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Abstract 

The paper studies second price all-pay auctions - wars of attrition - in a new way, based on class 

room experiments and Kosfeld, Droste and Voorneveld’s (2002) best reply matching equilibrium. Two 

players fight over a prize of value V, have a budget M, submit bids lower or equal to M; both pay the 

lowest bid and the prize goes to the highest bidder. The behaviour probability distributions in the class 

room experiments are strikingly different from the mixed Nash equilibrium. They fit with best reply 

matching or generalized best reply matching, an ordinal logic according to which, if bid A is the best 

response to bid B, and if B is played with probability p, then A is also played with probability p. In the 

mixed Nash equilibrium, the expected payoff is never negative and close to 0. In the best reply and 

generalized best reply matching equilibria, players may lose money, up to 1/12th of the budget when M 

is large in comparison to V, but they can also get a lot of money, especially if V is large. The study 

leads to examine possible bifurcations in the bidding behaviour and gives some insights into how to 

regulate games to avoid pathological gambling with a huge waste of money. 

 

Keywords : second price all-pay auction  – war of attrition – best reply matching – Nash 

equilibrium - classroom experiment 

 

JEL classification: C72, D44 

 

 

1. Introduction 

 

The paper studies second price all-pay auctions in a new way, based on class room 

experiments and Kosfeld, Droste and Voorneveld’s best reply matching equilibrium (2002). 

Whereas a lot has been said on first price all-pay auctions, there are only few papers with 

experiments on second price all-pay auctions - equivalent to wars of attrition - (see Hörisch 

and Kirchkamp (2010) and Dechevaux, Kovenock and Sheremeta (2015) for experiments 

with this class of games). The second price all-pay auction studied in this paper goes as 

follows: two players fight over a prize of value V, have a budget M, and simultaneously 

submit bids lower or equal to M. Both pay the lowest bid and the prize goes to the highest 

bidder; in case of a tie, each player gets the prize with probability 1/2.  

The mixed Nash equilibrium distribution of this game has a special shape, with a mass point 

on M and decreasing probabilities from bid 0 to a given threshold bid. This shape is strikingly 
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different from the distributions’ shapes obtained in the class room experiments (an experiment 

with 116 students, another with 109 students). The students bid 0 with a high probability, 

assign very low probabilities to small bids different from 0, and significant probabilities to M 

and other high bids. The distributions are so different that we can’t conclude on overbidding 

or underbidding in comparison with the Nash equilibrium behaviour. This observation is 

partly shared by Hörisch and Kirchkamp (2010): whereas overbidding is regularly observed in 

first price all-pay auction experiments (see for example Gneezy and Smorodinsky (2006) and 

Lugovskyy et al. (2010)), Hörisch and Kirchkamp (2010) establish that underbidding prevails 

in sequential war of attrition experiments. 

In our class room experiments, the students’ behaviour fits with best reply (and generalized 

best reply) matching, a behaviour studied by Kosfeld et al. (2002), according to which, if bid 

A is the best response to bid B, and if B is played with probability p, then A is also played 

with probability p. Mixed Nash equilibria and best reply matching equilibria follow a 

different logic: whereas Nash equilibrium probabilities are calculated so as to equalize the 

payoffs of the bids played at equilibrium, best reply matching probabilities just aim to match 

best responses, each bid being played as often as the bid to which it is a best reply.  

Yet with the best reply matching logic, second price all-pay auctions may become dangerous. 

In the mixed Nash equilibrium, the expected payoffs are never negative: they are null (in the 

continuous game) or slightly positive (in the discrete game). This follows from the way the 

mixed Nash equilibrium is calculated:  each played bid leads to the same payoff, necessarily 

higher or equal to the payoff obtained with bid 0 (which is never negative). This is no longer 

true with a best reply matching logic, which may lead to play high bids too often. M, in 

particular, may play a bad focal role, in that nobody can bid more. Even if it is large, much 

larger than V, M can be seen as the bid to choose if one wants to win the prize, and possibly –

but not surely- pay a low amount. We show in the paper that players can lose on average 

1/12th of their budget when M is very large in comparison to V. But we also show that players 

can get a huge amount of money, especially if V is large, when turning to generalized best 

reply matching, which provides a higher degree of flexibility in choosing best responses in 

case of several best responses to a given strategy.  

Section 2 gives the pure and mixed Nash equilibria for continuous second price all-pay 

auction games. We establish the special shape of the mixed Nash equilibrium probability 

distribution, when the players are risk neutral and risk averse.  We also link mixed Nash 

equilibria in the continuous game to mixed Nash equilibria in the discrete game, where M, V 

and the bids are integers. In section 3, we present two class room experiments and comment 

on the students’ behaviour. In section 4, we present Kosfeld et al.’s best reply matching 

equilibrium and Umbhauer(2007)’s generalized best reply matching equilibrium, which build 

on Bernheim (1984) and Pearce’s (1984) notion of rationalizability, and we compare the 

mixed Nash equilibrium philosophy with the best reply matching philosophy. We namely 

focus on the meaning of probabilities in both concepts. In section 5, we establish the 

proximity between the student’s behaviour and best reply, and generalized best reply, 

matching equilibria. We also bring into light that some best responses are more focal than 

others, namely M, V and 0, and how these focal values impact the equilibrium payoffs. In 

section 6 we examine the players’ payoffs with generalized best reply matching, the role of 

the ratio M/V and the possible switch from some focal values to other focal values. As a by-
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product we show how generalized best reply matching can bring closer two classes of games, 

first price all-pay auctions and second price all-pay auctions. We namely show that these two 

auctions have a common generalized best reply matching equilibrium, that leads to a positive 

payoff close to V/6 (when V is large) in the second price all-pay auction. In section 7, we give 

and comment on the best reply matching equilibrium for any values of V and M. In section 8, 

we mainly focus on the loss of payoffs when M is very large compared to V. We establish that 

the mean loss is 1/12th of the budget M and that the loss may even rise up to 1/4th of M. 

Section 9 concludes in a contrasted way.  It comes back on the role of M, the incentives to 

limit the ratio M/V, the possibility of bifurcations in the players’ behaviour and on the 

possibility to delete M. 

 

2. Nash equilibria in continuous and discrete second price all-pay auctions  

 

Two players have a budget M. They fight over a prize of value V. Each player i submits a bid 

bi, i=1,2 lower or equal to M. The prize goes to the highest bidder but both bidders pay the 

lowest bid. In case of a tie, the prize goes to each bidder with probability ½. Throughout the 

paper, we suppose M>V/2, and most often we restrict attention to the case M ≥ V. V, M and 

the rules of the game are common knowledge. 

The second price all-pay auction is often compared to a war of attrition in continuous time, 

where each player has to choose a time t in the interval [0,1] to leave the game (1 plays the 

role of M);  staying in the game is costly (the cost increases in time) but, as soon as one player 

leaves the game, the game stops and the other gets the prize (this amounts to saying that if 

player i bids less than player j, player j gets the prize and both pay bi) (see for example 

Hendricks, Weiss and Wilson (1988) for the war of attrition with the interval of time). 

When M ≥ V, this game is known to have a lot of intuitive asymmetric Nash equilibria, one 

player bidding nothing (0), the other bidding V or more. In some way, if the first player fears 

to lose money, whereas the second player is a hothead, the first player bids 0, whereas the 

second can afford to bid M (even if M is much larger than V), given that he will pay nothing 

thanks to the cautious behaviour of the first player. Second price all-pay auctions are rightly 

seen as dangerous games with great opportunities: when a hothead meets another one, both 

hotheads lose a lot of money, but if he meets a cautious one, then he gets V without paying 

anything. And if a cautious player meets another cautious one, each player gets the expected 

amount V/2 without paying anything.  

Things become less intuitive when turning to the unique symmetric Nash equilibrium (NE) of 

this game, which is a mixed NE. The second price all-pay auction is equivalent to a war of 

attrition, so the mixed NE has the same structure than the one already given in Hendricks, 

Weiss and Wilson (1988).  

Result 1 (folk result) 

All the bids in [M-V/2, M[ are weakly dominated by M.  
The symmetric mixed Nash equilibrium in the continuous game is given by: b is played with 

probability f(b)db, with f(b)= e-b/V/V for b in[0, M-V/2],  M is a mass point played with 
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probability   f(M) = 1-F(M-V/2) = e1/2-M/V, and  b in ]M-V/2,M[ is played with probability 0, 

where f(b) and F(b) are the density probability distribution and the cumulative probability 

distribution. The net expected payoff (expected payoff minus M) is equal to 0 at equilibrium. 

Proof see Appendix 1 

 

Corollary of result 1: 

The symmetric mixed Nash equilibrium in the continuous game without a limit budget is given 

by f(b)= e-b/V/V for b in[0, +∞[, f(b) being the density probability distribution. 

Proof see Appendix 2 

 

Let us comment on these equilibria. Figures 1a and 1b give the general form of the probability 

distribution, for V=3 and M=6 (Figure 1a), for V=15 and M=30 (Figure 1b). 

 
                   Figure 1a 

 

Let us talk about the probability e1/2-M/V assigned to M. The fact that M is a mass point is 

rather intuitive, in that M is a focal point with a special property. Given that nobody can play 

more than M, given that many players bid less, a player is sure, when he bids M, to get the 

prize with a high probability and to most often pay less than V (especially if M-V/2 <V). In 

this case, bidding M leads to a negative payoff only if the opponent plays M too.  

The probability e1/2-M/V assigned to M leads to three remarks.  

First, it is decreasing in M for a fixed value of V, which ensures a continuity between the 

game with a budget M going to infinity (V being a fixed amount) and the model without limit 

budget. In fact, whether the players have or not a limit budget M, they bid b in [0, M-V/2] 

with the same probability f(b) = e-b/V/V. If there is a limit budget M, then f(M) = 

∫ 𝑓(𝑏)𝑑𝑏
∞

𝑀−𝑉/2
, where f(b)= e−b/V/V is the probability assigned to b in the model without 

limit budget. So M, when it exists, focuses the probabilities assigned to each bid higher than 

e-1.5 

M-V/2 

=4.5 

 

f(x) 

 M-V/2 

=22.5 

 30 

e-1.5 

x 

f(x) Figure 1b 



5 
 

M-V/2 in the model without limit budget. It follows that there is no discontinuity between the 

equilibrium obtained with a budget M going to infinity and the equilibrium obtained in the 

game without limit budget. 

Second, e1/2-M/V may be large, especially when M is close to V, but it fast decreases when the 

ratio M/V grows.   

Third, the link between the probabilities assigned to M and 0 is far from being intuitive. There 

is no mass point on bid 0, and f(0)db = db/V,  so doesn’t depend on M. Moreover, when V 

and M become large, but M/V remains constant, f(0) goes to 0 whereas f(M) remains 

constant. So for example, in Figures 1a and 1b, f(M)= e-1.5 = 0.223 because 6/3=30/15= 2, but 

f(0)=0.333 for V=3 and M= 6 and f(0)= 0.067 for V=15 and M=30. 

Let us talk about the probabilities assigned to the other bids, from 0 to M-V/2 (from 0 to ꝏ 

when there is no limit M). As already observed, with or without limit budget, each bid b in [0, 

M-V/2] ([0, ꝏ [), is played with probability f(b)db = (e-b/V/V)db. So the density function 

decreases in b, and the curves become flatter when V increases. It seems rather intuitive to bid 

0 with a higher probability, in that bidding 0 never leads to lose money. But it is not so 

obvious to justify the decreasing probabilities.    

