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Abstract

Using a New Keynesian model, we examine the accountability issue in a delegation
framework where private agents form expectations through adaptive learning while the
central bank is rational and optimally sets monetary policy under discretion. Learning
gives rise to an incentive for the central bank to accommodate less the effect of inflation
expectations and cost-push shocks on inflation and induces thus a deviation of endogenous
variables from rational expectations equilibrium. To help the central bank to better
manage the intratemporal tradeoff, the government should nominate a liberal central
banker, i.e., set a negative optimal inflation penalty according to the value of learning
coefficient. By reducing the deviation of the feedback effects of inflation expectations
and cost-push shocks on inflation and the output gap from the corresponding ones under
rational expectations, the optimal inflation penalty allows the economy to be more efficient
and improves the social welfare. The main conclusions are valid under both constant- and

decreasing-gain learning.
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1 Introduction

Over the past several decades, most of the research on monetary policy and central banking
relies upon the hypothesis of model-consistent or rational expectations (RE). The RE bench-
mark has permitted the theoretical literature in monetary economics to make major advances
and improvements in its analysis of dynamics.

However, the assumption that private agents always form RE and exclusively base their
economic decisions on such expectations seems to be too strong and is even heroic under some
circumstances for effective monetary policy decision-making. According to Bernanke (2004),
modelling adaptive learning is highly relevant to the understanding of modern U.S. monetary
history. In a complex economic environment, private agents may not have a full view about
the functioning of the economy due to the costs of information collection and treatment and
hence cannot form fully rational expectations, particularly when this environment is unstable
and could be disturbed by important financial and structural changes as those observed since
the recent global financial crisis. This explains that the literature on adaptive learning attracts
a growing interest.! In a world where private agents could make mistakes that are inherent to
their learning process, it is important for the central bank to properly consider private agents’
expectations in its monetary policy decisions and in its relationship with the government. In
fact, introducing expectations with learning has three main consequences (Gaspar, Smets and
Vestin 2010). First, agents do their own regressions and forecasts, and inflation is no longer
only caused by the game between the central bank and the private sector. Second, promises
of a future policy do not affect the behavior of private agents because the latter focus on
the past value of inflation. Finally, expectations with learning produce a non-linear model.
These consequences should be seriously taken into account in monetary policy decisions and
the institutional design of the central bank, given that models with constant- and decreasing-
gain learning seem to provide a good fit to the expectations of professional forecasters about
a range of variables (Markiewicz and Pick 2014). On the other hand, the modern theory of

monetary policy and central bank governance is essentially based on the RE hypothesis. In

!See Evans and Honkapohja (2009), Zumpe (2011), and Woodford (2013) for a survey of the literature.



the light of empirical evidence of learning by private agents, some conclusions about central

banking should be reexamined.

Many central banks, including the Fed and the ECB, have adopted an inflation target
near 2%. However, we have observed that the recent trend of inflation in many industrial
countries tends to zero despite the extreme accommodative monetary policy put into place.
Blanchard, Dell’Ariccia and Mauro (2010) argue that the solution to this problem consists in
setting either a policy interest rate largely under zero or a 4% inflation target. However, if
a 2% inflation target does not allow the inflation to be high enough, why a 4% target would
make the difference? One possible explication of policy failure to bring inflation to its target
level is that private agents follow a learning algorithm and may ignore in some circumstances
the central bank’s inflation target. Thus, an alternative solution to low inflation is to change
the institutional design of the central bank conceived for the case in which private agents
form RE (that perfectly integrate the inflation target) by taking into account the implications
of learning. One likely consequence is that the central bank should be more accountable for
the output-gap stabilization. To make this possible, the government should nominate a more

liberal central banker.

This paper contributes to the literature that focuses on the consequences of non-rational
expectations for monetary policy by considering the issue of central bank governance in a
framework where private agents form expectations with adaptive learning. We examine how
adaptive learning affects the way the government should delegate monetary policy decision to
an independent central bank. The latter’s incentives are affected by the weight on the target
objective, which can be interpreted as the degree of central bank conservatism (Rogoff 1985)
and is optimally set by the government. Under RE, central bank accountability can neither be
ensured by insufficiently powered incentive schemes nor by excessively powered one, meaning

that there is an optimal weight to place on the achievement of inflation target (Walsh 2003).

Our main findings are that, when private agents form expectations with adaptive learning,
a higher inflation penalty weakens the feedback effects of inflation expectations and cost-push

shocks on inflation while strengthening those on the output gap and the policy interest rate.



Moreover, as long as the learning algorithm is characterized by a positive learning coefficient,
the government sets a negative optimal inflation penalty that is negatively correlated with
the learning coefficient, implying that the government should nominate a more liberal central
banker than under RE. This contrasts with the result found by Walsh (2003) who shows that
inflation penalty should be positive if the central bank is subject to unobservable political
pressures for greater economic expansion, while it is comparable to that obtained by Dai and
Spyromitros (2010) who find that when private agents form RE, the optimal inflation penalty

should be negative when the central bank has a preference for policy robustness.

We have obtained closed-form solutions that provide a better understanding of policy
tradeoffs in the presence of accountability issue. In our framework, the government could affect
both the intratemporal tradeoff between inflation and the output gap but also an intertemporal
tradeoff introduced by a departure from RE. In the current period, the central bank stabilizes
the economy in a way to better anchor future inflation expectations, thus reducing the future
intratemporal trade-off. The institutional design that consists to nominate a liberal central
banker according to our analysis helps the central bank to achieve the intratemporal tradeoff

and could substantially improve the social welfare.

Our paper is related to a growing literature that applies learning to macroeconomic models,
in particular several strands of literature that examine the consequences of adaptive learning
applied to monetary policy. These studies demonstrate the relevance of introducing adaptive
learning for monetary policy analysis and design. Marcet and Nicolini (2003) have shown that
the process of learning matches remarkably well some major stylized facts observed during
the hyperinflations of the 1980’s, while Slobodyan and Wouters (2012) have reported that
expectations based on small forecasting models are closely related to the survey evidence on
inflation expectations, and the adaptive learning model with an inertial Taylor rule fits the
data better than the one with RE. A number of studies (Bullard and Mitra, 2002, Evans
and Honkapohja 2003, 2006) find that Taylor rules, which are optimal or ensure determinacy
under RE, can lead to instability if private expectations slightly deviate from rationality by

following adaptive learning. Machado (2013) suggests that, under adaptive learning, a direct



monetary policy response to asset prices is not desirable under common interest rate rules.
In general, departures from RE increase the potential for instability in the economy. This
strengthens the importance of anchoring inflation expectations. Ferrero (2007) find that by
strongly reacting to private agents’ inflation expectations formed with adaptive learning, a
central bank increases the speed of convergence and thus shortens the transition length to the
RE equilibrium. Gaspar, Smets and Vestin (2010) find that the commitment rule under RE is
robust when expectations are formed with adaptive learning. Marzioni (2014) shows that the
economic dynamics are less volatile if the central bank takes into account the impact of signals,
i.e., the communication of its own forecasts, on private agents’ prior expectations estimated
in conformity with the adaptive learning scheme. Our paper is closely related to Molnér and
Santoro (2014) who explore issues of intertemporal and intratemporal tradeoffs that arise when
a rational central bank should optimally conduct monetary policy while private agents form
expectations with adaptive learning. To the difference of existing studies, we take into account

the institutional design of the central bank.

