focus on the Cobb-

Douglas case. In this case, the capital share « (k) becomes a constant and (30)
entails

c(r) = k(r)l(T) (30)

T0c T0k T Ol
—— =+t (31)
cOr kor lor
Therefore, the impact of the green tax on consumption can be disentangled
in its effects on the production factors.

Proposition 9 Consider the endemic steady state | = v/ with a = b and
o =1 (Cobb-Douglas technology).
(1) If 0 < d < 1 (low dilution effect),

Jdc 1
_ , B* B _
8T>()zﬁ‘ < <2

(2) If d > 1 (high dilution effect),

dc .
E>OZﬁB<1/2

12



The last proposition shows that the effect of 7 on the consumption demand
is ambiguous in the long run. This deserves some economic interpretations.

Consider the case of a low dilution effect (0 < d < 1) and suppose, for sim-
plicity, no capital depreciation. As seen before, a higher green-tax rate always
lowers the capital level (see (29)). In addition, since the economy is located
along the increasing branch of the reproduction function (B < B*), this implies
a drop in the biodiversity level, rendering the disease more infective which lowers
the labor supply. Focus on expression (22): ¢ =1(1 — 7) f (k). Since 7 increases
and k and [ decrease, ¢ decreases. Now, assume that the economy is located
along the decreasing branch of the reproduction function (B > B*). In this
case, a higher green-tax rate implies more biodiversity making the disease less
infective (dilution effect) and raising the labor supply. In contrast, as above, the
capital intensity lowers. Then, [ increases, while (1 — 7) f (k) decreases. The
total impact of 7 on ¢ =1 (1 — 7) f (k) is ambiguous. In order to know whether
the increase in the labor supply dominates the decrease of (1 — 7) f (k), we have
to focus on the elasticity (27) of the reproduction function ¢. B > B* jointly
with 0 < d < 1 implies ¢’ (B) < 0. The slope of ¢ becomes flatter when B < 1/2
and steeper when B > 1/2. In other words, an increase in the green-tax rate
has a larger effect on biodiversity and labor supply when B < 1/2. Therefore,
since B > B*, if B < 1/2, the increase of labor supply [ dominates the drop
of (1 —7) f (k) which implies a higher consumption level in the long run. Con-
versely, if B > 1/2, the increase in labor income is dominated and consumption
lowers in the long run.

Similar interpretations hold in the case of a strong dilution effect (d > 1).

5 Local dynamics around the endemic steady
state

The dilution effect has short and long-run consequences. In the long run, it
affects the steady state as seen above. In the short run, the stability properties
of equilibrium also depend on the dilution effect. Let us study how it affects
the local dynamics around the steady state.

The disease-free regime is the same as the one considered by Bosi and Des-
marchelier (2017b). For brevity’s sake, the reader is referred to their paper also
for the local dynamics.

The novelty of the current paper are the endemic steady state and the local
dynamics around. To study the equilibrium transition, we linearize the dynamic
system (17)-(20) around the endemic steady state | = v (B) /8 (B).

Setting

THT T a
m=p3(1-1)
n=(0+05)—°



and noticing that w (k) / [kp (k)] = [1 — a (k)] /a (k), we get the Jacobian matrix
0 nt 0 .
y=| e ’ (m+a)f § (a2 —md)
0 0 -m émd
0 af(B-1) Z(B-1 1-2B

where d > 0 is the dilution effect.

To study the local dynamics of this four-dimensional system, we apply the
methodology developped by Bosi and Desmarchelier (2017¢) and based on the
sums of principal minors of the Jacobian.

