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Abstract

In Keynes’ beauty contest, agents make evaluations reflecting both an expected fun-

damental value and the conventional value expected to be set by the market. They thus

respond to fundamental and coordination motives, respectively, the prevalence of either

being set exogenously. Our contribution is twofold. First, we propose a valuation game

in which agents strategically choose how to weight each motive. This game emphasises

how public information leads agents to favour the coordination motive. Second, we test

the game through a laboratory experiment. Subjects tend to conform to theoretical pre-

dictions, except when fundamental uncertainty is low relative to strategic uncertainty.
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1 Introduction

The beauty contest metaphor used by Keynes to characterise the working of financial mar-

kets displays the existence of a dual motivation in agents’ decision making: there is a fun-

damental motive making agents strive to predict the fundamental value of some financial

asset and there is a coordination motive making them seek to predict the conventional

value eventually set by the market. There is no reason for the two values to coincide and,

in Keynes’ view, the working of stock markets, rather than imposing a balance between

the two motives, tends to favour the coordination relative to the fundamental motive or,

in Keynes’ words, to favour speculation rather than enterprise. Indeed, professional in-

vestors and speculators are not so much concerned with forecasting fundamentals as with

”anticipating what average opinion expects the average opinion to be” (Keynes, 1936, ch.12,

p.156).1

The aim of our paper is to revisit Keynes’ beauty contest in a setup that captures the

choice to play a pure coordination game, and then to question whether the coordination

motive dominates the fundamental motive when homines sapientes are involved instead of

homines œconomici. Therefore, our contribution is twofold. First, from a theoretical point

of view, we consider the trade-off between the coordination and the fundamental motives

not as structural but as resulting from strategic decisions. Those decisions may then end

up in the full eviction of the fundamental motive. Second, a natural way to test whether

this theoretical disconnection of economic activities from fundamentals also emerges in

practice is to bring the model to the lab. Our second contribution thus consists in running

an experiment on our extended version of the beauty contest.

The valuation game is directly based on Morris and Shin (2002) (henceforth MS). In this

famous representation of the Keynesian beauty contest, agents’ actions consist in choos-

ing a value which is a compromise between the anticipated fundamental value and the

anticipated conventional value (the average of all the agents’ actions). Under perfect in-

formation, agents can easily coordinate on the fundamental value, so that the fundamental

and coordination motives coincide. By contrast, under imperfect information, agents re-

ceive public and private signals about the unknown fundamental value. Information being

imperfect, agents have to form expectations on the fundamental, and information being

dispersed, agents may find it difficult to coordinate. Dispersed information generates a

conflict between matching the fundamental value and matching the conventional value,

which expresses itself in an information cost. While the terms of the trade-off between the

fundamental and the coordination motives are exogenously given in MS, we argue that

players may be interested in manipulating the weights put on the fundamental and the co-

ordination motives, for instance by choosing the shares of their portfolios they allocate to

1The prevalence of speculation over enterprise is implicitly stated by Keynes: ”as the organisation of invest-
ment markets improves, the risk of the predominance of speculation does [...] increase. In one of the greatest
investment markets in the world, namely, New York, the influence of speculation (in the above sense) is enor-
mous. [...W]hen he purchases an investment, the American is attaching his hopes, not so much to its prospective
yield, as to a favourable change in the conventional basis of valuation, i.e. [...] he is, in the above sense, a specu-
lator.”
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investment and speculation, respectively. The exogeneity of the relative weight put on the

coordination motive leaves open the issue of the potential disconnection of actions from

the fundamental value. We extend MS model to a two-stage game, in which agents first

choose the weight they attribute to the coordination and fundamental motives before mak-

ing the choice of the value that best matches the preferred combination of fundamental and

coordination motives. We show that there is an incentive for agents to favour the coordina-

tion over the fundamental motive. More precisely, we show that the coordination activity

(speculation) prevails in the valuation game as coordination on a public signal entails a

lower information cost than predicting an unknown fundamental. Information is the driv-

ing force for the coordination loss to be weaker than the fundamental loss: as agents put

more weight on the coordination motive, they rely more on public information to estimate

the average action, making it easier to coordinate on the convention. The strategic choice to

privilege the convention results in the limit in a total disconnection between the valuation

activity and the fundamental.

We test the theoretical predictions of the extended valuation game through an exper-

iment. More precisely, we test whether – under dispersed information – human subjects

prefer to choose a fundamental or a coordination motive and how much weight they put

on the public signal depending on the game they chose to play. The experiment captures

the impact of different informational contexts – by varying the precision and the nature

(public or private) of information – on the choice to speculate and thus on the consequent

disconnection of activities from fundamentals.

Overall, our experiment shows that subjects play in line with theoretical predictions in

the sense that they more often choose to play the coordination game and put more weight

on the coordination motive when they receive both public and private signals (than when

they receive two private signals). Variations in the relative precision of public and private

signals do not affect such a conclusion as subjects always put more weight on the coordi-

nation than on the fundamental motive at the first stage – except in the specific case where

private information is very precise while public information is not – and they put a large

weight on the public signal at the second stage, the more so the higher the (relative) preci-

sion of this signal. Because the fundamental is unknown, by choosing to ignore it (almost)

entirely in their payoffs, subjects are able to eliminate (almost) all uncertainty by coor-

dinating on the public signal, thereby maximizing their payoff. However, when private

information is very precise, while public information is not, subjects prefer to choose the

fundamental game, which contradicts theoretical predictions. While theory predicts that

subjects should always choose the coordination game whatever the level of uncertainty,2

fundamental uncertainty is so weak compared to strategic uncertainty that choosing the

coordination game appears too costly, as it typically entails a coordination problem at the

second stage and thus requires that the others play the public signal as well to maximise

payoffs. Reducing the precision of public information (as is sometimes advocated in the

2In the limit case where fundamentals are perfectly known, multiple equilibria arise at the first stage of the
game.
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literature in the vein of MS) may not be suitable, as subjects still do choose to play the

coordination game.3

Our paper contributes to the theoretical literature on beauty contest games initiated

by Morris and Shin (2002)4 and its experimental counterparts (Dale and Morgan (2012),

Cornand and Heinemann (2014), Baeriswyl and Cornand (2014, 2016), and Shapiro et al.

(2014)).5 Our analysis mainly differs from theirs in that we treat the relative weights put on

the coordination vs. fundamental motives not as exogenous, but instead as strategic vari-

ables. In this respect, our work relates to Cornand and Dos Santos Ferreira (2016) who treat

the weights put on the fundamental and strategic motives as pertaining to the structure of

a differentiated duopoly but allow firm owners to manipulate these weights.

The remaining of the paper is structured as follows. Section 2 presents the theoretical

framework. Section 3 develops the experimental design and Section 4 the results. Finally,

Section 5 concludes the paper.

2 Theoretical framework

MS introduce a valuation game in which agents’ decisions have to meet both a fundamental

and a coordination motive. Their actions consist in choosing a value as close as possible

to the fundamental value and to the conventional value set by the market, according to a

trade-off between the two motives. However, while the relative weight agents put on each

motive of MS’s valuation game is fully exogenous, we take it as a strategic variable. We

therefore extend MS framework to consider a two-stage game in which agents first choose

the weight they attribute to the coordination (and fundamental) motive(s) before making

a decision. This model accounts for the potential disconnection between speculation and

enterprise in a very simple manner.

2.1 A two-stage valuation game under different informational structures

There is a finite number n of agents. The utility function for individual i has two com-

ponents. The first component is a standard quadratic loss in the distance between the

underlying fundamental value θ and i’s chosen value (action) ai. The second component

is the ‘beauty contest’ term: the loss is increasing in the distance between i’s chosen value

(action) ai and the average action 1
n

∑
j aj . Formally, the utility of agent i is given by

3Except when the precision of the signal is zero (in the private signals treatments, subjects more often play the
fundamental game).

4This literature largely expanded following Morris and Shin (2002) seminal contribution. See e.g. Angeletos
and Pavan (2007).

5Alternative specifications of coordination games under dispersed information, such as the global game ap-
proach, have been experimentally tested. See e.g. Cabrales et al. (2007), Heinemann et al. (2004, 2009). Neither the
global game approach nor the beauty contest games consider the issue of trading. For experimental evidence on
the role of public and private information on market efficiency when private information aggregates into prices,
see e.g. Ackert et al. (2204), Alfarano et al. (2011), and Middeldorp and Rosenkranz (2011).
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u(a, θ; ri) = −(1− ri) (ai − θ)
2

︸ ︷︷ ︸
fundamental motive

− ri


ai −

1

n

∑

j

aj




2

︸ ︷︷ ︸
coordination motive

, (1)

where a is the action profile over all the agents and ri is the weight agent i decides to put

on the beauty contest term.6

The timing of the game is as follows. First, each agent i chooses ri: he evaluates which

motive he favours to maximise his utility (he somehow chooses ‘the game he wants to

play’). Second, each agent i chooses ai: he evaluates how to exploit his information to

decide on the value that matches the combination of motives he favoured.

Under perfect information, any agent i would exactly know the fundamental value θ

and choose at the second stage a∗i = θ, so that there would be no conflict between the

fundamental and the coordination motives. As a consequence, (r, (θ, ..., θ)) would be a

subgame perfect equilibrium for any profile r.

Under imperfect but homogeneous information, diffused for instance by a noisy public sig-

nal y received by all agents between the two stages of the game, there would typically be

some fundamental loss, but no coordination loss. Subgame perfection would then impose

the choice ri = 1 at the first stage, allowing to get a zero loss with certainty at the second

stage (with a = (y, ..., y)), and potentially disconnecting the equilibrium actions from the

fundamental. In this context, the public signal might well be biased (and not only noisy)

without changing the equilibrium payoffs. In other words, any sunspot would indifferently

perform its well-known coordinating role as soon as r = (1, ..., 1).

Following the literature in the vein of MS, we shall however assume imperfect and hetero-

geneous (or dispersed) information. Between the two stages of the game, each agent i receives

two signals on the unknown fundamental value θ. All agents receive an unbiased pub-

lic signal with a normally distributed error term: y = θ + η, with η ∼ N (0, 1/α). Each

agent i receives in addition an unbiased private signal: xi = θ + εi, with εi ∼ N (0, 1/β),

the εi’s being identically and independently distributed across agents and independently

distributed with respect to η. Thus, conditionally on the two signals y and xi received by

agent i, his expected value of the fundamental is a weighted arithmetic mean of those sig-

nals, with weights proportional to the corresponding precisions α and β: E(θ | xi, y) =

(αy + βxi)/(α+ β).