Let us also observe that to get the above equilibrium, we implicitly supposed that the agents 

are risk neutral given that the utility is assumed to be equal to the amount of gotten money. So 

we can call it the risk neutral Nash equilibrium. Following Hörisch and Kirchkamp (2010), 

we can opt for the utility function U(x)=e-rM-e-rx  to express risk aversion, r being the player’s 

degree of risk aversion. 

Proposition 1 

All the bids in [M-V/2, M[ are weakly dominated by M.  
With the utility function U(x)=e-rM-e-rx, the symmetric mixed Nash equilibrium in the 

continuous game is given by: b is played with probability f(b)db, with f(b)= 
𝑟𝑒 

−𝑟𝑏

1−𝑒−𝑟𝑉

1−𝑒−𝑟𝑉   for b 

in[0, M-V/2],  M is a mass point played with probability   f(M)=1-F(M-V/2)= 𝑒
−

𝑟(𝑀−
𝑉
2

)

1−𝑒−𝑟𝑉 , and  

b in ]M-V/2,M[ is played with probability 0, where f(b) and F(b) are the density probability 

distribution and the cumulative probability distribution. The net expected payoff is equal to 0 

at equilibrium. 

F(M) decreases in r. When r→0, i.e. when the degree of risk aversion goes to 0, we get back 

the risk neutral probability distributions. 

Proof: see Appendix 3 

 

Let us choose r=1. We give in Figure 2a the risk neutral density functions f(b)= e-b/3/3 and 

f(b)=e-b/15/15 (respectively for V=3 and V=15) and the risk averse density functions f(b)= 

e 
−b

1−e−3

1−e−3
  and f(b)= 

e 
−b

1−e−15

1−e−15
  (respectively for V=3 and V=15). In Figure 2b we draw the 

functions f(b)= 
e 

−b

1−e−3

1−e−3   and f(b)= 
e 

−b

1−e−15

1−e−15   for b in [0.75 , 1.25] in order to show the difference 

between the two functions. 



6 
 

 
 

 
 

In Figure 2a, we clearly observe that risk aversion leads to more dichotomy in the 

probabilities, given that the probability distributions decrease very fast and assign a 

probability close to 0 to bids higher than 5. This contrasts which the much smoother curves 

obtained for risk neutral players. For V=3, respectively V=15, risk aversion, in comparison 

with risk neutrality, leads to assign a higher probability to bids lower than 1.599, respectively 

lower than 2.901, and a lower probability to higher bids. Let us also observe that f(M) is much 

lower when the player is risk averse: for V=3 and M= 6 we get f(M)=0.0088 instead of 0.223 

when the player is risk neutral, and for V=15 and M=30 we get f(M)=1.692x10-10 instead of 

0.223 when the player is risk neutral. So risk aversion, without changing the nature of the 

distribution – we still have a decreasing curve from 0 to M-V/2, a null probability for bids in 

Figure 2a : The two steepest 

curves (black and green), 

which seem almost identical, 

represent f(b)= 
𝑒 

−𝑏

1−𝑒−3

1−𝑒−3
  and 

f(b)=  
𝑒 

−𝑏

1−𝑒−15

1−𝑒−15 . 

The flattest (pink) curve 

represents f(b)=e-b/15/15. 

The in between (blue) curve 

represents f(b)= e-b/3/3. 

b 

 f(b) 

Figure 2b : the blue 

curve, respectively the 

green  curve, represents 

the function f(b)= 

𝑒 
−𝑏

1−𝑒−3

1−𝑒−3  , respectively the 

function f(b)= 
𝑒 

−𝑏

1−𝑒−15

1−𝑒−15   

for bids in [0.75, 1.25]. 

We observe that  

𝑒 
−𝑏

1−𝑒−15

1−𝑒−15  is lower than 

𝑒 
−𝑏

1−𝑒−3

1−𝑒−3  for b<0.975, and 

higher for b>0.975. 

b 

f(b) 



7 
 

]M-V/2,M[, and a mass point on M- strongly changes the values of the probabilities assigned 

to each bid and focuses most of the probability on low bids. This is a rather expected result, 

given that only bid 0 is a bid without risk.  

We also observe that, despite the curves f(b)= 
𝑒 

−𝑏

1−𝑒−3

1−𝑒−3
  and f(b)= 

𝑒 
−𝑏

1−𝑒−15

1−𝑒−15
 are different (see 

Figure 2b), they are very similar (by contrast to the curves f(b)=e-b/3/3 and f(b)=e-b/15/15). This 

is due to the fact that f(b) fast goes to f(b)= e-b  when V grows, given that -e-V fast goes to 0 

(being added to 1). It follows that ∫ 𝑓(𝑏)𝑑𝑏
1

0
 goes to 0.6321, so that bids from 0 to 1 cumulate 

almost 2/3 of the probability. So, to summarize, working with utility functions that take risk 

into account redirects the probability to very low bids, even if it does not change the nature of 

the distribution functions. 

 

Finally, let us now draw attention to the fact that in our class room experiments, second price 

all-pay auctions are discrete games: M, V and b are integers, so the bid increment is equal to 

1. As far as we know, few has been said on the mixed NE in discrete second price all-pay 

auctions. It namely matters to know if the mixed NE in the discrete game converges to the 

mixed NE in the continuous game. Yet this convergence is in no way automatic (see 

Umbhauer 2017). 

 

Result 2 (out of Umbhauer 2017) 

V, M and the bids are integers. 

When V is an odd integer, then the discrete mixed Nash equilibrium goes to the continuous 

mixed Nash equilibrium for large values of V. 

When V is an even integer, then the discrete mixed Nash equilibrium doesn’t converge to the 

continuous mixed Nash equilibrium for large values of V. Only the sum of the discrete 

probabilities of two adjacent bids goes to the sum of the continuous probabilities of the same 

two bids. 

Proof see Umbhauer (2017) 

 

We illustrate this result with two examples out of Umbhauer 2017. For V=9 and M=12, we 

get the discrete Nash equilibrium and the continuous Nash equilibrium in Figure 3a. 

We observe that the discrete Nash equilibrium probabilities go to the continuous Nash 

equilibrium probabilities (when multiplying the continuous NE probabilities f(i), for i from 0 

to 7 (=M-V/2-0.5)  by (1-f(12))/(∑ 𝑓(𝑖)7
𝑖=0 ) to take into account that each bid in [0 , M-V/2] is 

played with probability f(b)db in the continuous game (see Umbhauer 2017)). 

For V=8 and M=12, we get the probabilities in Figure 3b. We clearly observe that in that case 

the discrete probabilities do not converge to the continuous ones (multiplied by (1-

f(12))/(∑ 𝑓(𝑖)7
𝑖=0 ) for the same reason than above) and that they obey a yoyo phenomenon, 

one probability being much lower than the corresponding continuous probability, the adjacent 

one being much larger. Yet we could show that the discrete and continuous probabilities 

converge when summing the probabilities two by two. 
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It follows that, in our class room experiments, we prefer working with odd values of V, in 

order to get mixed Nash equilibria that are close to the ones obtained in result 1. 

 

3.  Class room experiments 

 

In the first classroom experiment1, 116 L3 students, i.e. undergraduate students in their third 

year of training, played the second price all-pay auction game in matrix 1 (Game 1), with 

V=3, M=5 and the possible bids 0, 1, 2, 3, 4 and 5. In the second classroom experiment, 109 

L3 students played the second price all-pay auction game in matrix 2 (Game 2), with V=30, 

M=60 and the possible bids 0, 10, 20, 30, 40, 50 and 60. This second game is isomorphic to 

                                                           
1 This experiment has also been partly studied in Umbhauer (2016). 

0
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0
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Figure 3a : The full 

columns are the discrete 

Nash equilibrium 

probabilities, the shaded 

columns are the adjusted 

continuous Nash 

equilibrium probabilities 

Figure 3b : The full 

columns are the 

discrete Nash 

equilibrium 

probabilities, the 

shaded columns are 

the adjusted 

continuous Nash 

equilibrium 

probabilities.  
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the game with V=3, M=6, the bids being 0, 1, 2, 3, 4, 5 and 6 (the payoffs have just to be 

divided by 10) –so we work with an odd V, despite V=30. 

    Player 2    

  0 1 2 3 4 5 

  0 (6.5,6.5) (5, 8) (5, 8) (5, 8) (5, 8) (5, 8) 

 1 (8, 5) (5.5,5.5) (4, 7) (4, 7) (4, 7) (4, 7) 

Player 1 2 (8, 5) (7, 4) (4.5,4.5) (3, 6) (3, 6) (3, 6) 

  3 (8, 5) (7, 4) (6, 3) (3.5,3.5) (2, 5) (2, 5) 

 4 (8, 5) (7, 4) (6, 3) (5, 2) (2.5,2.5) (1, 4) 

 5 (8, 5) (7, 4) (6, 3) (5, 2) (4, 1) (1.5,1.5) 

Matrix 1 : Game 1, V=3, M=5 

       Player 2    

    0 10 20 30 40 50 60 

  0 (75, 75) (60, 90) (60, 90) (60, 90) (60, 90) (60, 90) (60, 90) 

 10 (90, 60) (65, 65) (50, 80) (50, 80) (50, 80) (50, 80) (50, 80) 

  20 (90, 60) (80, 50) (55, 55) (40, 70) (40, 70) (40, 70) (40, 70) 

 Player1 30 (90, 60) (80, 50) (70, 40) (45,45) (30, 60) (30, 60) (30, 60) 

  40 (90, 60)  (80, 50) (70, 40) (60, 30) (35, 35) (20,50) (20,50) 

  50 (90, 60) (80, 50) (70, 40) (60, 30) (50, 20) (25,25) (10,40) 

  60 (90, 60) (80, 50) (70, 40) (60, 30) (50, 20) (40,10) (15,15) 

Matrix 2: Game 2, V=30, M=60 

 

The games were played during game theory lectures and all the students knew what is a 

normal form game. So they had no difficulty to understand the two games, and the meaning of 

the normal forms in matrix 1 and matrix 2. And the students had the matrices in front of them 

while choosing their bid. Let us add that the first game was played by students trained in Nash 

equilibria and dominance. By contrast, the second game was played by novice students with 

no training in Nash equilibria and dominance. 

The students’ way to play is given in table 1. 

 

Game 1 

V=3, M=5  

Bids 

Nash 

equilibrium 

probabilities 

(percentage) 

Students: 

frequencies 

of the bids 

 Game 2 

V=30, M=60  

bids 

Nash 

equilibrium 

probabilities  

(percentage) 

Students: 

frequencies 

of the bids 

0 28.3% 37.9%  0 27.7% 33% 

1 19.5% 9.5%  10 20.48% 5.5% 

2 15.4% 1.7%  20 14.06% 2.8% 

3 9.2% 20.7%  30 11.1% 21.1% 

4 0 15.5%  40 6.66% 4.6% 

5 27.6% 14.7%  50 0% 5.5% 

    60 20% 27.5% 

Table 1 
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The students’ way to play is also reproduced in Figures 4a and 4b, and juxtaposed with the 

mixed Nash equilibria in Figures 5a and 5b; the probabilities are replaced by an equivalent 

number of students.  

