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Abstract

Using data on patent applications at European Patent Office, we examine the structural properties of
networks of inventors in France in different technologies, and how they depend from the inventive
activity of scientists from universities and public research organizations (PROs). We revisit earlier
findings on small world properties of social networks of inventors, and propose more rigorous tests of
such hypothesis. We find that academic and PRO inventors contribute significantly to patenting in
science-based fields. Such contribution is decisive for the emergence of small world properties.
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1. Introduction

Over the past 10 years, an increasing number of economic and managerial studies on innovation
have appeared, which make use of structural analysis of large social networks (surveys by Ter Wal
and Boschma, 2009; Steen et al., 2010). All of these studies take advantage of increasing availability
of large repositories of archival data which lend themselves to relational analysis, such as patents,
scientific publications and firm alliances. At the same time, they all contribute to the investigation of
a specific theoretical concept, that of "small world" networks, whose resurrection and
systematization also owes greatly to the availability of digitalized relational data, and not just of the
bibliometric type (in fact, most recent studies refer to physical networks, such as the Internet or
electrical grids, or to business directories, such as those containing information on actors, directors

or producers credited for movies or musical shows; see Uzzi et al., 2007; and Schnettler, 2009).

In this paper, we contribute to this literature by proposing a methodology for detecting small world
in networks of inventors, as derived from bipartite patent-inventor graphs; by suggesting that
inventors' networks in science-based technological fields exhibit small world properties that do not
appear in other fields; and by suggesting that scientists from academia and public research

organizations (PROs) contribute decisively to the emergence of such properties.

Following Watts and Strogatz (1998) we describe small world networks as intermediate
configurations between ordered and random graphs, of which they share, respectively, the
properties of high clustering (they appear to be composed of several tightly knitted clusters of
nodes, loosely related one to another) and short average distance between nodes (ensured by those

few out-of-cluster ties which provide bridges across otherwise unconnected components).

In particular, small world properties of science-based technologies derive from two related, but

distinct social properties of scientific research, namely that:

(i) modern scientific research is conducted by teams, and such teams tend to be large;
(i) scientific research is conducted not only in companies, but also in universities and public
research organizations (PROs), which gives academics and PRO staff the opportunity to get

directly involved into patenting.

Teamwork explains the emergence of small world properties because it increases the number of ties
between actors, and the more so the larger the teams. As for the involvement of academics and PRO
researchers into patenting, this contributes to reducing average distances in the network (a crucial
small world property) insofar these actors' ties can more easily escape companies' boundaries. While

most inventors are patentees' employees who tie up mainly with inventors from the same company,



and therefore have many redundant ties, PRO staff and especially academics tend to act as freelance

inventors, whose ties provide shortcuts between inventors from different companies.

We exploit a database of over 50000 French inventors, as listed on patent applications at the
European Patent Offices with priority dates comprised between 1980 and 2004. Around 4% of these
inventors are found to be affiliated either to a university or to CNRS (Centre national de la recherche
scientifique), the leading French PRO. Information on the academic status of inventors come from
the French section of the KEINS database (Lissoni et al., 2006), while information on CNRS status was
collected on purpose for this paper and it allows for the first ever published estimate of this

institution's contribution to patenting in France.

We proceed as follows. In section 2, we re-examine earlier findings on the structural properties of
networks of inventors, and of the peculiarities of such networks that call for a careful choice of the
proper random network against which small worlds properties should be tested. We also discuss the

connections between this literature and the literature on teams in science and technology.

In section 3 we describe our dataset, and place special emphasis on the possibility to rank
technological fields of patents according to their science intensity, as well as to the relevance of
academics' and CNRS staff's contribution to patenting. We also provide key descriptive statistics on

French universities' and CNRS' contribution to patenting, and on size of inventor teams.

In section 4 we examine small world properties in network of inventors as bipartite graphs, and
show to what extent such properties correlate to science intensity and academic/CNRS presence in

technological fields.

In section 5, we test the hypothesis that academic and CNRS inventors play a crucial structural role,
especially in fields whose overall science intensity depends crucially upon their involvement in

patenting.

Section 6 concludes.

2. Background literature

Data on patents and inventors, like most archival data containing relational information, lends
themselves to be transformed into affiliation networks (Burt, 1983). Affiliation networks are
bipartite graphs with two types of nodes: actors and events, where actors are linked to events in
which they participate. Typical examples are found in corporate interlocks (Koenig and Gogel, 1981),

research collaborations (Powell et al., 1996), scientific co-authorship (Newman, 2001), and



underwriting syndicates (Baum et al., 2003). In the case of patents the actors are the inventors and
the events correspond to patent applications. In social network analysis of inventors, affiliation
networks are most often reduced to "one-mode" graphs in which inventors are directly connected,
based on the assumption that, during the production of the patent, contributors to the same patent
have come to know each other. By assuming further that co-inventors necessarily share some
information, one can investigate networks of inventors as vehicles for knowledge diffusion, often
measured with patent citations (Breschi and Lissoni, 2005). The two most important applications of
this type of analysis concern the geography of innovation (Breschi and Lissoni, 2005 and 2009; Singh,
2005; Cantner and Graf, 2006; Fleming et al., 2007; Lobo and Strumsky, 2008) and the interplay
between science and technology. This second line of enquiry is closely related to studies on co-
authorship networks in science, from which it draws concepts and tools, as well as comparison. In
particular, starting with Balconi et al. (2004), scholars have examined the structural properties of
networks of inventors, and their similarities or differences with respect to those of networks of
scientific authors. In addition, efforts have been made to identify who among the inventors may be

academic scientists, and whether such identity correlates with their position in the network.

With respect to structural properties, much attention has been devoted to testing the existence of
"small world" properties . These properties can emerge only in complex graphs composed of (at
least) several hundreds nodes and ties. Any such graph is said to exhibit small world properties
whenever it is characterized by high clustering (which we can summarily define as the probability to
find a direct connection between any two nodes which are also indirectly connected via a third
node)? and short average distances between nodes (due to the presence of a small number of
connections between otherwise unconnected nodes). One pre-requisite for the emergence of such
properties is high connectedness, which can only occur when most nodes exhibit several ties (as

opposed to just one or none).

In small networks a relevant share of all nodes are all connected one to another, thus giving origin to

a "giant component”, namely a subset of interconnected nodes which is much larger than any other

1Among geographical studies, Fleming et al. (2007) focus on the correspondence between small world properties of
networks of inventors in metropolitan areas, and the latter's innovative performance. For a critical revision and extension,
see Breschi and Lenzi (2011). For a general review of the literature on links between small worlds and innovation
performance (well beyond application to network of inventors) see Steen et al., 2010.
2 We define the clustering coefficient of a network as in Newman et al. (2001):

3 X number of triangles on the graph

" number of connected triples of vertices
By “triangle” it is meant here a set of three nodes (a “triple”), each of which is connected to both the others; while a
“connected triple” is a triple in which at least one node is connected to both the others. The value of C is comprised
between 0 and 1. This definition of clustering coefficient is sometimes referred as “transitivity” (or “transitivity ratio”).
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set’. The most widely accepted theoretical treatment of small world networks is that proposed by
Watts and Strogatz (1998), who describe small world networks as an intermediate configuration
between ordered and random graphs, two theoretical configurations that exhibit maximal clustering
and minimal average distance between nodes, respectively. In particular, small worlds exhibit
average distance very close to that of a random network of equivalent size, but much higher
clustering. Theoretical models by Cowan and Jonard (2003, 2004) suggest that small world networks

ensure fast knowledge accumulation and high inventive rates.