The remainder of the paper is organized as follows. The next section presents the model.
Section 3 solves the model under discretionary monetary policy. Section 4 analyzes how
inflation penalty influences the effects of constant-gain learning on the feedback coefficients of
endogenous variables in response to inflation expectations and cost-push shocks and determines
the optimal level of inflation penalty. Section 5 discusses the implications of decreasing-gain

learning for central bank accountability. The last section concludes.

2 The model

The theoretical framework is based on a standard New Keynesian model that is widely used in
the recent literature in monetary policy (Clarida, Gali and Gertler 1999). It is characterized by
optimizing private-sector behavior and nominal rigidities. This model consists of an aggregate
demand specification (or IS equation) derived from the representative household’s optimal

consumption decision and a forward-looking inflation adjustment (or Phillips curve) equation.



2.1 Aggregate demand and supply

The New Keynesian IS equation is given by
vy = Bz — o ' (re — Bfmita) (1)

where z; stands for the output gap, r; the nominal interest rate and 7 inflation. Here, o
represents the risk aversion for households. The expectation operator E} represents private
agents’ expectations conditional on the information set available at time ¢. The asterisk on
the expectations operator in (1) reflects the fact that the private sector may form expectations
which could be rational or not. To simplify the analysis, we assume that there is no demand
shock in the IS equation. Indeed, since the central bank can neutralize a demand shock by

setting the interest rate, introducing such shocks does not modify the results.

The forward-looking New Keynesian Phillips curve is:
T = BE{Ti41 + KTy + e, (2)

where 0 < 8 < 1 is the discount factor. The composite parameter £ measures the output-gap
elasticity for inflation and captures the effects of the output gap on real marginal costs and
thus on inflation, and it is a function of structural parameters, i.e., Kk = w(l + ),
where ¢ represents the inverse of the steady-state elasticity of labor supply and 9 the share
of firms that do not optimally adjust but simply update in period ¢ their previous price by
the steady-state inflation rate. The noise e; ~ N(0, 02) is an 4id cost-push or supply shock.
Assuming that shocks are serially uncorrelated allows the model to be tractable, once learning
algorithms are introduced. Furthermore, this assumption is justified in the context of learning
since as shown by Milani (2006, 2007), learning represents the main cause of persistence in

inflation.



2.2 Institutional settings and policy objectives

We assume that the central bank (the agent) is independent and is delegated by the government
(the principal) to implement the monetary policy without any external political interference.
Under RE, this institutional setting would be credible for private agents and could avoid
the inflation bias if the nominated central banker was conservative, with conservativeness
referring to the relative importance that he/she assigns to price stability objective. To describe
the relationship in this delegation framework, we distinguish the objective function of the
government from that of the central bank. The government designs the targeting regime, by
setting the central bank’s target and the penalty associated with a failure to achieve the target,

under which the central bank conducts monetary policy.?

The expected social loss function is assumed to take a standard form:

1 +o0 '
= §Etzﬂl[77t2+i + azi,], (3)
i=0

where a > 0 is the relative weight assigned to the objective of output-gap stabilization.
Social loss is a function of the variance of both inflation and the output gap.®> The overly
ambitious output target, which is common in the Barro-Gordon framework, is here absent in
the formulation given in (3). Thus, discretionary monetary policy set to minimize social loss

(3) would avoid an average inflation bias.

The central bank implements discretionary monetary policy to minimize the conditional

expectation of the loss function:*
1 X
LEP = 5Eth(l + )T +aaly], 1+7>0, (4)
i=0

?See Eijffinger and Masciandaro (2014) for a survey of the literature on central bank governance.

3The loss function (3) could be micro-founded by deriving the utility function of representative agent as in
Woodford (2003).

Issues of learning when monetary policy is under commitment have been studied by Evans and Honkapohja
(2006), and Mele, Molnar and Santoro (2012). The first study shows that both rational expectations commit-
ment equilibrium (RECE) and rational expectations discretionary equilibrium (REDE) are attainable, while
the second suggests that the optimal monetary policy drives the economy far from the RECE, and to the
REDE



where 7 is the penalty (weight) inflicted by the government on the central banker for deviations
from inflation target. The loss function represents a weighted average of the variance of
inflation and the output gap around their respective target. The inflation target is set to
zero for simplicity even though it characterizes, together with 7, alternative inflation targeting
regimes. Under RE, setting inflation target at a positive level influences the linear penalty
associated with inflation (Svensson 1997) and can offset any average inflation bias as in the
optimal contract formulated by Walsh (1995). The condition 1 + 7 > 0 implies that any

deviation from the inflation target is a loss.

2.3 Learning rules of private expectations

Private agents’ expectations are assumed to be formed according to an adaptive learning
algorithm. This assumption relies on the idea that agents have no knowledge of the exact
process governing the evolution of endogenous variables. However, to improve their decisions,
they recursively estimate a Perceived Law of Motion (PLM) in the terminology of Evans and
Honkapohja (2001), consistent with the law of motion that the central bank follows under
RE. More precisely, private agents believe that steady-state levels of inflation and the output
gap only depend on 4id cost-push shocks and hence perceive their expected levels as constant
knowing that the conditional and unconditional expectations of these variables are identical.
This provides a justification for private agents to estimate these variables using sample means.

In accordance with the literature on learning algorithms (Marcet and Sargent 1989, Evans
and Honkapohja 2001, Marcet and Nicolini 2003), private agents’ expectations are assumed

to be formed with following learning algorithms:

Eimipr = ar = a1 + ve(m—1 — ai—1), (5)

Eixi1 =by =bio1 + ye(we—1 — bi—1), (6)

where 0 < 7, < 1 represents a deterministic sequence of learning gains that defines the speed

of integration of new data into expectations, which are initially set at ag and by. This learning



mechanism implies that inflation (output-gap) expectations are increasing with last period
inflation (output gap).® In the case of decreasing-gain learning, as time goes by, private agents
assign a decreasing importance to past values of inflation and the output gap in the formation
of expectations. When t — oo, i.e., v — 0, the policymakers cannot manipulate future
expectations by changing the current policy, hence they cannot intervene on intertemporal
tradeoff.

As Preston (2005) highlights it, without the RE hypothesis, the structural equations form-
ing the New Keynesian model should also include the forecast of macroeconomic conditions in
many time periods to come (infinite horizon learning) and not only one period ahead (corre-
sponding to the Euler-equation learning). However, following the learning literature, we adopt
the Euler-equation learning to maintain analytical tractability.

Using (5), we rewrite (2) as

= Blar—1 + ye(m—1 — ar—1)] + Kzt + €. (7)

This equation shows the dependence of inflation on the current shock, the current output-
gap value, and the past values of inflation and especially of expected inflation. The past
expectations based on learning themselves contain a share of past inflation shocks. This will

be explicitly shown below by defining the Actual Law of Motion (ALM).

3 The equilibrium under monetary discretion

Assuming that expectations are based on learning is an alternative way of conceiving how pri-
vate agents interact with monetary policy compared to the RE hypothesis. Expectations with
learning modify the central bank’s trade-off between inflation and the output gap. Notably,
they give rise to a greater incentive for the central bank to influence the current inflation but
also a larger room to maneuver through manipulating the output gap. Thus, there could be

good grounds for an inflation penalty to be inflicted to the central bank if the latter does not

®The learning process formulated in (5) and (6) is limited by the fact that they focus on past information
and the forecast with one period ahead.



respect the inflation target fixed by the government. To put into evidence the role of learning
in the presence of accountability issue, in the following, we solve the model first under RE and

then under adaptive learning.