The students’ distributions do not fit with the mixed NE distributions. The main difference 

concerns low bids different from 0. The probabilities assigned to low bids (1 and 2 in Game 1, 

10 and 20 in Game 2) by the NE are much higher than the frequencies with which the students 

play these bids. Whereas bids 1 and 2 in Game 1 are played with probability 34.9% in the NE, 

they are only played with probability 11.2% by the students. And whereas the low bids 10 and 

20 in Game 2 are played with probability 34.54% in the NE, they are only played with 

probability 8.3% by the students. Students fear that if they play low bids different from 0, the 

opponent bids more and makes money whereas they lose their money. In some way, bidding a 

low amount is seen as a way to encourage the opponent to bid more, even if there is no 

sequentiality in this game. 

 

 
Figure 4a     Figure 5a 

 

 
Figure 4b          Figure 5b  

44

11
2

24

18 17

0 1 2 3 4 5

n
u

m
b

e
r 

o
sf

 s
tu

d
e

n
ts

bids

Game 1: V=3 M=5

Students' way to play

33

22

18

11
0

32

0 1 2 3 4 5

e
q

u
iv

al
e

n
t 

n
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

bids

Game 1: V=3  M=5  Nash 

equilibrium

36

6 3

23

5 6

30

0 10 20 30 40 50 60

n
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

bids

Game 2: V=30 M=60 (bids from tens 

to tens)  Students' way to play

30

22

16
12

7 0

22

0 10 20 30 40 50 60

e
q

u
iv

al
e

n
t 

n
u

m
b

e
r 

o
f 

st
u

d
e

n
ts

bids

Game 2: V=30 M=60 

Nash equilibrium



11 
 

 

Another difference concerns the probability assigned to the value V of the prize (3 in Game 1, 

30 in Game 2). Students bid this value much more often than in the NE (20.7% versus 9.2% in 

the first game, 21.1% versus 11.1% in the second game).  

We can also observe that the students more often bid 0 than in the NE (37.9% versus 28.3% in 

Game 1, 33% versus 27.7% in Game 2), though the difference in the probabilities in the 

second game is less significant. 

The way students play bids higher than V is different in the two games. Whereas 30.2% of 

them play both bids 4 and 5 almost with the same probabilities in Game 1 (in contrast to the 

NE that assigns probability 0 to bid 4 and 27.6% to bid 5), students, like the NE, assign a 

small probability to bids 40 and 50 (10.1% for the students, 6.66% in the NE) in Game 2, and 

a large probability to bid 60 (27.5% for the students, 20% in the NE). 

By putting these observations together, it is obvious that the students’ probabilities are 

different from the Nash equilibrium distribution, and - this matters more- that the shapes of 

the students’ distributions are quite different from the mixed NE one. 

Well, in our opinion, these differences simply highlight that the philosophy of a mixed NE 

doesn’t fit with the way to play of real players. Let us justify our point of view by turning to 

best reply matching.  

 

4. Philosophy of mixed Nash equilibria and philosophy of best reply matching. 

 

We first recall Kosfeld et al.’s (2002) Best Reply Matching (BRM) equilibrium.  

 

Definition 1 (Kosfeld & al. 2002): Normal form Best Reply Matching equilibrium 

Let G=(N, Si, i , iN)  be a game in normal form(N is the set of players, Si is player i’s set 

of pure strategies). A mixed strategy p is a BRM equilibrium if for every player iN and for 

every pure strategy siSi : 

pi(si)= 


 )(1 )(

1

iii sBs ii sBCard
p-i(s-i) 

where Bi(s-i) is the set of player i’s best replies to the strategies s-i played by the other agents. 

 

In a BRM equilibrium, the probability assigned to a pure strategy by player i is linked to the 

probability assigned to the opponents’ strategies to which this pure strategy is a best reply:  if 

player i' s opponents play s-i with probability  p-i(s-i), and if the set of player i's best responses 

to s-i is the subset of pure strategies Bi(s-i), then each strategy of this subset is played with the 

probability p-i(s-i) divided by the cardinal of Bi(s-i).  

This criterion builds on the notion of rationalizability developed by Bernheim (1984) and 

Pearce (1984), according to which a strategy si is rationalizable if it is a best response to at 

least one profile s-i played by the other players.  Kosfeld et al. (2002) observe that, if the 

opponents often play s-i, then si often becomes the best response, so should often be played, 

for actions and responses to be consistent. In other words, if, for example A1 –respectively B1- 

is player 1’s best response to player 2’s action A2 –respectively B2-, and A2 –respectively B2- 
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is player 2’s best response to player 1’s action A1 –respectively B1-, then a BRM equilibrium 

can lead player 1 to play A1 and B1 with probabilities 1/3 and 2/3, and player 2 to play A2 and 

B2 with the same probabilities 1/3 and 2/3. So player 1 plays A1 as often as player 2 plays the 

action A2 to which A1 is the best response, and she plays B1 as often as player 2 plays the 

action B2 to which B1 is the best response. And vice versa for player 2. Kosfeld et al., in some 

way, rationalize the probabilities of a player by the other players’ probabilities. And this kind 

of behavior is far from a mixed NE behavior.  

 

Let us illustrate the concepts on the normal form game in matrix 3. 

  Player 2  

  A2 B2 

Player 1 A1 ( 2.9 , 1) ( 5 , 5 ) 

 B1 ( 3 , 3 ) ( 1 , 2.9) 

Matrix 3 

 

We call p and 1-p, respectively q and 1-q, the probabilities assigned to A1 and B1, respectively 

to A2 and B2. The mixed NE leads to equalize the payoffs obtained with A1 and B1, otherwise 

player 1 would only play the action leading to the highest payoff. So we get 2.9q+5(1-q)= 

3q+1-q, i.e. q=40/41, i.e. we get a condition on player 2’s probabilities. We also have to 

equalize the payoffs obtained by player 2 with A2 and B2, p+3(1-p)= 5p+2.9(1-p), so we get 

p=1/41, a condition on player 1’s probabilities. This may seem quite strange. First, a player’s 

probabilities have no impact on his own payoff. They only ensure that the opponent is 

indifferent between his actions in the NE support. So, when player 1 plays A1 with probability 

1/41 and B1 with probability 40/41, these probabilities mean nothing for herself. She could 

play A1 and B1 each with probability ½, given that, due to player 2’s probabilities, she is 

indifferent between A1 and B1. Second, if she chooses the probabilities 1/41 and 40/41, it is 

only to help player 2 to become indifferent between his two actions. This namely explains 

why she plays B1 with a probability close to 1, despite B1 is not interesting for her when 

considering the range of payoffs (2.9 and 5 for A1, 3 and 1 for B1). As a matter of facts, she 

plays B1 with a probability close to 1 and A1 with a probability close to 0 because player 2’s 

payoffs- when he plays A2 and B2- are close when she plays B1 (he gets 3 with A2 and 2.9 

with B2) whereas they are quite different when she plays A1 (he gets 1 with A2 and 5 with B2). 

And vice versa for player 2. 

Well, we simply think that real players do not choose probabilities in this way. In real life, 

when somebody plays A with probability 1/41 and B with probability 40/41, it is because she 

thinks that B is much more often her best response than A, 40 times more often, which 

justifies that she plays B with probability 40/41. In real life, probabilities –at least often- 

simply translate the frequency with which an action is seen to be a best response, and, as a 

consequence, the frequency with which we are ready to play it. And this is what is done in the 

BRM equilibrium. Let us define it for the game in matrix 3: 

A1 is player 1’s best response to B2, so has to be played as often as B2, i.e. p = 1-q 

B1 is player 1’s best response to A2, so has to be played as often as A2, i.e. 1-p = q 

A2 is player 2’s best response to B1, so has to be played as often as B1, i.e. q = 1-p 

B2 is player 2’s best response to A1, so has to be played as often as A1, i.e. 1-q = p 
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And 0≤p ≤1, 0 ≤ q ≤1. So, for the studied game, we get an infinite number of BRM equilibria, 

characterized by the fact that player 1 plays A as often as player 2 plays B, and plays B as 

often as player 2 plays A.  

Let us make 3 observations: 

- First, the BRM way to define probabilities allows to cope with the asymmetric pure 

strategy NE. Given that A1 is the best response to B2 and B2 is the best response to A1, the 

BRM equilibrium allows player 1 to play A1 with probability 1 and player 2 to play B2 

with probability 1, given that A1 is player 1’s best response as often as player 2 plays B2 

and vice versa. A similar reasoning holds for the profile (B1 , A2). So, in this game, the 

pure strategy NE are also BRM equilibria. 

- Second, it is important to note that the expected payoff in the mixed NE (here 121/41) may 

be higher or lower than the expected payoff in the BRM equilibrium. In the studied game, 

as long as we choose p between 1/41 and 20/41, the players get more with the NE than 

with the BRM equilibrium, but for p<1/41 and p>20/41 the players get more with the BRM 

equilibrium. What matters is the philosophy leading to the payoffs. In the mixed NE, each 

player wants to get the same payoff with each of the played strategies (i.e. the strategies in 

the support of the mixed NE). This is not convincing (even if mathematically logical). 

Especially if the support of the mixed NE is the whole set of pure strategies, have you ever 

seen a player who says: “let’s try to put probabilities on my strategies so that the opponents 

get the same payoff with all their pure strategies”? 2 

Real behavior is less sophisticated (and less strange): players simply try to behave at best. 

In the BRM equilibrium, people choose an action with a high probability if it is the best 

response to other actions, which are also played with a high probability.  Players simply try 

to be consistent with the way other players are playing, adapting their probability to play 

an action to the probabilities with which the others play the strategies to which this action 

is a best reply. This way to deal with probabilities has no link with the mixed NE way to 

deal with probabilities.  

- Third, let us observe that, in the studied game, the mixed NE is also a BRM equilibrium 

(because p=1-q=1/41) - most often mixed NE are not BRM equilibria. Yet the justification 

of this special BRM equilibrium is not the mixed NE one. Whereas player 1 and player 2, 

in the NE, calculate the probabilities by equalizing for both players the payoffs obtained 

with A and B, in the BRM equilibrium, player 1 plays A with probability 1/41 because it is 

her best response to B2 which is also played with probability 1/41 and she plays B1 with 

probability 40/41 because it is her best response to A2, which is played with the same 

probability 40/41 (and the symmetric explanation holds for player 2). So both actions are 

played because each is a best response, and not because they lead to the same payoff. In 

some degree, even when the BRM equilibrium is a mixed equilibrium, players reason in a 

pure strategy way: in our example the aim is to play A when the other plays B, and to play 

B when he plays A. This is not the case in a mixed NE, where each player best reacts to the 

mixed strategies of the others. 

 

                                                           
2 We don’t say that this way of doing is always meaningless. If, by doing so, the payoff of the opponent is 

always low regardless of what he plays, and if the game is a zero sum game (so a player is better off when his 

opponent is worse off) then behaving in such a way may be strategically meaningful. But, in a usual game like 

the one in matrix 3, this behaviour is quite strange. 
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Let us add a generalization of the BRM concept. When there are several best replies to a 

profile s-i, we think that there is no reason to demand that each best reply is played with the 

same probability, so we think that is reasonable to generalize Kosfeld et al.’s criterion by 

allowing to play the different best replies with different probabilities as follows: 

Definition 2 (Umbhauer 2007): Generalized Best Reply Matching equilibrium  

 Let G=(N, Si, i , iN) be a game in normal form. A mixed strategy p is a Generalized BRM  

(GBRM) equilibrium if for every player iN  and for every pure strategy siSi : 

pi(si) = 


  )(1
iii sBs

is p-i(s-i) 

with  
is  [0, 1] for any si belonging to Bi(s-i) and ∑ 𝛿𝑠𝑖

= 1𝑠𝑖∈𝐵𝑖(𝑠−𝑖)                . 