Small world properties, as predicted by Watts' and Strogatz's theoretical definition, has been found
to characterize several scientific networks, as derived from data on co-authorship of scientific
publications (Newman, 2001 and 2004). Small words of scientific authors are compatible with classic
theories in the sociology of science, which describe scientific communities as composed by a number
of 'invisible colleges' (self-referential groups of scientists working in the same research area, possibly
along strict disciplinary lines) which avoid mutual isolation thanks to a number of intellectual leaders
who belong to several colleges (De Solla Price , 1963). They also allow to generalize early results of
applications of network analysis to bibliometric data (Crane, 1972; Mullins et al., 1977; for a survey:
Zuccala, 2006) and to rationalize theoretical treatment of scientific knowledge production as a

collective effort (Dasgupta and David, 1994).

Networks of scientific authors exhibit small world properties to the extent that research is
conducted in teams, so that most scientists are connected one to another by common work on one
or more papers. Indeed, the importance of teamwork in science has grown steadily over the past
half-century, as it has the average size of teams. As this is true also of teamwork and team size in
invention, we may expect small world properties to be detectable also in networks of inventors (on

the general importance of teams in science and technology, see Wuchty et al., 2007).

However, scientific disciplines vary in the extent and importance of teamwork, so that scientific
authors' networks in some disciplines do not exhibit small world properties, witness the structural
differences between sociology and economy, as found respectively by Moody (2004) and Goyal et
al. (2006). Technological fields also differ with respect to their reliance on teamwork for invention,
as one can see from data reported by Jones (2009; see especially table 6), which may explain why

some fields appear to exhibit small world properties, while others do not (as found by Balconi et al.,

3 Providing technical definitions of measures and concepts used by social network analysis goes beyond the purposes of
this summary of the literature. Definitions of measures and concepts we use in our analysis will be provided as they
become necessary, especially in section 4, along with their applications or relevant examples. For a non technical and very
short introduction, see Borgatti et al. (2009). For slightly more technical treatments, with focus on small worlds, see Wang
and Chen (2003) and Uzzi et al. (2007). For a complete, but accessible introduction to the important notion of centrality,
see Freeman (1977).



2004). Quite strikingly, teams characterize networks of inventors especially in science-based
technological fields, such as Pharmaceutics or Chemicals. This suggests that the emergence of small
world properties in networks of inventors may have be associated to the importance of science as a

source of innovation.

Whether such importance requires the direct involvement of universities and public research
organizations in the invention (and in the patenting of inventions) may depend on whether
universities and public research organizations are the dominant or only source of scientific research.
This is not always the case. Breschi and Catalini (2010) study the overlapping between networks of
scientific authors and networks of inventors in science-based technological fields (both of which are
found to exhibit some small world network properties). They find that individuals who are both
inventors and authors of scientific papers contribute to connect the two networks: but while in the
US many such individuals appear to be industrial researchers working for R&D intensive companies,

in Europe they come disproportionately from the academic environment.

Balconi et al. (2004) find that Italian academic inventors (university scientists whose names appear
on patents, irrespectively of whether the latter are owned by universities or companies or private
individuals) tend to occupy central positions in the networks of inventors, thus contributing to
shorten average distances. As their presence is more widespread in science-based fields, this is
suggestive of the decisiveness of their contribution in the emergence of small word properties in
such fields. Balconi et al. (2004), however do not explain whether centrality of academic inventors is
a result of their belonging to large-than-average teams or to their affiliation to patents from several
different applicants, which would result in a more diverse set of ties to otherwise unconnected
inventors. The weight carried by academic inventors in a number of technical fields is confirmed by
an increasing number of studies, not all of which, however, investigate networks of inventors
(Ilversen et al., 2007; Lissoni et al., 2008 and 2009; for surveys of less recent contributions, see:

Geuna and Nesta , 2006; and Verspagen, 2006).

One common drawback of studies of networks of inventors is the lack of adaptation of measures of
clustering, centrality, and component's size to the specificities of one-mode graphs derived from
affiliation networks. As suggested by Uzzi et al. (2007), standard measures of clustering tend to be
inflated by the very high number of instances in which several inventors, for the simple fact of
belonging to the same patent team, are all connected one to another. This inflates also the so-called
Q statistic, a common indicator of the existence of small world properties (see below), which
possibly lead observer to rush too quickly to the conclusion that the observed network exhibit such
properties, even when this is not the case. Emphasis on centrality of inventors may also be

misplaced, as it is ties between well-connected (but not necessarily super-connected) actors that
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really matters for shortening average distances. In the remainder of the paper we will attach great
importance to the correct measurement of small world properties in networks of inventors, whose
provision is indeed one of our objectives. However, for ease of exposition, we find it more
convenient to set aside technical details for now and move to the description of our data (next
section). Armed with examples from our data, we will come back to discussing measurement issues

in section 4 (see especially section 4.2.1).

3. Data

Our data come from the EP-INV database produced at KITeS-Universita Bocconi, which contains all
patent applications filed at the European Patent Office (EPO) since its opening in 1978, reclassified
by applicant and inventor. Originally based upon legal information produced by EPO for patent
attorneys, the EP-INV database is now currently updated by reading, cleaning, and matching
applicants' and inventors' names and addresses as published in PatStat, the EPO worldwide
statistical database”. Links to PatStat allow assigning to each patent application its forward and
backward citations to prior art (that is, other patents) as well as backward citations to non-patent
literature (NPL), of which scientific publications represent a sizable share (Breschi and Catalini,

2010).

The EP-INV methodology of reclassification by inventor is explained in detail by Lissoni et al. (2006)

and can be summarized as follows:

e First, names and addresses of inventors are standardized, in order to assign a unique code to
all inventors with the same name, surname, and address;

e Second, “similarity scores” are calculated for all pairs of inventors from the same country
with the same name and surname, but different addresses;

e Third, a threshold value for the similarity score is identified, over which two inventors in a

pair are considered the same individual and assigned the same unique inventor code’.

An important subset of the EP-INV database is the KEINS database, which identifies "academic
inventors" and provides information on their affiliation as well as on their disciplinary field, gender,
date of last promotion, and date of birth. Academic inventors are identified by matching inventors'

names with names of professors on active service either on 2004 or 2005, depending on the country.

* EPO Worldwide Patent Statistical Database(http://forums.epo.org/epo-worldwide-patent-statistical-database/; last
visited: July, 2011)
% In the case of France, the threshold was set at the median value of the similarity score distribution for all French inventors
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Matches are then filtered by emailing or phoning the matched academics, asking for confirmation of

their inventor status. Lissoni et al. (2006) provide more methodological details.

Accordingly, we refer to any patent application signed by at least one academic inventor as an
"academic patent"”, no matter whether the applicant is a university, a company, a public or private
research organizations, a government agency, or an individual (most typically, the inventor herself).
That is to say that we are first and foremost interested into the origin of the invention (whether
academic or not), rather than to its property. Indeed, over 60% of French academic patents appear
to be owned by business companies, and only around 10% by universities, while PROs own around

25% (Lissoni et al., 2008).

