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Equilibria in discrete and continuous second price all-pay auctions, 

convergence or yoyo phenomena. 

 

Gisèle Umbhauer 

BETA - University of Strasbourg   

 

Abstract 

The paper is about mixed strategy Nash equilibria in discrete second price all-pay auctions with a limit 

budget. Two players fight over a prize of value V. Each player submits a bid lower or equal to M, the 

limit budget. The prize goes to the highest bidder but both bidders pay the lowest bid. V, M and the bids 

are integers. The paper studies the convergence of the mixed Nash equilibrium probability distribution 

in the discrete auction to the mixed Nash equilibrium probability distribution in the more well-known 

continuous second price all-pay auction –or static war of attrition.  

We establish that the- expected- convergence between discrete and continuous equilibrium distributions 

is in no way automatic. Both distributions converge for V odd and large, but, for even values of V, the 

discrete distribution is quite strange and obeys a singular yoyo phenomenon: the probabilities assigned 

to two adjacent bids are quite different, one probability being much lower than the continuous one, the 

adjacent probability being much larger. So the discrete probabilities, for V even, don’t converge to the 
continuous ones. Yet there is a convergence, when turning to sums: the sums of the discrete probabilities 

of two adjacent bids converge to the sums of the continuous probabilities of the same two bids for large 

values of V.  

It is shown in the paper that the yoyo phenomenon doesn’t disappear - it is even strengthened- when 

switching to lower natural bid increments, like 0.5 or 0.1. More generally, it is shown that convergence 

is an exception rather than the rule and that it requires a special link between V, M and the bid 

increment. It follows a lack of continuity between the discrete Nash equilibria and the continuous Nash 

equilibria. 

Keywords: discrete game, continuous game, second price all-pay auction, Nash equilibrium, 

increment. 

JEL Classification: C72 - D44 

 

1. Introduction  

 

The paper is about second price all-pay auctions with a limit budget. Two players fight over a 

prize of value V. Each player submits a bid lower or equal to M, the limit budget. The prize 

goes to the highest bidder but both bidders pay the lowest bid.  

The continuous version of this game is isomorphic to the static war of attrition in continuous 

time, where each player has to choose a time t in the interval [0,1] to leave the game (1 plays 

the role of M);  staying in the game is costly (the cost increases in time) but, as soon as one 

player leaves the game, the game stops and the other gets the prize (this amounts to saying that 
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if player i bids less than player j, player j gets the prize and both pay player i’s bid) (see for 

example Hendricks, Weiss and Wilson (1988)). So the mixed symmetric Nash equilibrium of 

this game has been studied by several authors, among them Hendricks et al. (1988). 

In this paper, we are more particularly interested in the discrete version of the game, where V, 

M and the bids are integers. More specifically, we study the convergence of the mixed 

symmetric Nash equilibrium probability distribution in the discrete game to the mixed 

symmetric Nash equilibrium probability distribution in the continuous game.  

We are motivated by the fact that experiments and class-room experiments of –both first and 

second price- all-pay auctions often focus on a discrete game, but often compare the players’ 
behaviour to the mixed equilibrium of the continuous game. For example Hörisch & Kirchkamp 

(2010), Bilodeau et al.(2004) work with seconds, Gneezy and Smorodinsky (2006) work with 

an integer credit of points, Noussair and Silver (2006), Lugovskyy et al. (2010) work with 

experimental currency (an integer amount). 

So it becomes crucial to know if the mixed Nash equilibria in the discrete games converge to 

the equilibria in the continuous game. We establish that this- yet expected- convergence, for 

second price all-pay auctions, is in no way automatic. Both distributions converge for V odd 

and large, but, for even values of V, the discrete distribution is quite strange and obeys a singular 

yoyo phenomenon: the probabilities assigned to two adjacent bids are quite different, one 

probability being much lower than the continuous one, the adjacent probability being much 

larger. So the discrete probabilities, for V even, don’t converge to the continuous ones. Yet 

there is some convergence, when turning to sums: the sums of the discrete probabilities of two 

adjacent bids converge to the sums of the continuous probabilities of the same two bids for V 

large.  

In fact the nice convergence obtained for V odd and a bid increment equal to 1 is an exception 

rather than the rule. This result namely explains that the yoyo phenomenon doesn’t disappear - 
it is even strengthened- when switching to very natural lower bid increments, like 0.5 or 0.1. It 

also highlights a lack of continuity between the discrete Nash equilibria and the continuous 

Nash equilibria. 

Section 2 recalls the mixed Nash equilibrium in the continuous game. Section 3 studies the 

mixed Nash equilibria in the discrete game. It establishes the convergence of the continuous 

and discrete equilibria when V is odd and large, M, V and the bids being integers, before turning 

to the strange discrete equilibrium distribution for even values of V. It details this distribution, 

the oscillations of the probabilities, their shape and evolution, the absence of convergence of 

the discrete probabilities to the continuous ones, but also the convergence of the sums of the 

discrete probabilities of two adjacent bids to the sums of the continuous probabilities of the 

same bids. Section 3 also highlights that the yoyo phenomenon is strengthened when switching 

to lower natural bid increments, like 0.5 and 0.1. Finally it generalizes the approach by 

establishing that convergence requires a special link between V, M and the bid increment. It 

derives that convergence is rather a rare event, even if the discrete game goes to the continuous 

game, i.e. if the bid increment goes to 0. Section 4 illustrates the obtained results. Section 5 

concludes. 
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2. Mixed Nash equilibria in the continuous second price all-pay auction. 

Two players have a limit budget M. They fight over a prize of value V. Each player i submits a 

bid bi, i =1, 2 lower or equal to M. The prize goes to the highest bidder but both bidders pay the 

lowest bid. In case of a tie, the prize goes to each bidder with probability ½. Usually, we fix 

M≥V. Yet, for the mixed Nash equilibrium, we only need M>V/2. 

In this section, we work with the continuous version of the game, where M, V and the bids are 

real numbers. This game, for M≥V, like the discrete version of the game, has a lot of asymmetric 

pure strategy Nash equilibria where one player bids 0 and the other plays a bid in [V, M]. Yet 

in this paper we only focus on the symmetric mixed Nash equilibrium. 

We briefly recall the structure of this equilibrium. 

 

Folk result  
All the bids in [M-V/2, M[ are weakly dominated by M.  

The symmetric mixed Nash equilibrium in the continuous game is given by: b is played with 

probability f(b)db, with f(b)= e-b/V/V for b in[0, M-V/2],  M is an atom played with probability   

f(M) =   1-F(M-V/2) = e1/2-M/V, and  b in ]M-V/2,M[ is played with probability 0, where f(x) and 

F(x) are the density probability distribution and the cumulative probability distribution. 

Proof see Appendix 1 

 

Let us comment on these equilibria. Figures 1a and 1b give the general form of the probability 

distribution, for V=15 and M=25 (Figure 1a), for V=8 and M=12 (Figure 1b). Both distributions 

will be compared to discrete distributions in section 4.  

 

 
 

      Figure 1a                                                                 Figure 1b 

 

f(x) 

e-1,17 

M=25 

1/15 

M-V/2 

=17.5 

 

e-1 

M-V/2  M 

f(x) 
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Both figures are similar. There is an atom on M, which is played with probability e1/2-M/V. This 

probability is quite large as long as the ration M/V is small (for example lower or equal to 2), 

but falls fast when M/V grows. The probabilities on bids b from 0 to M-V/2 are given by a 

decreasing exponential function f(b)= e−b/V/V that assigns probability db/V to the bid 0 and 

becomes flatter when V becomes large. There is no direct link between f(0) and f(M). We 

namely observe that f(0) doesn’t depend on M, f(0)→0 when V→ꝏ whereas f(M) goes to 0 

only if M/V→ꝏ; for example, if M and V go to ꝏ but M/V=2, then f(0)→0 but f(M)→e-1.5≠ 0. 
 

                 

3. Nash equilibria in the discrete second price all-pay auction, partial convergence and 

yoyo phenomena 

 

In experiments the game is seldom continuous. Usually players work with seconds, with 

experimental (integer) currency, credit of points. So the possible bids are seldom real numbers, 

but rather integers or at most decimal numbers (for example when the players are allowed to 

bids dollars and cents). That is why we now focus on discrete second price all-pay auctions, 

where M and V are integers. 

We first focus on the case where the bids are integers too, so we fix the bid increment equal to 

1. We call qi the probability a player assigns to bid i (i is equal to M or goes from 0 to M-V/2-

1 if V is even, to M-V/2-1/2 if V is odd). We get the following results. 

 

Proposition 1 

V, M and the bids are integers. For both even and odd values of V, the main recurrence 

equations that define the probabilities are:  

qi=  2qi+1/V+qi+2      i from 0 to M-V/2-5/2 (V odd).    (1a) 

qi=  2qi+1/V+qi+2         i from 0 to M-V/2-3 (V even).    (1b) 

The additional equations are: 

qM-V/2 -1/2 = qM/V and qM-V/2 -3/2 =qM(1/V +2/V2) for V odd.   (2a) 

qM-V/2 -1 = 2qM/V and qM-V/2 -2 =4qM/V2 for V even.    (2b) ∑ �௜�−�మ−ଵ/ଶ௜=଴ +qM =1 for V odd.      (3a) ∑ �௜�−�మ−ଵ௜=଴ +qM =1 for V even.      (3b) 

 

Proof see Appendix 2 

 

Proposition 2 

V, M and the bids are integers and V is an odd number: 

-   qi decreases in i, i being an integer in [0, M-V/2-1/2]. 

-   When V becomes large, qi= f(i) solves the equations (1a), (2a) and (3a) (f(i) being the density 

function in the continuous equilibrium). The discrete mixed Nash equilibrium goes to the 

continuous mixed Nash equilibrium for large values of V.  

Proof see Appendix 3 
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Proposition 3  

V, M and the bids are integers and V is an even number: 

-  qi= f(i) solves the recurrence equations (1b), but the discrete mixed Nash equilibrium doesn’t 
get close to the continuous mixed Nash equilibrium for large values of V. 

