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Abstract

We characterize ’Solow-Swan’ economic growth model in a stochastic environment.
Our interest basically lies in modelling arrival of uncommon or stochastic shocks in
both physical capital and labour, introducing discontinuities in the growth of these
variables. These characterizations are completed by employing a Jump process to the
Solow-Swan model. Interesting dynamics of capital and labor growth emerge from
our investigation.
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1 Introduction

Solow-Swan (1956) economic growth model has been extensively celebrated in economic
growth literature, the properties and extension of which have been intuitively investi-
gated in, for instance, Barro and Sala-i-Martin (2004). A number of recent research (e.g.,
Binder and Pesaran, 1999; Stachurski, 2002; Barossi-Filho et al., 2005) have also focused
on modelling this growth model in a stochastic environment. The main motivation of
the need for a stochastic version of Solow-Swan model arises due to the necessity of re-
producing the statistical characteristics of business cycle fluctuations in actual economies.
Indeed, this approach to growth modelling in economics has had a tremendous impact
on the way we think about the analysis of effects of the different exogenous shocks in an
economy. It is possible, by using the modelling approach to analyze which among the
possible shocks is more likely to produce a given statistical characteristic of the solution,
or which one is more useful in order for a model to replicate a given statistical regularity
observed in actual time series data. In addition, one can characterize the role of economic
policy in determining the dynamics of relevant variables, as well as the co-movements
between them.

Following on the leads of the recent literature, in this note we aim to expand the ex-
isting work by introducing a Jump process in the growth of the main determinants of
income. Our broad idea is to investigate the stability of the economic growth system un-
der stochastic disturbances when these disturbance bring sudden changes in the growth
process. As is well-known the Solow-Swan model is an exogenous growth model, an
economic model of long-run economic growth set within the framework of neoclassi-
cal economics (see [3], pp26). It attempts to explain long-run economic growth by look-
ing at capital accumulation, labor or population growth, and increases in productivity,
commonly referred to as technological progress. The key assumption of the neoclassical
growth model is that capital is subject to diminishing returns in a closed economy. More
specifically, it incudes two aspects: The total output Y (t) is determined by the overall
input; The factor accumulation does not depend on decisions of economic entities. The
main difference with the deterministic model is: we assume that the factor accumulation
is affected by some stochastic disturbance such that the Ordinary differential equation
(ODE) can be transformed into the Stochastic differential equation (SDE). Then we can do
the stability analysis for the stochastic system.

Moreno et al. (2011) discuss the usefulness of jump process to reflect how economic
variables respond to the arrival of sudden information. While analyzing the dynamics of
the model, the authors find that the degree of serial autocorrelation is related to the oc-
currence and magnitude of abnormal information. In addition, the authors provide some
useful approximations in a particular case that considers exponential-type decay. Empir-
ically, the authors propose a GMM approach to estimate the parameters of the model and
present an empirical application for the stocks included in the Dow Jones Averaged In-
dex. Our findings seem to confirm the presence of shot-noise effects in 73% of the stocks
and a strong relationship between the shot-noise process and the autocorrelation pattern
embedded in data.

2



Jumps were initially analyzed by Merton (1976) for modeling the arrival of uncommon
information at financial markets, introducing discontinuities in the stock charts. Jumps
account adequately situations such as, for example, the sudden reaction of stock prices to
unexpected news about a company, the consequences of extreme fluctuations in supply
and demand in electricity markets, or the failure and thus abandonment of a R&D firms
investment project, see Pennings and Sereno (2011). Not surprisingly, the empirical evi-
dence about jumps is vast, see Andersen et al. (2002), Eraker et al. (2003), and Escribano
et al. (2011).

The rest of the paper is planned as follows. In Section 2, we characterize Solow-Swan
model by Brownian Motion. Section 3 introduces Jump process in Solow-Swan frame-
work, whereby stability analysis and properties of the determinants of growth are dis-
cussed. Section 4 investigates stationary features of capital stock. Finally, Section 5 con-
cludes with main findings.

2 Stochastic Solow Model with the Brownian Motion

2.1 Construct

We initially consider the neoclassical production function. A neoclassical production
function F (Kt, Lt) satisfies in the general the following properties:

1. The function F (·) is a linear homogenous function;

2. Let f(kt) = F (kt, 1) = y, where kt = Kt
Lt

, then f(kt) satisfies

f ′(kt) > 0, f ′′(kt) < 0, f(kt) > ktf
′(kt); (2.1)

3. Inada condition:
f(0) = f ′(∞) = 0, f ′(0) = f(∞) =∞, (2.2)

where Yt is the flow of output produced at time t, Kt is the physical capital, such as
machines, building, pencils, etc.; Lt represents the labor, including the number of workers
and the amount of time they work, as well as their physical strength, skills, and health; kt
is the per capital capital; yt is output per worker.