For France, the KEINS database contains information on academic inventors from the hard sciences,
medicine and engineering, who were active as maitre de conference or professors in any university
of the country in 2004 and at least one patent signed after 1993 and before 2005. This make the
data increasingly prone to return negatively biased estimates of academic patenting activity the

farther back we go in time and highly unreliable for years before 1994 or after 2004.

For the purposes of this paper, the French section of the KEINS database was complemented with
information on CNRS inventors, also collected following the KEINS methodology. This integration
was considered necessary, due to the important role played by PROs in general, and CNRS in
particular, in the French science system®. Data from CNRS used for name matching include all
chercheurs, ingénieurs de recherche, and technical staff on duty in 2007, in all the hard sciences as
well as medical and engineering disciplines. By analogy with the definitions provided above, we will
refer to "CNRS inventors" and "CNRS patents", as the logical equivalents of academic inventors and
patents (with CNRS-invented patents including both CNRS-owned patents, and patents over
inventions by CNRS staff, but owned by other organizations or staff members themselves; more

details in Guarisco, 2009; Thibaut, 2009; and Llerena 2010).

Table 1 reports the populations of French patent applications, inventors, academics and CNRS
researchers, as from the database described above. Academic inventors are responsible for 2715
patent applications and CNRS researchers for 1715 applications, which amount respectively to 3.45%
and 2.18% of all domestic patent applications at EPO. In total, academic and CNRS patents account

for 4044 patent applications that is 5.13% of all patent applications filed at EPO by French inventors.

6 Traditionally, the French public research system has assigned a greater role to PROs than to universities. Even after more
than a decade of reforms aimed at correcting the imbalance, CNRS employs over 11000 full time researchers vs. around
54000 tenured staff in universities, all of which either with teaching duties only or mixed teaching-research duties (CNRS,
2010; MESR, 2009; Larédo and Mustar, 2001).



Notice that the latter figure is less than the sum of the previous two. This is because several patents

are signed jointly by academics and CNRS researchers, so we counted them only once.

Table 1 EPO patents by technology: all, university, CNRS, and academic (university & CNRS)

INVENTORS

TECHNOLOGICAL FIELDS All inv. Ac. inv. CNRS inv 2)+(3

" e N e e
1 Electrical engineering. Electronics 13610 217 1.59% 123 0.90% 340 2.50%
2 Instruments (Scientific; Control) 9714 363 3.74% 178 1.83% 541 5.57%
3 Chemicals. Materials 8653 336 3.88% 259 2.99% 595 6.88%
4 Pharmaceuticals. Biotechnology 5980 396 6.62% 280 4.68% 676 11.30%
5 Industrial processes 8159 153 1.88% 97 1.19% 250 3.06%
6 Mech. Eng. Machines. Transport 10386 64 0.62% 22 0.21% 86 0.83%
7 Consumer goods. Civil eng. 5158 12 0.23% 5 0.10% 17 0.33%
ALL TECHNOLOGIES 51403 1201 2.34% 735 1.43% 1936 3.77%

PATENTS

S O T N Y BN O C I
1 Electrical engineering. Electronics 18237 385 2.11% 167 0.92% 504 2.76%
2 Instruments (Scientific; Control) 10164 513 5.05% 210 2.07% 658 6.47%
3 Chemicals. Materials 12157 801 6.59% 654 5.38% 1336 10.99%
4 Pharmaceuticals. Biotechnology 7346 713 9.71% 523 7.12% 1119 15.23%
5 Industrial processes 10043 195 1.94% 126 1.25% 290 2.89%
6 Mech. Eng. Machines. Transport 13796 91 0.66% 28 0.20% 113 0.82%
7 Consumer goods. Civil eng. 7057 17 0.24% 7 0.10% 24 0.34%
ALL TECHNOLOGIES 78800 2715 3.45% 1715 2.18% 4044 5.13%

(1)
()

3)
(4)

(5)
(6)

All inventors who have signed at least 1 EPO patent application in 1994-2004 (EP-INV data)

Academics active in 2005, 2005 in a French universities (sciences, medicine, engineering) who have signed at least 1 EPO patent
application in 1994-2004 (source: KEINS database)

Researcher active in 2007 in CNRS, in the hard sciences, medicine, and engineering who have signed at least 1 EPO patent application
in 1994-2004 (source: elaboration on CNRS and EP-INV data)

Nr of EPO patents signed by at least one inventor with French address with at least one patent in 1994-2004 (source: EP-INV
database)

Nr of EPO patents signed by at least one French academic with at least one patent in 1994-2004 (source: KEINS database)

Nr of EPO patents signed by at least one CNRS researcher with at least one patent in 1994-2004 (source: elaboration on CNRS and EP-
INV data)

* When computing (5)+(6), care was taken to avoid double counting the patents signed by both academics and CNRS researchers.

Table 1 also provides details by technological fields, which differ by science-intensity, as measured

by the share of NPL citations over total backward citations (see figure 1)’. We notice some

correspondence between the degree of science-intensity and the combined weight of academic and

CNRS patents. The latter is well over 10% in the two most science-intensive fields, namely

Biotechnology & Pharmaceuticals and Chemicals & Materials, while it is below 1% for the two least

science-intensive ones, Mechanics or Consumer Goods. Besides, the field of Scientific and Control

Instruments ranks similarly for science intensity and for weight of academic and CNRS patents

’ Technological fields are computed on the basis of the original International Patent Classification (IPC) assigned by EPO
officers to each patent application (see: http://www.wipo.int//classifications/ipc/en/; last visited: July 12, 2011), and
regrouped by OST (2008).




(respectively, fourth and third). Partial exceptions to this correlation patterns are the fields of
Electrical engineering & Electronics and Industrial Processes, the former with a relatively lower
presence of academic and CNRS compared to its science intensity, the latter with a relatively high

one.
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Figure 1 — Science intensity* of technological fields, per year; 1980-2000

* Total citations to non-patent literature (NPL) over total citations

As for the technological distribution of academic and CNRS patents (figure 2) this is also biased
towards science-intensive fields, and in line with findings for other countries (as, for example, the
US; see Mowery and Sampat, 2005). Academic patents are concentrated in a few technological
fields, first and foremost in Chemicals & Materials, and Biotechnology & Pharmaceuticals, followed
by Scientific and Control Instruments. A comparison between CNRS and academic patents reveals
that the former are relatively more concentrated in Chemicals & Materials and Biotechnology &

Pharmaceuticals, and less in Electrical engineering & Electronics and Instruments.
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Technological distribution of academic and CNRS patents
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Figure 2 Distribution of patents across technological fields ’

“ALL” - all inventors, “ACAD” - academic inventors, “CNRS” - CNRS inventors

In none of the science-intensive technological fields academic and CNRS inventors do not appear to
be more productive than other inventors, not even in the technological fields to which they
contribute most (table 2). But they appear to work in larger teams than other inventors (table 3a).
However, this is in part due to a statistical artefact, which arises from our definition of “academic" or
"CNRS" team as any team that includes at least one academic or CNRS inventor. In fact, the
probability to have at least one academic or CNRS inventor in a team increases with the size of the
team, even if team size were independent on the presence of an academic or CNRS member. This
means that even if teams were assembled at random, the expected size of academic teams would be
greater than average. The magnitude of the bias is larger, the larger the share of academic inventors
in the technological field. In order to correct for this statistical effect we produce a “baseline”
distribution of academic and CNRS teams according to the procedure outlined in Appendix A. In
table 3b, we compare the average size of academic and CNRS teams derived from such baseline

distribution with the observed one, for all type of inventor teams.