-   For large values of V, qi+qi+1 and f(i)+f(i+1) converge to a same value, i from 0 to                   

M-V/2 -2, at least if M-V/2 is even. So we get a convergence in probabilities when summing the 

probabilities two by two. 

-  The probabilities obey a yoyo phenomenon. For large values of V and M<V1.9/2+V/2,                 

qi →2qM/V  for i = M-V/2-1-2k (k from 0 to E((M-V/2-1)/2) and qM-V/2 –2i →4iqM/V2
 (→0 for 

high bids (small values of i)), i from 1 to E((M-V/2)/2) (where E(x) is the integer part of x) . 

Proof see Appendix 4 

 

Let us comment on these three propositions. Working with a bid increment equal to 1, which 

seems a good way of proceeding given that M and V are integers, gives contrasted results, 

depending on whether V is odd or even. When V is odd we get a nice convergence of the 

discrete distribution to the continuous one, at least for large values of V (but we show in section 

4 that this convergence is good even for small values of V). By contrast, when V is even, we 

get no convergence. More precisely, when V is large, we get a yoyo phenomenon: among the 

probabilities of two adjacent bids, especially for high bids, one probability goes to 0, whereas 

the other is close to 2qM/V, which keeps away from 0. Moreover the probabilities qi, i odd, and 

the probabilities qi, i even, evolve in a quite different way, the ones being all close to 2qM/V, 

the others decreasing linearly in i.  This yoyo phenomenon, established for V large, is in fact 

observed even for small values of V (see section 4). 

The strong difference in the results obtained for V odd and even seems due to the fact that the 

two largest played bids (after M) are M-V/2-1/2 and M-V/2-3/2 when V is odd, and M-V/2-1 

and M-V/2-2 when V is even. So we could be tempted to switch to another bid increment such 

that we work with the same largest bids (after M) regardless of the fact that V is odd or even. 

An a priori good way to do would be to switch to a bid increment 0.5: in that case, the two 

largest played bids (after M) are M-V/2-0.5 and M-V/2-1 for V odd and even. Another 

spontaneous way to do would be to switch to a bid increment 0.1: in that case, the two largest 

played bids (after M) are M-V/2-0.1 and M-V/2-0.2 for V odd and even. Yet this way to do is 

not a good idea. 

 

Proposition 4 

V and M are integers. 

For a bid increment equal to 0.5 the main recurrence equations are:  

qi=  qi+0.5/V+qi+1       i from 0 to M-V/2-1.5 (i =0.5l, l being an integer).  (4a) 

The additional equations are:   qM-V/2 -0.5 = qM/V and qM-V/2 -1 = qM/V2.   (4b) 

For a bid increment equal to 0.1 the main recurrence equations are:  

qi=  0.2qi+0.1/V+qi+0.2      i from 0 to M-V/2-0.3 (i=0.1l, l being an integer).  (5a) 

The additional equations are:   qM-V/2-0.1 = 0.2qM/V and qM-V/2-0.2 =0.04qM/V2.  (5b) 
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The yoyo phenomenon, described in proposition 3 is observed for both increments, for V odd 

and even. The strength of the yoyo phenomenon even increases when the bid increment 

decreases. 

Proof see Appendix 5 

 

So clearly, working with smaller bid increments such that it doesn’t matter if V is odd or even 

is not a good idea, given that we get a stronger yoyo phenomenon for both odd and even values 

of V. More generally, the nice convergence observed for V odd and a bid increment equal to 1 

is rather a rare event. 

 

Proposition 5 

M and V are integers, I is the bid increment and r is the remainder of the division of M-V/2 by 

I. The discrete Nash equilibrium converges to the continuous Nash equilibrium for large values 

of V if and only if r is equal to I/2 for large values of V. It follows that the discrete Nash 

equilibrium can’t converge to the continuous one for I= 10-N, regardless of N, where N is an 

integer higher or equal to 1. It derives a lack of continuity between the discrete equilibria and 

the continuous equilibria, in that we do not get the convergence of the discrete Nash equilibrium 

to the continuous equilibrium when the discrete game converges to the continuous one, i.e. 

when the bid increment goes to 0.  

Proof see Appendix 6 

 

Given that M and V are integers, it derives from proposition 5 that a possible convergence of 

the discrete Nash equilibrium to the continuous Nash equilibrium is not often observed. It is 

possible for I = 1 and V odd, given that r = 0.5 = I/2. But, for example, it isn’t possible for the 

other studied cases, I = 0.5 or I = 0.1 because r = 0 regardless of V, and I = 1 and V even because 

r=0. In the same way, when looking for the increments I=0.1l, l being an integer, I= 0.3 will not 

allow convergence, because (M-V/2-0.15)/0.3 can’t be an integer; a similar observation holds 

for I=0.7 and I=0.9. For I=0.4 it is possible to get values of V and M that ensure that (M-V/2-

0.2)/0.4 is an integer but we get a special class of values V and M; the same is true for I=0.8. 

Things are different for I=0.2. In that case, r is equal to 0.1 provided that V is odd. When 

switching to larger bid increments, for example I=2, it is sufficient that V is even and that M-

V/2 is odd to get convergence. But, as follows from these observations, convergence is not easy 

to get. Especially, when I =10-N, N being an integer higher or equal to 1, then r is equal to 0 

(because M and V are integers, so M-V/2 is an integer or a multiple of 0.5). Given that N can 

be very large, this means that, even for very small bid increments, i.e. for a discrete game that 

goes to the continuous one, there are discrete equilibria that do not converge to the continuous 

equilibria. So there is a lack of continuity between the discrete equilibria and the continuous 

equilibria, a result that was not expected.  

 

Proposition 6 

M and V are integers, I is the bid increment and r is the remainder of the division of M-V/2 by 

I. When r is equal to 0, then the discrete mixed Nash equilibrium doesn’t get close to the 
continuous mixed Nash equilibrium for large values of V but, at least when (M-V/2)/I is even, 
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the sums of the discrete equilibrium probabilities of two adjacent bids converge to the sums of 

the continuous equilibrium probabilities of the same two bids. Yet the yoyo phenomenon is 

strengthened when I decreases. 

Proof see Appendix 6 

 

Proposition 6 shows that the partial convergence result obtained for a bid increment 1 and even 

integers V extends to all bid increments I such that the remainder of the division of M-V/2 by I 

is zero. The bid increment 0.5 obeys this rule. More generally, if M and V are integers, all the 

increments 10-N, with N an integer higher or equal to 1, ensure the partial convergence result. 

 

4. Illustrations 

 

Let us illustrate some obtained results and some others features of the discrete Nash equilibria.  

We first work with odd values of V and integer bids, to illustrate the nice convergence between 

the continuous mixed Nash equilibrium and the discrete mixed Nash equilibrium. We study the 

two cases V=9 and M=12, V=15 and M=25, in order to discuss the obtained convergence. 

 

For V=9 and M=12 we get the results in table 1. 
Bids 

 
0 1 2 3 4 5 6 7 

8  9 

10 11 
12 

Discrete NE      

qi 

ͳͳͲͷͳͳʹͻͳͲͶʹͷʹʹͶͻ 

= 

0,106004 

ͻ͸͸Ͳʹ͵ͳͳͲͶʹͷʹʹͶͻ 

= 

0,092662 

ͺͻͲͶͶͳͳͳͲͶʹͷʹʹͶͻ= 

0,085412 

͹͸ͺͳͶ͹͵ͳͲͶʹͷʹʹͶͻ= 

0,073682 

͹ͳͻ͹Ͷͳ͹ͳͲͶʹͷʹʹͶͻ= 

0,069038 

͸ͲͺʹͲͶ͹ͳͲͶʹͷʹʹͶͻ= 

0,05834 

ͷͺͶͷͺͷͳͳͲͶʹͷʹʹͶͻ= 

0,056074 

Ͷ͹ͺʹͻ͸ͻͳͲͶʹͷʹʹͶͻ= 

0,045879 

0 

Ͷ͵ͲͶ͸͹ʹͳͳͲͶʹͷʹʹͶͻ= 

0,412909 

Adj.cont.NE 

Adj f(i) 
0,100967 0,090349 0,080848 0,072346 0,064738 0,057930 0,051838 0,046386 0 0,434598 

Cont. NE f(i) 0,111111 0,099425 0,088971 0,079615 0,071242 0,063750 0,057046 0.051047 0 0,434598 

qi/Adj f(i) 1,049888 1,025601 1,056452 1,018467 1,066422 1,007078 1,081716 0,98907  0,950094 

Table 1: NE means Nash equilibrium 

Let us comment on table 1. The discrete Nash equilibrium probabilities, respectively the 

continuous Nash equilibrium probabilities, are given in the second row, respectively in the 

fourth row. To compare qi and f(i) we have to take into account that, in the continuous game, 

the bids (real numbers) are played with probability f(b)db, with the exception of bid 12. As a 

consequence, we weight the probabilities f(i), i from 0 to 7, by multiplying them by                       

(1-f(12))/(∑ ݂ሺ�ሻ଻௜=଴ )(=0.9087), to get the adjusted continuous Nash equilibrium probabilities 

Adj f(i) in row 31. The comparison of row 2 and row 3 shows that the discrete probabilities and 

the adjusted continuous probabilities are similar, despite V is not large. To evaluate the 

convergence we calculate  ሺ∑ �೔�ௗ௝ ௙ሺ௜ሻ + �ௗ௝ ௙ሺ଻ሻ�ళ + ௙ሺଵଶሻ�భమ ሻ/ͻ଺௜=଴   (we inverse the ratios when they 

are below 1, in order to not lower the differences). We get a rather good mean ratio 1.041.  

Observe that the convergence is not uniform. We here focus on the bids different from 12. 

