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Abstract

We study in a New Keynesian framework the consequences of adaptive learning for
the design of robust monetary policy. Compared to rational expectations, the fact that
private follows adaptive learning gives the central bank an additional intertemporal
trade-off between optimal behavior thanks to its ability to manipulate future inflation
expectations. We show that adaptive learning imposes a more restrictive constraint
on monetary policy robustness to ensure the dynamic stability of the equilibrium than
under rational expectations and weakens the argument in favor of a more aggressive

monetary policy when the central bank takes account of model misspecifications.
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1 Introduction

A great challenge for the central bank (CB) is to conduct monetary policy with limited
understanding of many key features of the macroeconomic environment that quickly evolves
over times. Facing such a challenge, the CB is likely to prefer basing monetary policy on
principles that are also valid if the assumptions of the model differ from reality. In other
words, monetary policy should be robust to plausible deviations from the benchmark model
as suggests the robust control approach instigated by Hansen and Sargent (2001, 2003,
2007). By introducing model uncertainty, this approach focuses on the worst-case outcome
within a set of admissible models as economic agents are not able to attribute probabilities
to all plausible outcomes. In the sense of Hansen and Sargent, robust monetary policies
are designed to perform well in worst-case scenarios by minimizing the consequences of the
worst-case specification of the policymaker’s reference model.

One important implication of this approach for the conduct of monetary policy is that the
attenuation principle under uncertainty well known since Brainard (1967) may not always
hold.! The concern about worst-case scenarios leads the CB to amplify rather than attenu-
ate the response of optimal monetary policy to shocks in a closed economy (e.g., Giannoni
and Woodford 2002, Onatski and Stock 2002, Giordani and Soderlind 2004, Leitemo and
Soderstrom 2008, and Gonzalez and Rodriguez 2013) and implies that the CB takes stronger
action to avoid particularly costly outcomes. This can generate inflation persistence (Qin,
Sidiropoulos and Spyromitros 2013) and justify the appointment of a liberal central banker
if the latter has a greater concern about misspecifications of the Phillips curve (Dai and
Spyromitros 2010). In contrast, a conservative central banker would be preferable when

misspecifications of the true degree of shock persistence or those of the output gap were

!The attenuation principle is also called “conservatism principle” by Blinder (1998). This conventional
wisdom has it that if the central bank was not sure about the marginal effects on economic variables of a
change in its instrument, it should be cautious in the sense that it changes the instrument less than in the
absence of parameter uncertainty. In the literature on robust monetary policy, the meaning of “cautious” is
reversed such that “being cautious (or precautionary)” actually signifies “to do more”, i.e., the policymaker
tries to avoid bad outcomes in the future by responding more aggressively to shocks today (Soderstrom 2002,
Gianonni 2007).



considered (Tillmann 2009, 2014). These theoretical results give rise to some insightful
prescriptions regarding the conduct of monetary policy. However, the usefulness of such
prescriptions could be limited by the fact that they are obtained under the hypothesis of ra-
tional expectations (RE). The reason of this is that this hypothesis is excessively demanding
for private agents in terms of knowledge and understanding about the structure of the econ-
omy as well as capability of data collecting and processing, particularly when the economic
environment is uncertain.

Facing model uncertainty, private agents may not be able to properly forecast how eco-
nomic variables evolve, and their understanding of the economy and their expectations could
be better described by a learning process instead of the RE hypothesis.? Such a process re-
flects the limited rationality of private agents. The advent of the learning hypothesis poses
a fundamental challenge to monetary policy decisions. The latter should account for the
implications of learning because when agents are learning, optimal monetary policy with
RE can perform poorly (Milani 2008, and Orphanides and Williams 2008). As highlighted
by Schmidt-Hebbel and Walsh (2009), a key lesson learned from the research on monetary
policy is that neither uncertainty nor learning can be ignored. The implications of learning
for monetary policy are examined by a developing body of literature showing that learning
on the one hand helps selecting between all the possible equilibria obtained under RE, and
on the other hand can be considered as a process converging towards RE (Bullard and Mitra
2002, Evans and Honkapohja 2003, 2006, da Gama Machado 2013, Airaudo, Nistico and
Zanna 2015). Besides, it is recognized that forecasting under the assumption of learning in
DSGE models outperforms forecasting under the RE hypothesis (Slobodyan and Wouters
2012). Another advantage of learning is that it resolves the disinflationary-booms anomaly
in the New Keynesian model under RE (Moore 2016).

The present study contributes to the literature on robust monetary policy by studying

the implications of model misspecifications for monetary policy when private agents form

2Empirical studies show that consumers react sluggishly to persistent shifts in the inflation rate, see
Trehan (2011) and Trehan and Lynch (2013), meaning that they slowly adapt their inflation forecast.



expectations using adaptive learning. The latter can be seen as the consequences of limited
access by private agents to the information set. The intention of the paper is to examine
the implications of learning with a constant-gain algorithm for robust monetary policy. We
show that adaptive learning weakens the argument in favor of a more aggressive monetary
policy that is advocated in misspecified models with RE. Our paper complements Molnér
and Santoro (2014), who investigate optimal monetary policy when agents are learning in
the benchmark New Keynesian model and consider the robustness of their results when
the learning process is misspecified. Our paper is also related to Orphanides and Williams
(2007) who show that monetary policy robust to misperceptions of the natural interest rate
raises the persistence of inflation, and to Bask and Proano (2016) who find that an incorrect
assessment of the cost channel and the degree of inflation persistence by the CB greatly
affects its capability to enforce a determinate and learnable RE equilibrium.? Both of these
papers consider least square learning. In contrast, we assume that model equations are
misspecified while ignoring the misspecification of the learning process, and we look for the
analytical equilibrium solutions under constant-gain learning.

The remainder of the paper is structured as follows. Section 2 outlines the model. Section
3 derives equilibrium solutions under monetary policy discretion in both cases of RE and
constant-gain learning. Section 4 explores the effects of learning on robust monetary policy.