 

Pure Nash equilibria, by contrast to mixed ones, are automatically GBRM equilibria (out of 

Umbhauer 2016): if player 1 plays A and player 2 plays B in a pure strategy Nash equilibrium 

–so they play the actions with probability 1-, player 1 plays A as often as the opponent plays 

the action B to which A is a –perhaps among several- best reply, and player 2 plays B as often 

as player 1 plays the action A to which B is a –perhaps among several- best reply. 

 

5. Best reply matching and generalized best reply matching in second price all-pay 

auctions, real way to play and focal points 

 

We look for the BRM equilibria in both games studied by the students. We first work with 

Game 13. To do so, we write the best reply matrix 4a where bi means that player i’s action is a 

best reply to the opponent’s action, i=1,2.  

 

     Player 2   

   q0 q1 q2 q3 q4 q5 

   0 1 2 3 4 5 

 p0  0  b2 b2 b1b2 b1b2 b1b2 

 p1  1 b1  b2 b2 b2 b2 

Pl.1 p2  2 b1  b1  b2 b2 b2 

 p3  3 b1b2 b1 b1  b2 b2 

 p4  4 b1b2 b1 b1 b1   

 p5  5 b1b2 b1 b1 b1   

Matrix4a 

 

For example, the bold b1 in italics means that bid 4 is one of player 1’s best replies to player 

2’s bid 1, and the bold b2 in italics means that bid 3 is one of player 2’s best replies to player 

1’s bid 2.  

In all the studied games, we write pi, respectively qi, the probability assigned to bid i by 

player 1, respectively by player 2 : in Game 1, i goes from 0 to 5.    

So we get the system of equations: 

                                                           
3 The results linked to the Game 1 are partly out of Umbhauer 2016. 

     Player 2    

   q0 q10 q20 q30 q40 q50 q60 

   0 10 20 30 40 50 60 

 p0  0  b2 b2 b1b2 b1b2 b1b2 b1b2 

 p10  10 b1  b2 b2 b2 b2 b2 

Pl.1 p20  20 b1  b1  b2 b2 b2 b2 

 p30  30 b1b2 b1 b1  b2 b2 b2 

 p40  40 b1b2 b1 b1 b1    

 p50  50 b1b2 b1 b1 b1    

 p60 60 b1b2 b1 b1 b1    

   Matrix 4b 
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p0 = q3/3+q4+q5    q0 = p3/3+p4+p5 

p1 = q0/5     q1 = p0/5  

p2 = q0/5+q1/4    q2 = p0/5+p1/4 

p3 = q0/5+q1/4+q2/3   q3 = p0/5+p1/4+p2/3 

p4 = q0/5+q1/4+q2/3+q3/3  q4 = p0/5+p1/4+p2/3+p3/3 

p5 = q0/5+q1/4+q2/3+q3/3 = p4  q5 = p0/5+p1/4+p2/3+p3/3 = q4 

p0+p1+p2+p3+p4+p5 = 1   q0+q1+q2+q3+q4+q5 = 1    

The solution of this system of equations is : 

p0=q0=180/481=37.4%, p1=q1=p0/5=7.5%, p2=q2=p0/4=9.4%, p3=q3=p0/3=12.5%, p4=p5= 

q4=q5 =4p0/9=16.6% 

 

These probabilities, reproduced in table 2a are far from the Nash equilibrium ones and they fit 

much better with the students’ probabilities, except p2 (higher) and p3 (lower). This proximity 

is due to the fact that BRM exploits main facts also observed by the students, namely that bids 

1 and 2 are seldom best responses. As a matter of facts, bidding 1 and 2 seldom leads to win 

the prize (namely if the opponent bids 3, 4 or 5) and, if you don’t win, you lose money with 

these bids (so it is better to bid 0). In fact, bid 1 is a best response only if the opponent bids 0 

(and in this case, bids 2, 3, 4, 5 are also best responses), bid 2 is a best response only if the 

opponent bids 0 or 1 and in these two cases, bids 3, 4 and 5 are also best responses. By 

contrast, 0, 3, 4 and 5 are often best responses (bid 0 is the unique best response to bids 4 and 

5 and one best response to bid 3, bid 3 is a best response to bids 0, 1 and 2, bids 4 and 5 are 

best responses to bids 0, 1, 2 and 3). 

 

V=3, 

M=5  

bids 

Nash 

equilibrium 

probabilities 

Students : 

frequencies 

of the bids 

BRM 

equilibrium 

0 28.3% 37.9% 37.4% 

1 19.5% 9.5% 7.5% 

2 15.4% 1.7% 9.4% 

3 9.2% 20.7% 12.5% 

4 0 15.5% 16.6% 

5 27.6% 14.7% 16.6% 

Table 2a 

 

The BRM equilibrium in the second game, whose best reply matrix is given in matrix 4b, is 

given by: p0=q0=240/613=39.15%, p10=q10=p0/6=40/613=6.5%, p20=q20=p0/5=48/613=7.8%, 

p30=q30=p0/4= 60/613=9.8%, p40=p50=p60=q40=q50=q60=5p0/16=75/613=12.25%. 

(given the system of equations: 

p0  = q30/4+q40+q50+q60   q0  = p30/4+p40+p50+p60 

p10  = q0/6     q10  = p0/6  

p20  = q0/6+q10/5    q20  = p0/6+p10/5 

p30  = q0/6+q10/5+q20/4   q30  = p0/6+p10/5+p20/4 

p40  = q0/6+q10/5+q20/4+q30/4  q40  = p0/6+p10/5+p20/4+p30/4 

p50  = q0/6+q10/5+q20/4+q30/4 = p40 q50  = p0/6+p10/5+p20/4+p30/4 = q40 

p60  = q0/6+q10/5+q20/4+q30/4 = p40 q60  = p0/6+p10/5+p20/4+p30/4 = q40 

p0+p10+p20+p30+p40+p50+p60  = 1  q0+q10+q20+q30+q40+q50+q60  = 1)  

 

V=30,M=60 

bids  

Nash 

equilibrium 

probabilities 

Students: 

frequencies 

of the bids 

BRM 

equilibrium 

0 27.7% 33% 39.15% 

10 20.48% 5.5% 6.5% 

20 14.06% 2.8% 7.8% 

30 11.1% 21.1% 9.8% 

40 6.66% 4.6% 12.25% 

50 0% 5.5% 12.25% 

60 20% 27.5% 12.25% 

Table 2b 
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Well, this time, the BRM equilibrium is different from the NE and from the students’ 

behavior. This may be due to the fact that students, especially when the number of bids grows 

and when there are several best replies, do not play all best replies with the same probability, 

and may even choose to play only some of them, as allowed by GBRM. Focal bids may be 

preferred each time they are best replies. So, observe that bids 40, 50 and 60 are best replies to 

the bids 0, 10, 20 and 30, which explains that they are each played with the same probability 

12.5% in the BRM equilibrium.  With the GBRM concept, a player can choose to play more 

often some best responses than others, provided that the sum of the probabilities is the same, 

i.e. 12.5x3 = 37.5%. And we can observe that the sum of probabilities assigned to 40, 50 and 

60 by the students is 37.6%.   

To develop this point, let us suppose that students more focus on threshold values, i.e., in this 

game, 30 (the value of the prize), 60 (the maximal bid and budget) and 0 (the cautious bid). 

So suppose that, each time the best responses include one or several of these bids, the players 

only play these bids. For example, when player 1 bids 10, player 2 only best replies with bid 

30 and bid 60, despite bids 20, 40 and 50 are also best responses. This leads to the GBRM 

matrix 5 (consider only the b1 and b2 (underlined and not underlined), the B1 and B2 are used 

in a further study). 

      

Player 2 

   

   q0 q10 q20 q30 q40 q50 q60 

   0 10 20 30 40 50 60 

 p0  0  B2  b1b2 b1 b1 b1b2 

 p10  10 B1  B2 b2   b2 

Player1 p20  20  B1  b2   b2 

 p30  30 b1b2 b1 b1  B2 B2 b2 

 p40  40 b2   B1    

 p50 50 b2   B1    

 p60 60 b1b2 b1 b1 b1    

Matrix 5 

 

The set of equations becomes: 

p0 = q30/2+q40+q50+q60   q0 = p30/2+p40+p50+p60 

p10 = 0      q10 = 0  

p20 = 0     q20 = 0 

p30 = q0/2+q10/2+q20/2   q30 = p0/2+p10/2+p20/2 

p40 = 0     q40 = 0 

p50 = 0     q50 = 0 

p60 = q0/2+q10/2+q20/2+q30/2    q60 = p0/2+p10/2+p20/2+p30/2 

p0+p10+p20+p30+p40+p50+p60 = 1    q0 +q10+q20+q30+q40+q50+q0 = 1  

which simplifies to : 

p0 = q30/2+q60  q0 = p30/2+p60 

p30 = q0/2  q30 = p0/2 

p60 =q0/2+ q30/2  q60 = p0/2+p30/2  

p0+p30+p60 = 1  q0+q30+q60 = 1 

whose solution is p0=q0=4/9=44.4% p30=q30=p0/2=22.2%, p60=q60=3p0/4=33.3% p10=q10= 

p20=q20=p40=q40=p50=q50=0. 
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So we get a 3 peak distribution which is similar to the students’ one as regards the shape 

(highest peak on 0, second highest peak on 60 and lowest peak on 30) (see Figure 6a which 

gives the probabilities in number of students and table 3).  

 

 

 

 

 

 

 

 

We can even come closer to the students’ probabilities, by not completely excluding 10, 20, 

40 and 50 from the played best responses. So we may suppose that players, when selecting 

best responses, focus on 0, 30 and 60 but also play 10 as the closest best response to 0, 20 as 

the closest best response to 10, and 40 and 50 as best responses to 30 (we add the B1 and B2 in 

matrix 5). So we get the system of equations: 

p0  = q30/4+q40+q50+q60   q0  = p30/4+p40+p50+p60 

p10 = q0/3     q10 = p0/3  

p20 = q10/3    q20 = p10/3 

p30 = q0/3+q10/3+q20/2   q30 = p0/3+p10/3+p20/2 

p40 = q30/4 = p50    q40 = p30/4 = q50 

p60 = q0/3+q10/3+q20/2+q30/4   q60 = p0/3+p10/3+p20/2+p30/4  

p0+p10+p20+p30+p40+p50+p60 = 1  q0 +q10+q20+q30+q40+q50+q60 = 1)  

whose solution is : p0=q0=72/203=35.5%, p10=q10=24/203=11.8%, p20=q20=8/203=3.9%, 

p30=q30= 36/203=17.7%, p40=p50=q40=q50= 9/203=4.45% and p60=q60= 45/203=22.2%.  
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These values are illustrated in Figure 6b and in table 3. It derives that, without special 

assumptions, we can come close to the students’ distribution both in probabilities (see table 3) 

and in shape (see Figure 6b and Figure 5b). 