We first notice that in Chemicals & Materials and Pharmaceuticals & Biotechnology, the most
science-intensive sectors, the difference between observed and “baseline” averages is less
pronounced than in other technologies. We also notice, more importantly, that even after
correcting for the statistical artefact explanation, differences in size across academic and CNRS

inventors, and generic persist, which requires a substantial explanation.
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Table 2 Productivity of inventors, by technological field”

TECHNOLOGICAL FIELD All inventors Academic Invs (1)  CNRS inventors (2) (1) +(2)
Electrical engineering. Electronics 3.12 3.25 3.18 3.22
Instruments 3.59 3.47 3.50 3.48
Chemicals. Materials 4.72 4.32 4.36 434
Pharmaceuticals. Biotechnology 4.12 3.06 3.14 3.09
Industrial processes 4.00 4.60 5.07 4.78
Mech. Eng. Machines. Transport 3.16 5.89 5.14 5.70
Consumer goods. Civil eng. 3.32 5.92 6.40 6.06
ALL TECHNOLOGIES 2.79 2.84 2.95 2.88

’ Only inventors who signed at least one patent between 1994 and 2004 and their patents.

We explain this evidence as follows: the more science-intensive the inventive effort, the larger the
team of inventors (possibly due to higher division of the research labour, as suggested by Jones
(2009)). The argument is immediately plausible when comparing R&D-based inventive efforts in
sectors such as Pharmaceuticals & Biotechnology to the solitary trial-and-error toiling of technicians
in traditional industries. But also within the same industry, irrespective of their propensity to resort

to science as a source for inventions, academics may be involved in projects that require more

science inputs, which goes along with having larger teams.

Table 3 Size of inventors’ teams and productivity of inventors, by technological field’

3a - Team size (observed)

TECHNOLOGICAL FIELD All inventors Academic Invs (1) CNRS inventors (2) (1) +(2)
Electrical engineering. Electronics 2.01 3.01 3.43 3.06
Instruments 2.10 3.45 3.80 3.43
Chemicals. Materials 2.68 3.98 3.84 3.87
Pharmaceuticals. Biotechnology 2.51 3.63 3.98 3.68
Industrial processes 1.87 3.72 3.81 3.65
Mech. Eng. Machines. Transport 1.81 3.05 3.04 3.00
Consumer goods. Civil eng. 1.59 241 2.14 2.33
ALL TECHNOLOGIES 2.08 3.59 3.82 3.59
3b - Team size (baseline)
Electrical engineering, Electronics 2.72 2.75 2.70
Instruments 2.90 2.96 2.87
Chemicals, Materials 3.44 3.46 3.38
Pharmaceuticals, Biotechnology See above 3.28 3.33 3.20
Industrial processes 2,53 2.54 2.52
Mech. Eng. Machines. Transport 244 244 243
Consumer goods. Civil eng. 2.08 2.08 2.08
ALL TECHNOLOGIES 2.85 2.87 2.82

’ Only inventors who signed at least one patent between 1994 and 2004 and their patents.

This explanation is coherent with other information we can draw from table 3b, namely that:

12



(a) the average team size (no matter whether the patent is academic, CNRS or neither) is the
largest in Chemicals & Materials and Pharmaceuticals & Biotechnology;

(b) the latter are also the technologies in which differences in size between generic or
academic/CNRS teams are the smallest, in percentage terms (around 25%, as opposed to
35% for other technologies): this is because these are the fields in which the science input is
always high, so that the inclusion of academics in a team makes less difference than

elsewhere.

Our data also indicates that academic and CNRS inventors are more mobile across organizational
boundaries when compared to other inventors. Table 4 reports average ratios of the count of
distinct applicants (excluding individual applications) to all patents signed by inventors during their

III

research carrier for “serial” inventors, i.e. inventors who have signed more than one patent.®> Over
the course of their research career academic and CNRS inventors appear to work with more
applicants (be they business companies, universities or other organizations) than their counterparts

in industry, who mostly work and patent for the same employer.

Table 4 Average number of applicants per inventor

TECHNOLOGICAL FIELDS All inventors Acad. inventors CNRS inventors
Electrical engineering. Electronics 1.69 2.75 3.03
Instruments (Scientific; Control) 1.97 3.06 3.01
Chemicals. Materials 211 3.23 3.19
Pharmaceuticals. Biotechnology 2.16 3.01 3.04
Industrial processes 1.90 3.84 3.71
Mech. Eng. Machines. Transport 1.66 3.47 3.86
Consumer goods. Civil eng. 1.63 4.17 4.80
ALL TECHNOLOGIES 1.74 2.75 2.89

i Only inventors who were active between 1994 and 2004 and signed more than one patent.
Not counting individual applicants.

4. Networks of inventors as small worlds

In this section, we first report some basic statistics on the density, cliquishness, and closeness of the
French networks of inventors, by technology, which replicate similar exercises by Balconi et al.

(2004) for Italy, and are indicative of small world properties, especially for science-based

® For an inventor who never signed more than one patent for the same applicant, the number of applicants
and the number of patents are the same, so that the number per patent will be equal to 1 (or more, if one or
more patents have multiple applicants).
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technologies (section 4.1). We then apply two more stringent tests, both specifically adapted to
bipartite graphs, which again suggest the existence of small world properties, especially for science-
based technologies (section 4.2). All networks were constructed using data on patents from 1980 to
2004. As a consequence, when it comes to estimating the percentage of academic and CNRS

inventors in the overall network or one of its components, they tend to underestimate it.

4.1 Basic evidence

Networks of inventors appear to be highly fragmented, as they are composed of a large number of
distinct components and isolate nodes (inventors). However, as shown in columns "C1/ALL" and
"C1/C2" of table 5, the more science-based the technological field, the larger its main (largest)

component, with respect to both the entire network and the second largest component.

The largest components in Electrical engineering & Electronics and Instruments collect 25% and 28%
of all inventors, respectively, with the second largest component being just one or two tenth of it.
Largest components are even more noticeable in Chemicals & Materials and Pharmaceuticals &
Biotechnology, where their share of the inventors is well over half the total size of the network, and
the second largest follows at a ratio of 1:100. As for Industrial Processes, we observe an
intermediate situation, with the weight of the principal component in line with what found for
Electrical engineering & Electronics and Instruments (20%), but a first/second component size ratio

closer to that of Chemicals & Materials and Pharmaceuticals & Biotechnology (2:100)°.

Table 5 also shows that academic and CNRS inventors are more likely to be found in the main
components of science-based technological fields, chiefly Chemicals & Materials and
Pharmaceuticals & Biotechnology, with Instruments, Industrial Processes, and Electrical Engineering
& Electronics following in decreasing order. Notice that, across technological field, the main
component is the smaller (both in absolute and relative terms) the lower the presence of academic
and CNRS scientists among inventors; this is the case of Mechanical Engineering and Consumer

Goods.

Table 6 provides information on the main characteristics of the largest components in our networks.
The first column in the table reports the number of inventors in the largest component (N). The

following three columns report as many distinct graph centralization measures, namely

® Our values for C1/ALL and C2/C1 ratios are inferior to those found in networks of scientists, as in Newman (2001). But we
should keep in mind that our networks are less connected for a number of reasons: taken two comparable populations of
inventors and scientific authors active in related technologies and scientific disciplines, the number of patents per inventor
is usually lower than the number of papers per author; and the average number of co-inventors in a patent is lower than
the average number of co-authors per scientific paper. In addition, our networks spread through technological fields which
are much larger and more heterogeneous than Newman’s scientific disciplines.
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“betweenness”, “degree” and “closeness” centralization index (B, Denr, and Cer, respectively),

which vary from 0 to 1, and take maximum value in star graphs®.