Let F (·) be the Cobb-Douglas function, then

F (Kt, Lt) = AKα
t L

β
t ,

where A > 0 is the level of technology, α ∈ (0, 1), β = 1− α.
In the deterministic model, the net increase in the stock of physical capital at a point

in time equals gross investment less depreciation:

K̇t = sYt − δKt, Lt = nLt (2.3)
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where K̇t = dKt/dt denote the net increase, s ∈ (0, 1) is a constant saving rate, δ ∈
[0, 1] is the depreciation, the population grows at a constant, exogenous rate n ≥ 0. The
fundamental differential equation of the Solow-Swan model is

k̇t = sf(kt)− (n+ δ)kt. (2.4)

Assume that the growth rate of Kt and Lt are affected by some random disturbance,
(2.4) can be written as:

dKt = (sYt − δKt)dt+KtdB
K
t (2.5)

and
dLt = nLtdt+ LtdB

L
t (2.6)

where BK
t and BL

t are given Brownian Motions. The perturbations of Kt and Lt are re-
sults from independent effects of larger number of small factors, so we can use Brownian
Motions to describe disturbances in (2.5) and (2.6). We denote the variance ofBK

t by σKdt,
BL
t by σLdt, and cov(dBK

t , dB
L
t ) := σKLdt.

By the Itô lemma, we have

dkt = (sf(kt)− µkt)dt+ ktdBt, (2.7)

where
µ = n+ δ + σKL − σ2

L

and
dBt = dBK

t − dBL
t .

Therefor (2.7) is a stochastic Solow-Swan Model, it is a autonomous function in terms of
kt. From (2.7), we can easily address:

1. Per capita capital kt is a homogenous diffusion process which the drift and the dif-
fusion coefficients are sf(kt)− µkt and k2

t (σ
2
K − 2σKL + σ2

L) respectively;

2. The Markov property of kt shows that: the economic status at the presents can fore-
cast the trend for the future. Namely, if s > t, kt = k, then the probability density of
ks is determined by kt = k. Meanwhile, by using Kolmogorov equation, the transi-
tion function p(t, k, k1) can be obtained. If s > t, ∀(a, b),

P
(
a < ks < b|kt = k

)
=

∫ b

a

p(s− t, k, y)dy;

3. From (2.7), the expected growth rate of kt is

ψk := E(
dkt
k

) =
sf(kt)

k
− µ

= sf(kt)− (n+ δ + σKL − σ2
L).

(2.8)
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If the stochastic disturbance is gone, we have the deterministic growth rate gk :

gk =
k̇t
k

=
sf(kt)

kt
− (n+ δ). (2.9)

From (2.8) and (2.9),
ψk − gk = σKL − σ2

L.

This means when σKL > σ2
L, the exitances of the stochastic disturbance can raise the

growth. On the contrary, σKL < σ2
L, the exitances of the stochastic disturbance reduce the

growth. Precisely, if the magnitude ofLt is bigger thenKt, then σKL < σKσL < σ2
L, ψt < gt,

therefore the growth rate will decrease. In exceptional circumstances, Lt is disturbed but
Kt does not, that is σ2

L > 0, σ2
K = 0, in this case the growth rate will go down. Oppositely

if Kt is disturbed but Lt does not, σ2
L = 0, σ2

K > 0, then the growth rate will remain the
same.

It can be clearly seen that, the perturbation of Kt and Lt has different influences for
the economic growth. Lt has relatively bigger impact than Kt.

2.2 Stability Analysis

We define a steady state as a situation in which the various quantities grow at constant
rate (see [3] pp.33). In the deterministic Solow Model, the steady state corresponds to
k̇t = 0, the corresponding value of kt is denoted by k∗t , that is sf(k∗t ) = (n + δ)k∗t , t → 0,
kt → k∗. We say kt ≡ k∗t is asymptotically stable in (0,∞) globally.

The stability of the system will change along with the appearance of the stochastic
disturbance. Firstly, (2.7) does not have the steady state apart from kt = 0 since k∗t is
eliminated by the stochastic disturbance terms. Secondly kt = 0 in (2.7) is not obvious,
apparently kt = 0 in (2.4) is not a steady state, so it is not comparable. We will consider the
exponential stability of the system in this section. As almost surely exponentially stable
can easily apply asymptotically stable in global, so we will focus on this kind of stable on
the stochastic system.