 

V=30, M=60  

      bids 

Nash equilibrium Students GBRM equilibrium 

with bids 0, 30  

and 60 

GBRM equilibrium,  

with weighted focus on  

0, 30 and 60  

0 27.7% 33% 44.5% 35.5% 

10 20.48% 5.5% 0 11.8% 

20 14.06% 2.8% 0 3.9% 

30 11.1% 21.1% 22.2% 17.7% 

40 6.66% 4.6% 0 4.45% 

50 0% 5.5% 0 4.45% 

60 20% 27.5% 33.3% 22.2% 

Table 3 

 

6. Generalized best reply matching, evolution in focal values, and a way to bring closer 

first price and second price all-pay auctions 

 

Let us be more general. We first come back to a game where students only focus on 0, V and 

M, with M ≥ V (observe that more than 4/5 of the students only play these bids in Game 2); 

observe that for any bid in [0 , M], at least one of these three bids is a best response to it. So 

we get the game in matrix 6a, and the best reply matrix 6b (‘…’ represent the other bids and 

probabilities). 

 

   Player 2   

 0 … V … M 

0 (M+V/2,  

        M+V/2) 

 (M, M+V)  (M, M+V) 

…      

Pl1V (M+V, M)  (M-V/2, 

       M-V/2) 

 (M-V, M) 

…      

M (M+V, M)  (M, M-V)  (V/2,V/2) 

Matrix 6a 

For any values of V and M, given that pi and qi, i from 1 to M-1, i≠V, are equal to 0 (given 

that the associated bids are never chosen as best responses), the GBRM equations become:   

p0 = qV/2+qM  q0 = pV/2+pM 

pV = q0/2  qV = p0/2 

pM = q0/2+qV/2  qM = p0/2+pV/2  

p0+pV+pM = 1  q0+qV+qM = 1 

It follows  p0 =q0=4/9, pV=qV=2/9, pM=qM= 3/9. 

First observe that these probabilities exploit true facts: bid 0 is more played than M because it 

is the unique best response to M (so it is played at least as much as M) but it is also one 

among the 2 best responses to V (0 and M are best responses), which explains the higher 

probability on bid 0. M is more played than V because each time V is a best response, M is a 

best response too, and M is also a best response to V (this explains that M is played with a 

     Player 2   

   q0 … qV … qM 

   0  … V … M 

 p0  0   b1b2 b1 b1b2 

 … …   b2  b2 

Pl1 pV  V b1b2 b1   b2 

 … … b2     

 pM M b1b2 b1 b1   

          Matrix 6b 
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higher probability than V). These facts may easily be observed by a real player, so he can play 

in accordance with the hierarchy p0 > pM > pV.   

Second observe that the probabilities do not depend on the values of V and M (what matters is 

that M+V>M+V/2, M>M-V/2, M>V/2 and M>M-V, which is true for all values of M and V, 

with M ≥ V/2). In contrast to the mixed NE concept, the BRM equilibrium is an ordinal 

concept. It takes into account differences in payoffs but not the value of the payoffs. This is 

not typical to BRM given that other criteria (like, for example, the pure strategy Nash 

equilibrium) also only focus on differences in payoffs. But unfortunately, this may imply bad 

payoffs. As a matter of facts, the GBRM equilibrium net payoff4 (payoff minus M) is equal 

to: 4/9x4V/18+2/9(4V/9-V/9-3V/9)+3/9(4V/9+3(V/2-M)/9) = 24.5V/81-M/9. It follows that 

the net payoff is negative as soon as M>24.5V/9. This flaw doesn’t appear with the mixed 

NE, which is a cardinal concept that equalizes the payoffs obtained with the bids in the 

equilibrium support. Given that bid 0 is in the mixed NE support, and given that bid 0 leads to 

a positive net payoff, the mixed NE net payoff is always positive, regardless of the values of 

M and V. 

Yet this doesn’t mean that GBRM is necessarily dangerous. Up to now, we focused on the 

values 0, V and M just to come close to our students in the second experiment, who seemed to 

prefer 0, V and M as best responses. Observe that our students did not lose money even if 

their net payoff was barely positive (their payoff is 60.026>60), namely because M/V was not 

too large: in the experiment, M=2V<24.5V/9. So it is possible that the students most focused 

on 0, V=30 and M=60, because they estimated that the possible loss with M was not large 

enough to prevent them from bidding M. In other terms, M was not felt as being risky. It may 

be that the students would have behaved differently for other values of V, M, and the ratio 

M/V. It may be that there exists a kind of bifurcation in the focal bids chosen as best replies 

when the values of M, V and M/V change and exceed threshold values. For example, let us 

suppose, as allowed by GBRM, that, if M/V becomes large, players only best respond with 0 

and V; this is possible because either 0 or V belong to the best responses to each possible bid 

(0 is a best response to all bids higher or equal to V, and V is a best response to each bid 

lower than V), as illustrated in matrix 5 (see the underlined b1 and b2). In that case, the system 

of GBRM equations, after deleting all the null probabilities, reduces to q0= pV and qV=p0, 

each player bidding 0 as often as the opponent bids V and vice versa. It is interesting to note 

that the symmetric GBRM equilibrium behaviour, which consists to bid 0 and V with 

probability ½, leads to a net payoff V/4, which is never negative and can be much larger than 

the mixed NE net payoff (for V=30 and M=60, V/4=7.5 whereas the mixed NE net payoff is 

only 4.157). 

 

To summarize, if real players, like the students in our experiments, behave in accordance with 

GBRM, that allows to combine BRM and a focus on some focal actions, then it becomes 

crucial to know if players sufficiently promptly bifurcate in their choice of best replies to 

avoid losing money.  For example, they do not lose money by focusing on 0, V and M as best 

responses, as long as M/V <24.5/9, but they lose money if M/V > 24.5/9. So, if they switch 

                                                           
4 By ‘net payoff’ we mean ‘expected net payoff’, both for BRM (or GBRM) equilibria and mixed Nash 

equilibria. For ease of notations, we will proceed so throughout the paper. 
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from a game where M/V=2 to a game where M/V=4, to avoid losing money they can switch 

from the focal values 0, V and M, to the focal values 0 and V. But usually a change in focal 

values requires time; so players may lose money before changing these values. Another way 

to cope with this result is to say that second price all-pay auction games should be regulated. 

A regulatory authority could set an upper bound for M/V, to avoid that players lose a lot of 

money. This upper bound should take into account the following remark. In an auction game, 

there is a – sometimes  forgotten - third player: the organizer of the auction, who offers the 

prize and gets the money. In fact the true game can be seen as a pure conflict game with, one 

the one side, the organizer, on the other side the two players. The players get V and pay a total 

amount K, the organizer gets K and loses V. So a fair equilibrium should be one where the net 

payoff of each player is 0, or at least close to 0. So, if players adopt a behaviour close to the 

one above, regulating M could lead to set M=2.5V. 

 

GBRM yields other interesting results. One among them is that GBRM allows second price 

all-pay auctions to come close to first price all-pay auctions. So, let us suppose that, perhaps 

because M is large in comparison to V (M>>24.5V/9) and because the players fear the 

behaviour of the opponent, they always only choose, as a best response, the lowest possible 

one : so, in the second price all-pay auction, bid i+1 is chosen as the best response to bid i, i 

from 0 to V-1, and bid 0 is chosen as the best response to all bids higher or equal to V. Given 

that pi=qi=0, for i from V+1 to M, the GBRM equations become: 

p0=qV       q0=pV 

pi=qi-1  qi=pi-1       i from1 to V        ∑ pi =  ∑ qi = 1V
i=0

V
i=0  

It derives that the symmetric GBRM equilibrium assigns the same probability 1/(V+1) to each 

bid from 0 to V and a null probability to the higher bids. 

Well, the only –but crucial- difference between a first price all-pay auction and a second price 

all-pay auction is that in the first price all-pay auction each player pays his bid. So the 

structure of the best reply matrix is of course different.  

We represent the first price all-pay auction for V=30 and M=60 in matrix 7a. 

       Player 2    

    0 10 20 30 40 50 60 

  0 (75, 75) (60, 80) (60, 70) (60, 60) (60, 50) (60, 40) (60, 30) 

 10 (80, 60) (65, 65) (50, 70) (50, 60) (50, 50) (50, 40) (50, 30) 

  20 (70, 60) (70, 50) (55, 55) (40, 60) (40, 50) (40, 40) (40, 30) 

 Player 1 30 (60, 60) (60, 50) (60, 40) (45,45) (30, 50) (30, 40) (30, 30) 

  40 (50, 60)  (50, 50) (50, 40) (50, 30) (35, 35) (20, 40) (20, 30) 

  50 (40, 60) (40, 50) (40, 40) (40, 30) (40, 20) (25, 25) (10, 30) 

  60 (30, 60) (30, 50) (30, 40) (30, 30) (30, 20) (30, 10) (15,15) 

Matrix 7a 

 

We recall in matrix 7b the best reply matrix for the second price all-pay auction with V=30 

and M=60; matrix 7c is the best reply matrix for the first price all-pay auction with V=30 and 

M=60. The bold and underlined best responses are the best responses selected by our GBRM 

equilibrium. 
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We namely observe, in the first price all-pay auction, that bid i+1 is the only best response to 

bid i, i from 0 to V-2, that bid 0 is the only best reply to all bids higher or equal to V, and that 

bid 0 and bid V are the only best responses to bid V-1. So observe that, if we choose V as the 

best response to V-1, we get exactly the same GBRM equations and so the same symmetric 

GBRM equilibrium as above for this very different game. 

 

     Player 2    

   q0 q10 q20 q30 q40 q50 q60 

   0 10 20 30 40 50 60 

 p0  0  b2 b2 b1b2 b1b2 b1b2 b1b2 

 p10  10 b1  b2 b2 b2 b2 b2 

Pl.1 p20  20 b1  b1  b2 b2 b2 b2 

 p30  30 b1b2 b1 b1  b2 b2 b2 

 p40  40 b1b2 b1 b1 b1    

 p50  50 b1b2 b1 b1 b1    

 p60 60 b1b2 b1 b1 b1    

   Matrix 7b 

Even if real players, in the second price all-pay auction surely not often behave as above 

(especially if M is not too large), we find it always interesting to get some robustness, i.e. to 

get a consistent behaviour that holds in different contexts. Moreover, the obtained equilibrium 

is a very easy one, easy to learn, which is also a good thing. 

 

And what is more, it leads to a null payoff in the first price all-pay auction, and to a positive 

payoff in the second price all-pay auction. 

 

Proposition 2 

The GBRM equilibrium that assigns the probability 1/(V+1) to each bid from 0 to V leads to a 

null net payoff in the first price all-pay auction. It leads to the net payoff (V2+2V)/(6V+6) in 

the second price all-pay auction. Moreover, in the second price all-pay auction, the net payoff 

obtained with each played bid is positive. 

Proof see Appendix 4 

 

It follows from proposition 2 that, by playing this GBRM equilibrium in the second price all-

pay auction, the players play in a way that is as safe as the Nash equilibrium way, given that 

they get a positive net payoff with each played bid. And the net payoff is much larger than the 

NE one, especially if V is large. In our game, for V=30 and M=60 (isomorphic to V=3 and 

M=6 the payoffs being multiplied by 10) we get the net payoff 6.25, which is positive and 

larger than the NE net payoff. 