The characteristic polynomial is given by

PA)=A=2)A=A2) (A= A3) (A= \g)
=AM —TXN + 5502 - S0+ D

where
Si=M 4+t At h=T (32)
So = A Ao+ A A3+ A1 s+ XA + Aoy + A3y (33)
S3 = AAads + A AzAs + XAz A + A As (34)
Si1 = A3y =D (35)

T and D denote the trace and the determinant of J while S; and S3 represent
the sum of principal minors of order two and three.
In our model,

T=60—-m-2B+1

Sy =[2B—1+(1-B)dm+(1-2B)0 — (1 B)dma + qga-2¢ (1_3)_me+:—q
53:i[(l—QB—m)nq—l—(B—l)mqaaBC]—i-(B—1)qua+[23—1+(1—3)d]m9
D= Tznq 2B -1+ (1—B)d| (36)
?en;ma 10 If 0 < d < 1 (low dilution effect), D < 0 if and only if B > B* €

0,1).

Lemma 11 Ifd > 1 (large dilution effect), D < 0.

Proposition 12 There is no room for saddle-node, Bogdanov-Takens, Gavrilov-
Guckenheimer and double-Hopf bifurcations if (1) 0 < d < 1 (low dilution effect)
and B > B* or (2) d > 1 (large dilution effect). In both these cases the equilib-
rium 1s locally unique (determinate).

Proposition 13 Focus on the case of a low dilution effect (0 < d < 1). A
saddle-node bifurcation occurs if and only if a = a* (Bs and By coalesce with

B; = By = B*).
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In the sequel, we will focus on the isoelastic case:

(CBn)l—e

u(c,B) = =%

(37)

with

|: Ecc €Bc :|
€B €BB

Let 61 =¢ece = —e<0and eg =ep. =n(l —e).

We observe that €5 captures the impact of biodiversity on consumption de-
mand and does not affect T and D but only Sy and Ss. For these reasons, we
choose ¢4 as bifurcation parameter. €5 can be positive or negative. According
to (11), consumption and biodiversity are complements (g2 > 0) if and only if
0 < € < 1. Conversely, they are substitutable in the household’s preferences
(e2 < 0) if and only if € > 1.

Let

Cucn  Bunn l—e n(l—e)—1

[CZ BUB]:{E n(l—e)

77+ /72 —4mD(m+T)

Z3 2(m+T)
magq (1 — B)

(38)

EH = €1

with
23 Eqmad(B—l)-l-(T—G)@—i—@DE—l
€1 ng

Z=m mad(Bfl)Jr@JrDE—lJr(Tf@)@ + 23
€1 ng

Notice that g is independent of 5.

Proposition 14 Let B < (1+60) /2. If
(1) 0 < d < 1 (low dilution effect) and B > B* (large biodiversity) or
(2) d > 1 (large dilution effect),
then a limit cycle occur near the endemic steady state if and only if eo = €.

The existence of limit cycles depends on the sign of e. According to (38),
this information is not analytically available and we need to perform a computer
simulation to have an economic intuition of such fluctuations.

Proposition 15 Let 0 < d < 1 (low dilution effect). If a = a* jointly with
<3

E2 = EBT Ec‘flm

then a Bogdanov-Takens bifurcation occurs.

Few economic models display a Bogdanov-Takens bifurcation. This bifurca-
tion arises when the conditions for the Hopf and the saddle-node bifurcation are
jointly satisfied. Kuznetsov et al. (2014) show that, in the case of a Bogdanov-
Takens bifurcation, the limit cycle disappears. More precisely, they show that
the limit cycle and the saddle point collide giving rise to a parasitic loop at the
bifurcation point.
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Proposition 16 There is no room for a Gavrilov-Guckenheimer bifurcation.

Proposition 17 There is no room for a double-Hopf bifurcation.

6 Simulations

We have characterized the occurrence of local bifurcations of codimension one
and two. Now, we provide a numerical illustration of the analytical results
provided in the previous section. Proposition 14 shows that a Hopf bifurcation
may occur under low and high dilution effect. Since we are especially interested
in the Bogdanov-Takens bifurcation, which arises only under a low dilution
effect, for brevity’s sake, we will focus only on the case of low dilution effect.