Section 5 discusses some possible extensions. Section 6 concludes.

2 The model

We consider two deviations from the standard New Keynesian model that has undoubtedly
become the workhorse in the recent literature on monetary policy (Rotemberg and Woodford
1997, Clarida, Gali and Gertler 1999). The first is a sequential min-max game between the

nature (malevolent agent) setting the model misspecifications to maximize the social loss

3Bask and Proafio (2016) do not use the robust control approach but consider various scenarios with
different parameters values.



and the CB as the Stackelberg leader who sets robust monetary policy to minimize the
social loss.* The second is the adaptive learning behavior of the private sector when forming

expectations.

2.1 Aggregate demand and supply

The New Keynesian Phillips curve is modified by introducing a misspecification hy:
T :ﬁE;’YTtJrl—'—K/Q?t‘i‘@t—i—ht, (1)

where 0 < [ < 1 stands for the discount factor, x; the output gap and 7; inflation; &
is a composite parameter, i.e., K = w(l + ¢), with ¢ representing the inverse of
the steady-state elasticity of labor supply and ¢ the share of firms that do not optimally
adjust but simply update in period t their previous price by the steady-state inflation rate.
The composite parameter s is the output-gap elasticity of inflation and captures the effects
of the output gap on real marginal costs and thus on inflation. The expectation operator
E} represents private agents’ expectations conditional on information set available at time
t, with the asterisk reflecting the fact that these agents may form RE or not. The noise
e; ~ N(0, 0?) is an iid cost-push shock. The inflation misspecification, hy, is controlled
by a fictitious “malevolent agent” in the sense of Hansen and Sargent (2007), symbolizing
the policy maker’s worst fears about specification errors. The malevolent agent’s budget

constraint is:

“+o00
EY B'h; <xi, (2)
i=0

where x? represents the budget allocated by the CB to the malevolent agent to create mis-

specifications.

4If we had assumed that the malevolent agent is here the Stackelberg leader, the approach in terms of
model misspecifications would lose its interest since the CB could adjust its policy according to the scenario
designed by the nature/malevolent agent (Hansen and Sargent, 2003).



The New Keynesian IS equation is given by
v = Efwi — o7 (ry — Ef i), (3)

where r; is the nominal short-term interest rate and o the risk aversion of households. To
simplify the analysis, we assume there is no demand shock and misspecification in the IS
equation since the CB can neutralize shocks affecting the aggregate demand by optimally

setting the interest rate.

2.2 Monetary policy objectives

The CB is assumed to have the same preferences for inflation and output-gap stabilization

as the society, whose expected social loss function is given by:

1
L] = 53&251 (7Tt2+z‘ + CW?H) ) (4)
i=0

where a > 0 denotes the relative weight assigned to the objective of output-gap stabilization.
To simplify, we assume that inflation target is equal to zero. The overly ambitious output
target, which is common in the Barro-Gordon framework, is absent in (4), i.e., output-gap
target is also equal to zero. Thus, discretionary monetary policy set to minimize social loss
(4) would avoid an average inflation bias.

Under discretion, the CB designs a robust monetary policy that takes account not only of
shocks affecting the economy but also of model misspecifications reflecting the worst possible

model within a given set of plausible ones.®

5Issues of learning when monetary policy is under commitment have been studied by Evans and Honkapo-
hja (2006) showing that both RE commitment equilibrium (RECE) and RE discretionary equilibrium
(REDE) are attainable, and Mele, Molnar and Santoro (2014) finding that the optimal monetary policy
drives the economy far from the RECE but to the REDE.



The optimal robust monetary policy is obtained by solving the min-max problem:

1R
min mathCB = —EtZ,BZ(WfH + ax,?ﬂ — 9h3+,~), (5)
Tt ht 2 i—o

subject to the misspecified Phillips curve (1) and malevolent agent’s budget constraint (2).
The penalty parameter 6 controls the preference for robustness. The misspecification errors
h; are inversely proportional to #. The absence of concern for robustness corresponds to the
case where § — oo, implying that h; — 0. In the following, we assume for simplicity that

the malevolent agent’s budget constraint (2) is not binding.

2.3 Learning rules of private agents

While the CB is facing uncertainty, private agents also find it hard to know the actual law
of motion (ALM) for inflation and the output gap such that they learn the latter’s evolution
using an algorithm.% Thus, they recursively estimate a Perceived Law of Motion (PLM), i.e.,
a steady-state noise in the terminology of Evans and Honkapohja (2001), which is consistent
with the law of motion that the CB would follow under RE. Indeed, private agents believe
that the steady-state levels of inflation and the output gap only depend on i4id cost-push
shocks and hence perceive their expected levels as constant, knowing that the conditional
and unconditional expectations of these variables are identical. This justifies that private
agents estimate these variables via sample means.

Private agents form their expectations using the following learning algorithms (Marcet

and Nicolini 2003):

B = ap = a1+ y(mo1 — ar), (6)

By = by =bioq + (21 — b)), (7)

6The modern literature on learning algorithms was pioneered by Marcet and Sargent (1989) who studied
their convergence using stochastic approximation techniques. For a survey of the literature, see Evans and
Honkapohja (2001).



where 0 < 7, < 1 represents a deterministic sequence of learning gains that defines the
speed of integration of new data into expectations with exogenously given ag and by. If
v — 0, the policymakers cannot manipulate future expectations by changing the current
policy. The underlying learning mechanism means that inflation (output-gap) expectations
are increasing with last period inflation (output gap).” To ensure the analytical tractability
of the model, we choose to adopt constant-gain learning, i.e., y,.1 = v = 7. Moreover,
the latter better fits time-varying environments. As extensively discussed in the learning
literature (Evans and Honkapohja 2009), private agents would be more inclined to use a
constant-gain learning algorithm if they believe in possible structural changes to happen in

the near future.®

3 The equilibrium under monetary policy discretion

Learning gives us an attractive alternative way of conceiving how private agents interact
with monetary authority compared to the RE hypothesis. It considerably affects the CB’s
trade-off between inflation and the output gap by giving rise to an incentive for the CB to
decrease the volatility of current inflation as well as a greater room of maneuver to achieve

this.

