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Abstract

In this paper, we aim to model the impact of human activities on
the wildlife habitat in a general equilibrium framework by embedding the
Levins model (1969) of metapopulation dynamics into a Ramsey model
(1928) with a pollution externality. In the long run, as in Levins (1969),
two steady states coexist: a zero one with mass extinction and another
one with positive wildlife when the migration rate of the metapopulation
exceeds the rate of extinction. A green tax always increases the wildlife
and lowers the consumption demand. It is welfare-improving if and only if
agents overweight the wildlife. In the short run, we show that a sufficiently
negative effect of wildlife habitat on consumption demand can lead to the
emergence of a limit cycle near the positive steady state through a Hopf
bifurcation. We show also that the negative pollution effect on wildlife
habitat works as a destabilizing force in the economy by promoting limit
cycles.

Keywords: metapopulation dynamics, pollution, Ramsey model, Hopf
bifurcation.

JEL Classification: C61, E32, O44.

1 Introduction

In ecology, a metapopulation represents a spatially fragmented population of
the same species. The concept of metapopulation was introduced in the eco-
logical literature in 1969 by Richard Levins (Hanski and Gilpin, 1991). In his
seminal contribution, Levins (1969) represents the natural space as a partition
of patches of the same size, homogeneous inside, that can be occupied or not by
a metapopulation. The share of occupied patches changes over time. Dynamics
are driven by two exogenous forces: the migration rate and the extinction rate.
According to Levins’ (1969) formulation, there are two steady states: a zero
share means a massive extinction while a positive share a preserved wildlife.
Dynamics are quite simple: the zero steady state is unstable while the positive
one is stable and positive if and only if the migration rate exceeds the extinction
rate.

Since the emergence of life, planet Earth has experienced five mass extinc-
tions. A mass extinction is conventionally defined as a change where more



than three-quarters of species disappear in a geologically short interval of time
(Barnosky et al., 2011). Following Ceballos et al. (2015), a sixth mass extinc-
tion is under way due to human activities because of deforestation and pollution
that imply climate change. Evidence suggests that both the migration and the
extinction rate in the Levins’ model (1969) depend on the pollution coming from
human activities. Today, a plausible representation of metapopulation dynamics
has to take in account the interplay between economic activities and pollution,
and the effects of pollution on both the extinction rate and the migration rate.
To the best of our knowledge, such an integrated framework does not yet exist
in the literature. In this respect, we aim to fill the gap between economics and
ecology. More simply and precisely, we embed the Levins’ model (1969) into
the Ramsey model (1928) augmented with a pollution externality resulting from
production and affecting both the migration and the extinction rates.

Evidence suggests also that the consumption behavior is influenced by envi-
ronmental quality. For instance, the literature has pointed out that consumers
have a higher willingness to pay for green products (Roe et al., 2001; Kim and
Han, 2010; or Biswas, 2016). Even if, to the best of our knowledge, there is no
empirical evidence on the effects of wildlife habitat on consumption demand,
the common sense suggests that a link exists. If the household likes to con-
sume in a pleasant environment, a drop in wildlife entails a lower consumption.
Conversely, a decrease in wildlife implies a drop in utility to be compensated by
the household with a higher consumption demand. The ambiguous environmen-
tal effects on consumption demand have been already studied in the literature.
Theorists have considered pollution or natural capital instead of wildlife in the
utility function. For instance, Bosi and Desmarchelier (2016) have focused on
the occurrence of limit cycles in a Ramsey economy where an Environmental
Kuznets Curve (EKC)! appears at the steady state.? The present paper is not
about the EKC, but one can expect that the effect of wildlife habitat on con-
sumption demand affects the transitional dynamics of the Levins’ model (1969).

In this paper, we study a continuous-time Ramsey model where a pollution
externality, coming from production, impacts the evolution of a metapopulation.
To simplify, we assimilate wildlife to a single metapopulation and we assume
that the fraction of occupied patches (a measure of environmental health) affects
the marginal utility of consumption. In addition, a green tax is introduced and
levied on production at the firm level in order to finance depollution according
to a balanced budget rule.