We reconsider the isoelastic utility (37) and the isoelastic functions 8 (B) =
ApB®s and v (B) = A,B® with eg < 0 and e, > 0. For simplicity, we consider
also a Cobb-Douglas production function: f (k) = Ak®*. According to the MGR
(21), we find the stationary capital level:

. aA(l—71) =
B 0+6
Replacing k* in (41) (see the Appendix), we obtain the biodiversity level as
solution of

ey

- A, [aA(l—T1)] =
(1-B)B d—A(abT)Aﬁ[M} (39)

According to Proposition 6, equation (39) possesses two solutions if and only

if
as (1) (1)

A afeagen)

a<a*=br+

where d = ¢, — 5 > 0.

| Parameters | A | A, [| 4 e [[ey [eg [0 Ja [d [0 [z |
[ Values [1 1t [t Jo5]o0.25] —0.25] 0.0015 [[ 0.33 [ 0.025 ][ 0.01 [[ 0.002 ||
(40)
a, § and 0 are set at their usual quarterly values while b and 73 are fixed as
in Bosi and Desmarchelier (2016b). We obtain also d = e, —eg =1/2 € (0,1).
Calibration (40) yields a* = 0.1276. We fix a = 0.127 < a* and we solve (39)
for B. We obtain two roots: B = 0.2968 and B = 0.3713. We observe that the

3In this economy, T captures the public air protection expenditures. Indeed G/Y =
7Y/Y =7 = 0.2%. According to the OECD Environmental Performance reviews for France
(2016) (p. 149), the public air protection expenditures amount to less than 5 billion Euros
(2013 prices), which represents less than 0.25% of France GDP. Our calibration for 7 is then
in accordance with data.
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necessary (but not sufficient) condition for the occurrence of a Hopf bifurcation
in Proposition 14 is satisfied: B* =0.333 < B =0.3713 < (1 +6) /2 = 0.505.

Focusing on B = 0.3713, we compute 7 such that o =n (1 —¢) =ecpy. We
obtain ng = 0.27569 > 0. Therefore, under calibration (40), when a = 0.127,
the system undergoes a Hopf bifurcation at ny and experiences a limit cycle
near B = (0.3713.

Summing up, under calibration (40), we get a Hopf bifurcation at a = 0.127
and a saddle-node bifurcation at a = 0.1276 near the higher endemic steady
state (B > B* with l =~/ and 0 < d < 1).

After having seen how to calibrate the model to find a Hopf bifurcation, we
deepen our approach considering an equilibrium continuation.* We aim to plot
the Hopf bifurcation curve and the saddle-node bifurcation curve in the (a,n)-
plane and to show the occurrence of the Bogdanov-Takens bifurcation (according
to Proposition 15) when these bifurcation curves meet each others. We will
refer to Figure 1 where LP, H, BT and GH stand for Limit Point (elementary
saddle-node), Hopf, Bogdanov-Takens and Generalized Hopf. These points are
computed and represented by MATCONT when the corresponding bifurcations
occur near the steady state.

To perform the equilibrium continuation using MATCONT, we consider first
the bifurcation of codimension one (Hopf and the saddle-node). We fix n =
0.27569 as above and we set an arbitrary value for a at which no bifurcation
occurs near the endemic steady state: a = 0.1268 = ap. In this case, under
calibration (40), the endemic steady state becomes

(. k,1, B) = (0.7354, 28.385671, 0.61423845, 0.37728887)

Let MATCONT raise a from ag = 0.1268 to a* = 0.1276 keeping n = 0.27569
as constant. In Figurel, we are moving to the right along the horizontal line
HLP. MATCONT detects a Hopf bifurcation (H) at a = ay = 0.127 and a
saddle-node bifurcation (LP) at a = a*.

4To this purpose, we use the MATCONT package for MATLAB.
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Fig 1. The equilibrium continuation

Now, let us move from H to BT along the locus of all the Hopf bifurcations:
for any a, there is a Hopf critical value

Z(a)++/Z(a)?—4m(a)D(a)[m(a)+T(a
. z(a) — T (a) 22 V()z[m@(&(i)f[ (a)+7(a)]

1—¢ m (a) aq [l — B (a)]

ng (a) = —

The Hopf-bifurcation curve {(a,nm (a))} is precisely represented in Figure 1 by
the curve HBT.