3.1 Benchmark equilibrium with rational expectations

We concisely show the rational expectations equilibrium (REE) solution when the central bank
sets optimal monetary policy taking private agents’ expectations as given. We use then this
solution as a benchmark to illustrate how the equilibrium is modified by an optimal policy
designed with private agents’ beliefs being taken into account.

The central bank minimizes its loss function (4) subject to (2) taking inflation expectations

as given. This leads to the optimal tradeoff rule between inflation and the output gap:

T+ = —Mﬂ't. (8)

The targeting rule (8) implies the equilibrium solution of inflation and the output gap now
depends on inflation penalty and the central bank’s preferences for output-gap stabilization.
The tradeoff between inflation and the output gap is affected by the presence of inflation
penalty in the sense that higher the inflation penalty is, the costlier it is for the central bank
to adjust the output gap.

Solving (1), (2) and (8) yields the ALM for inflation and the output gap, and the interest

rate rule that implements the optimal monetary policy as follows:

af «
9P g o« 9
(L g s S T (9)
Br(l+71) . K(1+7)
= _ PRTT) g o T 10
i a+ k21 +71) ¢+ oz—l—fiQ(l—i-T)et (10)
. oBr(l+7T) . ok(l+7)
= oF 14— FE ——¢;. 11
Tt oLy Tee1 + +a+/€2(1+7) tﬂt+1+a+52(1+7_)et (11)

The ALMs defined by (9)-(11) correspond to the anticipated utility policy set by a policymaker

who does not take into account the way private agents revise in the future their beliefs.

SThe anticipated utility (Kreps 1998) is commonly used in the learning literature. It is similar to expected



The system of equations (1), (2) and (8) has a unique non-explosive REE solution only in
terms of exogenous state variable e;, which is known as the “minimal state variable” solution
(McCallum, 1983). Thus, in the case of RE, i.e., Ef = FE; , the solution of m; takes the
following form: m; = (e;. The formation of RE conditional on the available information at ¢
leads to :

Etﬂ_tJrl == CEt€t+1 =0. (12)

Substituting Fymi+1 = 0 into (9)-(11), we obtain the REE solution corresponding to the

optimal discretionary monetary policy:

(%

- = 13

i atr2(ltn)t (13)
(1+7)k

o atr2len)? (14)
ok(1+7)

_ 15

T Ay (15)

The optimal level of inflation penalty is determined by minimizing (3) taking account of

the solutions of m; and z; given by (13)-(14) as:

=0 (16)

It is to underline that this result is obtained under the RE hypothesis and in the absence of

inflation bias.

3.2 Equilibrium with learning

The deviation of private expectations from rationality implies that the expectations become
state variables and hence their law of motion could affect monetary policy. Current monetary

policy decision, given its effects on future inflation expectations, also has to consider future

utility except for two properties. First, private agents have no knowledge of the true model. Second, despite
that private agents know that they are learning about the parameters or the state of the economy, they choose
actions today in a way that is myopic with respect to the updating of their information set while ignoring
that they will continue to learn in the future. Under RE, anticipated utility coincides with expected utility,
implying that the current beliefs of private agents reflect the true model and the optimal anticipated utility
policy would also maximize expected utility.

10



intratemporal tradeoffs between inflation and the output gap. Here, we assume that the central
bank knows the exact learning algorithm followed by private agents and takes it into account
when setting monetary policy. This hypothesis, even though it is quite strong, allows us to

appreciate how the policy design could change if private agents depart from rationality.

The central bank’s optimization problem consists of minimizing (4) subject to (1)-(2) and
(5)-(6), with Ef 441 being substituted by by4; and Ejmiy;41 by a¢4;. The Lagrangian of the

central bank’s optimization problem is:

CB _ _
L = E Zﬁz { (147 7T,5JrZ + Ozﬂctﬂ] — A1t [$t+z’ —bpyi + 0 H(rei — at—i—i)]

_)\2,t+i [Tei = Basyi — KTpqi — Uppi] — N34 [Gerit1 — Qgi — Vetrit1 (Tepi — Qppi)]

—A i [begirt — begi — Yerir1 (o — bega)]} (17)

where \;¢, with i=1,...,4, are Lagrangian multipliers associated with (1), (2), (5) and (6),
respectively. The first-order conditions of the central bank’s optimization problem are obtained

by deriving (17) with respect to r¢, m¢, x4, azrq and byiq:

A =0, (18)

(14 7)m — Aot + Yer123: = 0, (19)

oy — Mg+ KXt + Y41 Aa =0, (20)

A3 = Ey g/\l,tﬂ + B X241 + BAspr1(1 — Yiga) | (21)
M = Ey [BA 41+ B (1 — y42)] - (22)

Substituting A\;; = 0 given by (18) into (22) leads to A4y = B(1 — 7v)E}; [Agg+1]. The only
bounded forward-looking solution is Ayy = Ass41 = 0. Using these results into (20) yields
Aoy = —%xp and Agyq1 = —gxt+1. Substituting Aoy = —2x; into (19), we get:
K
«
(1+7)m + e + Yi41A3,¢ = 0. (23)

11



According to (23), only A3, the Lagrangian multiplier, associated with the evolution of infla-
tion expectations, plays a role in the choice of optimal monetary policy. We note that when
~v =0, i.e., the case where expectations are constant, the rule defined by (23) becomes identical
to (8), which is the optimality condition derived for setting the optimal monetary policy under
discretion when the private sector forms RE.

Besides intratemporal tradeoff between the output gap and inflation observed in the bench-
mark case with RE, the learning effect induces an intertemporal tradeoff due to the feedback
between monetary policy and inflation expectations. The term 711 A3+ in (23) distinguishes
the optimal policy rule under learning from the one under RE by the fact that the optimal
decision should now depend on inflation expectations. According to (5) and (23), 7441 rep-
resents the marginal effect of an increase in inflation on inflation expectations at ¢t 4+ 1, i.e.,
at+1; and Az the marginal effect of an increase in inflation expectations on welfare loss. For
Ye+1 > 0, the sign of A\3; depends on the sign of current inflation expectations a;. Given that
inflation target is set to zero, a; could be either positive or negative, depending on the nature
of past shocks. When a, is positive, an increase in a; drives it further away from the target
and hence reduces social welfare, implying that A3 ; is positive, and vice versa.

A change in inflation in the current period impacts future inflation expectations and thus
will result in a variation of social welfare. Thus, the learning effect introduces an intertem-
poral tradeoff for the central bank between the stabilization in the current period and the
stabilization in the following periods. This tradeoff is generated by the ability of the central
bank to influence inflation expectations in future periods.

In the following, we successively consider constant- and decreasing-gain learning.

4 Inflation penalty under constant-gain learning

As extensively discussed in the learning literature (Evans and Honkapohja 2009), private
agents would be more inclined to use a constant-gain learning algorithm if they believe in
possible structural changes in the near future. In this section, we first analyze how constant-

gain learning and inflation penalty interact with macroeconomic stabilization compared to the

12



benchmark case where private agents form RE, and then examine how the government should

set inflation penalty to improve the social welfare.