As in Levins (1969), two steady states coexist in the long run with and
without wildlife. Wildlife is positive when the rate of migration exceeds the
extinction rate. From an economic point of view, even if the green tax lowers
both the capital intensity and the consumption demand at the steady state,
the green tax always increases the wildlife with an ambiguous effect on welfare.

IThe EKC is an inverted U-shaped relation between income and pollution.

2More precisely, they have shown that a positive effect of pollution on consumption demand
promotes the occurrence of a limit cycle through a Hopf bifurcation when the steady state lies
on the upward-sloping branch of the EKC, while, along the downward-sloping branch, limit
cycles arise if and only if pollution lowers consumption.



The tax is welfare-improving if households overweight wildlife with respect to
consumption.

In the short run, because of the pollution effects, the interplay between the
wildlife habitat and consumption demand leads to richer dynamics around the
positive steady state than those observed by Levins (1969). Indeed, a sufficiently
large impact of wildlife on consumption demand can promote the emergence of
a limit cycle near the steady state through a Hopf bifurcation. Moreover, the
larger the (negative) impact of pollution on wildlife habitat, the lower the effect
of wildlife on consumption demand, at the origin of the limit cycle. In other
terms, the negative pollution effect on wildlife undoubtedly plays a destabilizing
role.

The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 and 4 focus on the equilibrium system and its steady state. Section 5
studies the local dynamics. An example with isoelastic preferences is considered
in section 6, while a numerical illustration is provided in section 7. Section 8
concludes. All the proof are gathered in the Appendix.

2 Model

We consider an economy with households, firms and a government. Households
work, consume and like nature, firms produce and pollutes, the government
taxes the firms to maintain the environment. Let us introduce the three in-
gredients of the model: a metapopulation dynamics a la Levins (1969), the
economic fundamentals & la Ramsey (1928) and a simple pollution process.

2.1 Metapopulation

In ecology, a metapopulation represents a spatially fragmented population of
the same species. To simplify the model, we assimilate wildlife to a single
metapopulation. Following Levins (1969), we consider that space is represented
by a partition of patches occupied or unoccupied by the metapopulation. Let ¢
denotes the fraction of patches occupied at a given time. As in Levins (1969),
the evolution of this share is simply given by:

d=wvq(1—q)—Bq (1)

At each time, any occupied patch can become unoccupied at the extinction
rate 5. The contribution to the change in the share of occupied patches is given
by Bq. Conversely, any unoccupied patch can become occupied at the migration
rate . The migration pressure on the share 1 —q of unoccupied patches is given
by ¢q. A simple analysis of (1) allow us to point out that there exist two distinct
steady states:

go=0and ¢*=1- /¢



It follows that go leads to wildlife mass extinction while ¢* represents an
equilibrium where wildlife is positive. Interestingly, ¢* > 0 if and only if the
migration rate ¢ exceeds the extinction rate .

Human activities pollute and stress the wildlife habitat mainly through the
climate change. To put it in other way, pollution accelerates the extinction rate.
We also consider that a degraded environment renders more difficult the wildlife
migration. In the sequel, P will denote the aggregate stock of pollution.

Assumption 1 Pollution has a positive impact on the extinction rate and
a negative impact on the migration rate:

B=p(P) and ¢ = ¢ (P) (2)

such that ' (P) > 0 and ¢' (P) < 0.
Assumption 1 captures the pressure put by humans on wildlife. The role of
pollution is summed up by the following elasticities and their difference.

Definition 1 The colonization rate is the difference between the migration and
the extinction rate: s = s (P) = ¢ (P) — 8(P). We introduce also the pollution
elasticities of migration and extinction:
Py’ (P) Pp (P)
o, (P)=—/5=~ and eg (P) = ———+—=

and the pollution impact on colonization
d(P)=¢,(P)—epg(P)<0

Notice that the pollution impact on colonization is negative because, accord-
ing to Assumption 1, e, (P) < g3 (P).