Despite all the discrete probabilities get close to the adjusted continuous ones, there is a kind 

of little oscillation as regards the ratios: 1.049888>1.025601<1.056452>1.018467 

                                                           

1 The weight disappears (goes to 1) for V large: (1-e1/2-M/Vሻ/ ∑ ݂ሺ�ሻ�−�మ−ଵ/ଶ௜=଴ =
ሺͳ−݁ͳʹ−�� ሻ�ሺଵ−௘−భ�ሻ

ሺଵ−௘− �−�మ+భమ� ሻ  →1 for V large. 
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<1.066422>1.007078<1.081716>1/0.98907. We observe also that the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ get worse 

(grow) when i increases for even values of i, whereas the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ get better (decrease) 

when i increases up to 5 for odd values of i, and then get worse. And the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ for i odd 

are all closer to 1 than the best ratio 
�೔�ௗ௝ ௙ሺ௜ሻ for i even. 

The convergence of the probabilities in rows 2 and 3 and the little oscillation phenomenon are 

respectively illustrated in figures 2a and 2b and figure 4. 

  

 

Now we switch to the case V=15 and M=25 in order to illustrate a stronger convergence 

between the discrete and continuous Nash equilibria. The results are in table 2.  

Bids 0 1 2 3 4 5 6 7 8 9 

qi 0,064649 0,060065 0,05664 0,052513 0,049638 0,045894 0,043519 0,040091 0,038174 0,035002 

Adj f(i) 0,063551  0,059452 0,055618 0,052031 0,048675 0,045536 0,042599 0,039852 0,037282 0,034878 

f(i) 0,066667 0,062367 0,058345 0,054582 0,051062 0,047769 0,044688 0,041806 0,03911 0,036587 

qi/Adj f(i) 1,017277 1,010311 1,018375 1,009264 1,019784 1,007862 1,021597 1,005997 1,023926 1,003555 

 

Bids 10 11 12 13 14 15 16 17 
18 19 20 21 

22 23 24 
25 

qi 0,033507 0,030534 0,029436 0,026609 0,025888 0,023158 0,0228 0,020118 0 0,301765 

Adj f(i) 0,032628 0,030524 0,028555 0,026714 0,02499 1 0,023379 0,021871 0,020461 0 0,311403 

f(i) 0,034228 0,03202 0,029955 0,028023 0,026216 0,024525 0,022944 0,021464 0 0,311403 

qi/Adj f(i) 1,02694 1,000328 1,030853 0,996069 1,035893 0,990547 1,042476 0,983236  0,96905 

0

0,1

0,2
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Figure 2b : It focuses on the 

probabilities assigned to the bids 0 to 7 

to better highlight the good 

convergence between the discrete Nash 

equilibrium probabilities (full columns) 

and the adjusted continuous Nash 

equilibrium probabilities (shaded 

columns). The little asymmetric 

oscillation phenomenon is reflected in 

the fact that both columns for bids 1, 3, 

5 and 7 are very similar whereas there 

is a (small) larger difference between 

both columns for bids 0, 2, 4 and 6. 

Figure 2a : The full 

columns are the discrete 

Nash equilibrium 

probabilities, the shaded 

columns are the adjusted 

continuous Nash 

equilibrium probabilities 

Table 2 
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The continuous Nash equilibrium probabilities in row 4 are multiplied by                                            

(1-f(25))/(∑ ݂ሺ�ሻଵ଻௜=଴ )(=0.953262) to get the adjusted continuous Nash equilibrium probabilities 

in row 3. We observe that the discrete Nash equilibrium probabilities nicely converge to these 

probabilities: ሺ∑ �೔�ௗ௝ ௙ሺ௜ሻ + �ௗ௝ ௙ሺଵଷሻ�భయ + �ௗ௝ ௙ሺଵହሻ�భఱ + �ௗ௝ ௙ሺଵ଻ሻ�భళ + ௙ሺଶହሻ�మఱ ሻ/ͳͻଵ଺௜=଴,≠ଵଷ,ଵହ  = 1.0177. 

Observe that the convergence is again not uniform, with the same little oscillation phenomenon 

as in the previous study, but with a lower magnitude. When focusing on the bids from 0 to 17, 

we again observe that the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ get worse (increase) when i increases for even values 

of i, and that the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ get better (decrease) when i increases up to 11 for odd values of 

i, and then get worse. Finally we observe again that the ratios 
�೔�ௗ௝ ௙ሺ௜ሻ for i odd are all closer to 

1 than the best ratio 
�೔�ௗ௝ ௙ሺ௜ሻ for i even. 

The strong convergence of the probabilities qi and Adj f(i) is illustrated in figures 3a and 3b, 

and the little oscillation phenomenon can be observed in figure 4. 
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Figure 3a : The 

full columns are 

the discrete Nash 

equilibrium 

probabilities, the 

shaded columns 

are the adjusted 

continuous Nash 

equilibrium 

probabilities. 

Figure 3b : It focuses on the 

probabilities assigned to the 

bids 0 to 17 to better highlight 

the strong convergence 

between the discrete Nash 

equilibrium probabilities (full 

columns) and the adjusted 

continuous Nash equilibrium 

probabilities (shaded 

columns). The little asymmetric 

oscillation phenomenon is 

reflected in the fact that both 

columns for bids 1, 3, 5, 7, 9, 

11, 13 and 15 are very similar 

whereas there is a (small) 

larger difference between both 

columns for bids 0, 2, 4, 6, 8, 

10, 12, 14 and 16. 
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To summarize, for V odd, the shape of the discrete Nash equilibrium probability distribution is 

the same than the shape of the continuous Nash equilibrium probability distribution even for V 

rather small (we would get this result even for very small values of V, like 3). And the discrete 

and continuous probabilities converge when V grows: yet the convergence is not uniform and 

exhibits a kind of little oscillation phenomenon that may foreshadow the strong yoyo 

phenomenon observed for even values of V. 

As a matter of fact things are quite different for V even (the bids being still integers). We 

consider the two cases V=8 and M=12, V=24 and M=30, in order to show that (only) the sums 

of discrete probabilities 2 by 2 converges to the sums of continuous probabilities 2 by 2 when 

V is large, but that the difference between a discrete probability and the continuous one does 

not decrease with V. 

We first study the case V=8 and M=12. The results are given in table 3a.  

bids 0 1 2 3 4 5 6 7 8 9 10 11 12 

qi 19041/ 

186613 

=0,102035 

22852/ 

186613 

=0,122457 

1904/ 

26659 

=0,071420 

19520/ 

186613 

0,104601 

8448/ 

186613 

=0,04527 

17408/ 

186613 

=0,093284 

4096/ 

186613 

=0,021949 

16384/ 

186613 

=0,087797 0 

65536/ 

186613 

=0,351187 

Adj f(i) 
0,117503 0,103696 0,091511 0,080759 0,071269 0,062895 0,055505 0,048983 0 0,367879 

f(i) 
0,125 0,110312 0,097350 0,085911 0,075816 0,066908 0,059046 0,052108 0 0,367879 

qi/ Adj f(i) 0,868361 1,180923 0,780453 1,295224 0,635199 1,483170 0,395442 1,792397  
0,954626 

 

  
q1/q0= 

1,200147 
q2/q1= 
0,5832 

q3/q2= 
1,46459 

q4/q3= 
0,432787 

q5/q4= 
2,060614 

q6/q5= 
0,235292 

q7/q6= 
4,000046 

  

Table 3a 

2 bids 0 + 1 2 + 3 4 + 5 6 + 7 

qi+qi+1 0,224492 0,176021 0,138554 0,109746 

Adj f(i) + Adj f(i+1) 
0,221199 0,17227 0,134164 0,104488 

(qi+qi+1) / 

(Adj f(i) + Adj f(i+1)) 1, 014887 1,021774 1,032721 1,050322 

Table 3b: “+” means “and” 
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little oscillations of the ratios qi/Adj f(i) 

V=9 M=12, V=15 M=25

Figure 4 : The short curve 

represents the ratios qi/Adj f(i) 

for V=9 and M=12, the long 

curve represents the same 

ratios for V=15 and M=25. We 

observe the better convergence 

for V=15 and M=25 (in that the 

ratios are closer to 1), the little 

oscillation phenomenon, the 

fact that qi/Adj f(i) gets worse 

when i increases and is even, 

and the fact that qi/Adj f(i) is 

systematically closer to 1 for i 

odd. 
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We immediately observe that the discrete Nash equilibrium probabilities do not converge to the 

adjusted Nash equilibrium continuous probabilities (= 0.940025f(b), with 0.940025 =                  

(1-f(12))/(∑ ݂ሺ�ሻ଻௜=଴ )). We observe the yoyo phenomenon as regards the probabilities qi, i.e.   q0 

<q1>q2<q3>q4<q5>q6<q7. The fact that the yoyo starts with the bid 0 is due to the fact that 0≥M-

3V/2. We can evaluate the strength of this yoyo phenomenon by calculating the ratios qi+1/qi, i 

from 0 to 6 (see table 3a, figure 5a and figure 7). We can also observe that the ratios qi/Adj f(i) 

go more and more away from 1 when i increases (see table 3a and figure 8).  Yet they more or 

less regularly oscillate around the axe y=1. This explains a good convergence between the sums 

of discrete probabilities 2 by 2 and the sums of adjusted continuous probabilities 2 by 2 (see 

table 3b). We namely get ∑ ೜೔+೜೔+భ��ೕ �ሺ೔ሻ+��ೕ �ሺ೔+భሻସ௜=଴,ଶ,ସ,଺ =1.0299 which expresses a good 

convergence. We can however observe that the ratio 
�೔+�೔+భ�ௗ௝ ௙ሺ௜ሻ+�ௗ௝ ௙ሺ௜+ଵሻincreases with i, so is 

better for i low (see table 3b, figure 5b). 

 

 

We now switch to the case V=24 and M=30. We get the results in table 4a and table 4b. 
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Figure 5a : The full columns 

are the discrete Nash 

equilibrium probabilities, 

the shaded columns are the 

adjusted continuous Nash 

equilibrium probabilities. 

We only focus on the bids 

from 0 to 7 to highlight the 

divergence and the yoyo 

phenomenon. 