4.1

Equilibrium solution and the effect of learning

There exists a unique solution of the ALMs corresponding to the central bank’s control problem

under constant-gain learning (see Appendix A.1 for the proof). The ALM of inflation is given

by:

where

with

D2

P1

Po

T = clar + d e (24)

cg\2
9 = _pO +I;21(C7T) 7 (25)
49 = - (26)

R+ 7) +at a6 - &) + 11— ) (0B — o+ 2L+ ]}

y{aB[l—v(1=B) +BE* 1 =1 +7)} >0,
(L= {aB[l =1 =)+ B*(1 =1 +7)} = {* (1 +7) +a+afy[1-y(1 - B} <0,

af {1 =B -1 —~(1-p)]} >0

The solution for ¢; ensuring a non-explosive evolution of inflation is given by:

Given that the value of ¢7 is in the interval ]0;

o _ TPV Pi — 4papo (27)

T 2p2

o

; m[, current inflation increases with

inflation expectations (a;) less than proportionally. Current inflation is indirectly influenced by

the central bank’s policy responses to past shocks. Thus, an increase in the learning coefficient

~ has two opposite effects on ¢;?. According to (5), a higher v increases the positive correlation

between current inflation 7; and future inflation expectations a;y1, and hence the incentive for

cq

the central bank to lower ¢i, i.e., the feedback from a; to m; in (24). However, according to

13



the same learning algorithm, an increase in vy attenuates the effect of a; on a1, thus allowing

a greater ¢y’ without deteriorating social welfare. In general, the first effect dominates, i.e.,

oc?
oy

< 0 (Appendix A.2). When the learning coefficient is zero, (24) is reduced to the form

given by (9) with exogenous inflation expectations.

Regarding the effect of cost-push shocks on current inflation, we notice that the higher

and closer to 1 the learning coefficient is, the more inflation is influenced by current cost-push

shocks. The denominator of dy’ is clearly decreasing in ~ if ag’j;g < 0.

Substituting m; given by (24) into (2) yields the equilibrium output gap:

x = clay + dP ey, (28)
with
B—c
cg _ _ i 29
== (20)
. 1—d7
a = -1 (30)

In response to an increase in private inflation expectations, the central bank sets a monetary

Br(1+7)

. . cg
lmphes Cy < —m

policy that reduces the output gap, given that ¢’ < Mng‘ifm
If the policy involves a contraction in the output gap, equation (2) implies an increase in
current inflation smaller than that of inflation expectations and hence lower future inflation

expectations.

Using (24) and (28) to eliminate m; and x; in equation (1), we get the ALM ruling the

evolution of the interest rate:

re = 5$gbt + cﬁgat + dﬁget (31)
_ 99 1— ng
where 6,9 =0, 7 =1+ o(f-cr) and d9 = u. It is to notice that ¢? > 1 since
K
foxd 9B ~ B, Vv, meaning that the Taylor principle is verified.

T = atrZ(1+7)
The ALM (31) highlights that the interest rate is affected by both inflation and output-gap
learning with their impact depending on the risk aversion of households. Thus, a higher o

mechanically increases the interest rate, all things being equal. Moreover, the feedback coef-

14



ficient (c) of inflation expectations associated with inflation in (24) is negatively correlated
with the feedback coefficient (c;?) of inflation expectations on the interest rate. A positive
cost-push shock increases the interest rate. The higher the learning coefficient + is, the greater
the effect of the shock on the interest rate (smaller d7’ and hence greater d;?). The central
bank sets the coefficient associated with output-gap expectations b; in (31) to &7 = o, thus

fully neutralizing the effect of output-gap expectations on the output gap and hence inflation.
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Figure 1: Feedback coefficient associated with inflation and cost-push shocks in the ALMs.

The values of ¢i?, ¢i’ and ¢ are very sensitive to the value of  for v = 0.2, and are close

to their values when v = 1, while for v = 0.2, the feedback coefficients d5’, dg’ and d;? stay

15



close to their corresponding curves when v = 0 (Figure 1). The latter are identical to those

obtained under RE.

Result 1. An increase in learning coefficient reduces (enlarges) the deviation of feedback
coefficients of inflation expectations and cost-push shocks in the actual law of motion of infla-

tion (the output gap and the policy interest rate) from the corresponding ones under rational

045(1—52) —1.

expectations if T < ==

Proof. See Appendix A.2.

For the baseline parameter values, i.e., 5 = 0.99, k = 0.024, o = 0.048, we obtain 7 <
0.6418. It is to notice that the condition imposed on 7 is obtained with v = 1 and it can be

considerably relaxed as 7 decreases.
Comparing (13)-(15) with their corresponding equations (24), (28) and (31), we find that

the feedback effect of inflation expectations on the ALM of inflation (the output gap) is lower

cg < Bk

(higher) in the case of learning than under RE, i.e., ¢f < e — a2 ()

af (
a+r2(1+7)
respectively). To make this possible, the interest rate under learning must react more strongly

to inflation expectations, i.e., ¢;7 > 1+ #&Lﬂ The ALMs of inflation and the output gap

are independent of output-gap expectations under both learning and RE, while the interest
rate under learning responds to output-gap expectations with the same coefficient as under RE
and is independent of inflation penalty. Regarding the feedback coefficients associated with

e; in the ALMs, it is straightforward to show that d;? < dy < and

o - Kk
a+r2(1+71)7 a+r?(147)

d? > meaning that under learning, the current inflation and output gap respond

oK
at+r2(1+T1)°
more strongly while the interest rate reacts less to current cost-push shocks than under RE.

The learning gain coefficient determines the time horizon of private agents’ expectations
and hence the persistence of inflation and the flexibility in the central bank’s discretionary

policy. For v = 0, i.e., inflation expectations are constant over time with a; = a;—; and

by = b;_1, we obtain:

T = (32)
a+r2(1+71)
o
49 — - 33
T a+rkA2(1+71) (33)
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Thus, the feedback coefficients of the ALMs for inflation, the output gap and the interest rate
are identical to those associated with anticipated utility policy given by (9)-(11).
For v =1, i.e., inflation expectations are static or naive with a; = m—1 and by = z;_1, we

have

o KE1+7)+a+af® — \/[m2(1+7)+a+aﬁ3]2—4a2ﬁ3
‘= 2032 ’
49 = “

" a+rAH(1+7)+aB?(B - 7))

As 7 is equal to 1, inflation is self-sustained because private agents’ inflation expectations
are depending on past inflation. The effect is similar for v near to 1, since in this case private

agents form expectations on the basis of a very short horizon.

4.2 The effects of inflation penalty on the feedback coefficients of ALMs

Inflation penalty represents an extra incentive for the central bank to improve the tradeoff
between inflation and the output gap.
We examine how an increase in inflation penalty could affect the ALMs by deriving the

feedback coefficients in (24), (28) and (31) with respect to 7 (Appendix A.3):

Y

0 o woew (B -ml2) -p2 0
= KR = —— = s
or or o Ot P2+ /p% — 4papo
CCQ ch
ad<s od<s o 30;{9 - {/@2 - aﬁ27268—;f — By(1—7) [a + ,%Q(l + T)} aaj } .
= K— = —— = < ,
or " TOT T o 0T T (i) +a+af2(5 - )+ fr(1— ) {af — ot k21 + D] Y
06,9
=0
or ’

where 220 = 2 [8(1 —7)? = 1] <0, 22 = 48x*(1 —7) > 0. The ALMs of inflation and the
output gap are independent of output-gap expectations and the feedback effect of output-gap
expectations on the interest rate is not affected by inflation penalty. An increase in inflation
penalty induces a decrease in the feedback effects of inflation expectations and cost-push shocks

on current inflation and the policy interest rate while it strengthens the feedback effects on
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the current output gap. Thus, a higher inflation penalty incites the central bank to focus more
on reducing inflation due to current positive cost-push shocks but reduces the possibility for
it to control future inflation expectations through the feedback between inflation and inflation
expectations.