For any 7, the elementary saddle-node bifurcation value for a is a* = 0.1276
(the line LPBT is vertical because a* does not depend on 7). In particular,
the Limit Point corresponding to n = 0.27569 is LP = (0.1276,0.27569). The
vertical line LPBT represents a third equilibrium continuation, the set of all
the pairs (a,n) = (a*,n) for which a saddle-node bifurcation occurs.

To sum up, increasing a from ag = 0.1268 to a* = 0.1276, we obtain all the
Hopf bifurcations along the curve HBT = {(a,nm ()} 4¢[qq,q+] 80ing from H
to BT. Moreover, in the range [ag,a*) 3 a, we find two distinct steady states.
When a attains the maximal value a* these two steady states coalesce and the
Hopf bifurcation point (a,ny (a)) reaches the ending point BT along the curve
H BT while the economy experiences a Bogdanov-Takens bifurcation. Indeed, a
Bogdanov-Takens bifurcation generically arises when a Hopf bifurcation curve
crosses a locus of saddle-node bifurcations.
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Along the locus of Hopf bifurcations, two Generalized Hopf (Bautin) bi-
furcations also appear. A Hopf bifurcation can be subcritical or supercritical,
leading respectively to an unstable or stable limit cycle. The Generalized Hopf
bifurcation point implies a change in the stability of the limit cycle arising near
the steady state, that is, the bifurcation from subcritical becomes supercritical
or viceversa. If the first Lyapunov coefficient (l1) is negative (positive), the bi-
furcation is said to be supercritical (subcritical), leading to a stable (unstable)
limit cycle near the steady state. At the Generalized Hopf bifurcation point, I3
vanishes.

Let us explain the relation between a double-Hopf and a generalized Hopf
bifurcation.? At the double-Hopf bifurcation, two limit cycles emerge simultane-
ously. The interaction between these two limit cycles can produce a wide range
of dynamics depending upon higher-order terms of the Taylor series, such as a
torus or local chaos. Concerning the Jacobian matrix, a double pair of purely
imaginary eigenvalues appear at the double-Hopf bifurcation. In the case of a
generalized Hopf bifurcation, the arising limit cycle is unique, as for a standard
Hopf bifurcation: the Jacobian possesses a single pair of purely imaginary eigen-
values. The distinction between a standard or a generalized Hopf bifurcation
rests on the value of the first-order Lyapunov coefficient and, thus, on higher-
order terms of the Taylor representation of the dynamical system. Indeed, at
the generalized Hopf bifurcation, the first Lyapunov coefficient is equal to zero
which means a change of stability for the limit cycle.

At the Hopf bifurcation point (H), the steady state is given by:

(1, Kk, 1, B) = (0.736723, 28.38567, 0.609338, 0.371292)
with eigenvalues:
A1 = —0.34187, Ay = 0.108813 and A3 = 0.05396467 = —\4

In order to visualize the limit cycle arising at the Hopf bifurcation point, we
project the four-dimensional dynamics on a three-dimensional space. Since the
shadow price p is not directly observable variable, we prefer to represent the
trajectory in the (k, 1, B)-space.

The corresponding first Lyapunov coefficient is given by I3 = 6.182045 x
107° > 0. Its positivity means that the Hopf bifurcation is subcritical, that is
the limit cycle arising near the steady state is unstable (Fig. 2).

5The reader is referred to pages 307 and 349 in Kuznetsov (1998) for the generalized Hopf
bifurcation and the double-Hopf bifurcation respectively.
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Fig. 2. The unstable limit cycle

According to (40), we obtain a positive value of ng with 0 < ¢ < 1 or,
equivalently, €5 > 0 which means that complementarity between consumption
and biodiversity is needed to generate a limit cycle around the endemic steady
state. We can interpret the role of complementarity as follows.