Figure 5b : The full columns are the 

sums of the discrete Nash 

equilibrium probabilities of two 

adjacent bids q0+q1, q2+q3, q4+q5, 

q6+q7,  the shaded columns are the 

sums of the adjusted continuous 

Nash equilibrium probabilities of 

the same bids. We focus on the bids 

from 0 to 7 to show the good 

convergence of the sums. 
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bids 0 1 2 3 4 5 6 

qi 0,031834 0,048847 0,027763 0,046533 0,023885 0,044543 0,020173 

Adj f(i) 0,040811 0,039145 0,037548 0,036015 0,034545 0,033136 0,031783 

f(i) 0,041667 0,039966 0,038335 0,036771 0,03527 0,033831 0,03245 

qi/Adj f(i) 0,7800 1,2478 0,7394 1,2920 0,6914 1,3442 0,6347 

 

 

q1/q0= 

1,534429 

q2/q1= 

0,568367 

q3/q2= 

1,676080 

q4/q3= 

0,513292 

q5/q4= 

1,864894 

q6/q5= 

0,452888 

 

bids 7 8 9 10 11 12 13 

qi 0,042862 0,016601 0,041479 0,013145 0,040383 0,00978 0,039568 

Adj f(i) 0,030486 0,029242 0,028049 0,026904 0,025806 0,024753 0,023743 

f(i) 0,031126 0,029855 0,028637 0,027468 0,026347 0,025272 0,024241 

qi/Adj f(i) 1,4059 0,5677 1,4788 0,4886 1,5649 0,3951 1,6665 

 q7/q6= 

2,124721 

q8/q7= 

0,387313 

q9/q8= 

2,498584 

q10/q9= 

0,316907 

q11/q10= 

3,072119 

q12/q11= 

0,242181 

q13/q12= 

4,045808 

 

bids 

14 15 16 17 

18 19 20 21 22 

23 24 25 26 27 

28 29 

30 

qi 0,006482 0,039028 0,00323 0,038759 0 0,465105 

Adj f(i) 0,022773 0,021845 0,020952 0,020097 0 0,472367 

f(i) 0,023251 0,022303 0,021392 0,020519 0 0 ,472367 

qi/Adj f(i) 0,2846 1,7866 0,1542 1,9285  0,9846 

 q14/q13= 

0,163819 

q15/q14= 

6,020981 

q16/q15= 

0,082761 

q17/q16= 

11,999690 

  

Table 4a 

Sum of bids 0+1 2+3 4+5 6+7 8+9 10+11 12+13 14+15 16+17 

qi+qi+1 0,080681 0,074296 0,068428 0,063035 0,05808 0,053528 0,049348 0,04551 0,041989 

Adj f(i) + Adj f(i+1) 
 

0,079956 
0,073563 0,067681 0,062269 0,057290 0,05271 0,048496 0,044618 0,041049 

(qi+qi+1) / 

(Adj f(i) + Adj f(i+1)) 1,009067 1,009964 1,011037 1,0123 1,013789 1,0155 1,017568 1,019992 1,0228 

Table 4b 

This case strengthens the facts observed in the previous study. A higher V doesn’t lower the 
divergence between the discrete probabilities and the adjusted continuous probabilities 

(=0.979453f(i), where 0.979453=(1-f(30))/(∑ ݂ሺ�ሻଵ଻௜=଴ )) (see table 4a and figure 6a). It doesn’t 
diminish the yoyo phenomenon. On the contrary, whereas the ratios qi+1/qi, i from 0 to 5 are 

close to the ones obtained for V=8 and M=12, they become much more chaotic for i from 7 to 

16 (only q7/q6 is significantly better for V=24 than for V=8, see table 4a and figure 7).   What 

is more, the ratios qi/Adj f(i), quite similar for i from 0 to 5 for V=8 and V=24,  go more away 

from 1 for high bids for V=24 than all the ratios obtained for V=8 (see figure 8): only            

q5/Adj f(5), q6/Adj f(6) and q7/Adj f(7) are significantly better for V=24 than for V=8.  

Yet we can also observe that the oscillations of the ratios qi/Adj f(i) become quite symmetric 

around the axe y=1 (more than for V=8 M=12), which explains a very strong convergence of  

the discrete and adjusted continuous sums of probabilities of two adjacent bids (see table 4b 
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and figure 6b).We get the good ratio  ∑ ೜మ೔+೜మ೔+భ��ೕ �ሺమ೔ሻ+��ೕ �ሺమ೔+భሻଽ௜଼=଴ =1.0147. And we again observe 

that the ratios 
�೔+�೔+భ�ௗ௝ ௙ሺ௜ሻ+�ௗ௝ ௙ሺ௜+ଵሻ  increase with i, so are better for i low. 

The stronger convergence of the discrete and adjusted continuous sums of probabilities for 

V=24, M=30 than for V=8, M=12, namely stems from the fact that 
�బ+�భ�ௗ௝ ௙ሺ଴ሻ+�ௗ௝ ௙ሺଵሻ = 1.009067 

(V=24, M=30)< �బ+�భ�ௗ௝ ௙ሺ଴ሻ+�ௗ௝ ௙ሺଵሻ = 1.014887 (V=8, M=12) and 
�భల+�భళ�ௗ௝ ௙ሺଵ଺ሻ+�ௗ௝ ௙ሺଵ଻ሻ = 1.0228  

(V=24, M=30) < 
�ల+�ళ�ௗ௝ ௙ሺ଺ሻ+�ௗ௝ ௙ሺ଻ሻ = 1.050322 (V=8, M=12). 

This case also partly illustrates the results obtained for V large, i.e.  qi→2qM/V ≃ 0.0388 for i 

odd from 1 to M-V/2-1= 17, and qi→2(M-V/2-i)qM/V2 =  (16.74378- i0.93021)/242 for i even 

from 0 to M-V/2-2  (given that M=30<<241.9/2+12 (=V1.9/2+V/2)). This is illustrated in figure 

6c. We namely observe that qi, i odd, is quasi constant, close to 0.0388, at least for high values 

of i, whereas qi, i even, linearly decreases and goes to 0 for high values of i  (q16= 0.00323, q14= 

0.006482, q12= 0.00978). 
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Figure 6a : The full 

columns are the discrete 

Nash equilibrium  

probabilities, the shaded 

columns are the adjusted 

continuous Nash 

equilibrium probabilities. 

We only focus on the bids 

from 0 to 17 to highlight 

the divergence and the 

strong yoyo phenomenon. 

Figure 6b : The full 

columns are the sums of 

the discrete Nash 

equilibrium probabilities 

of two adjacent bids,  the 

shaded columns are the 

sums of the adjusted 

continuous Nash 

equilibrium probabilities 

of the same bids. We only 

focus on the bids from 0 

to 17 to show the good 

convergence. 
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Figure 8 : The short dotted curve 

represents the ratios qi/Adj f(i) 

for V=8 and M=12, the long 

curve represents the same ratios 

for V=24 and M=30. The two 

curves start in a similar way, but 

the long curve leads to 

oscillations of much larger 

magnitude. So we observe that 

higher values of V do not bring 

the ratios closer to 1. Only          

q5/Adj f(5), q6/Adj f(6) and q7/   

Adj f(7) are significantly better 

for the larger value V=24.  

Figure 7 : The short dotted curve 

represents the ratios qi+1/qi for V=8 

and M=12, the long curve represents 

the same ratios for V=24 and M=30. 

The two curves start in a similar way 

but the long curve ends in a much 

more chaotic way. So we easily 

observe that higher values of V do not 

bring adjacent probabilities closer. 

Only q7/q6 is significantly better for 

the larger value V=24 (perhaps due 

to a kind of end effect for V=8) 

Figure 6c : The histogram gives the 

discrete Nash equilibrium 

probabilities, the horizontal line is 

2qM/24 = 0.0388, and the 

decreasing line is (16.74378- 

i0.93021)/242. We observe that qi, i 

even, is quite close to (16.74378- 

i0.93021)/242. The convergence of 

qi, i odd, to 0.0388 is better for i 

large (V is not large enough to get 

a better convergence for smaller 

values of i). 
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We now illustrate that choosing a smaller increment, such that it doesn’t matter to work with 
an odd or an even V, namely 0.5 or 0.1, does not help the discrete Nash equilibrium to get closer 

to the continuous Nash equilibrium. We study two cases, V=9, M=12 and a bid increment 0.5, 

and V=8, M=12 and the same bid increment 0.5. These two cases also partly illustrate 

proposition 5 and proposition 6. 

For V=9, M=12 and a bid increment 0.5, we get the results in table 5. So, by contrast to the 

obtained convergence of the discrete equilibrium to the continuous equilibrium when the bid 

increment is equal to 1, we now get a yoyo phenomenon as regards the discrete probabilities, 

which precludes their convergence to the continuous probabilities (see figure 9 compared to 

figure 2b). This result is in accordance with propositions 4, 5 and 6. The difference in the 

obtained convergence is due to the fact that we switch from the bid increment I=1 and a 

remainder of the division of M-V/2 by I equal to I/2=0.5, to the bid increment I=0.5 and a 

remainder of the division of M-V/2 by I equal to 0.  

bids 0 0,5 1 1,5 2 2,5 3 3,5 4 

qi 0,063907 0,040103 0,059451 0,033498 0,055729 0,027306 0,052695 0,021451 0,050312 

 

bids 4,5 5 5,5 6 6,5 7 
7,5 8 8,5 9 9,5 

10 10,5 11 11,5 
12 

qi 0,01586 0,048549 0,010466 0,047386 0,005201 0,046809 0 0,421277 

Table 5 
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Figure 9 : For V=9 and M=12, the switch to the 

lower bid increment 0.5 yields a strong yoyo 

phenomenon as regards the discrete Nash 

equilibrium probabilities, which precludes the 

convergence of the discrete Nash equilibrium to 

the continuous Nash equilibrium. 