Figure 1 shows how these coefficients evolve with 7. Notably, a given past inflation or a
positive cost-push shock induces lower current inflation and output gap but a higher interest
rate if the government increases inflation penalty. For the parameter values in the calibration of
Woodford (1999), i.e., 8 =0.99, k = 0.024, a = 0.048 and o = 0.157, the feedback coefficients
e, d?, ¢ and diY (/7 and d;?) are decreasing (increasing respectively) in inflation penalty.
The feedback coefficients of the ALMs of inflation and the output gap (the interest rate) are
decreasing (increasing) in the learning coefficient v, meaning that a higher learning coefficient
reinforces the effects of inflation penalty.

Result 2. An increase in inflation penalty weakens (strengthens) the positive feedback ef-

fect of inflation expectations and cost-push shocks on inflation (the policy interest rate), and
strengthens the negative feedback effects on the output gap.

Proof. See Appendix A.3.

A positive inflation penalty set by the government incites the central bank to keep infla-
tion at a lower level while accepting a greater output gap to minimize its loss function. By
reducing the feedback effect of inflation expectations on current inflation, a positive inflation
penalty could have a contractionary effect on future inflation expectations, with its impor-
tance depending on the learning coefficient according to (5). In the case of positive inflation
expectations, the output moves away from its potential level especially since the central bank,
undergoing a positive inflation penalty, must implement a restrictive policy that reduces not
only current inflation but also the persistence of inflation. This leads to decreasing inflation
expectations, which eventually lower the central bank’s loss due to inflation penalty. We notice
that since k is very small, the impact of a positive inflation penalty on the feedback effects of
inflation expectations and cost-push shocks in the ALM of the output gap is largely greater

than that on the corresponding feedback effects in the ALM of inflation.
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Indeed, if v = 0, the central bank cannot influence private agents’ expectations by varying
the actual values of inflation since private agents behave as if their expectations were fixed.
Since the action of the central bank on private expectations is limited, the effect of inflation
penalty will be smaller in this case than when v > 0. When v = 1, an increase in inflation
penalty makes the largest impact on the feedback effects of inflation expectations and cost-
push shocks on the ALMs of endogenous variables. We notice that numerical simulations
show that for v > 0.2 (v > 0.5), the impact of inflation penalty on the feedback coefficients of
inflation expectations (cost-push shocks) in the ALMs is very close to the ones obtained when
v =1

Our simulation exercises show that when the learning coefficient is higher, the deviation
of inflation from the REE is greater. Consequently, a decrease in inflation penalty allows the
central bank to increase the private sector’s expectations in a more significant manner, thus

permitting a correction of the deviation.

4.3 The optimal level of inflation penalty

The feedback coefficients of inflation and the output gap are function of inflation penalty and
learning coefficient. This implies that the contribution of their respective volatility to the social
welfare loss also depends on these two parameters. Using (24) and (28), the volatility of infla-

tion and the output gap are respectively given by var(my;) = ()2 Ey(al,;) + (d¥)*Ey(el ;)

and var(zy;) = (85’1—2@2 Ey(al,;) + (d;i;”z Ey(e},;). Given that 8 < ¢ and d¥ < 1, the

volatility of inflation is decreasing in inflation penalty while the volatility of the output gap is

increasing with it. The social loss function (3) can be rewritten as

K2 K2

i = ;fﬁ {eewy+ 2 20 et + [+ = w0

In the case where v = 0, using (29)-(30) and (32)-(33), the social loss function (34) becomes

s _ 1 +Ooi a?f? ar®(1+71)° o2 2
L= g s {[a+n2(1+7’)]2+[a+f<;2(1+7')]2}[BEt( i) F Biley)] - (39)
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The government’s optimal decision obtained by the minimization of (35) is to set 7 = 0.

Result 3. When the learning algorithms (5)-(6) are characterized by a learning coefficient

equal to zero, i.e., v = 0, the government sets the optimal inflation penalty to zero.

The result 3 shows that the optimal inflation penalty set by the government when private
agents ignore their expectations errors is the same as when private agents form RE. This is
because under RE, inflation expectations are taken as given by the central bank and conse-
quently not affected by the latter, the government cannot influence inflation expectations and
hence current inflation by imposing an inflation penalty on the central bank. In the case of
adaptive learning with a learning coefficient equal to zero, the fact that private agents form
exogenous inflation expectations implies a similar decision problem for the government. Under
RE, as in the absence of learning, the central bank cannot make an intertemporal tradeoff by
influencing private future expectations. Meanwhile, the intratemporal tradeoff, induced by
the imposition of an inflation penalty other than zero, will deteriorate the social welfare.

For v > 0, the minimization of the social loss function (34) does not allow for an analytical
solution of 7. As the choice of 7 for a period is independent of those in other periods, to
determine the optimal solution of 7, it is sufficient to consider the unconditional (or average)
expected social loss function per period. We proceed to numerically simulate the social loss
function by setting = 0.99, k = 0.024, o = 0.048, var(a) = 0.5, and var(e) = 0.5. It follows
that for v = 0.1, v = 0.5 and v = 1, the optimal inflation penalty 7* is —0.86, —0.94 and
—0.96 respectively (Figure 2). We notice that the existence of an optimal negative inflation

penalty does not depend on the initial past inflation.

Result 4. When the learning algorithm is characterized by a positive constant-gain learn-
ing coefficient, the government sets an optimal inflation penalty such that T €] — 1;0[. The

higher is the learning coefficient, the lower is the optimal inflation penalty.

Under learning with a positive learning coefficient, since private agents take into account
the expectations errors when forming their expectations, the central bank can influence their
future expectations by setting monetary policy. Compared to the REE, the equilibrium with

adaptive learning is suboptimal given that inflation and output-gap expectations based on
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past information deviate from correct expectations formed with the knowledge of the law of
distribution of cost-push shocks. Thus, when private agents are learning, choosing a central
banker with the same preferences as the society is not socially optimal. In the delegation
framework, the government can set a negative inflation penalty on the central bank to incite
the latter to mimic the socially optimal equilibrium with RE, given that the difference between
the feedback coefficients in ALMs of inflation and the output gap under adaptive learning and

those corresponding to the anticipated utility policy is increasing in inflation penalty.
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Figure 2: The social loss function with learning and inflation penalty

5 Implications of decreasing-gain learning

The main results obtained above are based on the assumption of constant-gain learning. How-
ever, agents could begin to learn with a decreasing-gain coefficient before stabilizing the lat-
ter’s value. Indeed, constant-gain learning is more suitable for time-varying environments but
decreasing-gain learning can be considered as the first step in the expectations process adopted

by most economic agents (Berardi and Galimberti, 2013). Thus, we relax in this section the
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assumption of constant-gain learning to show if these results remain valid when learning gain

is decreasing over time.”