As the signal y is public, it conveys information not only on the fundamental, but also on

other agents’ actions. Should the two signals, say yi and xi be both private, agent i would

have no information on others’ actions, about which he would be doomed to form the same

expectation as about the fundamental: E(θ | xi, yi) = (αyi + βxi)/(α + β) = E(aj | xi, yi).

6MS take a third motive into account: each agent wants to choose an action close to the average action, but
would also like to succeed better than the others. In MS framework, in which the set of agents is a continuum,
this competition motive appears as an externality: it influences the agents’ welfare, not their decisions. This is not
the case in our context, as we consider a finite number of agents and, in addition, a two-stage game. However, we
have preferred to ignore this motive in order to simplify the task of the participants to the experiment.
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As in the perfect information case, there would be no conflict between the fundamental

and the coordination motives (any profile r decided at the first stage would do), even if the

two losses would now be positive.

So, let us keep one signal public and the other private. We further assume that α > 0

and β < ∞, so that the public signal never ceases to be informative and the private signal

never becomes fully informative on the fundamental. These assumptions insure that the

public signal is always relevant (on the fundamental).

2.2 Subgame perfect equilibrium under dispersed information

We solve the model backwards, starting by the second stage and taking the ri’s as given.

The solution to the maximization problem, conditional on the two signals received by any

agent i, namely maxai
E (u (a, θ; ri) | xi, y), is given by

a∗i =
α

α+ β

(
1 +

βRi

α+ β (1−R)

)

︸ ︷︷ ︸
κi

y +
β

α+ β

(
1−

αRi

α+ β (1−R)

)

︸ ︷︷ ︸
1−κi

xi, (2)

with Ri ≡
(1− 1/n) ri
1− (1/n) ri

and R ≡
1

n

∑

j

Rj

(see Appendix 7.1 for details about the derivation). Thus, the second stage equilibrium is

an action profile a
∗ (r) depending on the profile of the weights ri’s chosen by each agent i

at the first stage. For any agent i, the equilibrium value a∗i (ri, r−i) is an arithmetic mean

of the two signals y and xi received by that agent, with relative weights depending on ri,

directly through a monotonic transformation Ri of ri and indirectly through the mean R

of the Rj ’s. Naturally, the relative weight κi put on the public signal increases with the

relative precision α/β of the public signal and with the relative weight ri attributed to the

coordination motive.

To derive the subgame perfect equilibrium, we maximise with respect to ri the expected

utility of agent i, namely

E (u (a∗ (r) , θ; ri)) =
1

α


 − (1− ri)

(
κ2
i +

(1−κi)
2

β/α

)

−ri

(
(κi − κ)2 + 1−1/n

β/α

((
1− 1

n

)
(1− κi)

2 + 1
n

1
n−1

∑
j 6=i(1− κj)

2
))


 ,

(3)

with κ = 1
n

∑
j κj (see Appendix 7.2 for details about the derivation). By referring to equa-

tion (2) and as shown in this appendix, we see that the expression between square brackets

is a function U
(
ri, R

1
−i, R

2
−i, n, β/α

)
, where R1

−i = 1
n−1

∑
j 6=i Rj and R2

−i = 1
n−1

∑
j 6=i R

2
j

are the first and second moments (about the origin) of the Rj ’s of all agents other than i.

The limit case of an infinite number of agents allows a simple derivation of the subgame

perfect equilibrium. Indeed, in this case the function U no more depends upon R2
−i, the

means κ and R cease to depend upon the choice of ri, and Ri = ri. The expected utility
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then becomes

U (ri, κi (ri)) =
1

a

[
−
(1− κi)

2

β/α
− κ2

i + riκ(2κi − κ)

]
, (4)

and its derivative with respect to ri (using κ = 1/ (1 + (β/α) (1− r)), with r = 1
n

∑
j rj)

dU (ri, κi (ri))

dri
=

κ2

α

[
2

1 + β/α

(
1

κ
+ (β/α) ri

)
− 1

]
, (5)

an increasing function of ri. The function U (·, κi (·)) is consequently strictly convex, and

can only be maximised at ri = 0 or at ri = 1. Using κi (1) = (1 + (β/α)κ) / (1 + β/α) and

κi (0) = 1/ (1 + β/α), we may establish that

U (1, κi (1))− U (0, κi (0)) =
κ (2− κ)

a (1 + β/α)
> 0, (6)

so that the function U (·, κi (·)) is always maximised at ri = 1, whatever the profile r−i

of the weights chosen by the other agents. We can accordingly formulate the following

proposition.

Proposition In the limit case of an infinite number of agents, there is a unique subgame perfect

equilibrium in dominant strategies ((1, ..., 1) , (y, ..., y)), such that all the agents choose at the first

stage to play the coordination game and at the second stage to coordinate their actions on the public

signal.

Notice that this result, stemming from the fact that the fundamental loss is always heav-

ier than the coordination loss, which is an incentive to put all the weight on the latter, is not

trivial since the two losses depend themselves on the weight ri, through the decisions this

weight induces at the second stage of the game. In Appendix 7.3, we show that this result

is carried over to a game with a finite number of agents, at least for the parameter values

that have been selected for the experiment.

To conclude, we obtain the following predictions to be tested by our experiment.

Theoretical predictions

1. As to the second stage of the game, the higher the relative precision of the public signal and

the higher the relative weight on the coordination motive, the more weight agents put on the

public signal (see equation (2)).

2. As to the first stage, agents put all the weight on the coordination motive (r = (1, ..., 1)),

which is a dominant strategy, whatever the relative precisions of the public and private signals.

This implies that agents all choose to coordinate their actions on the public signal at the second

stage (a = (y, ..., y)).

3. By contrast, the profile of the relative weights put on the two motives at the first stage is

arbitrary in the case where both signals are private. At the second stage, the weight on the

6



public signal when agents receive public and private signals is higher than the weight put on

any of the two private signals when agents receive two private signals.

3 The experiment

One may question whether the theoretical predictions derived in Section 2 hold in practice,

when homines sapientes are involved in the valuation game instead of homines œconomici.

Recurring to a laboratory experiment represents a natural way to test these assumptions,

as real data may be difficult to collect and analyse.7 The theoretical model in Section 2

is adjusted to an experimental framework. We discuss in this section the chosen param-

eter values for each treatment, the corresponding theoretical prediction, and the general

procedure of the experiment.

3.1 Treatment parameters and equilibrium values

We conducted 14 sessions (2 per treatment) with a total of 252 participants. In each session,

18 participants were separated into 3 independent groups of 6 participants (in order to get

6 independent observations per treatment).

3.1.1 Adjusted theoretical predictions to a finite number of participants

We focus on the parameter values n = 6 and β/α ∈ {1/8, 1/2, 1, 2, 8}, which correspond to

the cases we deal with in the different treatments of our experiment, as explained in Section

3.1.3. These parameter values ensure that we obtain the same theoretical predictions as in

the theoretical framework of Section 2 when n → ∞. As a higher mean square R2
−i together

with an unchanged mean R1
−i, reflecting more dispersion in other agents’ decisions, is un-

favourable to coordination, discouraging the choice of a high ri, we always consider the

worst case for ri (the highest value of R2
−i compatible with a given value of the mean R1

−i).

In spite of that, the simulations presented in Appendix 7.3 show that the expected utility is

always maximised at ri = 1 for the selected parameter values and whatever the values of

R1
−i and R2

−i. We thus obtain a unique subgame perfect equilibrium in dominant strategies,

such that all agents choose to play the coordination game rather than the fundamental one

or any mixture of the two.

3.1.2 Description of sessions

Each session consisted of 3 games, which amounted to a total of 35 periods. The first two

games (5 periods each) were intended to familiarise subjects with the experiment and are

considered as an incentivised training. Participants played within the same group during

7This is especially the case because precisely knowing what a fundamental value is may represent a difficult
task and because private information is by definition not available in practice.
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the whole length of the experiment and did not know the identity of the other participants

of their group.

In every period, and for each group, a fundamental state Z was drawn randomly using

a uniform distribution from the interval [50, 950].8 Each period was divided into two sub-

periods. In the first sub-period, subjects had to choose an integer between 0 and 10 in

order to decide how much weight they wanted to attribute to the coordination motive of

their utility function (decision D1). Then first sub-period outcomes were revealed and the

second sub-period started. In the second sub-period, each participant had to decide on a

decision D2 by moving a cursor only inside the interval, whose bounds were the minimum

of the two signals received on the fundamental minus two standard deviations of this signal

and the maximum of the signals plus two standard deviations of this signal.9 Indeed, to

make their decision D2, in game 3 participants would receive 2 signals, that depend on

treatments, as explained below. Participants also had to form estimations depending on

the game of the experiment. Indeed, participants had to provide their best estimation E1 of

the fundamental and their best estimation E2 of the average decision D̄2 of all participants

of the same group.

The payoff in ECU (Experimental Currency Units) associated with participant i’s deci-

sions D1 and D2 is given by the formula:

400− (10−D1)(D2 − Z)2 −D1(D2 −D2)
2. (7)

The payoff in ECU associated with participant i’s estimation E1 is given by:

200− (E1 − Z)2, (8)

and that with participant i’s estimation E2:

200− (E2 − D̄2)
2. (9)

In game 1 (5 periods), after the first sub-period, the realised value of Z is commonly

revealed. In this game, no estimation is asked for and subjects are simply rewarded ac-

cording to (7). The interval for decisions is [0, 2000]. In game 2 (5 periods), after the first

sub-period, a common value s ∈ [0, 2000] independent from the unknown number Z is sent

to all participants. It corresponds to a sunspot. In this game, an estimation E2 is asked for

8Note that participants were not told about the support of the distribution to avoid the skewness of the poste-
rior distribution.