Table 5 Networks of inventors: size of the main components, and distribution of academic inventors therein

Nr. of inventors

— @ G C1/ALL c2/c1
(4) (5) (4) (5) (4) (5) (4) (5)

All inventors, of 23183 13610 6459 3978 928 567 0.28 0.29 0.14
Electrical eng. which:
Electronics Academic 226 217 99 94 1 1 044 043

CNRS 166 123 71 49 0 0 043 040

All inventors, of 18419 9714 4542 2870 128 70 0.25 0.30 0.03

which:
Instruments Academic 370 363 149 147 0 0 040 040

CNRS 256 178 108 77 0 0 0.42 0.43

All inventors, of 15908 8653 9611 5723 85 48 0.60 0.66 0.01
Chemicals & which:
Materials Academic 345 336 276 268 0 0 0.80 0.80

CNRS 369 259 298 208 0 0 0.81 0.80

All inventors, of 9134 5980 5213 3608 28 19 0.57 0.60 0.01
Pharma & which:
Biotechnology Academic 398 396 232 232 0 0 0.58 0.59

CNRS 362 280 242 183 0 0 067 065

All inventors, of 15677 8159 3203 2049 54 18 0.20 0.25 0.02
Industrial which:
processes Academic 155 153 85 84 0 0 0.55 0.55

CNRS 132 97 86 68 0 0 0.65 0.70

All inventors, of 19869 10386 1005 647 881 611 0.05 0.06 0.88
Mech. Eng., which:
Machines, Academic 64 64 2 2 2 2 003 003
Transport

CNRS 28 22 4 4 2 2 014 018

All inventors, of 10310 5158 201 150 171 137 0.02 0.03 0.85
Consumer which:
goods_ Civil eng. Academic 13 12 1 1 1 1 0.08 0.08

CNRS 9 5 0 0 0 0

(1) Overall network of inventors.

(2) Largest connected component of the inventors’ network.

(3) Second largest component of the inventors’ network.

(4) Allinventors (including those who signed no patents after 1993).
(5) Only inventors with at least one patent in 1994-2004.

In general, large social networks based upon archival data, such as ours, exhibit a degree
centralization index very close to zero: no single node is connected to all others, and most nodes

exhibit more than one tie, which suggest a structure very far from that of a star graph. The main

0 A star graph of n nodes is made of one central node that is connected to all the other (n-1) nodes, none of which is
connected to each other. This implies that reaching a non-central node from another non-central node always requires
following a path through the central node. The degree (betweenness or closeness) centralization index of the network is
calculated as the ratio between the average degree (betweenness or closeness) centrality of its nodes and the average
degree (betweenness or closeness) centrality for a star graph network of the same size. The degree centrality of any node j
is simply the number of ties pointing to the node. The betweenness centrality of node j is calculated as the share of
shortest paths linking any two other nodes, which cross node j (node j stands “in between” the two other nodes)
standardized by the number of all pairs of nodes. All network measures in the paper have been calculated using igraph
package of R (Csardi and Nepusz 2006).

15



component of our network is no exception: there are no inventors who worked with a very large
share of the total population of inventors, but many inventors who worked with more than one
partner, either because they have joined different teams throughout their career, or, more
commonly, because the only team they joined comprised more than two inventors. As a result, the
degree centralization D¢t is very low (close to zero). The least science-based technologies

(Consumer Goods and Mechanical Engineering) exhibit somehow higher values.

Table 6 Networks of inventors: Properties of the largest components*

TECHNOLOGICAL FIELD N Beent Dcent Ceent S C D L
Electrical engineering. Electronics 6459 0.194 0.009 0.101 0.07% 0.345 35 12.4
Instruments 4542 0.133 0.016 0.091 0.11% 0.546 39 12.3
Chemicals. Materials 9611 0.118 0.018 0.112 0.06% 0.319 31 8.7
Pharmaceuticals. Biotechnology 5213 0.115 0.014 0.120 0.11% 0.390 28 8.8
Industrial processes 3203 0.166 0.016 0.108 0.15% 0.350 35 9.8
Mechanical eng. Machines. Transport 1005 0.482 0.039 0.097 0.50% 0.441 34 10.4
Consumer goods. Civil engineering 201 0.390 0.076 0.181 1.95% 0.306 11 53

N = Nr of inventors in the largest component

Beent= Betweenness centralization index of the largest component (Avg betweenness/Avg betweenness of N-node star graph)

Ceenr= Closeness centralization index of the largest component (Avg closeness centrality/Avg closeness centrality of N-node star graph)
Deent= Degree centralization index of the largest component (Avg degree centrality/Avg degree centrality of N-node star graph)

S = network density (number of links/max. number of links)

C = Clustering coefficient of the largest component (definition in main text)

L = Avg path length of the largest component

D = Diameter of the main component

" All inventors (including those who signed no patents after 1993).

However, we find that the betweenness and closeness centralization indices of our networks (Bcent
and Ceenr ) are rather high, which suggests the existence of a few inventors who occupy key positions
in between other inventors or groups of inventors, without whom the average path lengths would
be higher. As we will see in section 5, a disproportionate number of these in-between inventors are
indeed academics and CNRS researchers, or their team mates. Notice that the value of By for the
least science-based technologies (Consumer Goods and Mechanical Engineering) is much higher than

that for the other technologies, which suggest a different structure.

The fifth to eight columns of table 6 report the network density (S), the clustering coefficient (C) the
average length (L) and the diameter (D) of the main components of our networks. The values for

such indicators, especially in our science-based fields, have some properties typical of small worlds.

Density S is defined as defined as the ratio of observed links to the number of all possible links
between the network's nodes. The clustering coefficient C can be interpreted as the probability of
two randomly chosen inventors to be co-inventors conditional on that they have (at least) one co-
inventor in common. The average path length L, and the diameter D, are both related to the notion

of shortest path (“geodesic”), as well as to the size of the network: L is the length of the shortest
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path between two nodes on the graph, averaged over all pair of nodes in the graph; D is the

maximum of all geodesics of the graph (Wasserman and Faust, 1994).

These indicators suggest that our networks are quite sparse, as it indeed it is the case with most
large scale networks: density S for the entire network (not reported) is very low, lying as it does
below 0.05% (the densest network is that of Pharmaceuticals & Biotechnology, which has a density
of only 0.045%). Even largest components, which are generally denser than overall networks, have
density limited to 0.15%, as shown in table 6. The only exceptions are the fields of Consumer Goods
& Civil Engineering, with density close to 2% (and a very limited size), and Mechanical Engineering,
Machines & Transport, with density over 0.5%; however, such density measures apply to very small

sub-graphs

Second, clustering coefficients (C) appear to be very high. In particular, short-hand calculations
suggest that the values reported in table 5 for Chemicals & Materials and for Pharmaceuticals &
Biotechnology, are more than 1000 times larger than those we would find in a the theoretical

random graph with the same number of nodes and ties.

Third, the average path length (L) is rather short, as it never exceeds 13 steps and it is around 8 steps

for the more science-based technologies. Similarly, the diameter is also rather short.