Next we will use lyapunov function (see [8] pp.109) to analyze the stability of (2.7).
Suppose that D = R+, V (kt) = k2

t , we have

sup
k>0

[sf(kt)

k
+ σ2 − 2µ

]
< 2σ2

and
inf
k>0

[sf(kt)

k
+ σ2 − 2µ

]
> 2σ2.

They implies:

sup
k>0

sf(kt)

k
<
σ2 + 2µ

2s
(2.10)

5



and

inf
k>0

sf(kt)

k
>
σ2 + 2µ

2s
. (2.11)

Let ϕ(kt) := f(kt)
k

, from (2.1) and (2.2), we can get

k2
tϕ
′(kt) = ktf

′(kt)− f(kt), kt > 0.

Thus
lim
k→0

ϕ(kt) = lim
k→0

f ′(kt) =∞,

and
lim
k→∞

ϕ(kt) = lim
k→∞

f ′(kt) = 0.

Therefore we have

sup
k>0

ϕ(kt) = ϕ(0) =∞, inf
k>0

ϕ(kt) = ϕ(∞) = 0.

The discriminant condition (2.10) and (2.11) can be re-written as

σ2 + 2µ >∞ (2.12)

σ2 + 2µ < 0. (2.13)

Obviously, (2.12) is not possible. From (2.13) we can obtain

2(n+ δ) + σ2
K < σ2

L. (2.14)

It means: if σ2
L < 2(n+ δ) + σ2

K , (2.7)’s solution is not exponentially stable in [0,∞] a.s.. In
other words, per capita capital exponential grows from the initial point, the trajectory of
the solution that starts from D = [0,∞) but also eventually coverage in D.

Therefore, (2.14) is the criterion of the exponential instability of the zero solution of
(2.7).

3 Role of Jump Process in Stochastic Solow-Swan Model

The stochastic processes in continuous-time with independent stationarity increments is
called Lévy processes. The most well known examples of Lévy processes are Brown-
ian motion and the Poisson process. We have studied the stochastic modelling with the
Brownian motion in Section 2. In this section, we will use the Jump-type Lévy processes
to represent the stochastic disturbances in the Solow-Swan Model. First we will build the
Stochastic Solow-Swan Model with the Jump processes, then do the stability analysis.
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3.1 Basic framework

Let {NK
t }t≥0 and {NL

t }t≥0 two poisson processes with intensity measures λ1, λ2, we fur-
ther assume that 〈NK

t , N
L
t 〉 = λ1λ2t where 〈NK

t , N
L
t 〉 stands for the quadratic process of

NK
t and NL

t . The Poisson distribution with associated parameter λ is:

P(NK
t (ω) = n) = e−λ1t

(λ1t)
n

n!
, n = 1, 2, . . . ,

and
P(NL

t (ω) = n) = e−λ2t
(λ2t)

n

n!
, n = 1, 2, . . . .

Consider
dKt = (sYt − δKt)dt+KtdN

K
t (3.1)

and
dLt = nLtdt+ LtdN

L
t (3.2)

Due to the Itô formula, we obtain from (3.2)

d(
1

Lt
) = − n

Kt

dt− 1

2Lt
dNL

t . (3.3)

We also have
d〈Kt,

1

Lt
〉 =

Kt

2Lt
λ1λ2dt (3.4)

Also by the Itô formula, we deduce that

dkt = d(
Kt

Lt
) =

1

Lt
dKt +Ktd(

1

Lt
) + d〈Kt,

1

Lt
〉. (3.5)

Substitute (3.1), (3.3),(3.4) into (3.5), we can get

dkt = [sf(kt)− δkt − nkt −
kt
2
λ1λ2]dt+ ktdN

K
t −

kt
2
dNL

t . (3.6)

Therefor (3.6) is a stochastic Solow-Swan Model with jumps. From (3.6), the expected
growth rate of kt is

φk = E
(dkt
k

)
=
sf(kt)

kt
− δ − n− 1

2
λ1λ2 + λ1 −

1

2
λ2 (3.7)

Recall in the deterministic model, the growth rate gk :

gk =
k̇t
k

=
sf(kt)

kt
− (n+ δ).

From (2.9) and (3.7), we have

φk − gk = −1

2
λ1λ2 + λ1 −

1

2
λ2.