2.2 Firms

The firm j chooses the amount of capital K; and labor L; to maximize the
profit. In addition, the government levies a proportional tax 7 € (0,1) on
polluting production F' (K, L;) of firm j to finance the maintenance of natural
resource.

Assumption 2 The production function F : Rf_ — Ry is C?%, homogeneous
of degree one, strictly increasing and concave. Inada conditions hold.

Let K = ijl K; be the aggregate capital stock and L = Z}]:1 L; be the
aggregate labor demand. k = K/L is the capital intensity in the economy. The
price of product is normalized to one. r and w denote the real interest rate and
the real wage. These prices are taken as given by the firms.

Proposition 2 (firm) The aggregate production is given by Y = F (K, L).
Profit mazximization yields

r=01-7)p(k) andw=(1-71)w(k) (3)
with p (k) = ' (k) and w (k) = f (k) — kf' (k).



We introduce the capital share in total disposable income and the elasticity
of capital-labor substitution:

vk kf' (k)
-7 f(k) — f(k)

In addition, we determine the elasticities of factor prices:

a(k) = and o (k) = a (k)

kp' (k) _ 1-—a(k) an kw' (k) _ a (k)

pk) — ok w(k) ok

2.3 Households

The representative household earns a capital income rh where h denotes the
individual wealth at time ¢ and a labor income wl where [ = 1 (inelastic labor
supply). Thus, the household consumes and saves her income according to the
budget constraint:

c+h<(r—30)h+w (4)

where h denotes the time-derivative of wealth. The gross investment includes
the capital depreciation at the rate ¢.

We assume that wildlife habitat enters the household’s utility function « (¢, q)
with 4, > 0. We suppose that it affects the marginal utility of consumption
(tueq # 0). Indeed, intuition suggests that wildlife plays a role in consumption
demand. If wildlife raises the consumption demand, then wildlife and consump-
tion are complement (u.q > 0): this happens when households like to consume
in a pleasant environment, in presence, for instance, of a large biodiversity. Con-
versely, if wildlife lowers consumption demand, then wildlife and consumption
are substitutable (u., < 0): in this case, the household compensates the utility
loss due to a lower wildlife by pushing her consumption demand.

Assumption 3 Preferences are rationalized by a non-separable felicity func-
tion u (¢,q). First and second-order restrictions hold on the sign of derivatives:
Ue > 0, uq > 0 and ue. < 0, jointly with the limit conditions: lim._.gu. = 00
and lim._, . u. = 0.

Let us introduce the first and second-order elasticities of felicity:

Clue qu,
(cerza) = (S5 L) (5)
and
Clce qUcq
Ece Ecq — Ue Ue
|: Eqc  Eqq ] B [ CZ:EC ngq ] (6)

—1/e.. represents the intertemporal elasticity of substitution in consumption
while €.4 captures the effect of wildlife on the marginal utility of consumption.
Typically, if e, > 0 (< 0), then wildlife and consumption are complement
(substitute) for households.



In a Ramsey model, the representative household maximizes an intertempo-
ral utility functional:

/00 e % (c,q) dt (7)
0

under the budget constraint (4) where 6 > 0 denotes the rate of time preference.
Let p denote the multiplier associated to the budget constraint.

Proposition 3 (household) The first-order conditions of the consumer’s pro-
gram are given by the shadow price of consumption

= uc(c,q) (®)
the intertemporal consumption smoothing (Euler equation)
fr=p(@+06—r) (9)

and the budget constraint (4), now binding:
h=(r—-8h+w—c (10)
jointly with the transversality condition lim; .., e =% (t) h (t) = 0.