Let the economy be at the steady state today and assume an exogenous
rise in the pollution level. (14) implies a drop in biodiversity with two con-
sequences: (1) a lower labor supply (I = «(B)/8(B) decreases) and (2) a
lower consumption demand due to complementarity (u = u. (¢, B) decreases).
The Euler equation (intertemporal consumption smoothing) implies i/p =
04+6—(1—71)p(k) < 0. Thus, p(k) increases from the Modified Golden
Rule (8 +6) /(1 —7) today to the new transition value tomorrow and, since
p is a decreasing function, the capital intensity k£ lowers and the average pro-
ductivity f (k) as well. Pollution is given by P = (a — br) lf (k). Hence, under
Assumption 4, the drops in labor supply ! and in productivity f (k) entail a
lower pollution level. Thus, a higher pollution today entails a weaker pollution
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tomorrow giving rise to an endogenous fluctuation.
At the saddle-node bifurcation (LP), the steady state becomes:

(u, k,1, B) = (0.745 69, 28.38567,0.577347,0.333333)
with eigenvalues:
A1 = —0.401245, Ay = 0, A3 = 0.0204607 and A4 = 0.16789

At the Bogdanov-Takens bifurcation (BT) when a = a* = 0.1276 jointly
with n = npr = 0.414576, the steady state becomes:

(4, ky 1, B) = (0.690915, 28.385671, 0.577350, 0.333333)
with eigenvalues:
A1 = —0.39961, Ao = A3 =0, and Ay = 0.18671

The Bogdanov-Takens bifurcation occurs when conditions for the elementary
saddle-node bifurcation and for the Hopf bifurcation meet each other.

As in Kuznetsov et al. (2014), at the Bogdanov-Takens point, the orbit
describes a parasitic loop near the saddle-point (Fig. 3). The parasitic loop
typically arises when the limit cycle and the saddle-point coalesce.

As above, to represent the trajectory, we project the four-dimensional dy-
namics on the three-dimensional (u, [, B)-space, where the parasitic loop appears
(Fig. 3).

0.33335

o 0333

0.33325
057735

0.57734
057733 0.690919

0.690918

0.690917

0.690916

0.690915

0.690914

0.690913

057726 0690912 W

Fig. 3. The parasitic loop
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At the Generalized-Hopf bifurcations (GH), we obtain:

H parameters H steady state H eigenvalues H lo H

@ =0.73602393 A1 = —0.342374

a = 0.12700794 k = 28.38567 Ao = 0.109537 _3

n = 0.2778149 1 =0.60905296 A3 = —0.0535261¢ 2.61837 + 10
B =0.37094551 Ay = 0.05352614
w=0.7251378 A1 = —0.351468

a = 0.12718298 k = 28.38567 Ao = 0.122331 9

7n = 0.31106998 1 =0.60395327 A3 = —0.04608861 1.744669 + 10

B = 0.36475955 A4 = 0.04608867

A Generalized-Hopf bifurcation implies a change in the stability of the limit
cycle arising through the Hopf bifurcation. Typically, such a bifurcation occurs
when the first Lyapunov coefficient vanishes. This phenomenon cannot be de-
tected through a simple analysis of the eigenvalues. According to Kuznetsov
(1998), a GH bifurcation is non-degenerated bifurcation if the second-order
Lyapunov coefficient is different from zero (I3 # 0). It is the case under our
calibration for both the GH bifurcations.

7 Conclusion

We have provided a unified framework at the crossroad of economics, ecology
and epidemiology, and studied how the negative relation between biodiversity
and disease transmission (the so-called dilution effect) affects the economy in
the long and the short run. More precisely, we have embedded a SIS model
into a Ramsey model where a pollution externality coming from production
impairs a biodiversity measure. For the sake of simplicity, we have assimilated
biodiversity to a renewable resource and introduced a two-sided dilution effect
assuming that both the probability to become ill and the recovery rate from the
infectious disease depend on the biodiversity level. To complete the model, we
have considered a proportional tax levied on production at firm level to finance
depollution.