This means when 2λ1 − λ1λ2 − λ2 > 0 the exitances of the stochastic disturbance driven
by jumps can raise the growth. On the contrary, 2λ1 − λ1λ2 − λ2 < 0 the growth will be
reduced. If λ1 = λ2 = 0 the stochastic disturbance is gone, then φk = gk.
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3.2 Stability Analysis

As the same deification in Section 2, the steady state level of capital stock is the stock of
capital at which investment and depreciation just offset each other, that K̇t = 0.

In order to analyze the stability of (3.6). we will employ lyapunov function. Assume
D = R+, V (kt) = k2

t , we have

dk2
t = k2

t

[sf(kt)

kt
− 2δ − 2n− 2λ1λ2 + 3λ1 −

3

4
λ2

]
+ Martingale.

By the definition of lyapunov function, if

sup
k>0

(
sf(kt)

kt
− 2δ − 2n− 2λ1λ2 + 3λ1 −

3

4
λ2

)
< 0,

The above condition can guarantee the system is exponentially stable, otherwise

inf
k>0

(
sf(kt)

kt
− 2δ − 2n− 2λ1λ2 + 3λ1 −

3

4
λ2

)
> 0,

the system is not exponentially stable. They implies:

sup
k>0

sf(kt)

kt
<

2δ + 2n+ 2λ1λ2 − 3λ1 + 3
4
λ2

2s
(3.8)

and

inf
k>0

sf(kt)

kt
>

2δ + 2n+ 2λ1λ2 − 3λ1 + 3
4
λ2

2s
(3.9)

Let ϕ(kt) := f(kt)
k

, from (2.1) and (2.2), we can get

k2
tϕ
′(kt) = ktf

′(kt)− f(kt), kt > 0.

Thus
lim
k→0

ϕ(kt) = lim
k→0

f ′(kt) =∞,

and
lim
k→∞

ϕ(kt) = lim
k→∞

f ′(kt) = 0.

Therefore we have

sup
k>0

ϕ(kt) = ϕ(0) =∞, inf
k>0

ϕ(kt) = ϕ(∞) = 0.

The discriminant condition (3.8) and (3.9) can be re-written as

2δ + 2n+ 2λ1λ2 − 3λ1 +
3

4
λ2 >∞ (3.10)
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and
2δ + 2n+ 2λ1λ2 − 3λ1 +

3

4
λ2 < 0. (3.11)

Apparently, (3.10) does not hold. Under the criterion of (3.11), that

2(δ + n) < 3λ1 − 2λ2λ2 −
3

4
λ2

The stochastic system is exponentially unstable.

4 Characterization of stationary distribution of kt

In the deterministic Solow-Swan model, kt finally goes to steady state k∗t . In a similar
way, in the stochastic model, kt will go to a non-zero random variable as t → ∞. If this
random variable is continuous, then we can apply apply it’s probability density function
(PDF) denoted by π(·). Here π(·) is named the stationary distribution of kt. Merton [9]
and Bourguigono [5] first propose to use a definition of the stationary distribution in the
theory of economic growth. In this Section, based on Merton’s model, we have some
improvement in order to compute the stationary distribution of kt in the stochastic Solow
Model.

Now let us discuss π(·). Recall kt is from (2.7), the production function is kαt (0 < α <
1), by the Kolmogorov forward equation, we have

ϕ(kt) =
s(1− k−α′t )

α′σ2
− µ

σ2
ln kt,

where α′ = 1− α. Then

1

π(kt)
= k2

t e
2ϕ(kt)

∫ ∞
0

x−2− 2µ

σ2 e−βk
−α′
t dx

=
Γ(ω)

α′
β−ωk

2+2µ/σ2

t exp(−βk−α′t ),

where β = 2s
α′α2 , ω = 2µ+σ2

σ2α′
.

Therefore,

π(kt) =
α′

Γ(ω)
βωk

−2−2µ/σ2

t exp(−βk−α′t ).

We need ω > 0, which implies the following condition

2(n+ δ) + σ2
K > σ2

L. (4.1)

Here (4.1) is the condition which can make kt converges to stationary distribution.

Now let us assume (4.1) is satisfied and

ωτ =
2µ+ τ ′σ2

α′σ2
= ω − τ

α′
.
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Obviously, ω = ω0, suppose kt has stationary distribution, then

E(kτt ) =

∫ ∞
0

kπt π(kt)dkt

=
α′

Γ(ω)
βω
∫ ∞

0

k
τ−2−2µ/σ2

t exp(−βk−α′t )dkt

= β
τ
α′

Γ(ωτ )

Γ(ω)
.