Applying the Implicit Function Theorem to the static relation u = u. (¢, q),
we obtain the consumption demand ¢ = ¢ (p, ¢) with elasticities
pde 1 q dc Ecq

RO _ 1 c0and 1% -
Cdu Ece a qu Ece

(11)

2.4 Government

The government uses all the tax revenues to finance depollution expenditures
(M) according to a balanced budget rule:

M =7F (K, L) (12)

2.5 Pollution

The aggregate stock of pollution P is a pure externality coming from produc-
tion (V). The government takes care of depollution through the abatement
expenditures M. The pollution accumulation follows a linear process:

P=—aP +bY —yM (13)

a>0,b>0and vy > 0 capture respectively the natural rate of pollution ab-
sorption, the environmental impact of production and the pollution abatement
efficiency. We observe that, without human activities (Y and M), pollution is
reabsorbed by nature according to the law P (t) = Pye™ .



3 Equilibrium

At equilibrium, all the markets (good, capital and labor) clear. The aggregate
wealth is equal to the aggregate capital: hL = K. Hence, h = k. Without of
loss of generality, we normalize the population of workers: L = 1.

Proposition 4 (equilibrium) FEquilibrium dynamics are driven by four equa-
tions: consumption smoothing, resource constraint, pollution accumulation, metapop-
ulation dynamics.

fro= fi(pk Pg)=pl0+d—(1—1)p(k) (14)
k= foluwk Pg)=1—71)f(k)—0k—c(pq) (15)
P = fs(uk,Pq) =—aP+ (b—n7) f (k) (16)
q fa(uk, Pog) =@ (P)q(1—q) = B(P)q (17)

and the transversality condition lim;_, e~ (t) k (t) = 0.

4 Steady state

In the following, we leave aside the trivial steady state gy = 0. In the absence
of wildlife, mankind disappears and our economic analysis loses its interest.

Proposition 5 (steady state) The steady state with a positive wildlife is given
by

0496

o) = 22 (15)
. _ [0+ .
= [—a(k*) 6} k (19)
« 0+ b—nT
Po= ac (k*) 1—71 K (20)
. B(rr)
¢ = =T >0 (21)

In order to have a positive pollution level at the steady state, we introduce
the following restriction.
Assumption 4 b > 7.

Proposition 6 (uniqueness) Under Assumption 4, there exists a unique steady
state with positive wildlife (5 < ).

Let us show how 7 affects this positive steady state.



Proposition 7 (comparative statics) The long-run effects of taxzation on the
positive steady state are captured by the fiscal elasticities:

= T T <

%%i - 1ir%'jég 1%£%% <0 (22)
f%%; - ﬂﬁwa(ﬂlirlifaﬂ<o
%%:dmﬁﬁ%§>o (23)

Let us provide some intuition. Since the green tax is levied on the produc-
tion level, a higher green-tax rate reduces the production level and the capital
intensity in turn. A drop in the production level entails also in the long run:
(1) a lower disposable income and, thus, a lower consumption, and (2) a weaker
pollution level according to the process (13). Under Assumption 1, the drop
in pollution lowers the extinction rate and jointly increases the migration rate,
leading to a richer wildlife in the long run.

Focus now on the impact of the green tax on welfare. Because of the repre-
sentative agent, the welfare functional sums up to her utility functional:

W (e, q) :/ e % (c,q) dt
0

Let us introduce a critical value for the social propensity to wildlife.

E=-<9t 5 (24)

Proposition 8 (welfare) The green-tax rate is welfare-improving in the long
run if and only if the relative preference for wildlife is sufficiently large (that is,
gq/€c > E, where the elasticities . and e, are given by (5)).

Let us provide some economic intuition about this result. /e, depends on
the slope of the indifference curve in the (¢, ¢)-plane and describes how the house-
hold weights wildlife with respect to consumption. Inequality ¢,/e. > E holds
when households display ecological preference (that is, a higher ratio g4/e.).
Unsurprisingly, a higher green-tax rate has two opposite effects on utility: (1) a
lower consumption level (inequality (22)), which reduces the household’s utility,
and (2) a richer wildlife habitat (inequality (23)), which increases her utility.
Thus, if the representative household overweights nature with respect to con-
sumption, the positive effect (2) dominates the negative effect (1) and the green
tax turns out to be welfare-improving.