Let us finally observe that the above GBRM is fair in the first price all-pay auction (null net 

payoff for the players and the organizer) but to the benefit of the players in the second price 

all-pay auction.  

 

 

 

     Player 2    

   q0 q10 q20 q30 q40 q50 q60 

   0 10 20 30 40 50 60 

 p0  0  b2 b1 b1 b1 b1 b1 

 p10  10 b1  b2     

Pl.1 p20  20 b2 b1  b2    

 p30  30 b2  b1     

 p40  40 b2       

 p50  50 b2       

 p60 60 b2       

Matrix 7c 
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7. Best reply matching equilibrium for any values of V and M, evolution of payoffs and 

probabilities 

 

In sections 7 and 8, we come back to the BRM equilibrium, so we suppose that each best 

response is played with the same probability.  

Proposition 4 gives the symmetric BRM equilibrium in the second price all-pay auction game 

for any integer values V and M, M ≥ V.  

 

Proposition 3 

For M  ≥ V, the symmetric BRM equilibrium is given by: 

q0 = 
1

2+∑
1

𝑀−𝑖
𝑉−1
𝑖=0  − 

1

(𝑀−𝑉+1)2
 

qi = q0/(M-i+1),                       i from 1 to V 

qi = q0(M-V+2)/(M-V+1)2,    i from V+1 to M  

where qi is the probability to play bid i, i from 0 to M. 

It follows that:  ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1 <q0< ∑ 𝑞𝑖

𝑀
𝑖=𝑉  

Proof see Appendix 5 

 

Let us comment on this equilibrium.  

We first compare the shape of the BRM equilibrium distribution and the shape of the mixed 

(risk neutral) NE distribution. 

In the BRM equilibrium, qi is increasing in i for i from 1 to V+1, and is constant from V+1 to 

M, a result in sharp contrast with the mixed NE probabilities that are decreasing from 1 to M-

V/2 and null from M-V/2 to M (excluded). BRM clearly takes into account that a higher bid is 

more often a best reply than a lower one (different from 0), in that each bid b (different from 

0) is a best reply to all the bids lower than b, if b ≤ V, and a best reply to all bids from 0 to V 

if b is higher than V. And bid 0, in contrast to the other low bids, has a special status in that it 

is a best reply to all bids from V to M.  

Clearly, the Nash and the BRM distributions have no common points, except the fact that the 

probability to bid 0 is higher than the probabilities to bid i, i from 1 to V, both in the BRM 

equilibrium and in the NE. The strong differences and the few similarities are highlighted in 

Figures 7a and 7b, which give the BRM equilibrium and the mixed NE for V=9 and M=12.  

Taking risk aversion into account doesn’t change the fact that the NE probabilities decrease 

from bid 0 to bid 7, so do not fit with the BRM probabilities; the main impact of risk aversion 

is that the continuous NE probability to bid 12 is very small and that the probabilities5 fast 

decrease from bid 0 to bid 7 (see Figure 7c). 

Second, let us talk about payoffs. As regards the payoffs in the BRM equilibrium and in the 

mixed NE, for M not too far from V, the BRM equilibrium payoffs may be higher than the 

NE ones. For example, for V=3 and M=5, the Nash equilibrium payoff is 1589.5/293= 5.425, 

whereas the BRM payoff is 5.457 . 

                                                           
5 We here take the adjusted continues Nash equilibrium probabilities (i.e. the continues probabilities f(b)  

multiplied by (1-f(12))/ ∑ 𝑓(𝑖)7
𝑖=0 ) 
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(= 180(6.5x180+5(481-180)) + 36(8x180+5.5x36+4(481-180-36)) + 45(8x180+7x36+ 

4.5x45+3x60+3x80+3X80) + 60(8x180+7x36+6X45+3.5x60+2x80+2x80) + 80(8x180 

+7x36+6X45+5x60+2.5x80+1x80) + 80(8x180+7x36+6X45+5x60+4x80+1.5x80) /4812 = 

1262620.5/4812 = 5.457). 

 

 
Figure 7a      Figure 7b 

 
Figure 7c 

 

For V=9 and M=12, the BRM equilibrium payoff is 13.528, whereas the Nash equilibrium 

payoff is only 12.477. 

For V=30 and M=60 (and bids from tens to tens) the results are reversed: the Nash 

equilibrium payoff is 64.157 and the BRM payoff is slightly lower (24082745/6132= 64.089). 

 

Proposition 4 

We call Eg(i) the payoff obtained with bid i in the BRM equilibrium. We get: 
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Eg(i+1)-Eg(i)= Vqi/2+Vqi+1/2-∑ 𝑞𝑗
𝑀
𝑗=𝑖+1           i from 0 to M-1. 

Eg(i+1)-Eg(i) is increasing in i, i from 1 to M-1. 

For M>2V, Eg(i) decreases from bid 1 to bid M-V, then increases up to M. 

Proof see Appendix 6 

 

It derives from proposition 4 that the general form of the payoff function goes as follows. 

Most often Eg(1)>Eg(0) due to the fact that Vq0/2+Vq1/2-∑ qj
M
j=1  >0  (because of the large 

value of q0). Then, generally, at least if M is not too close to V, the payoff function decreases 

(due to the fact that Vq1/2+Vq2/2-∑ qj
M
j=2  < 0) for a while; and, when Eg(i+1)-Eg(i) becomes 

positive, the payoff function increases up to bid M. We represent the (net) payoff function for 

V=9 and M=12 in Figure 8. 

Let us comment on these payoffs. If we compare the payoffs in Figure 8 and the probabilities 

assigned to the bids in Figure 7a, we may feel uncomfortable in that the evolution of the 

payoffs doesn’t follow the evolution of the probabilities. For example, q1 is the smallest 

probability but bid 1 yields a better net payoff than many other bids; and qi increases from 1 

to 7 whereas the net payoffs decrease in the same time. Yet let us first observe that the player, 

regardless of his chosen bid, never gets a negative net payoff by playing in this way and that 

he always gets a net payoff which is higher that the NE net payoff. So, his lowest net payoff, 

obtained for bid 7, is equal to 0.704 which is higher than 0 and higher than the Nash 

equilibrium net payoff 0.477. So, of course, the BRM equilibrium is not stabilized as regards 

the Nash logic (the only best reply to the above payoff profile is to bid 12), but, on the one 

hand, it leads to a higher payoff than the NE and, on the other hand, it is consistent in another 

way: the probability of a bid b is the probability of the bids to which b is a best response 

(divided by the number of best responses). This justifies the low probability on bid 1: bid 1 is 

only a best reply to bid 0, and, in that case, all the bids from 2 to 12 are also best replies.   

 

 
Figure 8: the BRM net payoffs are given by the full curve whereas the (risk neutral) NE net 

payoffs are given by the dashed line. 
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Third, Figures 7a and 7b highlight that it is difficult to speak about overbidding or 

underbidding, when comparing BRM behaviour and Nash behaviour, because the structure of 

behaviours is completely different. The only thing we can say is that, with BRM, for M>2V, 

bids higher than the value of the prize focus more probability than the bids from 1 to V. As a 

matter of fact, given that qi=qV +qV/(M-V+1),   for i from V+1 to M , we get 

∑ qi
V
i=1  <VqV < ∑ qi

M
i=V+1  = (M-V)qV+(M-V)qV/(M-V+1)  

because (M-2V)qV+(M-V)qV/(M-V+1) > 0   

 

Fourth, one can observe that weak dominance has no impact in the BRM equilibrium, in that 

all the bids from V+1 to M are best responses to the same bids (from 0 to V). This isn’t 

shocking given that the pure strategy Nash equilibria of the game also lead one player to bid 0 

and the other player to bid any bid in [V, M] (for M ≥ V).  

 

Fifth, let us draw attention to the weight assigned to bid 0. Due to the special status of bid 0     

-  bid 0 is the unique best reply to all the bids from V+1 to M, and (only) one best reply to V -, 

it immediately follows that  that  ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1   <q0< ∑ 𝑞𝑖

𝑀
𝑖=𝑉  . So, at least for M>2V,  less  than 

1/3 of the probability is assigned to the bids from 1 to V, and the remaining probability is 

almost equally shared among bid 0 on the one hand, and the bids from V+1 to M on the other 

hand. So 0 is a mode of the distribution (we could say that there is a kind of mass point on 0). 

This remark generalizes as follows: 

 

Proposition 5 

The BRM equilibrium, for M ≥ V, assigns to bid 0 a higher probability than the mixed (risk 

neutral) NE, as soon as V ≥ 4. 

Proof see Appendix 7 

 

This result doesn’t hold for the risk averse Nash equilibrium which also assigns high values to 

low bids (close to 0.632 for bids between 0 and 1 when V is large). But the BRM probabilities 

do not better converge to the risk averse Nash equilibrium probabilities: given that ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1   

<q0< ∑ qi
M
i=V , in the BRM equilibrium, q0 is lower than ½ and close to ∑ 𝑞𝑖

𝑀
𝑖=𝑉 , something 

which isn’t true in the risk averse Nash equilibrium. 

 

8. Best reply matching equilibrium and money losses 

 

We now only focus on the BRM equilibrium and the risk neutral Nash equilibrium. 

We first give a few additional results for two special values of the ratio M/V, M/V=2 and 

M/V=1. 

 

Proposition 6 

For M=2V and V large, q0≃1/(2+ln(2))=0.371, ∑ 𝑞𝑖
𝑀
𝑖=𝑉 ≃0,371 and ∑ 𝑞𝑖

𝑉−1
𝑖=1 ≃0.258. 

Proof see Appendix 8 
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Let us compare these values with the NE ones. In the mixed NE, which goes to the NE in the 

continuous game, we have: 

 ∫
e

−
x
V

V
dx

M−V/2

V
 +e1/2-M/V = [-e-x/V]V

3V/2+e-3/2 = e-1 = 0.368 

So we get almost the same weight on the bids from V to M, but not distributed in the same 

way. In the NE, M (=2V) is played with the probability e-3/2= 0.223 and the weight (0.368-

0.223=) 0.146 is shared among the bids from V to M-V/2= 3V/2 in a decreasing way, the bids 

from 3V/2 to 2V (excluded) being played with probability 0. 

And the remaining probability (1-0.368)= 0.632 is shared among the bids from 0 to V in a 

decreasing way but without mass point on 0. 

 

Proposition 7 

For M=V, q0=qM≃1/(1+ln(V)+γ+1/(2V)) where γ is Euler’s constant 0.577, and  

qi=1/[(1+ln(V)+γ+1/(2V))(V-i+1)],  i from 1 to V 

Proof see Appendix 8 

 

Contrary to the case M=2V and V large, where bid 0 on the one hand, the set of bids from V 

to M on the other hand, are each played with a probability close to 0.371, we observe that, for 

M=V, bid 0 and the set of bids from V to M (which reduces to the bid V), are each played 

with the probability 1/(1+ln(V) +γ+1/(2V)), which goes to 0 for V large. Yet this isn’t strange, 

in that M=V is a special case. If M=V, bid 0 is the best reply to only one bid, M (=V), so is 

played as often as M is played (that is why qM=q0). M is the bid that is most often a best reply 

(it is a best reply to all other bids), so it is played with the highest probability, but the other 

bids are also often best replies (each bid is a best reply to all bids lower than it); for example, 

M-1 is a best reply to all bids except M-1 and M. This explains that the other bids also focus 

high probabilities, which explains that 0 and M are played with a probability decreasing in V. 