3.1 Rational expectations equilibrium

We use the RE equilibrium (REE) solution as a benchmark to illustrate how the equilibrium
is modified by an optimal monetary policy designed with private agents’ beliefs being taken

into account. The CB solves its min-max problem (5) subject to (1). This leads to:

«
Ty = —;l’t. (8)

"The limit of learning process described in (6) and (7) is that they focused on past information and the
forecast with one period ahead.

81t is to notice that decreasing-gain learning is often the first approach adopted by most economic agents
(Berardi and Galimberti, 2013).



The targeting rule (8) indicates that the trade-off between m; and z; is not affected by
model misspecifications. Solving (1)-(3) and (8) yields the Actual Laws of Motion (ALMs)
for inflation and the output gap, and the interest rate rule that implements the optimal

monetary policy as follows:

ol b

Sl A 1 =

it O(a+r2) —a ¢ * O(a + w2) — ot (©)
k03 K0

= ——  __F - 1

i O+ k%) — « s f(a + K2) —a (10)
. ok6p . ok

A A G T gy R T pp (1)

The ALMs (9)-(11) correspond to the monetary policy set by a policymaker who does not
take into account how other economic agents revise their beliefs. To ensure that m,; increases
with Efm,y1 and e, the CB must limit its preference for robustness so that 6(a+x?)—a > 0,

ie, 0 >

oz The system composed of (1), (3) and (8) has a unique non-explosive REE
solution in terms of the only state variable e;, known as the “minimal state variable” solution
(McCallum, 1983). Thus, under RE, the solution of 7, takes the following form: 7, = (e;. The

formation of RE conditional on the available information at ¢ leads to Efmyy1 = Eymq =

(Eiery1 = 0. Substituting Eymq = 0 into (9)-(11) leads to the REE solution:

_ o (12)

= 0a+r?)—a
K0

_ _ 13

l’t 0(0{ + /{2) _ a€t7 ( )
okt

R — 14

"t O+ K2) — ot (14)

It is straightforward to see from (9)-(11) that a decrease in 6 (i.e., a greater preference for
robustness) implies a more aggressive response of the CB to cost-push shocks or a change
in inflation expectations, meaning that the CB becomes more cautious for fear of model
misspecifications. Such policy response makes inflation and the output-gap more volatile.

When 6 — o0, the CB’s concern for model robustness disappears and we obtain again the



results corresponding to the standard New Keynesian model under the RE hypothesis.

3.2 Learning equilibrium

Learning allows the CB to add an intertemporal trade-off between optimal behavior in ¢ and
in later periods, generated by its ability to manipulate future inflation expectations. Current
monetary policy decisions, given their effects on future inflation expectations, should take
into account future intratemporal trade-offs between inflation and the output gap. We
assume here that the CB exactly knows the learning algorithms followed by private agents
when setting the monetary policy.

The CB’s policy decision results from solving the min-max problem (5) subject to (1)-(3)
in which Ex;, ;4 is substituted by b;,; and Efm,y; 11 by a44, and to (6)-(7). The Lagrangian
of the CB’s min-max problem is:

+o0
: cCB __ E if1 2 2 2
mgn H}laX.,% = Et 52{5 [’/Tt—&—i + a$t+i - 9ht+i} - )\l,tJri [7Tt+i - Batﬂ- — Rl — Uprq — htJri]
t t
=0

_)\2,t+i [$t+z‘ — bpyi + U_I(Tt+z‘ - at+i)} — A3t [at+z’+1 = Qtti — ’7(7Tt+i - at+i)]

—)\4,t+z‘ [bt+z‘+1 — byyi — 7(95t+i - bt+,~)]}. (15)

Deriving (17) with respect to 7y, hy, 7, @y, a1 and by yields the first-order conditions:

Moy =0, (16)

“Ohy+ Ay =0, (17)

T — Mg+ YA =0, (18)

axy + KA — Ao + YA =0, (19)

Mot = B | Ben + D+ Bhsaa1 =) | =0 (20)
My — By [BA2g1 + BAag (1 — )] = 0. (21)



The second-order condition for the malevolent agent’s maximization problem, i.e., %

0, implies # > 0. Substituting Ay, = 0 given by (18) into (23) leads to Ayt = B(1—7)EiAari1,
of which the only bounded forward-looking solution is As; = Ag441 = 0. Using these results
into (21) yields A\;; = =%z, and Ay = —%x,4. Substituting A\, = —%x; into (20), we

get:

«
T + ;fEt + 7)\3,t = 0. (22)

When the expectations are exogenous and constant, i.e., v = 0, the above rule is identical to
the one given by (8), which is the targeting rule under RE. The rule (24) shows that only the
Lagrange multiplier associated with the evolution of inflation expectations, i.e., A3, plays a

role in the setting of optimal monetary policy. It follows from (24) that
1 o
Asp = —— —Ty). 23
3. 7<7Tt+ —t) (23)

The Lagrange multiplier A3, here represents the marginal effect of an increase in inflation
expectations on welfare loss at time ¢ + 1. The learning hypothesis means that v > 0, and
hence the sign of A3; depends on whether inflation expectations formed in the current period
a; are positive or not. Indeed, since inflation target is set to zero, a; could be either positive
or negative depending on the nature of past shocks. If @, is positive (negative), an increase
in a; drives future inflation expectations further away from (closer to) the target and hence
reduces (increases) the social welfare, implying that A3, is positive (negative).

Combining equations (19) and (21) leads to
Substituting h, by its value given by (26) into (1) yields a modified Phillips curve:

«
m = BE T + (k — E)xt + ey, (25)

10



where the response of inflation to a change in the output gap decreases with increased concern

of the CB for robustness (i.e., a decrease in 0).