Corollary 9 (welfare) The critical value is explicitly given by

po__ SF) [0 —ak)[1—o®E))+[1— (k)]
BENAE) 9+ 51— a)]) (a (k) o (k) + [1 - a (k)] 5252 )
25)
and, in the case of a Cobb-Douglas technology, by
_ s N W 1—7 47 17!

5 Local dynamics

To study the multiplicity of equilibria (local indeterminacy) and the occurrence
of local bifurcations around the unique positive steady state, we focus on the
dynamic system.

Proposition 10 The Jacobian matrixz of system (14)-(17) is given by

0 p* (1—a)(0+9) 0 0
k1 0+(1—a)s k 0” 0 K e 0+(1-0)3
J = B Ece @ q* €ce a 27
0 (b7V1T25_9+6) _a 0 ( )
d
0 0 b —s

where a = a (k*), 0 = 0 (k*), €cc = €cc (€*,q%), €cq = €cq (c*,¢%), B = B(P),
p=¢(P*),d=d(P*), and u, k, P and q are evaluated at the steady state.

For simplicity, we focus on the Cobb-Douglas technology. In order to study
the local dynamics (local indeterminacy and local bifurcations), we apply a
methodology developed by Bosi and Desmarchelier (2017) and based on the
sums of principal minors of the Jacobian matrix.

Lemma 11 In the case of a Cobb-Douglas technology, the trace, the sum of
principal minors of order two, the sum of principal minors of order three, and
the determinant of the Jacobian matriz (27) are given by

T = 0—a-—s (28)
D
Sy = as—@(a—i—s)—l—% (29)
T-10 Ecq
S3 = a89+D?+aﬁd[0+5(1—a)]E— (30)
s

D = a(l—a)@+8)[0+(1—a)d (31)

Q€ e

The following proposition shows that a unique equilibrium trajectory exists
in a neighborhood of the positive steady state.



Proposition 12 (local determinacy) The equilibrium is locally unique around
the positive steady state.

Focus now on local bifurcations. From a mathematical point of view, a
transcritical bifurcation occurs when 8 = . We do not care about this case
because, from an economic point of view, the trivial steady state gg = 0 and the
case where 5 > ¢ (that is ¢* < 0) are meaningless.

In order to study the occurrence of (limit) cycles through a Hopf bifurcation,
we consider the main economic variable, that is the cross elasticity ., capturing
the wildlife impact on preferences and consumption demand. In this respect,

let
% (Sg—i—W) —D%—as@

aBd [0+ (1 — ) d]

As we will see, in the case of isoelastic preferences, the RHS of (32) does not
depend on €., and it is well defined.

Endogenous (limit) cycles arise when the discount rate exceeds the rate of
natural absorption.

Assumption 5 a < 6.

EH = Eec (32)

Proposition 13 (Hopf) Under Assumption 5, a Hopf bifurcation around the
positive steady state generically occurs at ecq = €p.

d < 0 captures the negative impact of pollution on the wildlife habitat.
Focus on the critical value (32). The larger the (negative) impact of pollution
on wildlife diffusion, the lower the bifurcation value eg. In other terms, when
|d| becomes higher, endogenous (limit) cycles can take place.

Since the number of stable eigenvalues is odd (indeed D < 0 if § < ¢ and
a < 0), then the dimension of the stable manifold goes from 3 to 1 or from
1 to 3 when the system undergoes a Hopf bifurcation. In the first case the
bifurcation is supercritical and the limit cycle is stable, while in the second case
the bifurcation is subcritical and this cycle is unstable.

The following proposition rules out the class of saddle-node bifurcations as
well as any bifurcation of codimension two.