Assume that learning gain characterizing algorithms (5) and (6) decreases with time such
that v = % There exists a unique solution of the ALMs corresponding to the control problem

of the central bank under the decreasing-gain learning, which is given by (Appendix A.4):
T = ci?tat + d:lr?tet (36)

where

Blo— (=) o+ 8)(8 — 1) — w21+ 1)) |
o+ aByir (1+7418) (B — €% 1) + K21+ 7)1 = 141865541

d;dr!,]t = dga 9 dg ’ (38)
o+ By (1 +7418) (B — cpr) + 621+ 7)(1 = g1 B¢ 1)

dg
Tt

(37)

Current inflation is indirectly influenced by the central bank’s policy responses to past
shocks. The level of expectations and mostly the value of the learning coefficient ;41 = t-l%l
are crucial to the determination of current inflation. In the first period, we have ¢ = 1 and
v = 0.5. The learning coefficient ;11 rapidly decreases over time. As t — 400, V400 — O.

This corresponds to the steady state where expectations are constant, i.e., private agents do

not correct their expectations errors (absence of learning). This also leads to a constant value

dg

for inflation expectations. The feedback coefficients in the ALM of inflation, ci?t and d 7, will
be identical to c7’ and dif given by (32)-(33).
The ALM of the output gap is obtained using into (2) and (36) as:
T = cggat + dgget (39)
_dg _gdg
with c;lf]t — P :"’t and dif’t i 1 Z”’t

"The relaxation of the assumption of constant-gain learning could be justified by the study of Milani (2014)
who shows that private agents appear to have often switched to constant-gain learning, with a high constant-
gain, during most of the 1970s and until the early 1980s, while reverting to a decreasing-gain later on.
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The ALM ruling the interest rate is given by:

d d d
T = 5rf‘/bt + Crggat + drgget (40)
dg dg
dg _ _ dg _ B—cri dg _ _1=dr;
where 6,3 =0, ¢,3 =1+ 0c—" and d,} = o— "=

. dg af dg @ dg _ Bk
We can show (Appendix A.5) that ¢, < o crma P RS T2 Cot < T arR(iT)

dg

dg - K dg 0Bk dg oK octy
dyy < TR (AT Ot > 1+ P e and d.5 > e Ty g B Furthermore, we have —* > 0,

ad9 ct9 ad ct9 8d
g >0, =t >0, —= >0, 5= <0, 7 <0.

As times goes on, the higher and closer to 0 the learning gain is, the more inflation is
influenced by inflation expectations and current cost-push shocks while the inverse is true
with the feedback coefficients in the ALMSs of the output gap and the interest rate. Therefore,
decreasing-gain learning leads the equilibrium solution to deviate from a more efficient REE,
implying the possibility for the government to improve the social welfare by setting a negative
inflation penalty that varies with time as the equilibria under decreasing-gain learning replicate

the equilibria under learning with different constant gains.

Result 5. As time goes on, the learning coefficient vy decreases from 1 to 0, implying that
the feedback coefficients of inflation expectations and cost-push shocks in the ALMs of inflation
and the output gap (the interest rate) increase (decrease) with time. For a given wvolatility of
inflation and cost-push shocks, the optimal inflation penalty will increase from a value not far

away from —1 to 0.

Proof: See Appendix A.5.

Under decreasing-gain learning, as long as the economy is not in the steady state where
tliinoo% — 0, private agents will adjust their expectations by correcting expectations errors,
making possible for the central bank to influence their future expectations. Given the sub-
optimality of transitory learning equilibria with regard to the REE, there is an incentive for the
government to impose time-varying negative inflation penalty so that the learning equilibrium

could be as close as possible to the REE.

The effects of cost-push shocks and expected inflation on inflation, the output gap and the
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interest rate under decreasing-gain learning are similar to those observed under constant-gain
learning. Given that under decreasing-gain learning, the learning coefficient is decreasing with
time, the effect of learning on the equilibrium is also decreasing with time. As a consequence,
inflation penalty increases from a negative value to zero as the economy approaches its steady
state where, with .41 — 0, private agents do not revise their previous expectations and the
central bank is no more able to manipulate expectations, thus eliminating the possibility for
the government to improve the social welfare by nominating a liberal central banker. During
this process, as the learning coefficient decreases while inflation penalty rises, the impacts of

inflation penalty on the equilibrium tends to approach those observed at the REE.

6 Conclusion

In this paper, we consider the issue of accountability of an independent central bank when
private agents form inflation expectations with learning algorithms. Facing both the intratem-
poral tradeoff between inflation and the output gap and the intertemporal tradeoff between
the stabilization in current and future periods, the central bank should stabilize the economy
in a way to better anchor inflation expectations, thus easing future intratemporal tradeoffs.
Introducing inflation penalty helps the central bank to better manage these tradeoffs and could

substantially improve the social welfare.

We have shown that under adaptive learning, the optimal inflation penalty set by the gov-
ernment should be negative. This strengthens the feedback effects of inflation expectations
and cost-push shocks on inflation, and weakens the feedback effects on the output gap and
the policy interest rate, thus reducing the deviations of the feedback coefficients from their
corresponding ones under rational expectations and making the economy more efficient. More-
over, the higher the learning gain coefficient is, the larger the deviation of feedback coefficients
from the corresponding ones under rational expectations, reinforcing the need for a more lib-
eral central banker. The main conclusions obtained with constant-gain learning remain valid

under the assumption of decreasing-gain learning.
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A APPENDIX

A.1 The equilibrium solution of inflation under learning

Using (23) to obtain A3; and Az;y1 and substituting their expressions as well as Aj 441 = 0,

«
Ao t41 = ——T¢41 into (21), we get :
K

’)%’Y)Etxt_i_l. (Al)

Using (2) and (5), we obtain:

1 1
Ty = —T¢ — éat - — €, (A.2)
K K K
1 1
Tipl = —Tpp1 — s lat +y(me — ar)] — —€g41- (A.3)
K K K

Substituting z; and ;41 respectively given by (A.2) and (A.3) into (A.1) and arranging

the terms lead to

Eymip1 = A + Argap + P e, (A4)
where
_ K41 +a+afy[l—~01-p)
A= BT (= B+ B2l — (A +7) (4-5)
_ ap{1-Ba -7 -1 -8)]}
A2 = A0 B+ AR -+ ) (4.6)
P = @ (A7)

CaB[l—A(1 =B+ 821 —)(1+7)

According to the proposition 1 from Blanchard and Kahn (1980), the solution of the ALM

of inflation takes the following form:

= cay + des. (A.8)
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We obtain using (5) and (A.8):

Eympp = 2 [(1 —y)ag + yme] . (A.9)

Using equations (A.4) and (A.9) to eliminate Fymy11 and arranging the terms yield:

o A1zc ;;chrg (/111—1 N, + C;%Pl e (A.10)
This implies that:
o Aucfrgvcff(jlu ) (A.11)
and
9, — c;g»yp—lAH' (A.12)

We gather equations (5), (6) and (A.4), while using (A.2) to substitute x; to obtain the

system of three equations:

By = Ay + Prey,

where
Ay App 0 P,
Yo = [m, a, b, A= | 4y 1—4x 0 |,andP=1| 0
v By gl
z — _!
K K K

The above system is subject to three boundary conditions: ag, by, and lim |Eymys| < o0.
S§—00

The eigenvalues of A are 1 —~ and the two eigenvalues of Aj:

Ay A
A= TR (A.13)

v 1=n

We can show that A; has an eigenvalue inside and one outside the unit circle.

Among infinite stochastic sequences satisfying equation (A.11), we focus on a non-explosive

solution, i.e., the solution corresponding to the eigenvalue of A; given by (A.13) inside the
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unit circle.