4 Robustness and the effects of constant-gain learning

The comparison of equilibrium under learning and under the RE hypothesis is done exhaus-
tively in Molnar and Santoro (2014), so we focus on the difference induced by constant-gain

learning and robustness compared to the benchmark model without model uncertainty.

4.1 Equilibrium solution

The model has a unique solution corresponding to the CB’s min-max problem under constant-
gain learning (Appendices A.1 and A.2). To ensure that we do not obtain a counterfactual
sign for the coefficients of the ALMs under learning, we must have 6 > <%, which is more
restrictive than the one imposed under RE, i.e., 6 > ﬁ

The ALM for inflation is

Ty — cfrgat -+ dfrget. (26)

cg\2
cg __ _p()—}—pg(cﬁg) — cg cg __ ab
where ¢ = n = @) & = e e P = A [par— -]

withpg = aff {1 — B(1 =) [1 = y(1 = B)]} > 0, p2 = ¥B{(K*0 — a)(1 —7) + 0a [l —v(1 — B)]},
pr=—(r0—a)[l =B(1—7)]—ab(l-B8){1-B[L—v(1-B)])}—p—p2

Under the condition 6 > %, we have py > 0 and p; < 0. The solution for ¢¥ that ensures

a non-explosive evolution of m; described by the ALM for inflation (28) is:

9 — —P1— pi — 4papo (27)

" 2p2
where 0 < ¢ < % (Appendix A.2). The last condition implies ¢ <  and d¥9 < 1.
When expectations are constant, i.e., v = 0, we obtain c¢¥ = %, and d¥9 = W.
Inserting m, given by (28) and hy = — %, into (1), we obtain the ALM for the output

11



gap:

ry = cflay + dey, (28)
where ¢ = — (8 — ) < 0 and df = — 5 (1 — d¥) < 0.

Substituting z; given by (30) in (3) yields the ALM for the interest rate:

Ty = (5ﬁgbt + cﬁgat + dﬁget, (29)

where 69 = 0, ¢ = 14+ 25 (8 — ) and d9 = -2 (1—d%). In the ALM for the interest
rate, the output-gap expectations have constant feedback effects, no matter how robust the
policy is.

The feedback effects of inflation expectations and cost-push shocks on inflation, the out-
put gap and the interest rate are function of the preference for robustness. It is to notice
that the ALMs for inflation and the output gap are independent of output-gap expectations
under both learning and RE, while the interest rate under learning responds to output-gap
expectations with the same coefficient as under RE.

Notice that for v = 0, the feedback coefficients in the ALMs are identical to those in
(9)-(11), hence identical to those under RE. Indeed, in the absence of learning, inflation and

output-gap expectations remain anchored at their steady-state values and thus are identical

to those obtained under RE (Appendix A.2).

4.2 The stability condition

The existence of a converging solution for ¢ ensures that there is a converging solution

for other coefficients of ALMs, such as ¢?, d¥, d%¥9, c%

r o

and d¥ while 0% is independent
of learning and robust control. Comparing the existence condition of a converging path for

inflation under RE and the one obtained under learning leads to the following proposition.

Proposition 1. Adaptive learning imposes a more restrictive constraint on mon-

etary policy robustness. The CB can ensure the dynamic stability of the economy by

12



imposing a higher lower bound on the parameter representing its preference for robustness,
i.e., 0 > 5, when private agents form expectations under constant-gain learning, than under
rational expectations, i.e., 0 > m

Proof. See Appendix A.2.

A higher lower bound for # implies a smaller possibility for the CB to implement a robust
monetary policy strategy. To show the difference between the thresholds imposed on the
CB’s preference for robustness under learning and RE, we use Woodford’s (1999) parameter
values, o = 0.048, f = 0.99 and k£ = 0.024, and find that under adaptive learning, the
threshold for € above which the dynamic system is stable is 83.33. Meanwhile, for the same
parameter values, the corresponding threshold for § under RE is 45.45. This indicates that
the CB can introduce much less model misspecifications when private agents are learning
than under RE. Notice that the value of # compatible with the dynamic stability of the
equilibrium is smaller than the lower bound on 6, i.e., ¢ > %, imposed to ensure that the
sign of the coefficients in the ALMs under learning is not counterfactual (Appendix A.2).
Consequently, the condition ensuring the dynamic stability is 6 > -%. This implies that the
threshold ensuring the dynamic stability of the equilibrium under learning is independent of

the learning coefficient.

4.3 The effects of robustness on the feedback coefficients of ALMs

To the difference of Molnar and Santoro (2014), the effects of learning interact with the
CB'’s preference for robustness in the present model. We evaluate here how the conduct of
monetary policy is affected by learning and model robustness.

Deriving ¢f , d¥9, ¢9, d¥, ¢;9, and d? with respect to v and examining their sign lead

to the following proposition.

Proposition 2. Adaptive learning makes robust monetary policy less accommoda-
tive. An increase in the learning gain 7y reduces (increases) the feedback coefficients of in-

flation expectations and cost-push shocks in the ALMs for inflation and the output gap (the

13



nominal interest rate).

Proof. See Appendix A.3.

Comparing (9)-(11) with (28), (30) and (31), we find that the feedback effect of inflation

expectations on the ALM for inflation (the output gap) is attenuated (amplified) under

cg < —Brb

% Tate?) o respectively) and this is

learning compared to RE, i.e., ¢¥ < % (c

made possible by the stronger response of the interest rate to inflation expectations under

rOo

o .
learning, i.e., ¢;9 > 1+ 77—

. The interest rate reacts more strongly as ~ increases. Regarding
the feedback coefficients associated with cost-push shocks in the ALMs, it is straightforward
to show that d¥¥ < m, ¥ < —W and d¥ > %, meaning that under
learning, inflation is less sensitive while the output gap and the interest rate are more sensitive
to current cost-push shocks than under RE.