Particularly, let τ = 1, τ = α, τ = −α′, we have

k̄t = E(kt) = β
1
α′Γ(ω1)/Γ(ω),

ȳt = E(kαt ) = β
α
α′

Γ(ωα)

Γ(ω)
= β

α
α′

Γ(ω1 + 1)

Γ(ω)
= β

α
α′
ω1Γ(ω1)

Γ(ω)
=
µ

s
k̄t,

E(
yt
kt

) = E(k−α
′

t ) = β−1 Γ(ω−α′)

Γ(ω)
= β−1 Γ(ω + 1)

Γ(ω)
= β−1ω =

2µ+ σ2

2s
.

In the deterministic system, due to f(kt) = kα, the steady state of kt is:

k∗t =
( s

n+ δ

) 1
α′
.

Assume n+δ > 0, now we can compare k̄t and k∗t . Set ε = 1
α′

= 1
1−α > 1 and x = 2µ

α′σ2 = ω1,
then we have

k̄t
k∗t

=
(2n+ 2δ

α′σ2

)ε Γ(x)

Γ(x+ ε)

= (
n+ δ

µ
)ε
xεΓ(x)

Γ(x+ ε)
.

When σ2 → 0, (n+δ
µ

)ε → 1; By Stirling Approximation, we have xεΓ(x)
Γ(x+ε)

→ 1 as long as
x→∞. Therefor we can say when σ2 → 0, k̄t → k∗t .

This conclusion can prove that when the stochastic terms disappear, k̄t = k∗t , the
steady state of k∗t (in deterministic model) is coincident with k̄t (in stochastic model).

5 Conclusion

In this note, we modelled Solow-Swan growth mechanism in a stochastic environment.
We allowed both the growth of capital and labor to be characterized by Brownian motion
as well as by a Jump process. These characterizations closely approximate real life growth
phenomena where economies are persistently subject to some form of stochastic jump
by endogenizing sudden information/shocks which may alter the long-term growth dy-
namics of the model. Jump process and its stability analysis in Solow-Swan growth offer
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interesting insights regarding the persistence of output growth which may is a feature of
endogenous growth mechanism. The Jump process we have introduced may be captured
in empirical analysis as an endogenous shift or exogenous break which leave long-term
permanent effect on growth processes.

References

[1] Andersen, T. G., L. Benzoni, and J. Lund (2002), “An empirical investigation of con-
tinuoustime equity return models”, Journal of Finance, 57, 1239-1284.

[2] Barossi-Filho, M., R.G. Silva and E.M. Diniz (2005), “The empirics of the Solow
growth model: Long-term evidence,” Journal of Applied Economics, 8(1), 31-51.

[3] Barro, R.J. and X. Sala-i-Martin (2004), Econonmic Growth, (2ed.), The MIT Press.

[4] Binder, M. and H.M. Pesaran (1999), “Stochastic Growth Models and Their Econo-
metric Implications”, Journal of Economic Growth, 4, 139-183.

[5] Bourguignon F. (1974), “A particulat class of stochastic growth model”, Journal of
Economic Theory, 9, 141-158

[6] Escribano, A., J. Ignacio-Pena, and P. Villaplana (2011), “Modelling Electricity Prices:
International Evidence”, Oxford Bulletin of Economics and Statistics, 73(5), 622-650.

[7] Eraker, B., M. Johannes, and N. G. Polson (2003), “The impact of jumps in returns
and volatility”, Journal of Finance, 53, 1269-1300.

[8] Mao X. (2007), Stochastic differential equations and applications, (2ed.), Horwood Pub-
lishing Limited, Chichester.

[9] Merton R C. (1975), “An asymptotic theory of growth under uncertainty”, Review of
Economic Studies, 2, 375-393.

[10] Moreno, M., P. Serranob, and W. Stute (2011), “Statistical properties and economic
implications of jump-diffusion processes with shot-noise effects”, European Journal of
Operational Research, 214(3), 656-664.

[11] Pennings, E. and L. Sereno (2011), “Evaluating pharmaceutical R&D under technical
and economic uncertainty,” European Journal of Operational Research, 212(2), 374-385.

[12] Schenk-Hoppe, K.R. and B. Schmalfuss, B. (2001), “Random fixed points in a stochas-
tic Solow growth model,” Journal of Mathematical Economics, 36(1), 19-30.

[13] Solow, R.M. (1956), “A contribution to the theory of economic growth”, Quarterly
Journal of Economics, 70, 65-94.

[14] Stachurski, J. (2002), “Stochastic Optimal Growth with Unbounded Shock,” Journal
of Economic Theory, 106(1), 40-65.

11


	PUBLICATION PREMIERE PAGE
	Diebolt & co. p WP BETA