Yet observe that this probability decreases slowly (for V= 200, M and 0 are still each played 

with probability 0.145 (so the other 199 bids share the probability 0.71), for V=10000, 0 and 

M still focus 18.5% of the probability).  

 

Now we turn to the possible waste of money the BRM equilibrium may lead to, when M 

becomes large. More precisely, we focus on second price all-pay auction games with a very 

large budget (M→ꝏ) compared to V (M/V →ꝏ).  

In that case q0 goes to ½, and all the other probabilities go to 0 (but are still increasing in i 

from 1 to V+1 and constant from V+1 to M), because ∑ qi
V
i=1 <VqV=Vq0/(M-V+1)→0 and 

∑ qi
M
i=V+1 = q0 (M-V+2)(M-V)/(M-V+1)2 q0 , so q0 and  ∑ qi 

M
i=V+1 go to ½. 

It derives that, when M is large, the BRM probabilities are shared on bid 0 (probability ½) and 

homogenously shared on the set of bids from V+1 to M (probability ½ on this set). We have a 

kind of bimodal distribution, ½ on bid 0 and ½ on a set (each bid in the set being played with 

the same probability).  

Observe that this result is close to the pure strategy Nash equilibrium spirit (for each player 

bidding 0, there is a player bidding i, with i higher than V), and quite far from the mixed NE 
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(with no mass point on any bid and decreasing probabilities on [0, +∞[ (probability (1/V)db 

on 0)). 

Yet this behaviour leads to a negative net payoff. 

 

Proposition 8 

For very large values of M, M large in comparison to V (M/V→ꝏ, V is a constant), the mean 

loss of a player, at the BRM equilibrium, is equal to 1/12th of his budget M. The main loss is 

obtained for the bid M-V: the player loses 1/4th of M. 

Proof see Appendix 9 

 

So, for large values of M, a player may often suffer from the winner’s curse. Playing high 

bids leads him to often win the prize, but he pays too much given that he often wins against 

players who bid too much, leading him to lose up to 1/4th of his budget M. And in average, he 

loses 1/12th of M, which is a huge amount of money. This leads again to our previous remark 

on regulation. The above result is established for V constant and M going to infinity, i.e. for 

very large ratios M/V. Well, to avoid a huge waste of money, it may be necessary to limit the 

ratio M/V. This is all the more necessary that the wasted money by the two players (2M/12) is 

not wasted for everybody: it is gotten by the organizer, and this of course seems unfair.  

 

9. Concluding remarks 

 

In this paper we draw attention to the real behaviour in second price all-pay auctions. This 

behaviour seems to better fit with best reply matching and generalized best reply matching 

than with the mixed Nash equilibrium.  

We established that, by contrast to the mixed Nash behaviour, that never leads to win or lose 

money, a best reply matching (or generalized best reply) matching behaviour can lead to lose 

or get a huge amount of money. With best reply matching, when M and M/V become large, 

players lose 1/12th of their budget, and even up to 1/4th of the budget with some bids. With 

generalized best reply matching, that allows to combine best reply matching and focal points, 

all depends on the chosen focal points. We established for example that, if the bidders always 

focus on the lowest possible best response, they get a net payoff close to V/6 (when V is 

large). And if they only focus on 0 or V as best responses, each player gets a net payoff V/4, 

even if M/V is large. 

So it is important to conclude that players can get or lose money, much more than in the Nash 

equilibrium, according to the best responses they focus on. We namely highlighted in the 

paper that if M/V becomes larger than a given threshold, then players should delete M from 

their focal values, something which may be difficult given the inertia linked to focal points.  

Well, by contrast to continuous Nash equilibria that lead to a null net payoff, best reply 

matching and generalized best reply matching most often lead to unfair equilibria where either 

the players are making money, either the organizer is making money. And this is not 

necessarily a bad thing, first because it simply translates real behaviour, second because the 

winner or the loser is not always on the same side: the players and the organizer can win or 

lose. Yet the possible losses of the players advocate for some regulation of the second price 



28 
 

all-pay auctions: so M=2.5V seems to be a good way to limit bids, in that, for M=2.5V, a 

natural focal behaviour combined to best reply matching does not lead the players to lose 

money, without allowing them to get high payoffs.  

Yet let us make two last remarks. First observe that the players’ losses of money we talked 

about  (1/12th of M, 1/4th of M) are linked to M, whereas the players’ gains of money are 

linked to V (V/6, V/4). This leads us to the second remark. There is a difference between the 

existence of a limit budget, even if it goes to ꝏ, and the non-existence of a limit budget. To 

establish the result in proposition 8, we need the existence of M. In addition, for M to be a 

focal point, M has to exist. And we have established that if players focuses on best responses 

lower or equal to V, they usually make money. So perhaps a good way to help the players is 

to delete M, so to set no limits for the bids. May be that the main role of M, which a priori 

protects the players (by forbidding them to bid too much), is to protect the organizer. That’s 

an open question. 
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Appendix 1 Proof of result 1 (out of Umbhauer 2016) 

All bids between M-V/2 and M are weakly dominated by M (obvious result), so it is 

conjectured that the Nash equilibrium strategy is a density function f(.) on [0 ,  M-V/2] with a 

mass point on M.  

Call f2(.) player 2’s equilibrium strategy. Suppose that player 1 plays b. She wins the auction 

each time player 2 bids less than b. So her (expected) payoff  Eg(b)is equal to: 

Eg(b) = M+∫ (V − x)f2(x)dx
b

0
− b(∫ f2(x)dx + f2(M))

M−V/2

b
 

We check that a player gets the same payoff with M and M-V/2, regardless of the opponents’ 

equilibrium distribution.  

Eg(M) =  M+∫ (V − x)f2(x)dx
M−V/2

0
+ (

V

2
− M) f2(M) = Eg(M-V/2) 

Eg(b) has to be constant for each b in [0, M-V/2] ⋃ {M}. So Eg’(b) = 0 for b in [0, M-V/2] . 

We get (V-b)f2(b)-F2(M-V/2)+F2(b)-f2(M)+bf2(b) = 0    

where F2(.) is the cumulative distribution of the density function f2(.).  

By construction f2(M) = 1-F2(M-V/2), so we get  the differential equation Vf2(b)-1+F2(b) = 0 

whose solution is  F2(b) = 1+Ke-b/V where K is a constant determined as follows: 

F2(0) = 0 because there is no mass point on 0, so 1+K = 0, i.e. K = -1. 

It follows F2(b) = 1- e-b/V  for b in [0, M-V/2],  f2(M) = 1-F2(M-V/2) = e1/2-M/V (<1) ,  

f2(b) = e-b/V/V for b in [0, M-V/2]  (and f2(b) = 0 for b in ]M-V/2,M[ ). 

By symmetry, we get f1(b) = e-b/V/V for b in [0, M-V/2],  f1(M) = 1-F1(M-V/2) = e1/2-M/V (and 

f1(b) = 0 for b in ]M-V/2,M[ ). 

Given that Eg(0) is equal to M, given that bid 0 is played at equilibrium, and given that a 

player gets the same payoff with each played bid, each players gets the (expected) payoff M, 

hence a net payoff equal to 0 at equilibrium. 

 

Appendix 2   Proof of the Corollary of result 1 

If there is no limit budget, player 1’s payoff when she plays b is: 

Eg(b) = M+∫ (V − x)f2(x)dx
b

0
− b(∫ f2(x)dx

+∞

b
 

Eg(b) has to be constant for each b in [0, +∞] . So Eg’(b) = 0 for b in [0, +∞[ . 

We get (V-b)f2(b) –(1-F2(b))+bf2(b) = 0    

i.e.: Vf2(b)-1 +F2(b) = 0. 

So we get the solution f2(b) = e-b/V/V for b in [0, +∞[. By symmetry, we get f1(b) = e-b/V/V for 

b in [0, +∞[.   

 

Appendix 3 Proof of proposition 1 

All bids  between M-V/2 and M are still weakly dominated by M (nothing changes as regards 

the way the players get the prize and the amount they pay), so it is again conjectured that the 

Nash equilibrium strategy is a density function f(.) on [0 ,  M-V/2] with a mass point on M. 

So we start as in Appendix 1, but Eg(b) now becomes:  

Eg(b) = ∫ (e−rM − e−r(M+V−x))f2(x)dx
b

0
+ (e−rM − e−r(M−b))(∫ f2(x)dx + f2(M))

M−V/2

b
 

It immediately follows that a player gets the same payoff with M and M-V/2, regardless of the 

opponents’ equilibrium distribution.  
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Eg(b) has to be constant for each b in [0 , M-V/2] ⋃ {M}. So Eg’(b) = 0 for b in [0 , M-V/2] . 

We get (e-rM-e-r(M+V-b))f2(b)- re-r(M-b))(F2(M-V/2)-F2(b)+f2(M))-(e-rM-e-r(M-b))f2(b) = 0  

i.e     f2(b)(1-e-rV)+rF2(b)-r = 0    

The solution of this differential equation is: F2(b) = 1 − e
−

rb

1−e−rV so f2(b) =  
re 

−rb

1−e−rV

1−e−rV   for b in 

[0, M-V/2] and M is a mass point played with probability  f2(M) = 1-F2(M-V/2) = e
−

r(M−
V
2

)

1−e−rV  

(and f2(b) = 0 for b in ]M-V/2 , M[ ). 

By symmetry, we get f1(b) = 
re 

−rb

1−e−rV

1−e−rV
 for b in[0 , M-V/2],  f1(M) = e

−
r(M−

V
2

)

1−e−rV and f1(b) = 0 for b 

in ]M-V/2 , M[. 

So we set f(M) = e
−

r(M−
V
2

)

1−e−rV. We get f’r(M) = (M-V/2)
(−1+e−rV(1+rV))

(1−e−rV)2  e
−

r(M−
V
2

)

1−e−rV < 0  for any r > 0.  

It follows that f(M) decreases with risk aversion. 

 

Appendix 4 Proof of proposition 2 

We first calculate the net payoff in the first price all-pay auction. It is well-known that the 

discrete NE leads to play each bid from 0 to V-1 with probability 1/V (see for example 

Umbhauer 2016) and that the NE payoff is 0.5. 

So each bid from 0 to V-1 leads to the payoff 0.5. It follows that, in the GBRM equilibrium: 

bid 0 leads to the net payoff 0.5V/(V+1);  

bid 1 leads to the net payoff 0.5V/(V+1)-1/(V+1)   (because we have to add the payoff 

obtained by bid 1 when confronted to bid V); 

bid i leads to the net payoff 0.5V/(V+1)-i/(V+1)     i from 2 to V-1; 

bid V leads to the net payoff 0 -0.5V/(V+1). 

So the GBRM equilibrium net payoff is: 0.5V2/(V+1)2- (1+2+…+V-1)/(V+1)2 - 0.5V/(V+1)2=  

[0.5V2-0.5V(V-1)-0.5V]/(V+1)2  =  0. 

 

We now focus on the second price all-pay auction. 

 

We start by calculating the GBRM net payoff. 

Bid 0 leads to the net payoff 0.5V/(V+1). 

Bid 1 leads to the net payoff  [V+V/2-V]/(V+1). 