Using the baseline parameter values, a = 0.048, § = 0.99, and x = 0.024 and ¢ = 0.157,
Figure 1 shows how the learning gain v and the preference for model robustness 6 affect the
feedback coefficients in the ALMs.

It emerges from Figure 1 that the learning process with a non-trivial learning gain (i.e.,
v > 0) attenuates the feedback effects in the ALMs for inflation but amplifies these effects in
the ALM for the output gap and the interest rate compared to the corresponding ones under
RE (which are identical to the ones with v = 0). More precisely, both feedback coefficients
¢ and d¥ are positive and smaller than unit and decrease with . Comparing the effect of
an increase in vy on ¢ and d¥, we find that ¢ decreases at a much faster rate than d¥.
We notice that as vy reaches 0.2, the value of ¢ is very close to the one obtained with v =1
while the value of d¥¥ is quite far away from its value for v = 1. Similar observation could
be made with d?, d39, ¢9, and d.

Using (9)-(11), it is easy to show that under RE, the absolute value of the coefficients in
the ALMs are all increasing as 6 decreases, meaning that an increase in the CB’s preference

for model robustness amplifies the responses of all endogenous variables to a change in

expected inflation and cost-push shocks. Given that the inflation target is equal to zero, the

14



expected inflation at the REE is always equal to zero and the effect of robustness on the

economy is transmitted through the coefficients associated with cost-push shocks in (9)-(11).
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Figure 1: The feedback coefficients of the ALMS

Using the baseline parameter values, Figure 2 illustrates how the partial derivatives with
respect to 6 of the feedback coefficients in the ALMs evolve with the learning gain + and the

preference for model robustness 6.
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Figure 2: The sensitiveness of partial derivatives for 6 of the feedback coefficients in the
ALMs to v and 6.

Deriving the feedback coefficients in (28), (30) and (31) with respect to 6 yields the

following proposition.

Proposition 3. Cautiousness of robust monetary policy under adaptive learn-

ing. An increase in the CB’s preference for model robustness (i.e., lower ) amplifies the

16



response of inflation, the output gap and the nominal interest rate to inflation expectations

and cost-push shocks. The response of the nominal interest rate to output-gap expectations

8§§g = 0. Adaptive learning weakens the aggressive

18 independent of model robustness, i.e.,
response of the CB to cost-push shocks or a change in inflation expectations compared to

those observed under rational expectations.

Proof. See Appendix A.4.

Fearing the worst-case scenarios, the CB becomes more aggressive in its responses to cost-
push shocks and a change in inflation expectations under RE (Leitemo and Séderstrom 2008).
This effect is also present when private agents form expectations using a learning algorithm
and comes to reduce the attenuation effects of learning on the feedback coefficients in the
ALM for inflation, the output gap and the interest rate. In other words, adaptive learning
makes the central bank more cautious in the sense of Brainard (1967) and leads the latter to
conduct a policy that dampens the effects of a change in inflation expectations and cost-push
shocks on inflation, the output gap and the interest rate.

For the baseline parameter values, Figure 3 illustrates how the partial derivatives with
respect to v of the feedback coefficients in the ALMs evolve with the learning gain v and the
preference for model robustness 6.

d;?

cg cg cg
dex  Odn e gy 38—; but reduces

It follows from Figure 3 that a decrease in 6 increases o o o

85—59 and %%g. We notice that the marginal effect of a decrease in 6 on the marginal effect
of v is quite insensitive to the value of 7 in the case of c¢9, d¥9, c¥, and d¢. The numerical

x 7

simulation leads to the following proposition.

Proposition 4. For standard parameter values, an increase in the CB’s preference for
robustness (i.e., a decrease in 0 ) increases the marginal effects of learning gain on the feedback
coefficients in the ALMs for inflation and the nominal interest rate but decreases those on

the feedback coefficients in the ALM for the output gap.
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Figure 3: The sensitiveness of partial derivatives for « of the feedback coefficients in the
ALMs to v and 6.

5 Discussions

The finding that constant-gain adaptive learning weakens the argument in favor of a more
aggressive robust monetary policy is obtained in a standard New Keynesian model with the

central bank being confronted to additive model misspecifications. The policy implications
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of this paper are however subject to several limitations of the model. The most important
among them are the assumption that the learning gain is time invariant, the additive nature
of model misspecifications, the absence of the zero lower bound, and the negligence of the
interactions between monetary policy and financial frictions. Eliminating some of these
limitations may give rise to promising extensions.

First, the assumption of constant-gain learning can be relaxed. It can be substituted by
various learning behaviors investigated in the literature.® One immediate extension to our
model is to consider that private agents use a decreasing-gain algorithm as in Molnar and
Santoro (2014) and André and Dai (2017), and examine how the robust control approach
could affect the effect of decreasing-gain learning on optimal monetary policy.'® We can state
with confidence that since the learning gain decreases with time, the temporary equilibria
under decreasing-gain learning replicate more or less those under constant-gain learning with
given learning gains. However, it will be more difficult to find an analytical solution as the
evolution of learning gain affects the current equilibrium and induces complex interactions
between learning and model misspecifications. Furthermore, the robustness of our results
could be checked by considering alternative learning algorithms such as least square learning
and Bayesian learning.

Second, the robust control approach in this paper only deals with additive model mis-
specification. An idea popularized by Brainard (1967) and emphasized by Blinder (1998)
and others is that policymakers should be cautious by “doing less” when facing to uncertainty
about the true parameters of a model. An alternative approach to robustness is to consider
multiplicative Knightian uncertainty by assuming that the uncertainty is located in one or
more specific parameters of the model, and the true values of these parameters are known
only to be bounded between minimum and maximum plausible values (Giannoni 2002, 2007,

Onatski and Stock 2002, and Tetlow and von zur Muehlen 2004). However, implementing

9See Evans and Honkapohja (2001) for a presentation of different learning algorithms.