Figure 2b (with only the discrete Nash 

equilibrium probabilities) 
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For V=8, M=12 and a bid increment 0.5, we get the results in table 6a. It immediately follows 

that the yoyo phenomenon of the qi is strengthened in comparison to the one observed for a bid 

increment equal to 1 (see table 3a). This can be observed by comparing figure 10a to figure 5a, 

but also by calculating the ratios qi+0.5/qi (see table 6a) and by comparing them to the ratios in 

table 3a: there are more oscillations and the magnitude of the oscillations is larger for the 

smaller bid increment (see also figure 10b). 

Yet, by contrast, we also observe in table 6b that the sums of the discrete Nash equilibrium 

probabilities of two adjacent bids converge to the sums of the adjusted continuous Nash 

equilibrium probabilities (=0.484695f(b) with 0.484695=(1-f(12))/(∑ ݂ሺ�ሻ଻.ହ௜=଴ ), i being a 

multiple of 0.5) of the same two bids, in accordance with proposition 6 (given that the remainder 

of the division of M-V/2 by the increment 0.5 is 0). And we can even observe that this 

convergence is better than for the bid increment 1. So we get, for the bid increment 0.5,  ∑ ೜೔+೜೔+బ.ఱ��ೕ �ሺ೔ሻ+��ೕ �ሺ೔+బ.ఱሻ଼଻௜=଴ = 1.0164, whereas we get ∑ ೜೔+೜೔+భ��ೕ �ሺ೔ሻ+��ೕ �ሺ೔+భሻସ௜=଴,ଶ,ସ,଺ = 1.0299 for the bid 

increment 1. So, switching from the bid increment 1 to the bid increment 0.5, for V=8 and 

M=12, leads to oscillations of the discrete probabilities of larger magnitude but to a better 

convergence of the sums 2 by 2. 

bids 0 0,5 1 1,5 2 2,5 3 3,5 4 

qi 0,052553 0,065878 0,044318 0,060339 0,036775 0,055742 0,029808 0,052016 0,023306 

f(i) 0,125 0,117427 0,110312 0,103629 0,097350 0,091452 0,085911 0,080706 0,075816 

Adj f(i) 0,060587 0,056916 0,053468 0,050228 0,047185 0,044326 0,041641 0,039118 0,036748 

  
q0.5/q0= 

1,253554 

q1/q0.5= 

0,672728 

q1.5/q1= 

1,361501 

q2/q1.5= 

0,609473 

q2.5/q2= 

1,515758 

q3/q2.5= 

0,534749 

q3.5/q3= 

1,745035 

q4/q3.5= 

0,448054 

 

bids 4,5 5 5,5 6 6,5 7 7,5 
8 8,5 9 9,5 

10 10,5 11 11,5 
12 

qi 0,049102 0,017168 0,046956 0,011298 0,045544 0,005605 0,044844 0 0.358748 

f(i) 0,071223 0,066908 0,062854 0,059046 0,0554468 0,052108 0,048951 0 0,36788 

Adj f(i) 0, 034522 0,03243 0,030465 0,028619 0,026885 0,025256 0,023726 0 0,36788 

 q4.5/q4= 

2,106839 
q5/q4.5= 

0,34964 

q5.5/q5= 

2,735089 

q6/q5.5= 

0,240608 

q6.5/q6= 

4,031156 

q7/q6.5= 

0,123068 

q7.5/q7= 

8,000714   

Table 6a 

 
0+0,5 1+1,5 2+2,5 3+3,5 4+4,5 5+5,5 6+6,5 7+7,5 

qi+qi+0.5 
0,118431 0,104657 0,092517 0,081824 0,072408 0,064124 0,056842 0,050449 

Adj f(i)+Adj f(i+0.5) 
0,117503 0,103696 0,091511 0,080759 0,071269 0,062895 0,055504 0,048982 

(qi+qi+0.5)/ 
(Adjf(i)+Adjf(i+0.5)) 

1,007898 1,009267 1,010993 1,013187 1,015982 1,019541 1,024106 1,029950 

Table 6b 
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5. Concluding remarks 

We could have expected that, given that the logic of the mixed Nash equilibrium is the same in 

the continuous game and in the discrete game – we just equalize the payoffs of the played bids, 

and the played bids are the bids that are not weakly dominated- that the convergence of the 

mixed Nash equilibrium of the discrete game to the mixed Nash equilibrium of the continuous 

game automatically follows. 

Yet we established in proposition 5 that this convergence is rather an exception than the rule. 

To get convergence, we need that the remainder of the division of M-V/2 by the bid increment 

is half of the increment. So for example, when M and V are integers, convergence holds for odd 

values of V and a bid increment equal to 1, at least for large values of V. Proposition 5 namely 

implies that, when M and V are integers, convergence can’t happen for the very small 
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Figure 10a : The comparison with figure 5a highlights 

that for high bids the difference between the probabilities 

of two adjacent bids is stronger for a bid increment 0.5 

than for the bid increment 1. 

 

Figure 5a (with only the discrete 

Nash equilibrium probabilities) 

Figure 10b : The curve 

with more oscillations is 

obtained for the bid 

increment 0.5, the dashed 

curve with less 

oscillations is obtained for 

the bid increment 1. The 

magnitude of the 

oscillations is more 

important for the lower 

bid increment. 
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increments 10-N, with N an integer ≥1, which proves that, even if the discrete game converges 

to the continuous game, i.e. if the bid increment goes to 0, the discrete Nash equilibrium may 

not converge to the continuous one. This lack of continuity between discrete second price all-

pay auctions equilibria and continuous second price all-pay auctions equilibria is an unexpected 

result. 

We also established in propositions 3, 4 and 6, that if the remainder of the division of M-V/2 

by the bid increment is 0, then we get a kind of partial convergence, in that the sums of the 

discrete equilibrium probabilities of two adjacent bids go to the sums of the continuous 

equilibrium probabilities of the same two bids at least for large values of V. Yet we also showed 

that in that case a yoyo phenomenon arises, the probabilities of two adjacent bids being 

strikingly different. And this yoyo phenomenon is strengthened when one switches to lower bid 

increments. So, when the discrete game goes to the continuous one, i.e. when the bid increment 

goes to 0, the discrete equilibrium probabilities more and more diverge from the continuous 

ones, even if we get the convergence of the sums of the probabilities of two adjacent bids. 

Well, these results lead us to two additional remarks.  

First, in experiments, we often compare the observed players’ behaviour to the mixed Nash 

equilibrium of the continuous game because this equilibrium is common knowledge and easy 

to calculate. But we often work with a discrete game, with integer values for V and M. It follows 

that we have to choose the bid increment very carefully, if we want to compare the players’ 
behaviour to the right Nash equilibrium. Only few choices are possible. For example, working 

with odd values of V and a bid increment equal to 1 is a good way to do.  

Second, the obtained equilibria in the discrete games show how strange the mixed Nash 

equilibrium may be. The yoyo phenomenon is really not intuitive.  Why should a bid be played 

with a very low probability when its two adjacent bids are played with a much higher 

probability? Real players will surely not play in this way. This raises questions as regards the 

behavioral meaning of some mixed Nash equilibria (see Umbhauer 2017). 
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Proofs 

Appendix 1: out of Umbhauer (2016) 

We set M>V/2.  The weak dominance of a bid in [M-V/2, M[ by M is obvious.  

Let us turn to the equilibrium. 

Given the weak dominance, it is conjectured that the Nash equilibrium strategy is a density 

function f(.) that decreases from 0 to M-V/2 and has an atom on M.  

Call f2(.) player 2’s equilibrium strategy. Suppose that player 1 plays b. She wins the auction 

each time player 2 bids less than b. So she gets: 

G(b) = M+∫ ሺV − xሻfଶሺxሻdxb଴ − bሺ∫ fଶሺxሻdx + fଶሺMሻሻM−V/ଶb  

We check that a player gets the same payoff with M and M-V/2, regardless of the opponents’ 
equilibrium distribution: 

G(M)=  M+∫ ሺV − xሻfଶሺxሻdxM−V/ଶ଴ + ሺVଶ − MሻfଶሺMሻ= G(M-V/2) 

G(b) has to be constant for each b in [0, M-V/2] ⋃ {M}. So G’(b) = 0 for b in [0, M-V/2] . 

We get:  (V-b)f2(b)-F2(M-V/2)+F2(b)-f2(M)+bf2(b) = 0    

where F2(.) is the cumulative distribution of the density function f2(.).  

By construction f2(M) = 1-F2(M-V/2), so we get  the differential equation: Vf2(b)-1+F2(b) = 0 

whose solution is: F2(b)= 1+Ke-b/V where K is a constant determined as follows: 

F2(0)=0 because there is no atom on 0, so 1+K = 0 and K = -1. 

It follows F2(b) = 1- e-b/V  for b in [0, M-V/2],  f2(M) = 1-F2(M-V/2) = e1/2-M/V (<1) ,  

f2(b) = e-b/V/V for b in[0, M-V/2]  (and f2(b)=0 for b in ]M-V/2, M[) 

By symmetry, we get f1(b) = e-b/V/V for b in[0, M-V/2],  f1(M) = 1-F1(M-V/2) = e1/2-M/V (and 

f1(b)=0 for b in ]M-V/2, M[ ). 

 

Appendix 2: Proof of proposition 1 

Case 1: V is an odd integer 

Consider player 1. The bids from M-V/2+1/2 to M-1 are dominated by M, so they are played 

with probability 0. 

M-V/2-1/2 and M lead to the same payoff regardless of the bid b played by player 2, except b= 

M-V/2-1/2 and b=M. So player 1 gets the same payoff with both bids if and only if: 

qM-V/2-1/2(V+1/2)+qM(V/2+1/2) = qM-V/2-1/2(3V/2+1/2)+qM(V/2) 

hence qM-V/2 -1/2 = qM/V         (2a) 

Now compare the bids M-V/2-3/2 and M-V/2-1/2. Both lead to the same payoff, except if player 

2 bids M-V/2-3/2, M-V/2-1/2 or M. 