In long run, we have recovered a standard feature of the SIS model: a
disease-free regime coexists with an endemic one. In the endemic case, the
number of steady states depends on the magnitude of the dilution effect. Indeed,
two steady states can coexist under a low dilution effect (with high and low
biodiversity respectively). Conversely, under a large dilution effect, the steady
state is always unique. Moreover, we have highlighted a kind of green paradox in
the endemic regime: under a low dilution effect, a higher green-tax rate always
impairs biodiversity at the low steady state. This counter-intuitive result is
comparable to the static green paradox considered in Bosi and Desmarchelier
(2017a). Conversely, the green paradox is over under a large dilution effect.

In the short run, limit cycles can arise under both the low and the high
dilution effect through a Hopf bifurcation near the steady state. This happens
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in the endemic case when preferences exhibit a complementarity between bio-
diversity and consumption. Conversely, both Bogdanov-Takens and generalized
Hopf bifurcations require a low dilution effect as a necessary condition.

8 Appendix

Proof of Proposition 2

The agent maximizes the intertemporal utility function (7) under the budget
constraint (5). Setting the Hamiltonian H = e~ u (¢, B)+ A[(r — §) h + @ — ],
deriving the first-order conditions 0H/dc = 0, 0H/0h = —\ and O0H/0u = h,
and defining p = A%, we get (8), (9) and (10). =m

Proof of Proposition 4

Consider (4), (12), (16) and Proposition 2. =

Proof of Proposition 5

Consider (24) and (25) withi=1. =

Proof of Proposition 6

The steady state equation (26) becomes

_4s

¢ (B) A,

(1-B)B' = (a—br) f (k) (41)

We observe that ¢ is a concave function with B* = argmax ¢ and ¢ (0) =
¢ (1) = 0. Then, ¢ (B*) > (a—0br) f(k*) or, equivalently, a < a* implies
(1). @(B*) = (a—>br) f(k*) or, equivalently, a = a* implies (2). Finally,
¢ (B*) < (a —b7) f (k*) or, equivalently, @ > a* implies (3). m

Proof of Proposition 7

Reconsider (41). If d > 1, ¢’ (B) < 0 for any B € (0,1). Moreover,
limp_,0 ¢ (B) = +00 and limp_,; ¢ (B) = 0. The continuity of ¢ implies that a
steady state exists and it is unique. m

Proof of Proposition 8

We differentiate system (20) and we obtain

T dp 0 1-a 0 0 -1 T

bk _9 g p+B(1—1) ¢ — ydlt QL;TT

Ydr | — oo cee 0T a 1-7

%g—l 0 0 1 —d 0

L@ 0 a 1 _1-2B bt

B dr 1-B a—bt
where

23



that is

€

c b 4 oac v ) =B TEE [1, a o0+(-a)d]
Tdp cc a—bt l-a1l—7 ) B*—B d—2 l1—a 0+(1—a)d | 1—7
wdr
T dk S
k dr = l-—al<r
T dl aoc T br 1-B d
ngj l-al—7 a—br | B*—B d—2
B dr Qo _T_ | bt 1-B 1

I—al-7 " a=br ) B*—B d—2

(42)
Under Assumption 4 and B € (0, 1), we obtain easily Proposition 8. m
Proof of Proposition 9
In the Cobb-Douglas case, ¢ = 1 and, according to expressions (42), (31)

yields

cor  l-al-—71 l-al—7 a-br

7’80_ 1 T « T br 1-B d
B*—Bd—-2

In the case a = b, we obtain

T 1 T 1-B d B 1 T 1-2B
B*—Bd-2 1l—al—1(d—-2)(B*—B)

cor l—-al-71

Proposition 9 immediately follows. =

Proof of Lemma 10

Simply, consider expression (36). m

Proof of Lemma 11

Consider again (36). If 1 < d < 2, then D < 0 is equivalent to B > B* which
is always satisfied because B > 0 > B*. If d > 2, then D < 0 is equivalent to
B < B* which is always satisfied because B <1< B*. =

Proof of Proposition 12

Lemmas 11 and 11 imply D < 0. Propositions 13, 16, 17 and 19 in Bosi and
Desmarchelier (2017¢) apply.