'0The relaxation of the assumption of constant-gain learning is justified by Milani (2014) who shows that
private agents appear to have often switched to constant-gain learning, with a high constant gain, during
most of the 1970s and until the early 1980s, while reverting to a decreasing-gain later on.
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multiplicative uncertainty makes it impossible to obtain any analytical result (Stderstrom
2002). Numerical simulations show that in the presence of parameter uncertainty, the robust
monetary policy rule implies that the interest rate generally reacts more strongly to changes
in inflation and the output gap, with greater inertia than in the absence of such uncertainty.
The policymaker is less cautious than in Brainard’s model, as he cares very much about
worst-case situations. Multiplicative uncertainty makes it more difficult for private agents
to forecast the future and hence provides a stronger argument for their learning behavior. It
would be worthwhile to see how adding multiplicative uncertainty to a model with adaptive
learning changes the results obtained when model misspecification is additive.

Recent global financial crisis has attracted a great attention to the role played by financial
intermediation and frictions in the monetary transmission mechanism. A number of studies
introduce financial frictions in New Keynesian models.'! Such frictions tend to amplify the
fluctuations in inflation and the output gap, especially when private agents adopt learning
behaviors, implying that monetary policy must be more aggressive in response to inflation
shocks than under RE (Caputo et al. 2011, Rychalovska et al. 2015, and Hollmayr and Kiihl
2016). These results suggest that the interactions between learning and robust monetary
policy in the presence of financial frictions could be quite different from those in the absence
of such frictions.

Another current hot topic is to assess whether the robust control approach is able or not
to avoid convergence to a liquidity trap since large shocks can put economic variables on an
unstable path leading to the zero lower bound (ZLB) regime (Honkapohja 2016). Incorpo-
rating forward guidance into the learning approach, Honkapohja and Mitra (2015) show that
both price level and nominal GDP targeting can better help avoiding an expectations-driven
liquidity trap than under inflation targeting. The effectiveness of these two policy regimes
when private agents are learning largely depends on the credibility of monetary policy that

is measured by the degree with which forward guidance about the future path of the target

See Brunnermeier et al. (2013) for a survey of the literature.
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variable is integrated into the learning process. These issues deserve further examination in

a framework where the central bank sets optimal robust monetary policy.

6 Conclusion

This paper explores the implications for macroeconomic stabilization when both additive
model misspecification and adaptive learning are present. It is shown that the fact that
private agents form expectations using learning algorithm substantially reduces the set of
possible model misspecifications compatible with the dynamic stability of the economy, com-
pared to the possible set under rational expectations. Regarding the effects of robustness,
we find that the results obtained by Leitemo and Soderstrém (2008) under rational expec-
tations hypothesis, i.e. the robust monetary policy becomes more aggressive, are still valid.
However, due to adaptive learning, the optimal robust monetary policy is less aggressive
than under rational expectations. The response of inflation, the output gap and the nominal
interest rate to cost-push shocks and to a change in inflation expectations under adaptive

learning is amplified by an increase of the central bank’s preference for model robustness.

A APPENDIX

A.1 The equilibrium solution of inflation under learning

Substituting Ay 1 = 0, Ay and Az given by (25) and Ay = —%x44 from (21) into

(22), we obtain

ay3?
K

a [0
T = —E.Z't + 5(1 - ,Y)Etﬂ_t-i-l + + 5(1 _ 7); Etl‘t.i,.l- (Al)
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Using Eymii1 = ay and (27), we get:

K0
Ty = m (7Tt — Ba; — et) ) (A-Q)
K0
Tep1 = g (M1 — Bagrr — €q1) - (A.3)

Substituting z; and z;,, given by (A.2)-(A.3) into (A.1) and arranging the terms yields:

Eymp = Anm + Aay + Prey, (A.4)
with
_ K20 — o+ af + 0ayB%[1 — v(1 — B)]
A= T ) (1) + ba [l A= D)) (A.5)
ol ==y [1 =701 -5
A= G- a) (1) + Ba L (- B} 0
P = ab . (A.7)

~ B{(R0—a)(1—7) + 0ol —y(1-B)}
According to the proposition 1 from Blanchard and Kahn (1980), the ALM solution for

inflation takes the following form :
Ty = cfrgat -+ dfrget. (AS)

Advancing (A.8) one period and taking the expectation of the resulting equation while using
(6) yield:

Eymppr = ¢ [(1 = 7)as +ym] . (A.9)
Using (A.4) to eliminate E;myyq in (A.9) and arranging the terms, we get:

A12—Cfrg<1_’7) P
Ty — a; + Cgrg”)/ — AH €.

A.10
Cfrg”y — Ay ( )
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Comparing (A.8) and (A.10) yields:

I = - Al
C7r,t Cfrg’}/ . All ) ( )
and
P

We gather equations (6), (7) and (A.4), while using (A.2) to substitute x; to obtain the
system of three equations :

By = Ay + Peey

where

A Ao 0 P
ytz{ﬁt a bt:|,AE vy 1—7 0 ,and P = 0
B KO~ vBKH 1 KO~y
a— k20 o — K20 7 o — k260

The above system is subject to three boundary conditions: ag, by, and lim |Eym | < o0.
§—00

The eigenvalues of A; are given by 1 —« and by the two eigenvalues of A;:

Ay A
A= | TR (A.13)

v 1=y

We can show that, in Appendix A.2, A; has an eigenvalue inside and one outside the

unit circle.O

A.2 The single stable solution

Among infinite stochastic sequences satisfying equation (A.11), we focus on a non-explosive
solution, i.e., the solution corresponding to the eigenvalue of A; given by (A.13) inside the

unit circle. The trace and determinant of A; are both positive. Thus, for A; to have two
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real eigenvalues (p1, p2), one inside and one outside the unit circle, it is sufficient to show

that (1 — p1)(1 — p2) < 0. This can be rewritten as:

p1+ po > 1+ g puo. (A.14)