9The second sub-period was very similar to the experiments by Cornand and Heinemann (2014) and Baeriswyl
and Cornand (2014, 2016), which aimed at testing variations of the beauty contest game of MS. The design was
slightly modified as, contrary to Baeriswyl and Cornand, we allowed subjects to make choices outside the interval
defined by the two signals participants received on the fundamental. Instead, and differently from Cornand and
Heinemann, who made a restriction of possible choices on the interval defined by the public signal minus or plus
20 and observed many decisions outside the interval defined by the signals, we proposed a screen design that
emphasised the position of signals on the interval of possible choices. See the example of screens provided in
Appendix 7.5. This ensured that subjects mostly played inside the range defined by the signals, without too much
constraining their choices. As will be underlined later on in the paper, we indeed observed only few decisions
outside the range defined by the two signals.
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so that participants are rewarded according to both (7) and (9). The interval for decisions

is also [0, 2000]. In half of the sessions, for each treatment, we reversed the order of games

1 and 2.10 Game 3 took place afterwards. In this game, Z was unknown but after the first

sub-period, subjects received signals on Z, whose nature (public or private) and precision

depended on the treatment. In this game, D1, D2, E1, and E2 were rewarded according to

(7), (8), and (9).

3.1.3 Treatments

In the third game, we considered the 7 following treatments:

Treatments 1 and 7 - Public vs. private signals, same precision Each participant receives

a private and a public signal. The private signal received by each participant is distributed

as xi = Z + εi with εi ∼ N(0, σ2
ε). The public signal received by every participant of each

group is distributed as y = Z + η with η ∼ N(0, σ2
η). Whereas each participant may receive

a different private signal xi, the public signal y is the same for all participants. In Treatment

1, σ2
ε = σ2

η = 8. In Treatment 7, σ2
ε = σ2

η = 1.

Treatments 2 and 5 - Public vs. private signals, the public signal being more precise

than the private one These treatments are the same as Treatment 1, except that the public

signal is more precise than the private one. In Treatment 2, σ2
ε = 8 and σ2

η = 1. In Treatment

5, σ2
ε = 16 and σ2

η = 8.

Treatments 3 and 4 - Public vs. private signals, the private signal being more precise than

the public signal These treatments are the symmetric of Treatments 2 and 5. In Treatment

3, σ2
ε = 1 and σ2

η = 8. In Treatment 4, σ2
ε = 8 and σ2

η = 16.

Treatment 6 - Private vs. private signals, same precision Each participant receives 2

private signals on Z. Each of the 2 private signals may have a different distribution: xi1 =

Z + εi1 with εi1 ∼ N(0, σ2
ε1) and xi2 = Z + εi2 with εi2 ∼ N(0, σ2

ε2). The private signals

may thus be different from one participant to the next. In Treatment 6, σ2
ε1 = σ2

ε2 = 8.

3.1.4 Summary

The choice of parameters for the experiment is summarised in Table 1 that also presents the

corresponding theoretical predictions.

We will proceed to comparisons between observations and theoretical values as well

as treatment comparisons. Comparing Treatments 1 and 6 directly allows to account for

the role of the public signal. Comparing Treatment 1 and any of the Treatments 2 to 5 and

10More precisely, the motivation behind the first two games was to raise participants’ awareness about the
fundamental value Z (game 1) and about common information (game 2), while keeping these games sufficiently
different from game 3.
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Tr. Game 3: Signals distributions Ei(θ) Ei(ā) a∗i r∗i
1 y ∼ N(Z, 8), xi ∼ N(Z, 8) xi+y

2 y y 1

2 y ∼ N(Z, 1), xi ∼ N(Z, 8) 8y+xi

9 y y 1

3 y ∼ N(Z, 8), xi ∼ N(Z, 1) y+8xi

9 y y 1

4 y ∼ N(Z, 16), xi ∼ N(Z, 8) y+2xi

3 y y 1

5 y ∼ N(Z, 8), xi ∼ N(Z, 16) 2y+xi

3 y y 1
6 xi1 ∼ N(Z, 8), xi2 ∼ N(Z, 8) xi1+xi2

2
xi1+xi2

2
xi1+xi2

2 {0, ...1}
7 y ∼ N(Z, 1), xi ∼ N(Z, 1) xi+y

2 y y 1

Table 1: Experiment parameters and theoretical predictions

Treatment 7 to Treatments 2 and 3 allows to evaluate the role of increasing/decreasing the

precision of either public or private signals.

3.2 Procedure

Sessions were run between June and November 2016 at the LEES (Laboratoire d’Economie

Expérimentale de Strasbourg). Each session had 18 participants who were mainly students

from the University of Strasbourg (most were students in economics and sciences) and were

recruited through ORSEE.11 Subjects were seated in random order at PCs. Instructions were

then read aloud and questions answered in private. An example of instructions is given in

Appendix 7.4. Throughout the sessions, students were not allowed to communicate with

one another and could not see each others’ screens. Each subject could only participate

in one session. Before starting the experiment, subjects were required to answer a few

questions to ascertain their understanding of the rules.12 The experiment started after all

subjects had given the correct answers to these questions.

After each period, subjects received some feedback about realised values and choices.13

Information about past periods from the same game was displayed during the decision

phase on the lower part of the screen. At the end of each session, the ECU earned were

summed up and converted into euros. A single period for each of games 1 and 2 was

randomly selected to be paid; five periods for game 3 were randomly selected. 1000 ECU

were converted to 6 euros. The average payoff was about 25 euros. Sessions lasted for

around 2 hours and 15 minutes.

11ORSEE is a web-based Online Recruitment System for Economic Experiments developed by Greiner (2015).
The program of this experiment was designed with the web platform EconPlay (www.econplay.fr).

12The understanding questionnaire is available from the authors upon request.
13In game 3, they were informed about their own choice for D1, the choice for D1 of all other participants in

their group, their own private hint Xi, the common hint Y , the true value of Z, their own estimation E1 on Z,
their own estimation E2 on the average decision D2 in the group, their own decision D2, the average decision
D2 in the group, the distance between the average D2 in the group and Y , the distance between the average D2

in the group and X , their payoff associated with E1, their payoff associated with E2, their payoff associated with
D1 and D2, and the overall payoff for the period.
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4 Experimental results

The results of the experiment concerning game 3 are presented in the following manner.14

First, we analyse the first stage decision before focusing on the second stage decision. Third,

we check the coherence between first and second stage decisions. Statistical tests are based

on Mann-Whitney tests for between treatment comparisons and Wilcoxon rank test when

comparing observed data to theoretical predictions. All test results (p-values) are reported

in Appendix 7.7.15

4.1 Playing the fundamental or the coordination game? An analysis of

D1

The first question we address is whether participants chose to play the fundamental or the

coordination game. Table 2 presents the average weight D1

10 participants attributed to the

coordination motive in the experiment in each group for each treatment. In order to get a

full picture of first stage decisions, Figure 1 depicts the relative frequency of weights put

by each participant on the coordination motive for each treatment.16

Tr. 1 (σ2
η = σ2

ε = 8) 2 (σ2
η = 1, σ2

ε = 8) 3 (σ2
η = 8, σ2

ε = 1) 4 (σ2
η = 16, σ2

ε = 8) 5 (σ2
η = 8, σ2

ε = 16) 6 (σ2
ε1

= 8, σ2
ε2

= 8) 7 (σ2
η = σ2

ε = 1)

Gr. 1 0.66 0.01 0.54 0.88 0.86 0.73 0.24
Gr. 2 0.71 0.55 0.06 0.58 0.85 0.10 0.31
Gr. 3 0.80 0.82 0.20 0.79 0.72 0.50 0.68
Gr. 4 0.65 0.68 0.79 0.26 0.46 0.37 0.43
Gr. 5 0.56 0.32 0.26 0.54 0.51 0.34 0.75
Gr. 6 0.40 0.99 0.00 0.22 0.50 0.04 0.77

Av. 0.63 0.56 0.31 0.54 0.65 0.35 0.53

Th. 1 1 1 1 1 {0, ...1} 1

Table 2: Average weight on the coordination motive

Obviously, the average weight put on the coordination motive is different from theoret-

ically predicted. Indeed, when participants received both public and private signals, they

attributed a lower weight to the coordination motive than the full theoretical weight of 1.17

However, subjects played in line with theoretical predictions in the sense that they more

often chose to play the coordination game (Figure 1) and put more weight on the coordina-

tion motive (Table 2) when they received both public and private signals than when they

14Descriptive statistics for games 1 and 2 are reported in Appendix 7.6. Outcomes for games 1 and 2 show that
participants properly understood the instructions and the games. In game 1, participants mostly chose D1 = 0
and in 93% of cases over the 7 treatments, they played the fundamental as decision D2. In game 2, participants
mostly played D1 = 10 and in 56% of cases over the 7 treatments they played the sunspot.

15We also performed the same analysis and tests by considering only the last 10 periods of the experiment
(game 3). Results are unchanged. This robustness analysis is available from the authors upon request.

16The relative frequency of weights on the coordination motive per group is reported in Appendix 7.8.
17When participants received two private signals, the theoretical weight on the coordination motive is indeter-

minate. The weight selected by participants is generally relatively low, although the variance from one group to
the next is high.

11



Figure 1: Relative frequency of weights D1 on the coordination motive per treatment

received two private signals. As shown in Table 25 in Appendix 7.7, there is a significant

difference between Treatments 1 and 6.

How do variations in the relative precision of public and private signals affect such a

conclusion? As shown in Table 25 in Appendix 7.7, the only significant differences be-

12



tween treatments concern Treatments 1 vs. 3 and Treatments 3 vs. 5. The main driver for

variations in the choice of D1 is therefore fundamental vs. strategic uncertainty.

When private information is not very precise, so that fundamental uncertainty is rather

large in comparison to strategic uncertainty (Treatments 1, 2, 4, and 5), variations in the

relative precision of public and private information do not mitigate the fact that subjects

put more weight on the coordination rather than the fundamental motive at the first stage

of the game. Because the fundamental is unknown, they chose to ignore it in order to be

rewarded more in accordance with the pure coordination game.

By contrast, when private information is very precise, so that fundamental uncertainty

is weak in comparison to strategic uncertainty, subjects rather chose the fundamental game

(Treatment 3). This observation contradicts theoretical predictions. Indeed, according to

the theory, subjects should choose the coordination game whatever the level of uncertainty

(as long as there is uncertainty). In the lab, fundamental uncertainty seemed so low to

participants in comparison to strategic uncertainty, that choosing the coordination game

appeared too costly, as it typically entails a coordination problem at the second stage.