4.2 Small world properties of inventor networks

The evidence we produced so far suggest that networks of inventors, in five out of seven
technological fields (namely: Electrical engineering & Electronics, Instruments, Industrial processes
and, especially, Chemicals & Materials and Pharmaceuticals & Biotechnology) exhibit some small
world properties. These are the same fields where the presence of academic and CNRS inventors is
most noticeable, even more so in the principal component. To investigate further in this direction,
we proceed to a more thorough analysis of such small world properties. First, we produce a small-
world ratio measure, specifically adapted to "affiliation" networks such as networks of inventors.

Second, we perform a "rewiring-based" test of small-world's behaviour.

4.2.1 A inventor-network-specific small world ratio

We follow Watts and Strogatz (1998) in investigating small world properties of our networks by
comparing the observed values of clustering coefficients and average path lengths to the values they
would take in a benchmark random network (BRN), that is a graph with the same number of nodes
and ties, where ties are distributed randomly. A synthetic way to conduct this comparison is

proposed by Davis et al. (2003), who suggest calculating the following "small world ratio" Q:
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Q = (Cops/Cprn)/(Lobs/Lprn)

where C,s and L, are respectively the clustering coefficient and the average path length in the
observed network, and Cggy and Lgzy the values of the same indicators in the benchmark random
network. High values of Q suggest that the observed network has a higher clustering coefficient, but
a similar average path length of a comparable random graph; as such they are indicative of small

world qualities in the observed network.

The BRN used to calculate Q has to be generated by a stochastic process compatible with the nature
of the data at hand ™ . Accordingly, we follow Molloy and Reed (1995) in building a random two-
mode inventor-patent network, which preserves the same patents-per-inventor and inventors-per-
patent ratios of the original network; and then project it onto the set of inventors, thus obtaining a

one-mode network to be compared with the observed one. *

Table 7 reports the structural characteristics of the simulated BRN averaged over 100 simulation

runs (second line, in italics).

First, we notice a wide difference between the sizes of the first two largest components (columns C1
and C2) in the observed network and the BRN. The random matching of inventors and research
teams does not respect the existing boundaries between organizations, localities and technological
niches typical of the real world, so that the level of connectedness in a BRN is much higher than that
observed in real networks. This is also reflected in BRN's lower values for C2 and much higher C1/C2

ratios.

Second, connectivity of networks is achieved through most productive inventors, who participate in
many patents. This effect, which is also present in observed networks, is disproportionally inflated in

the BRN. While in the real world a prolific inventor tends to move little in space and across firms or

™ Our choice contrasts with the more common choice to found in the literature, where the "corresponding random graph"
is usually the Erdos-Renyi (ER) one. In the ER model the random process is such that a tie between any pair of nodes is
generated with equal probability, independently of the existence of other ties. The probability of a tie's existence is simply
equal the network density. However, a difficulty arises when we wish to produce ER random graphs for networks of
inventors, due to the latter's origin in a inventor-patent affiliation network (Uzzi et al., 2007). As in all affiliation network,
connections are carried by events (in our case, the patents), so they come in a bunch. As a consequence, we cannot
‘rewire’ network ties one by one: inventors, in fact, establish contacts with whole teams of other co-inventors (as listed on
a patent), hence rearranging each time a whole set of contacts with all co-inventors in the corresponding patent teams.
This will necessarily result in high clustering coefficients, which in turn drive up artificially the small world ratio Q. It follows
that the standard ER random graph, often used as a benchmark in studying small-world network structures, is not, the
appropriate model for networks of inventors (and, in general, any other network constructed by projecting a bipartite
network).

210 network literature Molloy-Reed algorithm in which random graphs are generated for a given sequence of nodal
degrees is referred as “configuration model”. Newman et al. (2001) study somewhat different family of random graphs,
random networks from a given distribution of degree sequences. Both models converge to the same result for networks as
large as the ones discussed in this paper. See also Robins and Alexander (2004) and Kogut and Belinky (2008)

18



technologies, in the BRN the probability that the same inventors will engage in repeated
collaborations is negligibly small. This explains why the degree centralization of the main component
(Dcent), Which we interpret as a measure of variation in the number of an individual’s collaborators,
is somewhat higher in BRNs than in the observed networks. BRNs' larger main components and
shorter social distances also result in BRNs exhibiting a higher centralization of the main component

(Ceenr)-

Indicators in table 7 reinforce our earlier statement about the presence of central inventors:
observed networks have significantly higher betweenness centralization (Bcent) than BRNs, which

implies that some inventors are significantly more important for network connectivity than others.

Table 7 Observed inventors’ network vs. simulated random graph*

TECHNOLOGICAL
FIELDS €1 €@  Bex Deem Cam D L Q
Electrical engineering. observed 6459 928 0.194 0.009 0.101 0.345 35 12.4 0.6
Electronics simulated 16922 79 0068 0.011 0193 0262 14.7 5.5
observed 4542 128 0.133 0.016 0.091 0.546 39 12.3 1.1
Instruments
simulated 12955 83 0089 0.015 0206 0216 14.7 5.4
. , observed 9611 85 0.118 0.018 0.112 0.319 31 8.7 1.6
Chemicals. Materials
simulated 13784 4.7 0.038 0.018 0.225 0.096 10.5 4.2
Pharmaceuticals. observed 5213 28 0.115 0.014 0.120 0.390 28 8.8 1.8
Biotechnology simulated 7789 4.8 0.063 0.034 0.257 0.101 10.1 4.0
. observed 3203 54 0.166 0.016 0.108 0.350 35 9.8 14
Industrial processes
simulated 10232 6.9 0.075 0016 0210 0.124 13.3 5.0
Mechanical eng. observed 1005 881 0482 0.039 0.097 0441 34 104 14
Machines. Transport simulated 12147 9.5 0.081 0.010 0.181 0.174 16.2 5.9
Consumer goods. Civil  ©bserved 200 171 0390 0076 0.181 0306 11 53 22
engineering simulated 5039 9.1 0.097 0.016 0.187 0.147 15.1 5.6

C1 = Nr of inventors in the largest component

C2 = Nr of inventors in the second largest component

Beent= Betweenness centralization index of the largest component (Avg betweenness/Avg betweenness of N-node star graph)

Ceenr= Closeness centralization index of the largest component (Avg closeness centrality/Avg closeness centrality of N-node star graph)
Deent= Degree centralization index of the largest component (Avg degree centrality/Avg degree centrality of N-node star graph)

C = Clustering coefficient of the largest component (definition in main text)

L = Avg path length of the largest component

D = Diameter of the main component

Q = Small worlds ratio (definition in main text)

" All inventors (including those who signed no patents after 1993).

Turning to the last three columns of table 7 we first notice that the small world ratio (column Q)
ranges from 0.6 in Electrical engineering & Electronics to 1.8 in Pharmaceuticals & Biotechnology.
This suggests that the network of inventors in Electrical engineering & Electronics is not a small word
at all (because for small worlds Q must be significantly larger than 1). Still, it does not provide any

conclusive evidence on whether networks of inventors in the other technologies have small-world
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structures. This is because we do not know, a priori, how big Q should be “to qualify” a network as a

small world one, nor we can be sure that Q, as calculated above, works well for networks, such as

ours, which are projections of affiliation networks">.