We need:  
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qM-V/2-3/2(V+3/2)+qM-V/2-1/2(V/2+3/2)+qM(V/2+3/2) = qM-V/2-3/2(3V/2+3/2)+qM-V/2-1/2(V+1/2)+ 

qM(V/2+1/2) 

qM-V/2-3/2(-V/2)+qM-V/2-1/2(-V/2+1)+qM = 0 

Hence qM-V/2-3/2  = qM(1/V +2/V2).        (2a) 

More generally M-V/2-1/2-j and M-V/2-1/2-j-1, for j from 1 to M-V/2-3/2,  lead to the same 

payoff, except if player 2 bids M-V/2-1/2-k  or M, with k going from 0 to j+1. 

We need:  

qM-V/2-1/2-j-1(V+3/2+j)+qM-V/2-1/2-j(V/2+3/2+j)+∑ qM−Vమ−భమ−୩ሺVଶ + ͵/ʹ + jሻ୨−ଵ୩=଴ +qM(V/2+3/2+j) = 

qM-V/2-1/2-j-1(3V/2+j+3/2)+qM-V/2-1/2-j(V+1/2+j)+∑ qM−Vమ−భమ−୩ሺVଶ + ଵଶ + jሻ୨−ଵ୩=଴ +qM(V/2+1/2+j)  

Hence qM-V/2-3/2-j(-V/2)+qM-V/2-1/2-j(-V/2+1)+ ∑ ��−�మ−భమ−௞௝−ଵ௞=଴ +qM = 0 

We also get:  

qM-V/2-(j+1)-3/2(-V/2)+qM-V/2-(j+1)-1/2(-V/2+1)+qM-V/2-j-1/2 +∑ qM−Vమ−భమ−୩୨−ଵ୩=଴ +qM = 0 

It follows   qM-V/2-j-5/2=  2qM-V/2-j-3/2/V+qM-V/2-j-1/2  for any j from 0 to M-V/2-5/2. 

i.e. qi =  2qi+1/V+qi+2 for i from 0 to M-V/2-5/2.         (1a) 

 

Case 2 : V is an even integer 

The study is similar. 

Consider player 1. The bids from M-V/2 to M-1 are dominated by M, so they are played with 

probability 0. 

M-V/2-1 and M lead to the same payoff except if player 2 bids M-V/2-1 or M. So player 1 gets 

the same payoff with both bids if and only if: 

qM-V/2-1(V+1)+qM(V/2+1) = qM-V/2-1(3V/2+1)+qM(V/2) 

so  qM-V/2 -1 = 2qM/V                (2b)                                  

Now compare the bids M-V/2-1 and M-V/2-2. Both lead to the same payoff, except if player 2 

bids M-V/2-2, M-V/2-1 or M. 

So we need:  

qM-V/2-2(V+2)+qM-V/2-1(V/2+2)+qM(V/2+2) = qM-V/2-2(3V/2+2)+qM-V/2-1(V+1)+qM(V/2+1) 

so qM-V/2-2(-V/2)+qM-V/2-1(-V/2+1)+qM= 0 

We get qM-V/2 -2 =2qM-V/2-1/V =4qM/V2                                                                                (2b) 

More generally M-V/2-j and M-V/2-j-1, for j from 1 to M-V/2-1, lead to the same payoff, except 

if player 2 bids  M-V/2-k or M, with k going from 1 to j+1. 

So we need: qM-V/2-j-1(V+j+1)+qM-V/2-j(V/2+j+1)+∑ qM−Vమ−୩ሺVଶ + j + ͳሻ୨−ଵ୩=ଵ +qM(V/2+j+1) = 

qM-V/2-j-1(3V/2+j+1)+qM-V/2-j(V+j)+∑ qM−Vమ−୩ሺVଶ + jሻ୨−ଵ୩=ଵ +qM(V/2+j)  

Hence qM-V/2-j-1(-V/2)+qM-V/2-j(-V/2+1)+∑ qM−Vమ−୩୨−ଵ୩=ଵ +qM = 0 

In the same way we get:  qM-V/2-j-2(-V/2)+qM-V/2-j-1(-V/2+1)+qM-V/2-j +∑ qM−Vమ−୩୨−ଵ୩=ଵ +qM = 0 

It follows  qM-V/2-j-2=  2qM-V/2-j-1/V+qM-V/2-j   for j from 1 to M-V/2-2. 

i.e. qi=  2qi+1/V+qi+2 for i from 0 to M-V/2 -3                                         (1b) 
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Appendix 3: Proof of proposition 2 

We first show that qi is decreasing in i, for i from 0 to M-V/2-1/2. 

Suppose that qi+3<qi+2<qi+1. We already have qM-V/2-1/2 = qM/V < qM-V/2-3/2 = qM(1/V+2/V2) <     

qM-V/2-5/2  = qM(1/V+2/V2+4/V3). So we just have to show that qi+3<qi+2<qi+1 implies qi>qi+1.  

We have: qi = 2qi+1/V+qi+2 > 2qi+2/V+qi+3  

Given that 2qi+2/V+qi+3 =qi+1, we get qi >qi+1. 

We now show that the discrete equilibrium converges to the continuous one when V is large. 

When V is large, we get with Taylor’s theorem (quadratic approximation): 2e-1/V/V+e-2/V≃2/V-

2/V2+1/V3+1-2/V+2/V2 = 1+1/V3 →1. 

It follows e-i/V/V≃2 e-(i+1)/V/V2+e-(i+2)/V/V. 

So, by replacing qk with f(k) = e-k/V/V in qi and 2qi+1/V+qi+2 we get, for V large, 

qi≃2qi+1/V+qi+2  .  

It follows that f(k) checks the main recurrence equations (1a) for large values of V. 

Moreover, we have qM-V/2-1/2 = qM/V and qM-V/2-3/2 = qM(1/V+2/V2). We show that these both 

equations hold when replacing qM with f(M)=e1/2-M/V, qM-V/2-1/2  with  f(M-V/2-1/2)=                        

e-M/V+1/2+1/(2V)/V and qM-V/2-3/2  with f(M-V/2-3/2)=e-M/V+1/2+3/(2V)/V. 

We just have to show that e-M/V+1/2+1/(2V)/V ≃ e1/2-M/V/V and e-M/V+1/2+3/(2V)/V ≃ e1/2-M/V(1/V+1/V2), 

i.e. e 1/(2V) ≃ 1 and e3/(2V)
 ≃ 1+1/V 

e 1/(2V)≃ 1+1/(2V)+1/(8V2) (Taylor’s theorem, quadratic approximation) 

e3/(2V)≃ 1+3/(2V)+9/(8V2) 

0.5/V+1/(8V2) and 0.5/V+9/(8V2) go to 0 for V large (compared to 1), so we get the 

convergence for large values of V. 

Now observe that, if qi+1 and qi+2 respectively converge to f(i+1) and f(i+2),  then qi= 

2qi+1/V+qi+2→2f(i+1)/V+f(i+2). Yet we also know that f(i) checks the main recurrence 

equations, so that 2f(i+1)/V+f(i+2)→f(i). It follows that qi→f(i) for V large. 

In addition, by replacing qi with e-i/V/V for i from 0 to M-V/2-1/2 and qM with e1/2-M/V we check 

that q0+q1+q2+q3+…+qM-V/2-3/2+qM-V/2-1/2 = (1+e-1/V+e-2/V+e-3/V+…..+e-(M-V/2-1/2)/V)/V =   

(1-e-(M-V/2+1/2)/V)/((1-e-1/V)V) . We have V(1-e-1/V) ≃ V(1-(1-1/V)) = 1 for V large and                    

(1- e-(M-V/2+1/2)/V) = (1-e-(M-V/2)/V) for V large, given that e-1/(2V) ≃1-1/2V→1 for V large. So  

q0+q1+q2+q3+…+qM-V/2-3/2+qM-V/2-1/2 → 1-e1/2-M/V = 1-qM      (3a) 

Putting the results together ensures that for V large, e-i/V/V for qi, i from 0 to M-V/2-1/2 and      

e1/2-M/V for qM solve the discrete equations (1a), (2a) and (3a). By construction, the system of 

equations defining qi, i from 0 to M, has a unique solution. It follows the convergence of the 

discrete equilibrium probabilities to the continuous equilibrium probabilities. 

 

Appendix 4: Proof of proposition 3 

Given the proof in Appendix 3, we know that the main equation qi=2qi+1/V+qi+2  is satisfied for 

qi = e-i/V/V, for i from 0 to M-V/2-3. But the convergence of the discrete probabilities to the 

continuous probabilities isn’t possible because the equation qM-V/2-1 = 2qM/V isn’t true for qM = 

e1/2-M/V  and qM-V/2-1 = e-M/V+1/2+1/V/V, even for V large.  As a matter of fact 2≠ 1+ 1/V+1/(2V2) 
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even for V large. Moreover the discrete probability distribution is not uniformly decreasing. 

For example:   

qM-V/2-2  = 4qM/V2 < qM-V/2-1 = 2qM/V for V>2. 

Yet, by replacing qM-V/2-1 and qM-V/2-2  with e1/V+1/2-M/V/V and e2/V+1/2-M/V/V and qM with e1/2-M/V, 

we get 2qM/V+4qM/V2 = e1/2-M/V(2/V+4/V2) and  e1/V+1/2-M/V/V+e2/V+1/2-M/V/V = e1/2-M/V(e1/V 

+e2/V)/V≃ e1/2-M/V(2/V+3/V2+5/(2V3)) (Taylor’s theorem, quadratic approximation). So, given 

that -1/V2+2.5/V3 → 0 for V large (compared to 2/V), we observe that qM-V/2-1+qM-V/2-2 and 

e1/V+1/2-M/V/V+e2/V+1/2-M/V/V converge to a same value for large values of V.  

Let us fix qM = e1/2-M/V.  

qM-V/2-3 and qM-V/2-2  are uniquely defined, with qM-V/2-2+qM-V/2-3 = qM-V/2-2+2qM-V/2-2/V+qM-V/2 -1  

= e1/2-M/V(2/V+4/V2+8/V3). And we also observe that e2/V+1/2-M/V/V+e3/V+1/2-M/V/V →                   

e1/2-M/V(e2/V+e3/V)/V which goes to e1/2-M/V(2/V+5/V2+6.5/V3). Given that 1/V2-1.5/V3 →0 for 
V large (compared to 2/V), qM-V/2-3+qM-V/2-2  and e2/V+1/2-M/V/V +e3/V+1/2-M/V/V converge to a same 

value for large values of V. 