Result 1 When fundamental uncertainty is high in comparison to strategic uncertainty, as the-

oretically predicted, subjects tend to put more weight on the coordination than on the fundamental

motive at the first stage of the game. When fundamental uncertainty is low in comparison to strate-

gic uncertainty, contrary to theoretical predictions, subjects tend to favour the fundamental rather

than the coordination motive at the first stage of the game.

4.2 Is the public signal a focal point? An analysis of D2

The second question we address is whether subjects focus on the public signal. In Ap-

pendix 7.10, we check subjects’ rationality by considering whether subjects played inside

the interval defined by the signals they received. As only few decisions were outside this

interval, and because we want to define a weight on the public signal, we keep only deci-

sions inside this interval for our analysis.18

The average weight assigned in the experiment to the public signal in D2 is reported

in Table 3 for each treatment and each group. Theoretical|th.stage1 denotes the theoretical

weight on the public signal conditional on the theoretical weight in the first stage decision

r. Theoretical 1st order denotes the theoretical weight on the public signal in the theoretical

first order expectation on the fundamental, while Av. Observed 1st order denotes the aver-

age weight on the public signal in the observed first order expectation on the fundamental

E1.19 We start our analysis by comparing the observed weight on the public signal to the

theoretical weight on the public signal, before proceeding to a treatment comparison.

18In Appendix 7.10, we also show the optimality of decisions D2 by checking that observed estimations are
close to theoretical values of estimations and that observed D2 is appropriate conditional on the estimations E1

and E2 made on an individual basis.
19The weights on the public signal in the observed first order expectation E1 on the fundamental per group are

reported in Table 28 in Appendix 7.10.
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Treatment 1 2 3 4 5 6 7

Group 1 0.68 0.54 0.59 0.87 0.78 0.50 0.53
Group 2 0.62 0.79 0.49 0.55 0.90 0.50 0.46
Group 3 0.71 0.78 0.28 0.76 0.59 0.49 0.55
Group 4 0.54 0.71 0.59 0.31 0.59 0.51 0.68
Group 5 0.60 0.74 0.23 0.53 0.72 0.49 0.76
Group 6 0.62 0.97 0.37 0.45 0.79 0.49 0.61

Average 0.63 0.76 0.43 0.58 0.73 0.50 0.60

Theoretical 1st order 0.50 0.89 0.11 0.33 0.67 0.50 0.50
Av. Observed 1st order 0.52 0.69 0.30 0.36 0.66 0.50 0.57

Theoretical|th.stage1 1 1 1 1 1 - 1

Table 3: Weight on the public signal Y in D2

Obviously, when participants received both public and private signals, the theoretical

benchmark conditional on the theoretical first stage decision (Theoretical|th.stage1) can be

rejected.20 Note however that when participants got two private signals, they put equal

weight on each, in line with theoretical predictions.

Nevertheless, Table 3 shows that the weight participants attributed to the public signal

– when they received both public and private signals – is higher than the weight they put

on any of the signals when they received two private signals. As shown in Table 26 in

Appendix 7.7, there is a significant difference between Treatments 1 and 6. To get a more

complete picture of the focal role of the public signal, Figure 2 presents the relative fre-

quency of weights on the public signal per treatment. The higher the relative precision of

the public signal, the more subjects played the public signal itself at the second stage.21

Table 3 also shows that the higher the relative precision of the public signal, the higher the

weight on the public signal. Indeed, as shown in Table 26 in Appendix 7.7, there is a signif-

icant difference between Treatments 1 and 2, 1 and 3, Treatments 3 and 5, and Treatments 2

and 7 and 3 and 7. The difference in the relative precision of the public signal needs to be

sufficiently strong though to generate significant differences between treatments (there is

no significant difference between Treatments 1 and 4, and 1 and 5). These effects go in the

sense of the theory, as when r 6= 1, an increase in r implies a larger weight on the public

signal. All these results are confirmed on individual data (see Appendix 7.11).

Result 2 The public signal plays a focal role. First participants attribute a large weight to the

public signal when they receive private and public signals in comparison to the weight they attribute

20There is overreaction to the public signal in the sense that participants to the experiment attributed a larger
weight to the public signal in their decision D2 than in their stated first order expectation on the fundamental
(Observed 1st order) (see Table 23 in Appendix 7.7 for Treatments 1 and 4). Indeed, following Baeriswyl and
Cornand (2016), overreaction is observed when comparing the observed weight on the public signal to the weight
in the stated first order expectation and not necessarily to the theoretical weight in the first order expectation
(Theoretical 1st order) (see Table 22 in Appendix 7.7). Experimental overreaction to public information has been
largely documented in Cornand and Heinemann (2014) and Baeriswyl and Cornand (2014, 2016). We therefore
do not comment much upon this issue, which is not the main focus of the current paper.

21Appendix 7.9 depicts the relative frequency of weight on Y in D2 for each group.
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Figure 2: Relative frequency of weights on Y in D2
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to a private signal in a treatment where they receive two private signals. Second, in line with theory

at the second stage conditional on r 6= 1, the higher the relative precision of the public signal, the

more weight participants put on the public signal.

4.3 Is there coherence between decisions D1 and D2?

The third question we address is whether there is a coherence between observed first stage

and second stage decisions. To answer this question, we proceed in two steps. First, we

analyse whether the weight put on the public signal in decision D2 better coincides with the

theoretical weight on the public signal once accounting for the stated first stage decision.

Second, we look at whether subjects put a larger weight on the public signal in their second

stage decision D2 when they choose to be rewarded more by the coordination motive at the

first stage.

Table 4 proposes an alternative theoretical benchmark for assessing the weight put on

the public signal in decision D2, conditional on stated decisions D1. The comparison be-

tween observed weights on the public signal and the second stage theoretical value con-

ditional on the observed first stage decision D1 reveals a better fit than the unconditional

second stage theoretical value (as analysed in section 4.2.). Indeed, as shown in Table 24 in

Appendix 7.7, the theoretical benchmark cannot be rejected in Treatments 4 and 7.

Tr. 1 (σ2
η = σ2

ε = 8) 2 (σ2
η = 1, σ2

ε = 8) 3 (σ2
η = 8, σ2

ε = 1) 4 (σ2
η = 16, σ2

ε = 8) 5 (σ2
η = 8, σ2

ε = 16) 7 (σ2
η = σ2

ε = 1)

Gr. 1 0.73 0.89 0.20 0.78 0.92 0.56
Gr. 2 0.75 0.94 0.12 0.52 0.92 0.58
Gr. 3 0.81 0.97 0.13 0.67 0.86 0.73
Gr. 4 0.72 0.96 0.34 0.39 0.77 0.62
Gr. 5 0.67 0.92 0.14 0.50 0.79 0.78
Gr. 6 0.61 1.00 0.11 0.38 0.79 0.79

Av. 0.71 0.95 0.17 0.54 0.84 0.68

Table 4: Weight on the public signal Y in D2 conditional on observed D1

To address the question whether subjects put a larger weight on the public signal in

their second stage decision D2 when they choose to be rewarded more by the coordina-

tion motive at the first stage, we resort to an analysis on individual data and estimate the

following equation, both for each treatment22 and for all the treatments taken together23:

∣∣∣∣
D2it −Xit

Yt −Xit

∣∣∣∣ = Co+ α
D1it

10
+ (ǫit + νi), (10)

where Co is the constant, D1it is the decision 1 of individual i at period t and α the esti-

mated coefficient; νi + ǫit is the error term (νi is the individual specific error term and ǫit is

22Clusters were used for groups.
23Clusters were used for both treatments and groups.
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the idiosyncratic error term).

All Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7

Constant 0.5477*** 0.5224*** 0.6933*** 0.3688*** 0.4970*** 0.6892*** 0.4963*** 0.5697***
(0.0226) (0.0205) (0.0443) (0.0431) (0.0634) (0.0478) (0.0068) (0.0444)

D1it

10 0.0990*** 0.1718*** 0.0856*** 0.1495* 0.1480*** 0.0622* 0.0021 0.0535
(0.0184) (0.0449) (0.0240) (0.0873) (0.0174) (0.0333) (0.0096) (0.0556)

νi 0.1965 0.1607 0.1793 0.2024 0.2213 0.1975 0.0000 0.1824
ǫit 0.1753 0.1628 0.1580 0.2262 0.1735 0.1732 0.1458 0.1738
δ 0.5569 0.4935 0.5628 0.4446 0.6195 0.5651 0.0000 0.5240

N 6014 860 795 848 884 873 883 871
R2

within 0.0151 0.0624 0.0133 0.0183 0.0355 0.0110 0.0000 0.0032
R2

between 0.2673 0.2468 0.2096 0.2462 0.4243 0.0268 0.0018 0.2887
R2

overall 0.1508 0.1633 0.1287 0.1261 0.2750 0.0192 0.0000 0.1300
χ2 28.8211 14.6090 12.7734 2.9279 72.0911 3.4918 0.0466 0.9269

Cluster robust standard errors are reported in the first column to control for individual and group specific heterogeneity among the treatments

For the remaining models, cluster robust standard errors to control for group specific heterogeneity are given in parentheses.

Table 5: Random effects model - Equation (10)

Results24 presented in Table 5 show that the choice of D1 always exerts a positive and

significant impact on the weight put on Y in D2, except in Treatment 6 (in which subjects

received two private signals) and in Treatment 7 (where uncertainty was very low), which

means that there is a coherence between choices D1 and D2, in line with the theoretical

prediction.

Result 3 In line with theoretical predictions, a higher average weight on the coordination motive

implies a larger weight on the public signal.

5 Conclusion

Although inherent to Keynes’ beauty contest metaphor, the idea that participants to finan-

cial markets exhibit a common interest in coordination per se has not yet received suffi-

cient attention. The main contribution of this paper is to approach as strategic decisions

the weights put by those participants on the coordination (rather than the fundamental)

motive. These strategic decisions end up in the complete dominance of the coordination

motive, evicting the fundamental motive and hence resulting in a disconnection of market

activity from fundamentals. While this disconnection between fundamentals and agents’

actions is trivial in the case where the weight on the two motives is given exogenously, it

becomes crucial in a context where agents may manipulate the weights on each motive.