It is straightforward to show that the trace and determinant of A; are both positive. Thus,
for A; to have two real eigenvalues (i1, p2), one inside and one outside the unit circle, it is

sufficient to show that (1 — p1)(1 — p2) < 0. This is equivalent to:

1+ po > 14 pype. (A.14)

Knowing that u + p2 is equal to the trace of A; and pipe equal to its determinant, we

can rewrite (A.14) as :

R+ tatafyl-11-8)] . K21+ 7) +atafy [1—y(1—B)]
P R )7 e i B O ) U221 G ) 1 G PR

(1=7)

af{l—pB(1—v)[1-~(1-p)}
afB [l —~(1 =)+ Br*1 —v)(1+7)

After simplification, we get:
2 2
KA1+ 7)[1= B =y +a{l+B(v8%)} >0,

which is always verified given that 8 € [0,1] and v € [0, 1].

Rewriting (A.11) as ¢/ ¢y — ¢ A1n — A2 + &7 (1 —v) = 0 and substituting Aj; and Ajo

by their expressions, we obtain:
p2(c9)? + p1cf +po =0 (A.15)
with

P = af{l-B1-7[1-~1-p)} >0,
po= (=p{all =1 =PI+ (1 =N +7)} = {1 +7) +a+afy[1-y(1- B},

p2 = v{aB[l—y(1 =)+ Br*(1—-7)(1+7)} > 0.
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We rewrite py as p1 = —&*(1+7) [1 = B(1 = 7)] = (1 =B8) {1 = B[1 — (1 = B)]} —po —p2,
it follows immediately that p; < 0. Then, it is straightforward to show that the discriminant

of the polynomial (A.15), , is positive.

To characterize the two solutions of ¢’, we rewrite (A.15) as:

cg\2
oo = Dot P2(er)” _ peo) (A.16)
b1
2
As f(c?) is strictly increasing for ¢ € [0,1] with f/(c?) = P29 5 0 for ¢ € [0,1].
b1
To prove f(ci?) : [0,1] —]0,1], it is sufficient to show that f(0) > 0 and that f(1) < 1. It is
straightforward to see that f(0) = 0~ 0 and
b1
f(l):_po +p2 _ Po + P2 <1
P 2L+ I=BL =]+ al=B){1-F[1-y1-B)}+po+p

Since f(c??) : [0,1] —]0,1[ and f(c?’) is strictly increasing, it follows from the theorem
of Brouwer that there exists one unique solution of ¢7¥ in the interval |0,1]. This solution

corresponds to

2
—p1 —\/p] — 4
9 — P1 p1 P2P0 (A.17)

" 2p2

_ —p1++/p?—4papo

The other possible solution ¢y’ = o is larger than unit, which is excluded to

avoid an explosive evolution of inflation.

Substituting Aj; and P; into (A.12) leads to:

(87
R2(1+7) +a+af?2(8 — ) + By(1 —7) {aB — [a+ k21 +7)] 7'}

9 = (A.18)

We now show that f(c¥) : [0; —38 ] —]0

D aTRZ (1) Knowing that f(0) > 0 and

. aB [
> atr2(1+7) L
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substituting ¢’ by into the function f(c7’) defined by (A.19), we find

af
a+k2(147)

2
af
i af - _po +p2 [m]
a+r2(l+71) D1
i +r2(1+7) i
_ TR () {a ap Pot a+~g<1+f)p2}. (A.19)
—P1

po and the

Using D2 = a(1=B)+r*(1+7) _a(l—ﬁ)-‘rnz(l—b—r)po_'_ oz+fii(61+7')

af —
a+k2(147) p2+ a+/@2(1+7)p2’ Po = aff

definition of pg, p1, and ps2 given above, we rewrite the denominator as

—p1 = K1+ 7)[1=B1 -] +al =) {1 =B —v(1-B)}+po+p

= KL+ [1-B1-]+al - {1 -BL—y1-B)}+

a(1-B)+rk2(1+T1) a+r?(147) a(1-B)+r2(1+T1) aff
Iy E— 4 + af  Po + atr2(1tr) P2 + atrZ(1+m) P2

_ 2 2 o
= —(1=Pp2 + a(laffzj(’i-i-(i;_T)pQ + 0<+f€a(ﬁl+‘f)p0 + a+fﬂ2(ﬁl+f)p2

_ BrR%*(1+7) a+r2(1+7) af
- a+/@2(1+7)p2 + af bo + o<+fi2(1+7')p2' (A.20)

Substituting the above expression of —p; into (A.19), we obtain:

B a+r2(1+7) B
af a+ng(1+'r) { af po + a+/€g(1+7—)p2} af

2 ) = 2 2 o 2 .
atr2(l+7) D) 4 D gh et R4 T)

I

2
Given that f'(¢?) = P29 S 0for ¢ € 0,1], f(c??) is strictly increasing in the interval

p1

[O; Mﬁg‘ig”)} This property and the fact that f(c77) : [0; MH‘;*(LT)] —10; Mﬁg‘ig_”)[ imply

aB

that there is a unique solution for ¢;? so that 0 < ¢;f < s T §

The case where 7 =0. We obtain by substituting v = 0 into (A.5)-(A.7) :

1
An = ik
a(l —p)
A __ev=r
2 a+r2(1+7)’
Pl = @

CaB+ BR2(14 1)
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It follows from (A.11)-(A.12) that

9 = o
i a+r2(1+71)
Qo9 = — 2>
i a+r2(1+7)

The case where v = 1. Inserting v = 1 into (A.5)-(A.7) yields

K21+7)+a+aB?

AH =

af? ’
1
App = 5
1
Pl = —@

Substituting the latter into (A.5)-(A.7) leads to

cg

{R(1+7) +a+aB%) — \/[R2(1+7) + a+ o — 40288
er = 2032 ’
49 = “ .

i K2(14+7)+a+apB?(8— )

A.2 The effect of an increase in learning coefficient

Deriving pg, p1 and ps and using (A.20), we get

0

o = aBll-n0 - A+ 20 21 +7),

0

B = 0PI =A]+af(1-)1-8)>0,

O _pOr arerenOp0 | Opr 1001 adet(in) OO
oy Oy B Oy oy B oy a9y

Alternatively, using the original expression of p, we obtain

op1

oy = ~208l-(1- 5] = 28r*(1 =) (1 +7) <0.

Deriving the solution of ¢’ given by (A.17) that ensures a non-explosive evolution of
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inflation yields:

—po 4 — a2 Op1 4 2papy  Opo p+ﬂ p2
oc? - \/pi—4p2po 9y \/p2—4p2po Iy \/pE—4papo 9y

Oy 2p5
Using %71;2 - _%6% — %%—T, we get:
ocs? 1 0 0
=57 ( b1 e p2>
vy p3 " Oy 9y
where
—p1p2 1 1 p? —2papo
F = —p+——p— *127,
/P — 4papo B B\/p? — 4papo
2pap2 pi — 2papo 2
G = > |1t 12 CH_ZZS%—H)
VP — 4p2po VP — 4p2p0
Using p1 = —fp2 — %po, after fastidious arrangements of terms, we finally obtain:
+r2(1+
oy 11— (poap1 P 6p0>
= - D1
Oy Bpa/pl —4papo N OV Dy
. . 2 2 .
Using ¢ < a%;“i(ﬁlw), we obtain: 1—0‘Jr'ia7(61+7)cfrg > 1—a+“ag+7) a+rig£81+7') = 0. To determine

the sign of H = pp5 Bpl p1 87 , we first check its value for and then its derivative with respect to
~. For v = 1, we have : %—%O =ap? >0, %—pvl = —%a(148) < 0,p1 = — [*(1 +7) + a + af?]

and pp = af. It is straightforward to show that if

aB(l - B%)

T <
K2

_1’

we have:

H=-a’8*1 - B*) +r*(1+1)ap <0.