Proposition 14 Under Assumption 5, around the positive steady state, any
saddle-node, Bogdanov-Takens, Gavrilov-Guckheimer or double-Hopf bifurca-
tion is excluded.

6 Isoelastic preferences

Metapopulation is driven by the following explicit migration and extinction
rates:

B (P) = AP and ¢ (P) = A,P*?
with constant elasticities €, < 0 and eg > 0. In this case, the colonization rate
and the pollution impact on colonization are given by s = A, P¢ — AgP°® and
d=c¢,—eg.

10



We consider also a Cobb-Douglas technology: f (k) = Ak®, and isoelastic
preferences:
_ (g’
u (Ca q) - 1—¢
7 measures the propensity to wildlife while 1/¢, the elasticity of intertempo-
ral substitution of the composite good cq". Straightforward computations give

ee=1—¢c,eq=n(l—¢),ecc =—cand e, =n(1—¢).

Corollary 15 (steady state) The steady state is computed in terms of the
fundamental parameters:

o [eAl-7) =
B O+9
- Mk*
«
. 0+db—nT AfaA(l—7)]T%
Po= a 1—7k _(b_m-)a[ 0+0 (33)
q* _ 1_@P*7d
©

with p* = ¢~ Eq—e),

7 is the main parameter because it captures the peculiarity of the model,
that is the preference for wildlife.

Corollary 16 (welfare) In the case of isoelastic preferences, the green-tax rate
is welfare-improving in the long run if and only if n > E where now

A —
1 e P*€p—ep
1 Ag

ew—e,ch-(l—a)l’TTbﬁ_%

E =

(34)

and P* is given by (33).

We observe that neither P* nor E depend on n. Thus, E is an explicit and
well-defined critical value for 5. Unsurprisingly, if agents overweight wildlife
with respect to consumption (7 > E), a higher green-tax rate raises the social
welfare.

In the isoelastic case, even the right-hand side of (32) does not depend on 7.

Corollary 17 (Hopf) A limit cycle generically arises around the critical propen-
sity to wildlife

o abs(PY)+ 2158 T (52 +/53 4D)

77H:1_5 aﬂ(z—:@—zs@)[@‘F(l_O‘)é]

(35)

11



where

T = 0—a—s(P) (36)
Sy = (a—0)s(P*)—al+ ﬁ (37)
D = 7(9+5)[9+(17a)5]gl;as(P*) (38)

Thus, fixing the fundamental parameters, according to expression (35), we
are able to compute the numerical value of the preference for wildlife (1) giving
rise to endogenous cycles. In the next section, we calibrate and simulate the
model, and we find this value.

7 Simulations

In order to illustrate the above theoretical results, we calibrate the model and
provide simulations of dynamics using the original nonlinear system (14)-(17).?
We set the fundamental parameters as follows.

| Parameter [| Al Ag [ Ap [[es[ee @ 6 o [z Ja [o [~ |
[Value  [[1 [T [t [ 1 ] —1]033]0.01] 0.025] 0.002 [ 0.003 ]| 0.0015 ]| 0.3 ]
(39)

The parameters A, Ag, A,, g and €, are normalized. « is the usual value
of capital share in total income. € and § take their standard quarterly values.
T represents the public air protection expenditures ((12) implies 7 = M/Y):
according to the OECD Environmental Performance Reviews for France (2016,
p. 149), the public air protection expenditures amount to less than 5 billion
euros, that is less than 0.25% of France GDP. To be in accordance with these
data, we simply set 7 = 0.002. Finally, a, b and - are chosen to satisfy a < 6
(Assumption 5) and the positivity of the steady state: k* = 28.385671, ¢* = 2.
3010, P* =0.90499041 and ¢* = 0.18099236.