Now observe that if  e-(i+2)/V/V+e-(i+3)/V/V and qi+2+qi+3 converge to a same value, and if                   

e-(i+1)/V/V+e-(i+2)/V/V and qi+1+qi+2  converge to a same value,  then  qi+qi+1 and e-i/V/V+e-(i+1)/V/V 

also converge to a same value for i from 0 to M-V/2-4. Let us show it: 

On the one side, qi+qi+1 = 2qi+1/V+qi+2+2qi+2/V+qi+3 = 2(qi+1+qi+2)/V+qi+2+qi+3→           
2(e-(i+1)/V/V+e-(i+2)/V/V)/V+e-(i+2)/V/V+e-(i+3)/V/V= (e-i/V/V)[2(e-1/V/V+e-2/V/V)+e-2/V+e-3/V] → 

(e-i/V/V)(2-1/V+0.5/V2+5/V3). 

On the other side, e-i/V/V+e-(i+1)/V/V= (e-i/V/V)(1+ e-1/V)= (e-i/V/V)(2-1/V+0.5/V2).  

So qi+qi+1 and e-i/V/V+e-(i+1)/V/V converge to a same value for large values of V. 

Finally, at least for M-V/2 even, qM= e1/2-M/V is the good assumption because the system of 

discrete probabilities has a unique solution and it checks: 

(q0+q1)+(q2+q3)+…(qM-V/2 -2+qM-V/2 -1) = (1+e-1/V+e-2/V+e-3/V
 +…..+e-(M-V/2-1)/V)/V =  

 (1-e-(M-V/2)/V)/((1-e-1/V)V) = 1-e1/2-M/V =1- qM  for V large (because 1-e-1/V≃1-(1-1/V) =1/V for 

V large). 

To summarize, by setting qM = e1/2-M/V, we observe that e-i/V/V+e-(i+1)/V/V and qi+qi+1 converge 

for V large, for i from 0 to M-V/2-2. And we observe that if e-i/V/V+e-(i+1)/V/V and qi+qi+1 

converge, then qM = e1/2-M/V is consistent with the equations (1b), (2b) and (3b). So, given that 

this system of equations has a unique solution, we have found that the solution of the set of 

equations checks qM = e1/2-M/V and qi+qi+1 = f(i)+f(i+1) for i from 0 to M-V-2 for V large. 

So we have a partial convergence result between the discrete Nash equilibrium and the 

continuous Nash equilibrium, but only by summing the adjacent probabilities two by two. 

Let us now focus on the strange values taken by the probabilities for large values of V. 

qM-V/2-1 = 2qM/V 

qM-V/2-2  = 4qM/V2 →0 (in comparison with qM-V/2 -1) for large values of V 

qM-V/2-3 = 2qM-V/2-2/V+qM-V/2-1 →2qM/V 

qM-V/2-4 = 2qM-V/2-3/V+qM-V/2-2 →8qM/V2→0 

qM-V/2-5 = 2qM-V/2-4/V+qM-V/2-3 →2qM/V 

And so on. By recurrence, if qM-V/2-i = 2qM/V  (i odd)  and qM-V/2-i-1 →2(i+1)qM/V2, we get : 

qM-V/2-i-2 = 2qM-V/2-i-1/V+qM-V/2-i → 2qM/V (provided 4(i+1)qM/V3→0) 
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and qM-V/2-i-3= 2qM-V/2-i-2/V+qM-V/2-i-1 → 4qM/V2+2(i+1)qM/V2 =2(i+3)qM/V2. 

Observe that 4(i+1)qM/V3 → 0 (in comparison with qM-V/2-1) means that 2(i+1)<Vx with x<2. 

So, given that i+1 ≤M –V/2, for 4(i+1)qM/V3 to go to 0, it is enough that M<Vx/2+V/2 with x < 

2. So we can fix x = 1.9 for example. Observe also that qM-V/2-2j increases in j, whereas                

qM-V/2-i, for i odd, keeps close to 2qM/V, provided that M is lower than Vx<2/2+V/2. So we get a 

kind of yoyo phenomenon. For large values of k, the probabilities qk alternate between 0 and 

2qM/V. Things change for qi with i small: qM-V/2-2j can become larger than qM-V/2-i, i odd, if 

M>3V/2 and continues increasing linearly in j, whereas qM-V/2-i, i odd, sticks to 2qM/V if V large 

and M < Vx<2/2+V/2. 

 

Appendix 5: Proof of proposition 4 

We first focus on a bid increment I equal to 0.5. In that case, r, the remainder of the division of 

M-V/2 by I is 0 and we apply the results obtained in Appendix 6. The two highest played bids 

(after M) are M-V/2-0.5 and M-V/2-1.  

We get  qM-V/2-0.5 = 2IqM/V=qM/V and qM-V/2-1 = 4I2qM/V2=qM/V2     (4b) 

And the main recurrence equations are:  

qi =  2Iqi+0.5/V+qi+1 = qi+0.5/V+qi+1  

for i from 0 to M-V/2 -1.5, i being a multiple of 0.5.         (4a) 

For large values of V we get again: 

qM-V/2-0.5 = qM/V 

qM-V/2-1  = qM/V2 →0 (in comparison with qM-V/2 -0.5) for large values of V 

qM-V/2-1.5 = qM-V/2-1/V+qM-V/2-0.5 → qM/V 

qM-V/2-2 → qM/V2+qM/V2 → 2qM/V2 → 0 

qM-V/2 -2.5 → qM/V 

And so on. By recurrence it is easy to establish that qM-V/2-i-0.5 = qM/V  (i integer)  and  

qM-V/2-i → iqM/V2 (i integer) provided that M<Vx<2+V/2. So again we observe the yoyo 

phenomenon. Let us add that qM-V/2-1/qM-V/2-0.5=1/V whereas qM-V/2-2/qM-V/2-1=2/V when the bid 

increment is 1, so the contrast between two adjacent probabilities qi for i large is larger. 

We now focus on a bid increment I equal to 0.1. In that case, r, the remainder of the division of 

M-V/2 by I is again 0 and we apply the results obtained in Appendix 6. The two highest played 

bids (after M) are M-V/2-0.1 and M-V/2-0.2.  

We get  qM-V/2-0.1 = 2IqM/V=0.2qM/V and qM-V/2-0.2 = 4I2qM/V2=0.04qM/V2              (5b) 

And the main recurrence equations are:  

qi =  2Iqi+0.1/V+qi+0.2 = 0.2qi+0.1/V+qi+0.2 
    

for i from 0 to M-V/2-0.3, i being a multiple of 0.1.        (5a) 

For large values of V we get again: 

qM-V/2-0.1=0.2qM/V 

qM-V/2-0.2  =0.04qM/V2 →0 (in comparison with qM-V/2-0.1) for large values of V 

qM-V/2-0.3 = 0.2qM-V/2-0.2/V + qM-V/2-0.1 → 0.2qM/V 

qM-V/2-0.4 → 0.04qM/V2
 +0.04qM/V2 → 0.08qM/V2 → 0 

qM-V/2-0.5 →0.2qM/V 
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And so on. By recurrence it is easy to establish that, provided M<Vx<2/0.2+V/2,  qM-V/2-i/10 = 

0.2qM/V  (i being an odd integer)  and qM-V/2-i/10 →0.02iqM/V2 (i being an even integer). So we 

observe again the yoyo phenomenon. And this yoyo phenomenon is stronger than for a bid 

increment equal to 0.5 or 1 because on the one hand two adjacent bids are closer (bid increment 

0.1), on the other hand the difference in probabilities between two adjacent high bids is larger: 

(0.04qM/V2)/(0.2qM/V) = 0.2/V (whereas we get 1/V for the bid increment 0.5 and 2/V for the 

bid increment 1). 

 

Appendix 6:  Proof of proposition 5 and proposition 6 

I is the increment and r is the remainder or the division of M-V/2 by I.  

So the two highest played bids after M are M-V/2-r and M-V/2-r-I, if r ≠ 0. If r = 0, the two 

highest played bids after M are M-V/2-I and M-V/2-2I. 

Case 1: r≠0 (Proof of proposition 5) 

M-V/2-r and M lead to the same payoff, except if the opponent bids M-V/2-r or M. So we need: 

qM-V/2-r(V+r)+qM(V/2+r) = qM-V/2 -r(3V/2+r)+qM(V/2) 

so  qM-V/2-r = 2rqM/V           (6a) 

The bids M-V/2-r and M-V/2-r-I lead to the same payoff, except if the opponent bids M-V/2-r, 

M-V/2-r-I or M. So we need:  

qM-V/2-r-I(V+r+I)+qM-V/2-r(V/2+r+I)+qM(V/2+r+I)= 

qM-V/2-r-I(3V/2+r+I)+qM-V/2-r(V+r)+qM(V/2+r) 

so qM-V/2-r-I(-V/2)+qM-V/2-r(-V/2+I)+IqM = 0 

We get qM-V/2-r-I = [2(I-r)/V +4rI/V2]qM         (6b) 

More generally M-V/2-r-j and M-V/2-r-j-I  (with j a multiple of I, j≥I)) lead to the same payoff, 

except if player 2 plays  M-V/2-r-k or M, with k going from 0 to j+I (j and k being multiples of 

I). So we need:  

qM-V/2-r-j-I(V+r+j+I)+ qM-V/2-r-j(V/2+r+j+I)+ ∑ qM−Vమ−r−୩ሺVଶ + r + j + Iሻ୨−I୩=଴ + qM(V/2+r+j+I) =  

qM-V/2-r-j-I(3V/2+r+j+I)+qM-V/2-r-j(V+r+j)+ ∑ qM−Vమ−r−୩ሺVଶ + r + jሻ୨−I୩=଴ + qM(V/2+r+j)  

Hence qM-V/2-r-j-I(-V/2)+qM-V/2-r-j(-V/2+I)+ I ∑ qM−Vమ−r−୩୨−I୩=଴ +IqM = 0 (k being a multiple of I). 