Knowing that p; + ps is equal to the trace of A; and pyus equal to its determinant, we

rewrite (A.14) as:

K20 — o+ af + ayB? [1 — v(1 — B)]
B{(KO —a)(1 —7) + 0a[l —~(1 - B)]}

K20 — o+ af + 0ayB? [1 — y(1 — B)]
B1(n0— a)(1 =) + 6a [ — (1 — A}
affl —p(1—~)[1 -~y =Bl
BL(K?0 —a)(1 =) + 0o [l —~(1 = B)]}

+1—v > 1+(1—7)

+y

After simplification, we get:

(k0 — ) [1 = B(1 =)+ ab(1 = F){1 = F[1—~(1-p)]} >0,

which is verified given that 5 €]0,1[ and v € [0, 1].
There exists a unique solution to the optimization problem, whose ALM takes the fol-

lowing form:

Ty = cfrgat + dfrgut. (A15)

To have a converging (and non-explosive) inflation, we have to find a coefficient ¢ €
[0,1]. Rewriting (A.11) as v(c%9)? — Aj1¢%9 — Ajg + (1 — ) = 0 and substituting A;; and

A1y by their expressions, we obtain:

Pa()? + prc? +pp =0 (A.16)
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where

po = aff{l—p3(1—7)[L—~(1-p)}>0,

p2 = W{(K0—a)(l—7)+ab[l —y(1-p)},

po= a+B(1—=7){(x0—a)1-7)+ab[l =1 =P} = {0(+*+ ) +af®0[1 — (1 - B)]}.

To characterize the two solutions of ¢f9, we rewrite (A.16) as:

cg\2
9 = P02 Cr) +1;(cﬂ L (A.17)

We rewrite p;, after some tedious calculus, as

pr=—("0—a) [l =B1-7)]—ad(l-B){1-B[1—y(1 =B} —po—pz  (A18)

or alternatively simplify it as

0(a+r2)—
p1 = —PBp2 — (O[Jg+ﬁ)apo- (A_19)
The conditions imposed on # to ensure that ps > 0, i.e., 6 > m, and that p; < 0,
1—v
ie., 0> “—5—, are less restrictive than the condition 0 > —2 that is imposed to
2 ta(l+ 2y otk

ensure that current inflation increases with a rise in expected inflation or a positive cost-push
shocks.
Under RE, to ensure the dynamic stability of the equilibrium, we must have according

to (9) that —2%_ < 1, or equivalently § > —2% which is more restrictive than the
0 a(1-8)

(a+k?)—a +K2?

condition ¢ > 2.

For 6 > 2, we always have p, > 0, and p; < 0. This implies that f(c?) : [0,1] — [0, 1],
with f(0) = —% >0and 0 < f(1) = ’% < 1land f'(c%9) = —%cfﬂ > (. Hence, the
Brower theorem a;d the fact that f(c%) is strictly monotonously increasing in the interval
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%9 € [0, 1] imply that there is a unique solution in this interval. The other possible solution
is greater than unit and is excluded because it leads to an explosive evolution of inflation.

To ensure that —p; > py + po and hence the existence of a stable solution, we must have

(k20 —a)[1 — (1 —7)]+ab(1 —B){1 —B[1 —~(1 —3)])} > 0. This implies that:

0> a (A.20)

; :
a(l = B)[1 = =3i=;] + #2

The stability condition given by (A.20) is too loose compared to the limit imposed on @ in
subsection 4.1, i.e., 0 > -5, to ensure that the sign for the coefficients in the ALMs under
learning is not counterfactual. As a result, the stability condition is 6§ > 5 instead of (A.20).

The stable solution of ¢ is given by

S A |
9 — b1 b1 png. (A.21)

" 2ps

. . —p1+4/ P —4p2po
The other possible solution ¢¥ = —+———

5p is greater than unit and is excluded to avoid

an explosive evolution of inflation. Substituting A;; and P; into (A.12) and rearranging the

terms leads to:

cg _ af
= O(a + K2) — a+ 0ay2B32(8 — ) + v8(1 — v) {0aB — [0(a + K2) — a] &} (A.22)

We now show that f(c%) defined in (A.17) is bounded, ie., f(c%9) : [0;—220 ] —

™ 7 O(a+tk2)—a

10; %[. Knowing that f(0) > 0 and substituting ¢ by % into the function

f(cs9), we find

2
Do + P2 [%]

p1
a0 { 0(atr2)—a a0 }
0(a+k?)—a afBo p0+0a <2 —a P2
—D1

floata=a) = —
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: fo(1— 26— 0 fo(1— 2p
Using py = “G7H5 00 + gapetgabe, Do = — 2 ghg =S pg + P=2pg and the defi-

nition of pg, p1, and py given above, we substitute p; using (A.19), we obtain:

2
Do + D2 [#}

aBo
fars=) =

D1
30 9(a+n2) « a0
0(a+r?)—a { ol po+ O(a+r2)— p2} 0459
B(r?0—a) flatr?)—a 9o O(a + k%) —

Torrd—al2 T Wpo * atrr—a P2

2
Given that f'(c¥9) = —ﬂcfrg > 0 for ¢9 € [0,1], f(c%) is strictly increasing in the interval
b1

. ] 7] .
[O; Wi‘%] This property and the fact that f(c%) : [0; #] —10; #[ imply
that there is a unique solution for ¢ so that 0 < ¢¥ < %

The case where v = 0. We obtain by substituting v = 0 into (A.5)-(A.7) :

A O(a + K?) — « 1
YT Blla+s) —a] B
_ a1 -p)
iz = O+ K2 —a
p=_ ob

It follows from (A.11)-(A.12) that

a0
¢y =
i O(a+ k?) — o
g = __af :
i O+ K?) —
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The case where v = 1. Inserting v = 1 into (A.5)-(A.7) yields