We observe that these steady state values do not depend on 1. Moreover, if
s > 0 (positive steady state), the bifurcation value n; > 0 if and only if € > 1,
that is iff ., < 0. In other terms, the existence of a limit cycle around the
positive steady state is ensured when consumption and wildlife are substitutable
goods. To grasp this point, let the economy be at the steady state today and
assume an exogenous increase in the pollution level P. Under Assumption 1,
this implies a lower migration rate, a higher extinction rate and a weaker wildlife
habitat ¢ in turn. Under Assumption 3, the drop in ¢ lowers the household’s
utility. To compensate this loss, because of her substitutable preferences, the
household increases the consumption, while reducing her saving which lowers
the capital stock tomorrow and the pollution level at the end. Thus, when
consumption and wildlife are sufficiently substitutable, a higher pollution today
entails a lower pollution tomorrow giving rise to endogenous cycles.

3We use the MATCONT package for MATLAB.

12



Thus, we fix the elasticity of intertemporal substitution 1/e = 1/2 < 1 to
have limit cycles. According to expression (35) and calibration (39), we find the
bifurcation value of ecological preference ny = 3.322. At n = ny, we obtain
w* = 55.238 and, replacing in the Jacobian matrix (27), we get the eigenvalues:
A1 = —0.205636, Ay = 0.0126424 and A3 = —0.01481047 = — ).

Coherently, we find two nonreal and conjugated eigenvalues with zero real
part (As and \4), that is the signature of the occurrence of a Hopf bifurcation.
MATCONT computes also the first Lyapunov coefficient at the Hopf critical
value: [; = 1.278750 % 107> > 0. A positive Lyapunov coefficient means that
the Hopf bifurcation is subcritical and the limit cycle is unstable. MATCONT
generates Figure 1 directly from the original nonlinear system (14)-(17) using the
current calibration and projecting a 4D cycle on the 3D subspace of quantities
{(k, P,q)}: alimit cycles arises around the positive steady state.

0.180986

0.180984

0.180982

o
0.18098

0.180978

0.180976
0.9049925
0.904992
0.9049915

0.904991

0.9049905

28.3865

28.386
0.90499

0.904985
0.904989

0.9049885 2385
0904988 263845 k

28.3855

P
Fig. 1. The unstable limit cycle

8 Conclusion

In this paper, we have embedded the Levins model (1969) of metapopulation
dynamics into the Ramsey model (1928) in order to capture the effects of eco-
nomic activities on the wildlife habitat. This interdisciplinary approach gives
interesting results both concerning the long and the short run.

In the long run, as in Levins (1969), two steady states coexist: a zero one
with mass extinction and another one with positive wildlife when the migration
rate of the metapopulation exceeds its extinction rate. A simple exercise of

13
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comparative statics shows that, even if the green tax lowers both the capital
intensity and the consumption level at the steady state, it improves the welfare
if the representative household overweights wildlife with respect to consumption.

In the short run, because of the role of pollution, the interaction between
wildlife and consumption leads to richer dynamics than the ones described by
Levins (1969). In particular, we observe that a negative impact of wildlife on
consumption demand can give rise to the emergence of a limit cycle through a
Hopf bifurcation near the positive steady state. Finally, we have shown that
the negative pollution effect on wildlife works as a destabilizing force in the
economy: the larger the (negative) impact of pollution on wildlife habitat, the
lower the effect of wildlife on consumption demand at the origin of limit cycles.

9 Appendix

Proof of Proposition 2
The profit maximization maxy; n, [F (Kj,L;) —rK; —wL; — 7F (Kj, L;)]
entails the following first-order conditions:

r=0=7)f (k) and w=(1=7)[f (k;) = k; [' (k;)]

where k; = K;/L; is the capital intensity and f (k;) = F (k;,1) the average
productivity of the firm j. All the firms share the same technology and address
the same demand for capital. m

Proof of Proposition 3

The agent maximizes the intertemporal utility function (7) under the budget
constraint (4). Setting the Hamiltonian H = e~%u (¢, q) + A [(r — 0) h+w — ],
deriving the first-order conditions 0H/dc = 0, 0H/0h = —X and 0H/du = h,
and defining p = e, we get (8), (9) and (10). m