In a similar way we get:   

qM-V/2-r-j-2I(-V/2)+ qM-V/2-r-j-I(-V/2+I)+IqM-V/2-r-j +I ∑ qM−Vమ−r−୩୨−I୩=଴ +IqM = 0  

(k being a multiple of I). 

It follows  qM-V/2-r-j-2I=  2IqM-V/2-r-j-I/V+qM-V/2-r-j   for j from 0 to M-V/2-r-2I  

(j being a multiple of  I) 

So the main recurrence equations are: 

 qi =  2Iqi+I/V+qi+2I   for i from 0 to M-V/2-r-2I  (i being a multiple of I).     (6c) 

To study the convergence of the discrete Nash equilibrium to the continuous Nash equilibrium 

we have to take into account that the bid kI, in the continuous equilibrium, is only played with 

probability f(kI)db. So we have to weight (adjust) the continuous probabilities by multiplying 

them by (1- f(M))/(f(0)+f(I)+…..+f(M-V/2-r)) . We get: 
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f(0)+f(I)+…..+f(M-V/2-r)) = (1+e-I/V+….+e-(I/V)((M-V/2-r)/I))/V= 
ሺଵ−௘−ቀ ��ቁቀ�−�మ−ೝ+�ቁ� ሻ�ሺଵ−௘− ��ሻ   →                      

(1-f(M))/I for large values of V. So, convergence requires that qi → If(i) for i from 0 to                 

M-V/2- r, i being a multiple of I, and that qM→f(M).  

To get convergence, we need a decreasing discrete probability distribution. 

So we need: qM-V/2-r-2I>qM-V/2-r-I>qM-V/2-r 

i.e.:   2rqM/V<[2(I-r)/V+4rI/V2]qM
 

and [2(I-r)/V+4rI/V2]qM< [2r/V+4I(I-r)/V2+8rI2/V3]qM 

(given that qM-V/2-r-2I=2I qM-V/2-r-I/V+ qM-V/2-r= [2r/V+4I(I-r)/V2+8rI2/V3]qM) 

Convergence will only be obtained for V large, so the above inequations have to be true for 

large values of V, so we get: 

2rqM/V<[2(I-r)/V+4rI/V2]qM ⇒ r ≤ I/2 

And [2(I-r)/V+4rI/V2]qM <[2r/V+(4I(I-r))/V2 + (8rI2)/V3]qM ⇒ r ≥ I/2 

It derives r = I/2, so convergence can only be obtained for  r = I/2 .   (6d) 

Let us check that the probability distribution is decreasing for r=I/2. 

It remains to show that if qi>qi+I>qi+2I, then qi-I > qi  (i being a multiple of I). 

We have qi-I= 2Iqi/V +qi+I > 2Iqi+I/V +qi+2I.  So we get qi-I > qi. 

Convergence to the continuous Nash equilibrium requires that the equations (6c) are solved 

when replacing qi with If(i). So we have to show that If(i) goes to 2I2f(i+I)/V+If(i+2I).  

This convergence holds for V large. As a matter of fact 2Ie-I/V/V+e-2I/V goes to 1 if V is large 

(2Ie-I/V/V+e-2I/V≃ 1+I3/V3→1 (Taylor’s theorem, quadratic approximation)) and it follows          

Ie-i/V/V≃ 2I2e-(i+I)/V/V2+Ie-(i+2I)/V/V. 

Let us now show that qM-V/2-r (= 2rqM/V) converges to If(M-V/2-r) provided that qM is close to         

e1/2-M/V. 

2rqM/V→2re1/2-M/V/V = Ie1/2-M/V/V  and If(M-V/2-r) = Ie(1/2-M/V+r/V)/V. Convergence follows for 

large values of V. 

Let us also show that qM-V/2-r-I  (= [2(I-r)/V +4rI/V2]qM)  goes to If(M-V/2-r-I) provided that qM 

is close to e1/2-M/V. 

[2(I-r)/V+4rI/V2]qM = (I/V+2I2/V2)qM → (I/V+2I2/V2)e1/2-M/V and If(M-V/2-r-I) =                      

Ie(1/2-M/V+r/V+I/V)/V. Convergence follows for large values of V. 

Now observe that if qi+I and qi+2I respectively converge to If(i+I) and If(i+2I),  then qi= 

2Iqi+I/V+qi+2I → 2I2f(i+I)/V+If(i+2I). Yet we also know that that If(i) checks the main 

recurrence equations (6c), so that 2I2f(i+I)/V+If(i+2I)→If(i). It follows that qi→If(I) for V 
large, i being a multiple of I. 

Finally let us check that e1/2-M/V is close to 1-q0-qI-…-qM-V/2-r. 

We have 1-q0-qI-…-qM-V/2-r→1-I(f(0)+f(I)+…..+f(M-V/2-r))= 1-I(1-f(M))/I= f(M). So qM is 

close to f(M) as assumed. 

Putting all the results together ensures that, if r≠0, then the discrete Nash equilibrium converges 

to the continuous Nash equilibrium only if r=I/2 for large values of V. 
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Case 2: r= 0 (Proof of proposition 6) 

M-V/2-I and M lead to the same payoff, except if the opponent bids M-V/2-I or M. So we need: 

qM-V/2-I(V+I)+qM(V/2+I) = qM-V/2 -I(3V/2+I)+qM(V/2) 

It follows:  qM-V/2-I = 2IqM/V          (7a) 

The bids M-V/2-I and M-V/2-2I lead to the same payoff, except if the opponent bids M-V/2-I, 

M-V/2-2I or M. So we need:  

qM-V/2-2I(V+2I)+qM-V/2-I(V/2+2I)+qM(V/2+2I)= 

qM-V/2-2I(3V/2+2I)+qM-V/2-I(V+I)+qM(V/2+I). 

It follows qM-V/2-2I(-V/2)+qM-V/2-I(-V/2+I)+IqM = 0 

So we get: qM-V/2-2I = 4I2qM/V2        (7b) 

We also get (same proof than for r≠0) the main recurrence equations: 

 qi =  2Iqi+I/V+qi+2I   for i from 0 to M-V/2-3I (with  i a multiple of I).     (7c) 

 It immediately follows that qM-V/2-2I  < qM-V/2-I for large values of V (V>2I). So we can’t get a 
decreasing probability distribution, which precludes the convergence of the discrete equilibrium 

to the continuous equilibrium. 

Yet we can establish that, for V large, qM-V/2-I+qM-V/2-2I (= 2IqM/V+ 4I2qM/V2)  goes to I(f(M-

V/2-I)+f(M-V/2-2I)), provided that qM is close to f(M) = e1/2-M/V.  

As a matter of fact I(f(M-V/2-I)+f(M-V/2-2I))= Ie(1/2-M/V)(eI/V+e2I/V)/V→2I e(1/2-M/V)/V for large 

values of V. And 2IqM/V+ 4I2qM/V2  = (2IqM/V)(1+2I/V) → 2I e(1/2-M/V)/V for large values of 

V. In a similar way we can establish that qM-V/2-2I+qM-V/2-3I converges to I(f(M-V/2-2I)+          

f(M-V/2-3I)) for large values of V. And we establish that, if qi+I+qi+2I converges to 

I(f(i+I)+f(i+2I)) and qi+2I+qi+3I converges to I(f(i+2I)+f(i+3I)), then qi+qi+I converges to 

I(f(i)+f(i+I)), i being a multiple of I. As a matter of fact qi+qi+I = 2I(qi+I+qi+2I)/V+qi+2I+qi+3I goes 

to 2I2(f(i+I)+f(i+2I))/V+I(f(i+2I)+f(i+3I)) by assumption, so goes to (I/V)e-i/V(2-

I/V+0.5(I/V)2+2.5(I/V)3). And I(f(i)+f(i+I)) goes to (I/V)e-i/V(2-I/V+0.5(I/V)2), which ensures 

the convergence for large values of V. 

And qM close to e1/2-M/V is a good assumption when qi+qi+I →I(f(i)+f(i+I)) because we get, at 
least if (M-V/2)/I is even: 

(q0+qI)+(q2I+q3I)+…+(qM-V/2-2I+qM-V/2-I) = I(1+e-I/V+….+e-(I/V)((M-V/2)/I-1))/V = 
�ሺଵ−௘−ቀ ��ቁቀ�−�మቁ� ሻ�ሺଵ−௘− ��ሻ   

which goes to 1- e1/2-M/V  for large values of V. 

Let us observe that (1- f(M))/ (f(0)+f(I)+…..+f(M-V/2-I)) is the weight we have to assign to 

each f(kI) (with k an integer) to take into account that the bid kI, in the continuous equilibrium, 

is only played with probability f(kI)db. Given the above calculus, this weight is equal to              

(1-e1/2-M/V)/ [
ሺଵ−௘−ቀ ��ቁቀ�−�మቁ� ሻ�ሺଵ−௘− ��ሻ ]= I (for large values of V). 

Putting all the results together, we can conclude that the sums of the discrete probabilities of 

two adjacent bids go to the sums of the continuous probabilities of the same two bids. 

Observe that, for large values of V, we get again: 

qM-V/2-I  = 2IqM/V 
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qM-V/2-2I  = 4I2qM/V2 →0 (in comparison with qM-V/2-I) for large values of V 

qM-V/2-3I = 2IqM-V/2-2I/V + qM-V/2-I → 2IqM/V 

qM-V/2-4I → 4I2qM/V2
 +4I2qM/V2 → 8I2qM/V2 → 0 

qM-V/2-5I → 2IqM/V 

And so on. So we get again the yoyo phenomenon and, given that  (4I2qM/V2)/ (2IqM/V) = 2I/V, 

the phenomenon is strengthened when I decreases. 

 

 

 

 

 

 

 

 