O+ K* + af?) — a

A =
11 05629 Y
1
Ap = —Ea
1
P1 = —@

Substituting the latter into (A.5)-(A.7) leads to p, = 6% > 0, p; = a—kK?0—al—0aB® <0

and py = a0 > 0, and hence

Oa+ k%) — a+0af —\/[B(a + K2) - a+ 0o — 462024

T 20032 ’
ab

O(a+ k%) —a+ B20a(f — i)

A.3 The effects of learning

Deriving po, p1 and p, with respect to v and using (A.19), we get:

0

5 = B0l =H)(1=9)+58] >0,
Ip1 . Op2 O(atr?)—a Ipo

oy B@’y 0B Oy <0,
Op2

2 = B{(K*0 — a)(1 —27) +0a [l —29(1 - B)]},

_10p_ gtasn?)-a P
B Oy b Oy

Deriving ¢ with respect to v yields:

_om L (O Op2 _ 9o _(—p — 2 _ Op2

Y

vy 2p3

0(a+r?)—a dpg

Opz _ _ 1 1 -
- 597 "5 fap 0y and the definition of py, p; and

which can be rewritten, using =



0(a+r3)—a

—p1—+/P?—4p2po

P2, P1 = —Bp2 — ~—Gap o and ¥ = 5ps and after fastidious arrangements of
terms, as:'?
0(a+r2)—a ¢
e S ( o, @pO)
= Pory=—Pig— |-
v PBpa/pt—4papo \ O Oy
3 C « : o C (63 (0% HQ —
Using ¢ < 9(04-71%’ we obtain: 1 — %cﬂg > 1— e(aingj)_a i —gaﬁ) = 0. To

determine the sign of H = po%_z;l — pl%—p;’, we first check its value for v = 1 and then its
derivative with respect to ~.

It is easy to check that for v = 1, we have

H:—QBSO{Q—O[nz—aﬁ(l—BQ)]}<O

if k2 — af (1 — B?) < 0; otherwise, we must impose:

[0 (0%
0 > > —

R —ap(1l- ) R

Deriving H with respect to ~y yields

OH 32}91 32270
W Po 52~ — D1 02
= 2003° (1= B) {1 =71 =8)] {0 [s* + (1= B)] — a} + B*+*ab} > 0.

Consequently, given that H < 0 for v =1 and %—5 > 0 for Vv € [0, 1], we conclude that

C.
Ocs9

<0.
oy

12More details are given in a technical appendix that can be obtained upon request.
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Derving d% given by (A.22) with respect to 7 yields:

ody K20 — o OdS? B K20 — a0 OdY?

oy k0 Oy ok Oy
—ap0 [‘1’ —[afy0 + (1 —~)e] 85’31
[© +007262(8 — ) +1B(1 —7) (B — O]

where © = 0(a + k%) — a and ® = 2a870(8 — ) + (1 — 27)(aff — Ocf). Using the fact
that 3 is very close to one and hence 28 — 1 > 0, and the fact that ¢ < #, which

implies that 8 — ¢ > 0 and faff — Oc¢ > 0, we find that

® = Bhay(28—1)(8—c¥)+ By(0x* — a)c? + B(1 —7) {6aB — [0(a+ K*) —a] ¢} > 0.

It follows that
od
vy

< 0.

Using the definition of ¢7, d%9, ¢ and d¢¥, it is straightforward to show the sign of their

r o

partial derivative with respect to 7.

A.4 Effects of robustness

Deriving po, p1 and py with respect to 6 and using (A.19), we get:

0

% - a5{1—5(1—7)[1—7(1—5)]}=% >0,

op 271 _ ~)2] — — - - _8p0_3p2

T = =R 1=B01 = —a(l =B {1- B -1 =B} - T3 — T2 <.

0

% = WB{FA -y +a[l—1(1-p)]} >0

Deriving ¢% given by (A.21) with respect to #, and using % = —%% - (ajgf)%ﬂ the
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—p1—y/Pi—4p2po yield'13

9(a+/{2)fa cg __
—————pp and ¢ =

definition of pg, p1 and pa, p1 = —fBps — Gap T
ocs9 1
Cﬂ' = — I% + % ,
ol 2p3 ol 00

— 2p2 (atr?) (atr?) ¢ _ 2p2 _ B(atr?)—a ¢
where I = 2 {pa + Gt + Sme f and J = o (1 - M .

8”0 and 8p1 derived in the above, we obtain:

Using these definitions and the expressions of

9p,
< op 1 —Ape R —aps O)pz — <—P1 —\/pi— 4p2p0> %

dcd % 2 V3 4p2po
o0 2p3
( Opy 1P G —dpo 2 —dpy 0 )
00 2 NG 4p2po 1 ., 0p
a 2p; N _2C7r 99

@_

Using p; = —fps — —)po, the definition of py, p and p,, we can show that py~

P25y apo > 0 and hence

ocsd 1 2p 9(atr?)—a 3p2 Ipo 1 Ipo
i S e SR B B C o b Sl 1 eq) “H0 0.
00 203 \/p? — dpapy { | i =o] (g —mg ) + g | <

Deriving d%9 given by (A.22) with respect to 6 yields

0d  —a’[L = (1= 9)e?] + ab {87’ +95(1 — 7)[b(a + #) — o]} %5 ~0

00 {0(a+ K?) —a+ 0ay?52(8 — &)+ v8(1 — ) {fab — [6(a + K2) — a] ff’}}2

Deriving ¢, d¥9, ci? and d¥ with respect to 6 leads to

oc 1 0c? KQ (8 — ) kO O0c?
= — — = - C
a0 o 00  (k*0 — a)? K20 —a 00’
ody 1 odyg oK (1— d) + k0 Od¥
o0 o 00 (Ii20— a)? TR0 —a 00
To ensure that 85? = —%aggg > 0, and 8;? = —iagg >0, we must have ac" > —g‘(ﬁ_gc_i))

13More details are given in the technical appendix.
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and

9dz?
00

_a(1-d7f)
0(k20—a)>

> respectively. For standard parameters values, these conditions are

checked.
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