31



Deriving H with respect to vy yields

OH _ 9po Ip1 &p1 9p1 dpo 8*po 9*p1 8*po

Oy Oy Oy bo 0%y Oy Oy b1 0%y — o 0%y —n 0%y

Deriving twice pg and p; with respect to v for v = 1 leads to

62

621’)}? = —204ﬁ2(1 - 6) < 07

82

af; = 20p8(1 — B2) + 2BK(1 + 7).

Using these second-order derivatives, we get

881;1 = 22°8*(1 - B){1 - B[l —v(1-B)]} +2a8%[1 — B(1 — )] *(1 +T) > 0.

Consequently, for 7 < %}82) — 1, given that H < 0 and %—Z > 0 for v = 1, we conclude
that

ocst

oy

< 0.

Using the definition of ¢, dy’, ¢/ and d;”, it is straightforward to show the sign of their

partial derivative with respect to ~.

A.3 The effects of inflation penalty

Deriving pg, p1 and ps with respect to 7 gives:

opo

o =

Ip1

o K [5(1—7)2—1] <0,
Op2 B 201

oy YBE=(1 =) > 0.

Deriving ¢ given by (A.17) with respect to 7 and using the fact % = 0 and arranging
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the terms yield:
0 0 0
dci? o (p2 9 — D1 apf) P

or P2/ P — 4papo
Op1

Substituting p1, p2, Z+ and 88%_2 by their respective expression, we obtain

(maa]:_l_pl%l):> = —afyByr* {1 -1 —7)[1—~(1 -3} <0.

This result and the fact that ps > 0, pg > 0, —p1 — \/p7 — 4papo > 0, % < 0 and % >0
yield:
ocst

0.
or <

Knowing the above result and deriving d5’ given by (A.18) with respect to 7, we get:

od2? —a{K? = B %L — By(1 - 9) [a+ 21+ 7)] %) 0
= <
0T {K2(1+7) +a+aB2(B - &) + By(1 =) {aB — [a + k21 + )] &7}

Using the definition of ¢, di’, ¢/ and d;”, it is straightforward to show the sign of their
partial derivative with respect to 7.
A.4 The equilibrium solution of inflation under decreasing-gain learning

Using (23) to obtain A3; and A3;.1 and substituting their expressions as well as Aj 441 = 0,

(6]
1 1
A2,t41 = T Vel T and Y42 = 535 into (21), we get

2
(1+7)(t+1)m + @xt = Fy %xt—i—l + B+ 7)(t+ Vw1 + ﬁ@xtﬂ (A.21)

Using (2), (5) and 441 = tj%l , we write

1 1
Ty — —T¢ — éat — —€¢ (A22)
K K K
1 8 1 1
= - - = —(m — - — . A .23
Ti41 H'/Tt-i-l - ar + = 1(7Tt ay) H€t+1 ( )

Substituting x; and x4 respectively given by (A.22) and (A.23) into (A.21) and arranging
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the terms lead to

Eymip1 = Angme + Arorar + Prges (A.24)
where

a+ w2 (1+7)+ z7a82(1 + 756)
_ A.
Ay CYB(l‘FH_%ﬂ)"i‘BK“Q(l_FT) ) (A.25)

_aﬁ + O‘BQ(I - m)(l + t+16)

Ay = , (A.26)
aB(l+ 778) + Br2(1 +7)
!
Py = - . (A.27)
aB(l+ 77h) + Br2 (1 +7)
The solution of the ALM of inflation takes the following form:
T = C:lr 1at + dﬂ. tet (A28)
Using (5) and (A.28), we obtain:
By = ¢ 1 (1= ms1)ae + ygami] (A.29)

Using equations (A.24) and (A.29) to eliminate Fym;41 and arranging the terms yield:

Ao — c7T P
12 ( Hl) t+1at—|— Lt ;. (A.30)

1 1
t+1 7rt+1 Allt t+1 7rt+1 Allt

T =

This implies that:
o Az — (1 - t+1)c7'r t41

7rt (A31)
t—il-l mt+1 Allt
and
P,
d 1.t
W‘ft = T . (A.32)
1 Cr 41 — Al

We gather equations (5), (6) and (A.24) while using (A.22) to substitute x; to obtain the
system of three equations:

Eiyir1 = Awys + Prey,
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where

Air A 0 Py
Yt = [T, ag, by, Ay = tj%l t%l 0 |,and P = 0
1 -8 ot 1
k(t+1)  w(tH1) 1 K(t+1)

The above system is subject to three boundary conditions: ag, by, and lim |Eymys| < oo.
S§—00

The eigenvalues of A; are given by HLI and by the two eigenvalues of Ay ;:

A A
Apy = 1“ 32 . (A.33)
s s,

We can show that A;; has a real eigenvalue inside and one outside the unit circle.(]

A.5 The properties of the single stable solution under decreasing-gain

learning

Among infinite stochastic sequences satisfying equation (A.31), we focus on a non-explosive

solution. To characterize the properties of this solution, we consider the value of c‘i?t when

—a(1-5)
a+rZ(1+7)

t — 4o00. Using the boundary conditions lim Aj;; = Land lim Aoy =
t—~4o00 ’ t——+o00 ’

3 , we find

that in the limit, ci‘?t evolves according to:

of

. d : d
i ne = A A el + (U= By

t—-+oo

(A.34)

The boundary condition lim |m,| < oo implies that lim ﬂ”cfran = 0. Using this
n—o0 n—-+oo )

condition and solving (A.34) forward yield one and only one bounded solution of cif’t:

dg O‘B

t£+moocﬂ’t a+r2(1+71)

Furthermore, it follows from (A.34) that

. d . d
lim ¢ ,, > lim ¢¥ A.35
t——+00 mt+1 t—+o0 ™t ( )
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dg O‘B

S T e

T a+kA(14T)

dg < O‘ﬁ
kL g 4 R2(1 +7)

implying that when ¢t — 400, we have ¢

Assuming that for t = n + 1, we have ¢ . It follows from (A.31) that

dg

dg __ A127" - nil Crn+l1
Cﬂ*,n T 1 dg =
n+1 Cmnt1 A1in
d
dg Azp+ A, af
Crntl = " dg 1 2 =
’ i + a+r2(1+7)
« afin
{[a + &2 (14 7)] A — n—i—ﬂl} cfrf’n < nf— i Aty [a+ K21+ 7). (A.36)

Substituting Ay2, and Aja, by their respective expression given by (A.25)-(A.26), we

obtain:
I R R (a0 B N
T™n 2 K2(1+7) 2
[a+R2(1+7)] [+ k2(1 + 7)) + (nil)g af? = I +r2(1+7)

dg - - . . .
Thus, we have by recurrence that ¢y’ is increasing with time and

dg O‘ﬁ

«— W viell,4ool.
Cmt a+r2(1+71) (1, Foo]

Using the definition of ¢}, d3%,, ¢% and d;%, it is easy to show their bound and their
k) ) ’ k)

evolution over time.
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