D < 0 implies that at least one eigenvalue is real and positive. Indeed, if all
the eigenvalues are nonreal, the determinant is positive, a contradition. If two
eigenvalues are real and negative, and two nonreal, the determinant is positive, a
contradiction. If all the eigenvalues are real and negative, then the determinant
is positive, a contradiction. Therefore, at least one eigenvalue is positive. Local
indeterminacy requires a dimension of the stable manifold strictly greater than
the number of predetermined variables. In our case, the dynamic system is
four-dimensional and there are three predetermined variables. Therefore, local
indeterminacy requires a full-dimensional (four-dimensional) stable manifold.
But, the dimension of the stable manifold is equal to the number of negative
real eigenvalues plus the number of negative real parts of nonreal eigenvalues.
In our case, this number cannot exceed three, because one eigenvalue is positive.
Therefore, the stable manifold is not full-dimensional and the equilibrium cannot
be indeterminate. m

Proof of Proposition 13
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When a = a*, B3 = By = B* and D = 0. We apply Proposition 13 in Bosi
and Desmarchelier (2017¢). m

Proof of Proposition 14

According to Corollary 15 of Bosi and Desmarchelier (2017¢), a Hopf bifur-
cation arises iff So = S5/T + DT /S5 and T and S3 have the same sign.

Let us rewrite Sy and S5 as follows:

Z TS5
Sp=2 22 13
" m omT (43)
S3 :,zg,—mozq(l—B)i—2 (44)
1
Replacing (43), equation

Ss T

So=—=+D—

2= T TS,

becomes

Ss  Z+\/Z>—4mD (m+1T) (45)

T 2(m+T)

We observe that, if 0 <d <1, D <0<m+Tiff B* < B< (1+6)/2.
In this case, m + 7 > 0 and 4mD (m +T) < 0. If d > 1, then D < 0 and,
thus, D < 0 < m+ T iff B < (1+6)/2. Even in this case, m + T > 0 and

4mD (m+T) < 0.
Then, in both the cases,
7) <<(%)
— <0< | =
( T)_ T),
Clearly, the solution €5 of

Ss(e2) _ (53) <0

T T
is not acceptable as Hopf bifurcation value because T and S5 have opposite sign.

Let ey be solution of
53 (52) _ %
T T),

Replacing (44) in the LHS and (45) in the RHS, we obtain (38). m

Proof of Proposition 15

Consider Proposition 16 in Bosi and Desmarchelier (2017¢). Since a = a*,
B = B* and then D = 0. In addition, S3 = 0 if and only if e = epr. =

Proof of Proposition 16

According to Proposition 16 in Bosi and Desmarchelier (2017¢), a Gavrilov-
Guckenheimer bifurcation arises if and only if D = 0 jointly with S35 = T'Ss
such that Sy > 0.
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We notice that S3 = TS5 iff

mzs — T (Z — z3)
maq(l—B)(m+T)

€2 =Eqa =¢€1

In addition, Ss (eqg) = Z/ (0 + 1 — 2B). We observe that D = 0 and a = a*,
that is B3 = By = B*, imply 1 — 2B = (1 — B)d > 0 and

Z=mb (T —0) —d(1— B) [am® + gma — ng/e1]
=—d(1-B)(m[am+ (1 —a)d] —ng/s1) —m* <0

Thus, S2 (eqe) < 0 and any Gavrilov-Guckenheimer bifurcation is ruled out.
]

Proof of Proposition 17

Proposition 18 in Bosi and Desmarchelier (2017c) states that a double-Hopf
bifurcation occurs if and only if T = S3 = 0 with D > 0, Sy > 0 and S? > 4D.

According to Lemmas 10 and 11, D > 0 if and only if 0 < d < 1 jointly
B < B*, and, according to (28), B* < 1/2.

It T'= 55 =0, then Sy = Z/m with

Z=m mad(Bfl)+D%—02 +qmad (B 1)+ (m—0) = +0D

Since T' = 0 jointly with B < B* < 1/2, it follows that m — 6 =1—2B > 0.
This implies Z < 0 and, therefore, So < 0 which rules out any double-Hopf
bifurcation. m
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