We have developed a valuation game focusing on how the information cost due to im-

perfect information may be the source of the disconnection between fundamentals and

24Note that δ corresponds to the proportion of variation due to the individual specific term. If δ is large (i.e.
80%), the main proportion is explained by the individual specific term and the rest due to idiosyncratic error term.
***, ** and * respectively indicate significance at 1%, 5% and 10% conventional levels.
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activity and proposed an experiment aiming at testing this theoretical prediction. While

participants in the lab tend to favour the coordination motive over the fundamental motive,

our experiment qualifies theoretical predictions when fundamental uncertainty is low com-

pared to strategic uncertainty: low fundamental uncertainty renders coordination costly

and avoids a disconnection from fundamentals.
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7 Appendix

7.1 Derivation of the second stage equilibrium

Recall that the maximization problem of agent i is maxai
E (u (a, θ; ri) | xi, y), where E(. |

xi, y) is the expectation operator conditional on the two signals received, and where the

utility function u is given by

u(a, θ; ri) = −(1− ri) (ai − θ)
2 − ri


ai −

1

n

∑

j

aj




2

. (11)

The first order condition yields

ai =
(1− ri) (E (θ | xi, y)) + ri

(
1− 1

n

)2 1
n−1

∑
j 6=i E (aj | xi, y)

1− ri + ri
(
1− 1

n

)2 . (12)

Thus, the action ai is a weighted arithmetic mean of the expected fundamental value and

of the expected average action of the other agents. At equilibrium, taking ai = E (ai | xi, y),

we have

ai =
(1− ri) (E (θ | xi, y)) + ri

(
1− 1

n

)
1
n

∑
j E (aj | xi, y)

1− ri + ri
(
1− 1

n

) . (13)

To derive E (aj | xi, y) we assume, following MS, that any other agent j follows the same

linear strategy: aj = κjy+ (1− κj)xj . We denote κ = 1
n

∑
j κj , so that (using E(θ | xi, y) =

(αy + βxi)/(α+ β)),

1

n

∑

j

E (aj | xi, y) = κy + (1− κ)E(θ | xi, y) (14)

=
α+ κβ

α+ β
y +

(1− κ)β

α+ β
xi.
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Inserting (14) in (13), the optimal action of agent i writes:

ai =
(1− ri)

αy+βxi

α+β + ri
(
1− 1

n

) (
α+κβ
α+β y + (1−κ)β

α+β xi

)

1− ri + ri
(
1− 1

n

) (15)

=

(
α

α+ β
+

β

α+ β

(1− 1/n) ri
1− (1/n) ri

κ

)
y +

(
β

α+ β
−

β

α+ β

(1− 1/n) ri
1− (1/n) ri

κ

)
xi.

By identification of the coefficient κi, we obtain

κ =
α

α+ β (1−R)
, with R ≡

1

n

∑

j

(1− 1/n) rj
1− (1/n) rj

. (16)

Plugging the expression of κ into (14) yields:

1

n
E


∑

j

aj | xi, y


 =

α

α+ β

(
1 +

β

α+ β (1−R)

)
y +

β

α+ β

(
1−

α

α+ β (1−R)

)
xi.

(17)

Using (17) to re-write (13), we finally obtain:

ai =
α

α+ β

(
1 +

βRi

α+ β (1−R)

)

︸ ︷︷ ︸
κi

y+
β

α+ β

(
1−

αRi

α+ β (1−R)

)

︸ ︷︷ ︸
1−κi

xi, with Ri ≡
(1− 1/n) ri
1− (1/n) ri

.

(18)

7.2 The first stage payoff

To derive the subgame perfect equilibrium, we have to determine the first stage payoff, that

is, the expected utility to be maximised with respect to the decision variable ri:

E (u (a∗ (r) , θ; ri)) = − (1− ri)E (a∗i (ri, r−i)− θ)
2 − riE


a∗i (ri, r−i)−

1

n

∑

j

a∗j (rj , r−j)




2

= − (1− ri)E (κiη + (1− κi) εi)
2 − riE

(
κiη + (1− κi) εi −

1

n

∑
j
(κjη + (1− κj) εj)

)2

= − (1− ri)E (κiη + (1− κi) εi)
2 − riE

(
(κi − κ) η +

(
1−

1

n

)
(1− κi) εi −

1

n

∑
j 6=i

(1− κj) εj

)2

=
1

α


 − (1− ri)

(
κ2
i +

(1−κi)
2

β/α

)

−ri

(
(κi − κ)2 + 1−1/n

β/α

((
1− 1

n

)
(1− κi)

2 + 1
n

1
n−1

∑
j 6=i(1− κj)

2
))


 . (19)

Using equations (16) and (18), we can see that κ and κi are functions of
(
ri, R

1
−i, n, β/α

)
,

where R1
−i =

1
n−1

∑
j 6=i Rj is the mean (the first moment about the origin) of the Rj ’s of all

agents other than i. Because of the term 1
n−1

∑
j 6=i(1− κj)

2, the expression between square
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brackets will in addition depend upon R2
−i =

1
n−1

∑
j 6=i R

2
j , the mean square (the second

moment about the origin) of the same Rj ’s. Thus,

E (u (a∗ (r) , θ; ri)) =
1

α
U
(
ri, R

1
−i, R

2
−i, n, β/α

)
. (20)

7.3 Derivation of the subgame perfect equilibrium

Referring to the expression of U
(
ri, R

1
−i, R

2
−i, n, β/α

)
in equation (19), it is clear that dis-

persion of other agents’ decisions (a high value of R2
−i, given R1

−i), hence dispersion of the

κj ’s, can only discourage coordination (the choice of a high ri). In order to show that agent

i has on the contrary an incentive to choose a high ri, we shall consider the worst case for

such choice, namely the highest value of R2
−i compatible with a given value of the mean

R1
−i. This case results from taking the Rj ’s symmetrically disposed at a maximum distance

about the mean R1
−i. Given the number of agents, such procedure allows to reduce the

arguments of the function U to the decision variable ri plus only two parameters, the mean

R1
−i, denoted as ρ for brevity, and the ratio of precisions β/α.

For n = 6, the number of participants in each session of our experiment, this procedure

leads us to consider four Rj ’s symetrically disposed, at a maximum distance, about the

mean ρ, plus a residual Rj coinciding with the mean:

ρ ∈ [0, 0.5] =⇒ R2
−i =

2 (2ρ)
2
+ 2 (0)

2
+ ρ2

5
= 1.8ρ2 (21)

ρ ∈ [0.5, 1] =⇒ R2
−i =

2 (1)
2
+ 2 (2ρ− 1)

2
+ ρ2

5
= 1.8ρ2 − 0.8 (2ρ− 1) ,

that is, R2
−i = 1.8ρ2 − 0.8max (2ρ− 1, 0).

In order to determine the value of ri which maximises the expected utility, we thus per-

form, for the parameter values β/α ∈ {1/8, 1/2, 1, 2, 8} used in our experiment, simulations

with the function

U
(
ri, ρ, 1.8ρ

2 − 0.8max (2ρ− 1, 0) , 6, β/α
)
≡ Û (ri, ρ, β/α) . (22)

These simulations, represented in the following figure, show that Û (·, ρ, β/α) is increas-

ing for most parameter values. Monotonicity is lost only for low relative precision of the

public signal (β/α = 8) and a very large weight ρ put by other agents on the coordination

motive. However, Û (·, ρ, β/α) is then stricly convex, with Û (1, ρ, β/α) > Û (0, ρ, β/α). We

conclude that Û (·, ρ, β/α) is always maximised at ri = 1 in the the cases relevant for our

experiment.
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7.4 Example of instructions

We present a translation from French to English of the instructions for Treatment 1. Instruc-

tions for other treatments are available from the authors upon request.

Instructions

Hello and welcome to our laboratory

You will participate to an experiment on decision making. If you carefully follow the instructions,

your decisions will allow you to earn a considerable amount of money. To this aim, do not hesitate

to ask questions.

The money you will earn during this experiment will partly depend on your decisions, those of

the other participants and randomness. All decisions are treated anonymously and you will never

have to enter your name on the computer. The amount of money you will earn during the experiment

is paid individually at the end of the experiment.

You are 18 people participating in this experiment. Three groups of 6 people are formed. These

three groups are completely independent and do not interact with each other for the whole length of

the experiment. Each participant interacts only with the other participants of his group. The present
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instructions describe the rule of the game for a group of 6 participants and all participants have the

same instructions.

Framework of the experiment

The experiment consists of 3 games. You may receive some payoffs for each of these three

games. The overall payoff earned during the experiment is equal to the sum of payoffs

obtained in each of the three games. Note that each game is paid independently, in the

sense that if the payoff of a single game is negative, it will be set to zero. The three games

do not compensate each other in terms of payoffs. The exchange rate is 1000 ECU = 6 euros.

First game of the experiment:

Running of the game:

This game lasts for 5 periods and each period consists in 2 sub-periods. At the beginning

of each period, the computer randomly selects a positive number Z. This positive number

is different in each period, but is identical for all the participants of a same group. You will

know the true value of Z after the first sub-period, and before making your decision for the

second sub-period.

Each period is divided into two sub-periods to which two decisions are associated: D1

and D2, where D1 is your decision in the first sub-period, and D2 your decision in the

second sub-period.

At each period, your payoff in ECUs associated with your decisions is given by the

following formula:

400− (10−D1)(D2 − Z)2 −D1(D2 − AVERAGE OF DECISIONS D2 IN THE GROUP)2

Running of sub-period 1 :

During the first sub-period, you have to make a decision D1 by choosing an integer num-

ber between 0 and 10. The following formula indicates that, owing to your choice of D1

between 0 and 10, you choose how to be paid:

• By choosing D1 = 10, you choose to be paid only according to the distance between

your decision D2 and the average of decisions D2 in your group.

Your payoff is given by the formula:

400− 10(D2 − AVERAGE OF DECISIONS D2 IN THE GROUP)2.

• By choosing D1 = 0, you choose to be paid only according to the distance between

your decision D2 and the value of the number Z that you will know.