4.2.2 A "rewiring-based" test

In order to dispel ambiguities in the interpretation of Q values, we introduce an extension of the

Watts-Strogatz model to one-mode projections of bipartite networks. In the same way we

constructed the BRN above, we now introduce randomness into the observed networks. Starting

from the original bipartite network of inventors-patents, we randomly ‘rewire’ existing ties between

inventor and patent. We run a number of "rewiring" exercises, each one with a higher rewiring

probability. As in the Watts-Strogatz model, the higher the rewiring probability the closer we move

to the corresponding random graph (in which both the clustering coefficient and the average path

length are very low).

Watts-Strogatz small worlds for bipartite networks
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Left: Re-scaled clustering (C,Cgw), re-scaled distances (L/Lgrn), and small world ratio as functions of the probability of rewiring.
Right: Same results in the rescaled distance — rescaled clustering coordinates; as the probability of rewiring increases we move from the

original regular lattice in the North-East to completely random BRN in (1,1).

% We also notice that the network with the highest value of Q is the one in Consumer goods. The primary reason for that is

the extremely small size of the main component of the observed network. This is 25 times less than the one of the

corresponding BRN, which makes the ratio (Lyps/Lpry) relatively small and Q high. However, as we shall see in the
following section, despite such a high Q value, networks in Consumer goods not are not a small-worlds.
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The left panel of figure 3 shows a typical relationship between rewiring probability, clustering, and
the average path length in the main component for an idealized network with 100 inventors
collaborating on 100 patents, where each patent is produced by a team of 5 inventors and two
consequent patents overlap by 4 inventors, so that corresponding one-mode projection is a regular
lattice (ring structure) as in Watts and Strogatz (1998). The diagram to the left closely replicates the
figure in the original work of Watts-Strogatz (1998), which shows that small worlds emerge when
moving, through increased re-wiring probability, from a regular lattice towards a random graph. The
dotted lines in the diagram represent values for average path length re-scaled by the values of the
corresponding BRN (L/Lgrn) and re-scaled clustering coefficient (C/Cgry), and the resulting small
world ratio Q for networks obtained by re-wiring the initial regular lattice with an increasing re-
wiring probability. We notice that, as the re-wiring probability increases, the lines for L and C initially
diverge, as the former drops quickly to the level of the random network, while the latter follows with
some delay. As a result "re-wired" networks exhibit small world properties when the rewiring

probability is in the range between 0.01 and 0.1.

The right panel of figure 3 presents the same results by means of a diagram whose coordinates
measure L and C (scaled by average path length and average clustering coefficient of BRN), and the
dotted line reports the values obtained for such indicators when moving from a regular lattice for
values of the rewiring probability which increase by moving from right to left. Notice that each
rewiring exercise alters the structure of the network: we start from the regular lattice (ring)
characterized by high clustering and large average path lengths, but small world ratio Q<1, in the
North-East corner of the diagram; as the probability of rewiring increases, both C and L decline but
at first C declines less rapidly than L. As a result, we reach the South-West corner and the structure
typical of a random graph [which is a point with coordinates (1,1) on distance-clustering plain] and,
most importantly, we reach it by moving first to the right and then top-down. The interval of
rewiring probability over which the re-wired network exhibits small world properties (in blue)
correspond to the portion of the dotted line across the bisector, with grade less than one. Notice
that the bisector is the locus of points where the small world ratio Q is always equal to one, so that

Q>1.

This simple exercise suggests that the logic of the Watts-Strogatz model (1998) can be directly
extended to our case. We can ‘randomize’ our observed networks of inventors, progressively and
gradually, by re-wiring the original bipartite network with increased probability, as explained above;

and then map the results onto a diagram such as the one in the right panel of figure 3.

Since all our networks of inventors with a significant presence of academics and CNRS staff have a

small world ratio Q greater than 1 (the only exception being Electrical Engineering and Electronics),
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their corresponding dots in the diagram will appear in the region over the bisector. If we observe
that rewiring reduces both C and L, with L declining faster than C, then we will also observe an
alignment of the dots from right to left and top-down, i.e. a dotted line steeper than the bisector. In
this case, we will conclude that our network of inventors exhibit small world properties, to the
extent that, by rewiring it, we observe only minor negative effects on the average path length (which
is already low enough to be close to that of a random network), but a much higher (negative) effect
on clustering (which is still high enough to be close to that of a regular lattice). By contrast, if the
inventor network does not exhibit any clear small world feature, and it is composed of many isolated
cliques, rewiring should have either a strong effect on both distance and clustering, or possibly a

strong effect on the former and a weaker one on the latter.

The results of our experiments are shown in figure 4. Networks of inventors in Chemicals &
Materials and Pharmaceuticals & Biotechnology are somewhat closer to a random network, while
networks in Scientific & Control Instruments and Industrial Processes are closer to a regular lattice
(although not as close as to be located under the bisector). Yet all these networks show a similar
pattern: as the rewiring proceeds their dotted lines initially diverge from the bisector, only to drop
precipitously towards it, which suggests that they have small world structure. By contrast, the
inventor network in Electrical engineering & Electronics exhibit a somewhat different pattern, in that
rewiring at first increases both distances and clustering in the largest component. As for Consumer
Goods and Mechanical Engineering and Transports their rewired paths are very erratic and far from

indicating any small world property.

Notice that in all five technologies, rewiring increases the size of the largest component, as
redundant ties (ties between otherwise connected nodes) within dense cliques are replaced by non-
redundant ones (which end up linking formerly isolated nodes or cliques to the largest component).
In principle, this may increase the average path length L, which we measure only for the largest
component, because the more nodes we have in the component, the longer may be the paths
connecting them. However, the substitution of redundant ties with non-redundant ones has the
opposite effect, as short-cuts are created, which shorten the distance between otherwise far-apart
nodes; and this is precisely what we may expect by re-wiring a small world network or a regular
lattice (which has the potential — through rewiring — to become a small world). While the second
effect prevails in the network for Instruments, Chemicals & Materials, Pharma & Biotech, and
Industrial Processes, it is the first one that, as the rewiring proceeds, dominates Electrical

Engineering & Electronics as well as Consumer Goods and Mechanical Engineering & Transports.
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Figure 2 Small worlds in inventors' networks (networks of all inventors, including those
who signed no patent after 1993).

5. Academic and CNRS inventors as small world catalysts

In this section, we prove the importance of academic and CNRS inventors in ensuring the small world
properties of networks of inventors in all technologies in which their presence is non-negligible, with
the exception of Electrical engineering & Electronics. In order to do so we first examine these
inventors' properties as individual nodes, namely their centrality in the network, as well as the

centrality of the teams they belong to (section 5.1).

We then proceed to a more stringent test, which consists in deleting randomly a number of nodes
and examining to what extent this weakens the small world properties of the network; we show that

this is particularly the case when deleted nodes represent academic or CNRS inventors (section 5.2).