Proof of Proposition 4

(3) and (9) gives (14). Since h = k, the equilibrium budget constraints
becomes a resource constraint: k = (1 —7) f (k) —dk — ¢ with ¢ = ¢ (u, ). Since
L =1, the process (13) yields (16) in intensive terms. (2) and (1) imply (17).
]

Proof of Proposition 5

Any steady state solves the following system of equations: [1 = k=P=¢4=
0. (14) and (17) gives (18) and (21) respectively. Moreover,

¢ = a-nie) - =a-nZ gk @)

yields (19) and (20) respectively. m

Proof of Proposition 6

According to Assumption 2 and equation (18), the capital intensity &* of
Modified Golden Rule is unique. Replacing k* in (19) and (20), we get the
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unique values for ¢* and P*. Substituting P* in (21), we obtain the uniqueness
of ¢*. The uniqueness of ¢* and ¢* entails also that of pu* = u. (¢*,¢*) > 0. m
Proof of Proposition 7
To obtain the fiscal elasticities, we differentiate (18), (21), (40) and (41) with
respect to 7, k, ¢, P and ¢, and use the steady state properties. m
Proof of Proposition 8
We compute the welfare functional at the steady state: W (c*, ¢*) = u (c*, ¢*) /6.
The tax derivative of welfare is given by

ow 1 o o
or 0\ “or 197

and OW/0r > 0 if and only if g4/ > E. m

Proof of Corollary 9

Replacing (19), 21), (22) and (23) in (24), we get (25). In the case of Cobb-
Douglas technology, o (k*) = 1 and «(k*) becomes a constant. Hence, (25)
implies (26). m

Proof of Proposition 10

The Jacobian matrix of system (14)-(17) is defined as

on Ok 9P O
_| 22 B8 2P @
J=| 6k ofs bfs ofs
on Ok 9P B
ofs  ofs bf  0fs
o ok oP dq

]

Proof of Lemma 11

In the case of a Cobb-Douglas technology, « is constant and ¢ = 1. Com-
puting the sums of principal minors of order 1 to 4 (see Bosi and Desmarchelier
(2007)) and using (20) and (21), we find (28), (29), (30) and (31). =

Proof of Proposition 12

Three variables (k, P and q) of system (14)-(17) are predetermined, while
one (p) is a jump variable. In this case, local indeterminacy requires four stable
eigenvalues. Thus, D > 0 is a necessary (but not sufficient) condition for local
indeterminacy. The existence of a positive steady state (¢* > 0) requires ¢ > 8
which entails in turn D < 0. This rules out the local indeterminacy. m

Proof of Proposition 13

According to Bosi and Desmarchelier (2017), a Hopf bifurcation generically
occurs in a 4D system of autonomous ODE if and only if:

_S3 T

Sp=F+ gD (42)

and S3/T > 0. (42) is satisfied if and only if
Sy 1
?:§<Sﬁ,/53—4p> (43)

15



that is e.q = €9 or €¢q = €, Where

L(8:—V/S5—4D) — DL — asf

afBd[0+ (1 —a)d]

€0 = €cc

Moreover, since a < 6 and § < ¢ (existence of a positive steady state), according
to (43), we have D < 0 and, therefore,

53(50) _ 1 2

T = 5(32—,/52—41) <0
Sz (eq) 1 2

T = 5<52Jm/52—4D >0

[

Proof of Proposition 14

We observe that D < 0 because a < § and § < ¢ (positive steady state)
and we apply Propositions 13, 15, 16 and 17 in Bosi and Desmarchelier (2017)
respectively. m

Proof of Corollary 16

We know that the green-tax rate is welfare-improving in the long run iff
gq/€c > E. In the case of isoelastic preferences, €,/e. = n and E is given by
(34). m

Proof of Proposition 17

In terms of propensity to wildlife, the Hopf bifurcation value becomes 1y =
e/ (1 —¢). ey is given by (32) with, now, the explicit moments (36), (37) and
(38). m
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