Your payoff is given by the following formula: 400− 10(D2 − Z)2.
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• By choosing D1 strictly between 0 and 10, you choose to be paid according to these

two distances, that is:

i) both according to the distance between your decision D2 and the average of

decisions D2 in your group,

ii) and according to the distance between your decision D2 and the value of the

number Z, that you will know at the beginning of sub-period 2, that is before

making your decision D2.

You can choose to put more or less weight on one or the other distance. The closer your

D1 to 0, the more you will be rewarded according to the distance between your decision

D2 and the value of Z.

Conversely, the closer your D1 to 10, the more you will be rewarded according to the

distance between your decision D2 and the average of decisions D2 in your group.

Therefore, if it seems easier for you to estimate Z, you will certainly prefer to be re-

warded according to the distance between your decision D2 and the number Z. To the

contrary, if it seems easier for you to estimate the average of decisions D2 in your group,

you will certainly prefer to be rewarded according to the distance between your decision

D2 and the average of decisions D2 in your group.

Running of sub-period 2 :

During the second sub-period, you have to make a decision D2 by choosing a number

between 0 and 2000. The preceding formula indicates that, owing to your choice D2, your

payoff gets higher the closer your decision D2 to:

• either the known number Z;

• or the average of decisions D2 in your group;

• or both.

Note that owing to your decision D1 (that you will previously have made in sub-period

1), you will have chosen the relative importance of the proximity between your D2 and the

known number Z on the one hand, and between your D2 and the average of decisions D2

in your group on the other.

To maximise your payoff associated to your choice of D2, you have to account for the

choice of D1 that you will have previously made: the fact to be close to the average of

decisions D2 in your group will matter for the choice of your decision D2, the more so the

higher decision D1.

Conversely, the fact to be close to Z will matter for the choice of your decision D2, the

more so the closer decision D1 to 0.

By your choice of D1, you can even choose to be paid only according to a single of these

two distances.
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Before making decision D2, you will be informed about the decisions D1 of all other

participants in your group.

A single period of this game will be randomly selected to be paid at the end of the

experiment.

Second game of the experiment:

Running of the game:

The second game also lasts for 5 periods, and is identical to the first game except that this

time, you will not know the true value of Z before making your decision for the second

sub-period.

At each period, your payoff in ECUs associated with your decisions is again given by

the following formula:

400− (10−D1)(D2 − Z)2 −D1(D2 − AVERAGE OF DECISIONS D2 IN THE GROUP)2,

where D1 is your decision in sub-period 1 and D2 your decision in sub-period 2.

The running of sub-period 1 for this game is strictly identical to the sub-period of the

first game of the experiment.

During the second sub-period, to ease your choice of D2, we ask you, on top of making

decision D2, to also form an estimation E2 on the average of decisions D2 in your group,

which payoff will be:

200− (E2 − AVERAGE OF DECISIONS D2 IN THE GROUP)2.

Before making your decision D2, you will be informed about the decision D1 of all the

other participants.

However, contrary to the first game of the experiment, none of the participants will

know the true value of Z when making his decisions E2 and D2.

Nevertheless, at the second sub-period, each participant observes the same common

value S: it is identical to all participants in your group. This common value S contains no

information on the unknown number Z. This common value S is not centered on Z and is

not distributed on the same support as Z. It has therefore no link with Z.

A single period of this game will be randomly selected to be paid at the end of the

experiment.

Third game of the experiment:

Running of the game:

The third game lasts for 25 periods and is identical to the first game, except that this time,

you will not know the true value of Z before making your decisions of sub-period 2.
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At each period, your payoff in ECUs associated with your decisions is again given by

the following formula:

400− (10−D1)(D2 − Z)2 −D1(D2 − AVERAGE OF DECISIONS D2 IN THE GROUP)2,

where D1 is your decision in the sub-period 1 and D2 your decision in sub-period 2.

The running of sub-period 1 for this game is strictly identical to the first sub-period of

the first game of the experiment.

During the second sub-period, to ease your choice of D2, we ask you, on top of making

your decision D2, to form two estimations E1 and E2:

• an estimation of the true value of Z, which payoff will be: 200− (E1−Z)2. The closer

your estimation E1 to Z, the higher your payoff from E1;

• an estimation E2 of the average of decisions D2 in the group, which payoff will be:

200− (E2− AVERAGE OF DECISIONS D2 IN THE GROUP)2. The closer your estimation

E2 to the average of decisions D2 in the group, the higher your payoff from E2.

Before making your decision D2, you will be informed about the decision D1 of all other

participants. As previously, none of the participants will know the true value of Z before

making decisions D1 and D2.

However, at the second sub-period, each participant receives two hints, X and Y on the

unknown number Z, as explained below.

• Private hint X

Each participant receives at each second sub-period a private hint X on the unknown

number Z. Each private hint is centered on Z and contains an error that is randomly

selected from a normal distribution with mean 0 and standard deviation σx = 2.83.

Given the properties of the normal distribution, this means that in 95% of cases, your

private hint X is inside the interval [Z − 5.66;Z + 5.66]. Your private hint and the

private hints of the other participants are selected independently from each other, so

that each participant will receive a private hint that can be different from those of

the other participants.

• Common hint Y

On top of your private hint X , you, as well as the other participants in your group,

will receive at each second sub-period, a common hint Y on the unknown number

Z. This common hint is also centered on Z and contains an error that is randomly

selected from a normal distribution with mean 0 and standard deviation σy = 2.83.

Given the properties of the normal distribution, this means that in 95% of cases, the

common hint Y is inside the interval [Z − 5.66;Z + 5.66]. This common hint Y is the

same for all participants in your group.
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Graphical example:

Distinction between private hint X and common hint Y

The private hint X and the common hint Y have the same precision (same standard de-

viation): both hints are equally informative on the unknown number Z. The sole distinc-

tion between both hints is that each participant observes a private hint X that is different

from those of the other participants, while all participants observe the same common hint

Y .

Interval for decisions E1, E2 and D2 In order to limit the spread between your decisions

and the true value of Z, the interval for decisions E1, E2 and D2 will be set to [X−5.66;Y +

5.66] if the common hint Y is above the private hint X , and to [Y − 5.66;X + 5.66] in the

opposite case.

How to make your estimations E1 and E2?

To make your estimations E1 and E2, we ask you to select a number inside the interval

of decisions owing to a cursor. Nevertheless, as you do not know the errors in your hints,

it is natural to choose for your estimations numbers inside the interval defined by your

private hint X and the common hint Y . You thus have to combine your two hints in order

to maximise the payoffs associated with these two estimations. These estimations intend

to ease your choice for decisions D2.

How to make decision D2?
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Similarly, we ask you to select a number inside the interval of decisions owing to a

cursor. Nevertheless, as you do not know the errors in your hints, it is natural to choose

for your decision D2 a number inside the interval defined by your private hint X and the

common hint Y . You thus have to combine your two hints in order to maximise your payoff

associated with your decisions D1 and D2.

The graph below presents an example explaining how to make a decision D2:

Five periods of this game will be randomly selected to be paid at the end of the experi-

ment.

Payoffs: At the end of this third game, one of the participants to the experiment will

be randomly selected and will loudly announce to the other participants the periods that

will be selected for the payoffs of the three games. Your total payoff for the experiment will

consist in the sum of the payoffs obtained in the first, second and third games. In case of

negative payoff at one of these games, this payoff will be set to zero.

Before the beginning of the experiment, you will be asked questions in order to make sure you

understood the instructions.
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7.5 Example of screens
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7.6 Descriptive statistics for games 1 and 2

Game 1: Z known As shown by Tables 6, 7, 8, 9, 10, 11, and 12, in game 1, D1 = 0 is the

most played strategy.

Table 13 shows that D2 = Z (or values close to Z in a range of 5% around it25) is played

most of the time in game 1.

Game 2: Sunspot As shown by Tables 14, 15, 16, 17, 18, 19, and 20, in game 2, D1 = 10 is

the most played strategy.

Table 21 shows that D2 = Sunspot (or values close to the sunspot in a range of 5%

around it26) is played most of the time in game 2.

25This 5% tolerance interval intends to correct for mistakes due to an uneasy choice made owing to a slider on
the interval [0; 2000].

26This 5% tolerance interval intends to correct for mistakes due to an uneasy choice made owing to a slider on
the interval [0; 2000].
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D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 27 1 0 0 0 0 0 1 0 0 1
Group 2 27 0 0 0 0 2 0 0 0 0 1
Group 3 28 0 1 0 0 1 0 0 0 0 0
Group 4 24 1 0 0 0 2 0 0 0 0 3
Group 5 27 0 1 0 0 0 0 0 0 0 2
Group 6 29 0 0 0 0 0 0 0 0 0 1

Total 162 2 2 0 0 5 0 1 0 0 8

Table 6: Treatment 1 - Frequency of D1 in Game 1 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 25 1 0 0 0 2 1 0 0 0 1
Group 2 25 0 1 0 0 2 0 0 0 0 2
Group 3 27 0 2 0 0 1 0 0 0 0 0
Group 4 22 0 0 2 0 2 0 0 0 0 4
Group 5 30 0 0 0 0 0 0 0 0 0 0
Group 6 30 0 0 0 0 0 0 0 0 0 0

Total 159 1 3 2 0 7 1 0 0 0 7

Table 7: Treatment 2 - Frequency of D1 in Game 1 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 29 1 0 0 0 0 0 0 0 0 0
Group 2 25 0 0 0 0 3 0 0 0 0 2
Group 3 25 1 0 1 0 0 0 1 1 0 1
Group 4 27 0 0 0 0 0 0 0 0 0 3
Group 5 30 0 0 0 0 0 0 0 0 0 0
Group 6 27 0 0 0 0 0 0 0 0 0 3

Total 163 2 0 1 0 3 0 1 1 0 9

Table 8: Treatment 3 - Frequency of D1 in Game 1 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 30 0 0 0 0 0 0 0 0 0 0
Group 2 27 0 0 0 0 1 1 0 1 0 0
Group 3 30 0 0 0 0 0 0 0 0 0 0
Group 4 29 0 0 0 0 0 0 0 0 0 1
Group 5 27 2 0 0 0 1 0 0 0 0 0
Group 6 29 0 0 0 0 0 0 0 0 0 1