Bid i leads to the net payoff [∑ (V − j)i−1
j=0 +V/2-i(V-i+1)]/(V+1)     i from 2 to V. 

We get [∑ (V − j)i−1
j=0 +V/2-i(V-i+1)]/(V+1)=[V/2+i(i-1)/2]/(V+1) (for i from 1 to V). 

We show it by recurrence. It is true for i = 1 

We suppose it is true for i and we calculate: [∑ (V − j)i
j=0 +V/2-(i+1)(V-i)]/(V+1) 

We get [∑ (V − j)i
j=0 +V/2-(i+1)(V-i)]/(V+1)=  

[∑ (V − j)i−1
j=0 +(V-i)+V/2-i(V-i+1)-(V-i)+i]/(V+1)=  

[∑ (V − j)i−1
j=0 +V/2-i(V-i+1)+i]/(V+1)=[V/2+i(i-1)/2+i]/(V+1)=[V/2+i(i+1)/2]/(V+1). 

So the GBRM equilibrium net payoff becomes: 
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[0.5V(V+1)+0.5 ∑ i2V
1 -0.5 ∑ iV

1 ]/(V+1)2 = 0.5[V(V+1)+V(V+1)(2V+1)/6-0.5V(V+1)]/(V+1)2 

= 0.5V[0.5+(2V+1)/6]/(V+1) = (V2+2V)/(6(V+1)). 

 

We now show that, regardless of the played bid, the player gets a positive net payoff. This 

immediately follows from the fact that bid 0 leads to the net payoff 0.5V/(V+1) and that bid i 

leads to the net payoff  [V/2+i(i-1)/2]/(V+1) for i from 1 to V. This payoff is always positive. 

 

Appendix 5 Proof of proposition 3 

- Each bid i, i from 1 to V is a best reply to all bids j, j from 0 to i-1. 

- Each bid i, i from V+1 to M is a best reply to all bids j, j from 0 to V. 

- Bid 0 is a best reply to V and is the only best reply to bid j, j from V+1 to M. 

So, given that we look for a symmetric BRM equilibrium, we get: 

q0 = qV/(M-V+1)+∑ qV+i
M−V
i=1 . 

It immediately follows that: 

∑ qi
M
i=V+1  < q0  <  ∑ qi

M
i=V . 

We also have: 

q1 = q0/M, 

q2 = q0/M+q1/(M-1), 

qi = ∑ qj/(M − j) i−1
j=0          i from 1 to V, 

qi = ∑ qj/(M − j)V−1
j=0 +qV/(M-V+1)       i from V+1 to M. 

It follows that q1 = q0/M, 

q2 = q0/M +q0/((M-1)M) = q0/(M-1), 

q3 = q0/M +q1/(M-1)+q2/(M-2) =  q0/(M-1)+ q0/((M-1)(M-2)) = q0/(M-2). 

By recurrence, if qi = q0/(M-i+1),  

qi+1 = qi +qi/(M-i) = q0/(M-i+1)+q0/((M-i+1)(M-i)) = q0/(M-i)  for i from 1 to V-1. 

qi = q0/(M-V+1)+qV/(M-V+1) = q0/(M-V+1)+q0/(M-V+1)2 = q0(M-V+2)/(M-V+1)2 for i from 

V+1 to M 

And q0+q0/M+q0/(M-1)+…+q0/(M-V+1)+q0-q0/(M-V+1)2  = 1 

So q0(2+∑ 1/(M − i)V−1
i=0  -1/(M-V+1)2) = 1 

 

Appendix 6 Proof of proposition 4 

We have Eg(0) = M+q0V/2,    

Eg(1) = M+q0V+q1(V/2 -1)-1(1-q0-q1) =  M+q0V+q1V/2 -1(1-q0). 

More generally Eg(i) = M+∑ (V − j)qj
i−1
j=0 +qiV/2-i(1-∑ qj

i−1
j=0 ) i from 1 to M. 

It follows: Eg(i+1)-Eg(i) = (V-i)qi+qi+1V/2-qiV/2+iqi-(1-∑ qj
i
j=0 ) = Vqi/2 +Vqi+1/2-∑ qj

M
j=i+1 . 

And Eg(i+2)-Eg(i+1) = Vqi+1/2 +Vqi+2/2-∑ qj
M
j=i+2  . 

Given that qi+2 ≥ qi for i from 1 to M-2, and given that -∑ qj
M
j=i+2  > -∑ qj

M
j=i+1  for i from 0 to 

M-2, it immediately follows that Eg(i+2)-Eg(i+1) > Eg(i+1)-Eg(i) for any i from 1 to M-2. So 

Eg(i+1)-Eg(i) is increasing in i, for i from 1 to M-1. 

We get, for i from 1 to M-V-1, Eg(V+i+1)-Eg(V+i) = VqV+i/2 +VqV+i+1/2-∑ qV+j 
M−V
j=i+1 =  
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q0(M-V+2)(2V+i-M)/(M-V+1)2 given that qV+j = q0(M-V+2)/(M-V+1)2 for any i from 1 to M-

V. It follows that if M > 2V, Eg(V+i+1)-Eg(V+i) becomes positive only for i > M-2V.  

Hence Eg(j+1)-Eg(j) becomes positive only for j > M-V. 

Putting all the results together, it derives that, for M>2V, Eg(b) decreases for b from 1 to M-V 

and increases from M-V+1 to M. 

 

Appendix 7 Proof of proposition 5 

For M > 2V, we know that q0 > 1/3, so q0 is higher than the continuous NE probability 

f(0)=1/V when V ≥ 3.  

The result also holds for V ≤ M < 2V: 

q0 = 1/[2+∑ 1/(M − i)V−1
i=0 -1/(M-V+1)2] so we get q0 = 1/[2+1/M+1/(M-1)+…+1/(M-V+1)-

1/(M-V+1)2] which we approximate by 1/[2+ln(M/(M-V))+1/(2M)-1/(2(M-V))-1/(M-V+1)2] 

if M > V , by 1/(1+ln(V)+γ+1/(2V)) if M = V  (where γ is Euler’s constant 0.577) 

If M = V, 1/(1+ln(V)+γ+1/(2V)) > 1/V as soon as V ≥ 3 

If M > V, we set M = V+a with a an integer higher or equal to 1. We show that  

1/[2+ln(M/(M-V))+1/(2M)-1/(2(M-V))-1/(M-V+1)2] > 1/V 

i.e. 2+ln((V+a)/a)+0.5/(V+a)-0.5/a-1/(a+1)2 < V 

ln((V+a)/a) is decreasing in a. So we get for any V and a: 

2+ln((V+a)/a)+0.5/(V+a)-0.5/a-1/(a+1)2 < 2+ln((V+a)/a)+0.5/(V+a)  

< 2+ln((V+1))+0.25  

< V as soon as V ≥ 4. 

 

Appendix 8 proof of proposition 6 and proposition 7 

 

Proof of proposition 6 

We get ∑ qi 
V−1
i=1 = q0(1/(V+2))+1/(V+3)+…1/(2V)) which can be approximated by 

q0ln(2V/(V+1)+1/4V-1/(2V+2)), close to ln(2)q0 if V is large  . 

We also get ∑ qi
M
i=V  = q0+q0 (M-V)/(M-V+1)2 = q0(1+V/(V+1)2) close to q0 for large values of 

V. 

So we get q0 ≃ 1/(2+ln(2)) = 0.371, ∑ qi 
M
i=V ≃ 0,371 and ∑ qi 

V−1
i=1 ≃ 0.258. 

Proof of proposition 7 

For M = V, q0 = 1/(2+1/V+1/(V-1)+1/(V-2)+….1-1) ≈ 1/(1+ln(V)+γ+1/(2V)) where γ is 

Euler’s constant 0.577, given that we approximate 1+1/2+…1/V by ln(V)+γ+1/(2V). 

 

Appendix 9 proof of proposition 8 

 

First part of the proposition.  

We calculate the mean payoff for each player when M is large. We already know that, when 

M is large (say M→ꝏ) and V is a constant, then q0 goes to ½ , ∑ qi
V
i=1  goes to 0, ∑ qi

M
i=V+1  

goes to ½, which means, given that each action is played with the same probability, that qi= 

a=1/(2(M-V)) for each i from V+1 to M. 
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We look for the payoff obtained with each played bid. We forget the bids from 1 to V, given 

that they lead to a payoff which is a constant that will be multiplied by a probability (to play 

the bid) that is so small that even the sum of the payoffs obtained with these bids goes to 0 

(because each qi goes to 0 and ∑ 𝑞𝑖
𝑉
𝑖=1 =0.) For similar reasons we forget the payoff a player 

gets when he meets a player who plays a bid from 1 to V, because the sum of the payoffs is 

again close to 0. So we start by looking for the payoff obtained with bid 0, then the payoff 

obtained with bid V+i, i from 1 to M-V, and then we calculate the mean payoff.  

Net payoff obtained with bid 0 = q0V/2 = V/4. 

Net payoff obtained with bid V+1 =  

q0V+a(V/2-V-1)-(V+1)(M-V-1)a = q0V+a(V/2)- a(V+1)(M-V). 

Net payoff obtained with bid V+2 = q0V-a+a(V/2-V-2)-(V+2)(M-V-2)a =  

q0V-a+a(V/2)- a(V+2)(M-V-1). 

Net payoff obtained with bid V+i = q0V- a -….-(i-1)a+a(V/2)-a(V+i)(M-V-i+1)    i from 2 to 

M-V. 

So, for i from 1 to M-V, the net payoff with bid V+i is equal to: 

V/2-a(i-1)i/2-aV(M-V+1/2)-ia(M-2V+1)+ai2 = V/2+ai2/2-aV(M-V+1/2)-ia(M-2V+1/2).  

Now we calculate the mean net payoff, by multiplying V/4 by q0, each net payoff with bid 

V+i by a,  i =1 to M-V, and by summing these payoffs. So we get: 

V/8+a(M-V)V/2-a2(M-V)V(M-V+1/2)+a ∑ (
ai2

2
− ia (M − 2V +

1

2
)).M−V

i=1  

a ∑ (
ai2

2
− ia (M − 2V +

1

2
)) M−V

i=1 =  

a2(M-V)(M-V+1)(2M-2V+1)/12 - a2(M-V)(M-V+1)(M-2V+1/2)/2  which goes to  

2M/48-M/8 = -M/12  because a = 1/(2(M-V)) and because V and the other constants are small 

in comparison to M. 

V/8+a(M-V)V/2- a2(M-V)V(M-V+1/2) goes to V/8+V/4-V/4 because a = 1/(2(M-V)). 

So the BRM equilibrium net payoff goes to  -M/12 (given that we can forget the terms in V) 

This amounts to saying that, for M very large (in comparison to V), the player loses 1/12th of 

the budget M. 

 

Second part of the proposition, 

Given that M >> 2V, we know from proposition 4 that the lowest payoff is obtained for the 

bid M-V, i.e. the bid V+(M-2V). This net payoff is equal to: 

V/2+ai2/2-aV(M-V+1/2)-ia(M-2V+1/2) with i = M-2V and a = 1/(2(M-V)). 

So it is equal to :  V/2+a(M-2V)2/2-aV(M-V+1/2)-(M-2V)a(M-2V+1/2) which goes to -M/4 

(we can forget V and the others constants given that only M goes to infinity).  
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