Total 172 2 0 0 0 2 1 0 1 0 2

Table 9: Treatment 4 - Frequency of D1 in Game 1 per group
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D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 29 0 0 0 1 0 0 0 0 0 0
Group 2 24 0 1 0 0 2 0 1 0 0 2
Group 3 24 0 0 0 0 1 0 1 1 0 3
Group 4 26 0 0 0 0 2 0 0 0 0 2
Group 5 25 0 1 0 0 0 0 1 0 0 3
Group 6 29 0 0 0 0 0 0 0 0 0 1

Total 157 0 2 0 1 5 0 3 1 0 11

Table 10: Treatment 5 - Frequency of D1 in Game 1 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 18 0 0 0 0 0 1 0 0 0 11
Group 2 27 0 0 0 1 0 0 0 0 0 2
Group 3 28 0 0 0 0 1 0 0 0 0 1
Group 4 25 0 0 0 0 0 0 0 0 0 5
Group 5 29 0 0 0 0 0 0 0 0 0 1
Group 6 27 0 0 0 0 0 0 0 0 0 3

Total 154 0 0 0 1 1 1 0 0 0 23

Table 11: Treatment 6 - Frequency of D1 in Game 1 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 29 0 0 0 0 0 0 0 0 1 0
Group 2 27 1 0 0 0 0 0 0 0 0 2
Group 3 28 0 0 2 0 0 0 0 0 0 0
Group 4 24 1 0 0 0 2 0 1 0 0 2
Group 5 30 0 0 0 0 0 0 0 0 0 0
Group 6 29 0 0 0 0 0 1 0 0 0 0

Total 167 2 0 2 0 2 1 1 0 1 4

Table 12: Treatment 7 - Frequency of D1 in Game 1 per group

Treatment 1 2 3 4 5 6 7

Group 1 30 29 30 30 29 29 29
Group 2 29 25 26 28 29 23 29
Group 3 27 28 27 30 23 28 24
Group 4 24 23 30 30 29 29 26
Group 5 30 30 30 26 28 27 29
Group 6 28 30 30 29 30 28 29

Total 168 165 173 173 168 164 166

Table 13: Frequency of D2 = Z ± 5% in Game 1 per treatment and group
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D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 8 0 0 0 0 2 0 2 0 0 18
Group 2 1 0 0 0 0 1 0 1 0 0 27
Group 3 2 0 0 0 0 1 0 0 1 0 26
Group 4 1 0 0 1 1 2 1 2 2 1 19
Group 5 9 0 0 2 0 2 0 0 0 0 17
Group 6 3 0 0 0 0 3 1 0 1 0 22

Total 24 0 0 3 1 11 2 5 4 1 129

Table 14: Treatment 1 - Frequency of D1 in Game 2 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 3 0 2 0 1 1 0 0 1 1 21
Group 2 8 0 3 0 0 3 1 0 1 0 14
Group 3 1 0 0 0 0 1 0 0 0 0 28
Group 4 3 0 0 0 0 1 0 2 1 2 21
Group 5 2 0 0 0 0 1 1 3 2 3 18
Group 6 0 0 0 0 0 0 1 1 1 2 25

Total 17 0 5 0 1 7 3 6 6 8 127

Table 15: Treatment 2 - Frequency of D1 in Game 2 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 1 0 0 0 0 0 0 0 0 0 29
Group 2 2 0 0 0 0 3 0 1 0 0 24
Group 3 6 0 0 0 0 2 0 0 0 0 22
Group 4 6 0 0 0 2 0 1 2 1 0 18
Group 5 5 0 0 0 0 1 0 0 1 0 23
Group 6 3 0 0 0 0 1 0 1 1 0 24

Total 23 0 0 0 2 7 1 4 3 0 140

Table 16: Treatment 3 - Frequency of D1 in Game 2 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 0 0 0 0 0 1 0 0 0 0 29
Group 2 1 0 0 0 0 0 0 0 0 1 28
Group 3 1 0 0 0 0 0 0 1 1 0 27
Group 4 5 0 0 0 0 4 0 2 1 0 18
Group 5 3 2 0 1 0 5 2 2 3 0 12
Group 6 8 0 0 0 0 4 0 1 0 0 17

Total 18 2 0 1 0 14 2 6 5 1 131

Table 17: Treatment 4 - Frequency of D1 in Game 2 per group
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D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 1 0 0 0 0 2 0 0 0 0 27
Group 2 4 0 0 0 0 4 0 0 0 0 22
Group 3 3 0 0 0 0 2 0 0 1 0 24
Group 4 3 0 0 0 1 5 0 1 3 3 14
Group 5 6 0 0 0 0 3 0 0 7 4 10
Group 6 1 0 0 0 0 0 0 0 1 3 25

Total 18 0 0 0 1 16 0 1 12 10 122

Table 18: Treatment 5 - Frequency of D1 in Game 2 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 1 0 0 0 0 2 0 0 0 0 27
Group 2 5 0 0 0 0 2 0 0 0 0 23
Group 3 2 0 0 0 0 1 0 0 0 0 27
Group 4 2 0 0 1 1 0 2 0 1 1 22
Group 5 3 0 0 1 0 7 1 0 0 0 18
Group 6 6 0 3 0 1 2 2 3 0 0 13

Total 19 0 3 2 2 14 5 3 1 1 130

Table 19: Treatment 6 - Frequency of D1 in Game 2 per group

D1 0 1 2 3 4 5 6 7 8 9 10

Group 1 6 0 0 0 0 1 0 2 0 0 21
Group 2 11 0 0 0 0 0 0 1 0 0 18
Group 3 10 0 0 0 0 2 0 0 0 0 18
Group 4 4 0 0 1 2 4 1 0 0 1 17
Group 5 1 0 0 0 1 2 0 0 1 1 24
Group 6 2 0 0 0 0 1 0 0 0 0 27

Total 34 0 0 1 3 10 1 3 1 2 125

Table 20: Treatment 7 - Frequency of D1 in Game 2 per group

Treatment 1 2 3 4 5 6 7

Group 1 18 11 30 28 25 22 8
Group 2 19 12 24 25 9 26 12
Group 3 17 28 15 26 18 29 12
Group 4 18 13 14 18 8 14 6
Group 5 19 9 20 4 7 13 19
Group 6 17 25 16 9 11 12 23

Total 108 98 119 110 78 116 80

Table 21: Frequency of D2 = Sunspot± 5% in Game 2 per treatment and group
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7.7 Results of tests

Table 22 presents the results of Wilcoxon rank tests to compare observed data to theoretical

values, while Tables 23, 24, 25 and 26 present the results of Mann-Whitney tests to deal

with treatment comparisons.

Tr. 1 − Th. 1st or. Tr. 2 − Th. 1st or. Tr. 3 − Th. 1st or. Tr. 4 − Th. 1st or. Tr. 5 − Th. 1st or. Tr. 6 − Th. 1st or. Tr. 7 − Th. 1st or.

0.0277 0.0464 0.0273 0.0464 0.2476 0.3173 0.0277

Table 22: Weight on Y in game 3: comparison between observed weight on Y and theoret-
ical weight in the first order expectation, p-values for the Wilcoxon rank test

Tr. 1 − Obs. 1st or. Tr. 2 − Obs. 1st or. Tr. 3 − Obs. 1st or. Tr. 4 − Obs. 1st or. Tr. 5 − Obs. 1st or. Tr. 6 − Obs. 1st or. Tr. 7 − Obs. 1st or.

0.0064 0.4233 0.1994 0.0250 0.4225 0.7466 0.6310

Table 23: Weight on Y in game 3: comparison between observed weight on Y and observed
weight in the first order expectation, p-values for the Mann-Whitney test

Tr. 1 − Th.|D1
Tr. 2 − Th.|D1

Tr. 3 − Th.|D1
Tr. 4 − Th.|D1

Tr. 5 − Th.|D1
Tr. 7 − Th.|D1

0.0542 0.0250 0.0103 0.6310 0.0776 0.1495

Table 24: Weight on Y in game 3: comparison between observed weight on Y and theo-
retical weight conditional on observed first stage decision, p-values for the Mann-Whitney
test

Tr. 1 − Tr. 2 Tr. 1 − Tr. 3 Tr. 1 − Tr. 4 Tr. 1 − Tr. 5 Tr. 1 − Tr. 6 Tr. 2 − Tr. 4 Tr. 2 − Tr. 7 Tr. 3 − Tr. 7 Tr. 3 − Tr. 5

0.8728 0.0547 0.5218 0.7488 0.0547 0.7488 0.6884 0.2002 0.0782

Table 25: Average D1: treatment comparisons, p-values for the Mann-Whitney test

Tr. 1 − Tr. 2 Tr. 1 − Tr. 3 Tr. 1 − Tr. 4 Tr. 1 − Tr. 5 Tr. 1 − Tr. 6 Tr. 2 − Tr. 4 Tr. 2 − Tr. 7 Tr. 3 − Tr. 7 Tr. 3 − Tr. 5

0.0782 0.0103 0.4233 0.1994 0.0036 0.1495 0.0547 0.0776 0.0091

Table 26: Weight on Y in game 3: treatment comparisons, p-values for the Mann-Whitney
test
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7.8 Relative frequency of weights on the coordination motive per group

Figure 3: Relative frequency of weights on the coordination motive per treatment and
group
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7.9 Relative frequency of weights on the public signal in Decision 2

Figure 4: Relative frequency of weights on Y in D2 per treatment and group
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7.10 Rationality: optimality of decisions D2?

Playing inside the interval In most cases, participants played inside the interval defined

by the two signals although this was not made compulsory by the design (contrary to

Baeriswyl and Cornand (2014, 2016)). As shown in Table 27, only 285 decisions over 6300

were outside this interval, which represents 4.5% of decisions.27 This proportion contrasts

with that obtained in Cornand and Heinemann (2014), owing to our design that showed

the positions of signals on the interval of possible decisions.

Tr. 1 (σ2
η = σ2

ε = 8) 2 (σ2
η = 1, σ2

ε = 8) 3 (σ2
η = 8, σ2

ε = 1) 4 (σ2
η = 16, σ2

ε = 8) 5 (σ2
η = 8, σ2

ε = 16) 6 (σ2
ε1

= 8, σ2
ε2

= 8) 7 (σ2
η = σ2

ε = 1)

Gr. 1 2 39 11 0 3 1 2
Gr. 2 1 28 10 2 1 2 11
Gr. 3 11 4 19 2 3 1 9
Gr. 4 2 21 3 4 2 9 2
Gr. 5 23 11 0 3 5 4 5
Gr. 6 0 2 9 5 13 0 0

Sum 39 105 52 16 27 17 29

Table 27: Number of decisions outside the interval defined by the two signals per group
and treatment

Coherence between estimations and decisions As shown in Tables 28 and 30, estima-

tions E1 are relatively close to theoretical values. For Treatments 1, 4, 5, and 6, statistical

equality cannot be rejected. There is however a significant difference for Treatments 2 and

3 (which exhibit extreme theoretical weights on the public signal).

Tr. 1 (σ2
η = σ2

ε = 8) 2 (σ2
η = 1, σ2

ε = 8) 3 (σ2
η = 8, σ2

ε = 1) 4 (σ2
η = 16, σ2

ε = 8) 5 (σ2
η = 8, σ2

ε = 16) 6 (σ2
ε1

= 8, σ2
ε2

= 8) 7 (σ2
η = σ2

ε = 1)

Gr. 1 0.59 0.55 0.27 0.39 0.69 0.51 0.52
Gr. 2 0.53 0.70 0.30 0.45 0.79 0.49 0.52
Gr. 3 0.49 0.58 0.28 0.40 0.48 0.50 0.50
Gr. 4 0.48 0.72 0.38 0.29 0.55 0.50 0.62
Gr. 5 0.52 0.75 0.19 0.30 0.67 0.48 0.62
Gr. 6 0.52 0.84 0.36 0.35 0.79 0.50 0.64

Av. 0.52 0.69 0.30 0.36 0.66 0.50 0.57

Th. 0.50 0.94 0.06 0.33 0.67 0.50 0.50

Table 28: Weight on Y in E1

As shown by Tables 29 and 31, estimations E2 are always below the extreme theoretical

weight of 1 on the public signal,28 but larger than the equal weight of 0.5.

27We accounted for the missing data by performing a bootstrap analysis in Appendix 7.11.
28In Treatment 6 where subjects received two private signals, however, estimations are in line with theory.

38



Tr. 1 (σ2
η = σ2

ε = 8) 2 (σ2
η = 1, σ2

ε = 8) 3 (σ2
η = 8, σ2

ε = 1) 4 (σ2
η = 16, σ2

ε = 8) 5 (σ2
η = 8, σ2

ε = 16) 6 (σ2
ε1

= 8, σ2
ε2

= 8) 7 (σ2
η = σ2

ε = 1)

Gr. 1 0.79 0.55 0.73 0.92 0.83 0.50 0.58
Gr. 2 0.73 0.75 0.44 0.55 0.90 0.49 0.63
Gr. 3 0.80 0.79 0.39 0.84 0.63 0.51 0.59
Gr. 4 0.66 0.70 0.61 0.60 0.62 0.51 0.71
Gr. 5 0.59 0.72 0.29 0.73 0.73 0.49 0.85
Gr. 6 0.65 0.97 0.38 0.60 0.79 0.47 0.63

Av. 0.70 0.75 0.47 0.71 0.75 0.49 0.66

Th. 1 1 1 1 1 0.50 1

Table 29: Weight on Y in the estimation E2

Tr. 1 − Th. Tr. 2 − Th. Tr. 3 − Th. Tr. 4 − Th. Tr. 5 − Th. Tr. 6 − Th. Tr. 7 − Th.

0.7532 0.0277 0.0277 0.2489 0.9165 0.9165 0.0277

Table 30: Weight on Y in E1 in game 3: comparison between observed weight on Y in E1

and theoretical weight in E(θ), p-values for the Wilcoxon rank test

Tr. 1 − Th. Tr. 2 − Th. Tr. 3 − Th. Tr. 4 − Th. Tr. 5 − Th. Tr. 6 − Th. Tr. 7 − Th.

0.0277 0.0277 0.0277 0.0277 0.0277 0.4631 0.0277

Table 31: Weight on Y in E2 in game 3: comparison between observed weight on Y in E2

and theoretical weight in E(D̄2), p-values for the Wilcoxon rank test

To obtain a more detailed picture of coherence between estimations and decisions, we

estimate whether the weight put on the public signal in D2 is highly dependent the op-

timal weight on the public signal conditional on estimations E1 and E2 (OptD2cond), by

regressing the following equation, both for each treatment and for all the treatments taken

together:

∣∣∣∣
D2it −Xit

Yt −Xit

∣∣∣∣ = Co+ α

∣∣∣∣
(10−D1)

10
E1it +

D1

10
E2it

∣∣∣∣
︸ ︷︷ ︸

OptD2cond

+(ǫit + νi), (23)

where Co is the constant, α is the estimated coefficient of the optimal decision conditional

on stated expectations; ǫit + νi is the error term.

Overall, Table 32 shows that there is a significant and positive relation between estima-

tions E1 and E2 and the decision D2 at the individual level and for all treatments, except

Treatment 5.
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All Tr1 Tr2 Tr3 Tr4 Tr5 Tr6 Tr7

Const 0.5066*** 0.3332*** 0.1698*** 0.3476*** 0.3048*** 0.7256*** 0.3945*** 0.2109***
(0.0490) (0.0106) (0.0631) (0.0443) (0.0328) (0.0492) (0.0403) (0.0540)

OptD2cond 0.1488** 0.4470*** 0.7750*** 0.1636* 0.4679*** 0.0052 0.1999** 0.6085***
(0.0736) (0.0270) (0.0799) (0.0855) (0.0617) (0.0285) (0.0825) (0.0933)

νi 0.1134 0.0986 0.0215 0.1417 0.1468 0.1323 0.0000 0.1220
ǫit 0.1705 0.1466 0.1225 0.2138 0.1510 0.1742 0.1383 0.1436
δ 0.3064 0.3111 0.0298 0.3050 0.4862 0.3659 0.0000 0.4191

N 6014 860 795 848 884 873 883 871
R2

within 0.0681 0.2392 0.4070 0.1226 0.2696 0.0000 0.1002 0.3193
R2

between 0.7415 0.7029 0.9715 0.6152 0.7422 0.5460 0.0072 0.6756
R2

overall 0.2616 0.4527 0.7016 0.2234 0.5604 0.0382 0.0936 0.5144
χ2 4.0909 274.4484 94.1295 3.6562 57.5190 0.0338 5.8643 42.5019

Cluster robust standard errors are reported in the first column to control for individual and group specific heterogeneity among the treatments

For the remaining models, cluster robust standard errors to control for group specific heterogeneity are given in parentheses.

Table 32: Random effects model - Equation (23)

7.11 Treatment effect: an analysis on individual data

We perform a treatment comparison for the individual weight put on the public signal in

D2. We observe similar patterns in terms of treatment comparisons as in the analysis of

aggregate data relying on non-parametric tests.

The interpretation of Tables 33, 34, and 35 is the following. Consider for example the

first column of Table 33. Each treatment should be compared to the baseline, which is in the

present case, Treatment 1 (the value is that of the constant). Treatment 2 affects the depen-

dent variable (Weight on Y in D2) positively and significantly compared to the baseline.

In other words, TR2 compared to TR1 increases significantly the dependent variable by an

effective size of 0.1181. Similarly, Treatment 6 significantly and negatively affects the de-

pendent variable compared to the baseline.29 The coefficient for D1it measures the effect of

decision 1 on the dependent variable while all the other explanatory variables are constant.

29Note that the baseline (TR1) is the reference and is similar to the constant in the regression analysis of Tables
5 and 32, where all the other treatments (TR2, TR3, TR4, TR5, TR6) are the slopes for each treatment respectively.
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Weight on Y in D2

Eq. (10) Eq. (23)
Baseline (TR1) 0.5653*** 0.5460***

(0.0239) (0.0748)
TR2 0.1181** 0.1033*

(0.0517) (0.0542)
TR3 -0.1825*** -0.1834***

(0.0601) (0.0688)
TR4 -0.0442 -0.0425

(0.0799) (0.0737)
TR5 0.0968* 0.0856*

(0.0518) (0.0450)
TR6 -0.1048*** -0.1147***

(0.0250) (0.0271)
D1it

10 0.1038***
(0.0192)

OptD2cond 0.1272
(0.1086)

νi 0.1824 0.1117
ǫit 0.1755 0.1717
δ 0.5193 0.2975
N 5143 5143
R2

within 0.0182 0.0606
R2

between 0.3492 0.4187
R2

overall 0.2393 0.2949
χ2 104.9290 95.0009

Cluster robust and bootstrap standard errors are given in parentheses

Bootstrap: 3000 replication

Table 33: Random effects model - Comparisons to Treatment 1

Weight on Y in D2

Eq. (10) Eq. (23)
Baseline (TR2) 0.6881*** 0.3275***

(0.0462) (0.0492)
TR4 -0.1621* -0.0753

(0.0866) (0.0509)
TR7 -0.1405** -0.0846**

(0.0592) (0.0348)
D1it

10 0.0947***
(0.0235)

OptD2cond 0.5583***
(0.0561)

νi 0.1975 0.1100
ǫit 0.1692 0.1408
δ 0.5767 0.3792
N 2550 2550
R2

within 0.0144 0.3176
R2

between 0.2514 0.7642
R2

overall 0.1970 0.6019
χ2 24.1014 158.0893

Cluster robust and bootstrap standard errors are given in parentheses

Bootstrap: 3000 replication

Table 34: Random effects model - Comparisons to Treatment 2
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Weight on Y in D2

Eq. (10) Eq. (23)
Baseline (TR3) 0.3898*** 0.3814***

(0.0519) (0.0706)
TR5 0.2870*** 0.2855***

(0.0748) (0.0811)
TR7 0.1651** 0.1652**

(0.0690) (0.0770)
D1it

10 0.0810**
(0.0324)

OptD2cond 0.0815
(0.1291)

νi 0.1948 0.1341
ǫit 0.1925 0.1898
δ 0.5060 0.3329
Obs 2592 2592
R2

within 0.0096 0.0368
R2

between 0.3349 0.3677
R2

overall 0.2105 0.2404
χ2 36.4934 20.3457

Cluster robust and bootstrap standard errors are given in parentheses

Bootstrap: 3000 replication

Table 35: Random effects model - Comparisons to Treatment 3
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