5.1 Individuals' and teams' centrality

Table 8 reports the average betweenness, closeness and degree centrality scores (respectively Beenr,

Ceent and Degyr) for academic and CNRS inventors as opposed to all inventors, within the main
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component of each technological field*. Academic and CNRS inventors tend to occupy more central

positions than the average inventor, both locally (Dceny) and globally (Beenr and Ceenr)-

Whatever the technological field considered, Dceyr for both academic and CNRS inventors is higher
than average which implies that academic and CNRS inventors have a higher-than-average number
of co-inventors. As for Beeyr and Ceenrthey are also higher for academic and CNRS inventors than for
the all inventors, with the only exception of Electrical engineering & Electronics and Instruments (for

Ceent)-

Table 8 Position of academic inventors in the main component*

TECHNOLOGICAL FIELDS N Beent Ceent Deent
All inv. 3978 0.0024 0.0837 4.9
Electrical engineering. Electronics Uni inv 94 0.0027 0.0811 55
CNRS inv 49 0.0037 0.0856 55
Allinv. 2870 0.0034 0.0841 5.7
Instruments Uni inv 147 0.0069 0.0840 6.5
CNRS inv 77 0.0039 0.0844 5.4
All inv. 5723 0.0011 0.1210 7.1
Chemicals. Materials Uni inv 268 0.0019 0.1256 8.2
CNRS inv 208 0.0019 0.1257 7.9
All inv. 3608 0.0018 0.1186 6.4
Pharmaceuticals. Biotechnology Uni inv 232 0.0034 0.1216 7.0
CNRS inv 183 0.0026 0.1246 7.7
All inv. 2049 0.0035 0.1098 5.6
Industrial processes Uni inv 84 0.0081 0.1146 6.8
CNRS inv 68 0.0038 0.1177 6.0
Allinv. 647 0.0116 0.1024 5.6
Mech. engineering. Machines. Transport Uni inv 2 0.0020 0.1019 3.5
CNRS inv 4 0.0049 0.0795 3.8
Allinv. 150 0.0238 0.1983 4.5
Consumer goods. Civil engineering Uni inv 1 0.0000 0.1566 1.0
CNRS inv 0

Bcent= Avg betweenness centrality of inventors considered

Ccent= Avg closeness centrality of inventors considered

Dcen= Avg degree centrality of inventors considered

" Inventors who signed at least one patent between 1994 and 2004.

Notice than an inventor's higher-than-average centrality may have three different explanations:

(a) a higher-than-average number of patents signed by the inventors (productivity effect);
(b) a higher-than-average number of co-inventors, due to participation to larger-than-average

teams of inventors (team effect):

% For a definition of Dcenr see footnote 4.
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(c) a higher-than-average mobility across different invention teams, which implies fewer
repeated interactions with the same co-inventors, but a larger number of contacts within

the network (mobility effect).

Patent-per-inventor data we presented in section 3 lead us to exclude explanation (a), as we do not

find any indication of a higher-than-average productivity of academic or CNRS inventors.

On the contrary, we know for sure that explanation (b) applies, as shown by data on team size, also
presented in section 3. Even correcting for team size, however, academic and CNRS inventors appear
to be more central than other inventors. This can be seen by calculating the group degree centrality
scores for inventors' teams normalized by the size of the teams (table 9). Group degree centrality is
defined as the number of non-group nodes that are connected to group members (Everett and
Borgatti, 1999). In our case, a group is a research team as it appears in the patent document.
However, larger teams (such as academic and CNRS ones) may exhibit higher centrality simply
because they have many members, which altogether stand greater chances to be connected to non-

group members simply as a result of their numerosity.

To correct for this bias we divide the raw centrality scores by the size of the team, so that scores
reported in table 9 can be interpreted as the number of connections with inventors outside of the
research team per member of the team. The result is then averaged over all academic or CNRS
teams and teams which are neither. By comparing column (1) with columns (2) and (3) we notice
that, irrespective of the field, academic and CNRS teams are always more central than the other
teams, the only exception being Pharmaceuticals & Biotechnology, for which differences are barely

noticeable.

Table 9 Group degree centrality of research teams normalized by the size of the team

TECHNOLOGICAL FIELD (1) (2) (3) (2)+(3)
Electrical engineering. Electronics 3.2 4.6 4.4 4.6
Instruments 2.8 3.7 3.8 3.8
Chemicals. Materials 6.2 10.3 7.9 9.4
Pharmaceuticals. Biotechnology 6.6 6.3 7.1 6.8
Industrial processes 2.7 7.2 6.9 7.2
Mechanical eng. Machines. Transport 23 4.3 5.1 4.3
Consumer goods. Civil engineering 1.7 33 3.7 35

(1) Group centrality score averaged over patents with no academic or CNRS inventor.

(2) Group centrality score averaged over patents with at least one academic (university) inventor.

(3) Group centrality score averaged over patents with at least one CNRS inventor.

As for explanation (c), concerning the mobility of academic and CNRS inventors we recall from
section 3 that the latter indeed tend to change applicant more frequently that other inventors (see

table 4). This is because most inventors are R&D employees of business companies: while working

for the same employer, they cannot change team easily, unless the employer is very large and hosts
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many different teams; not they can change employer very often. Academic and CNRS inventors, on
the contrary, behave more like "free lance" inventors, who look for different sources of funding and
partnerships, and change inventors' teams accordingly. They may also end up producing some
inventions as the result of involvement within large, collaborative research programmes between
university or CNRS and companies, which guarantee their participants considerable freedom in

picking up collaborators and partners for specific projects.

5.3 A node-deletion test

We have just seen that academic and CNRS inventors occupy central positions in the network of
inventors. As such they contribute to keep average distances low, and to connectedness. We now
investigate whether they also play a decisive role in the emergence of small world properties. We do
so by analyzing consequences their removal from the network would have, on both distance and

connectedness.

Two effects are possible. First, in weakly connected network (such as our inventor networks in
Consumer Goods or Mechanical Engineering & Transports) the removal of central nodes may result
in carving-out components which are connected to the rest of the network only through the
removed nodes®™. Second, even if a network remains connected, the deletion of central nodes would
generally result in increasing social distances, because the removal of a node also removes of all the

shortest paths passing through it.

Table 10 reports the results of our experiment, which consists comparing the effects of removing
from our networks either the academic and CNRS inventors (with at least one patent after 1993; we
refer to these as "case") or a "control" sample of other inventors, chosen at random (more precisely,
we repeat the random removal 100 times, and calculate the average effects). The two effects we

monitor are:

- the change in size of the largest component (AC1), which we expect to be negative; and
- the percentage in the average path length of the same component (AL/L), which we expect to be

positive.

As for AC1, we notice that, in all technologies, the removal of academics and CNRS researchers as
well as controls makes network more disconnected, as the reduction in size of the largest

III

component largely exceeds the number of the removed inventors. On the contrary, for “contro

> In graph theory connectivity of a network is the size of minimum cut-set, a set of nodes such that removal of
these nodes makes the network disconnected.
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removals the total size of disconnected components is closer to the number of the removed
inventors. We also notice that the difference between “case” and “controls” removals varies across
technological fields: from insignificant in Consumer Goods and Mechanical Engineering, and fairly
marginal in Electrical Engineering & Electronics, to very high in Instruments, where removal of 224
academics and CNRS researchers disconnects 866 additional inventors from the largest component
(while the effect of 224 “controls” is 347 disconnected inventors). Nevertheless, in all technological
fields (but Instruments) the largest components in the resulting networks retain more than 80% of

their inventors.

Table 10. Effect of removal of academic and CNRS inventors from inventors' networks on the size of the
largest component and average path length therein

TECHNOLOGICAL FIELD Nr removed C1 AC1 L AL/L

(1) 143 6459 12.4

Electrical engineering. Electronics (2) 6068 391 12.7 2.2%
(3) 6118 341 12.6 1.7%
(1) 224 4542 12.3

Instruments (2) 3452 1090 12.1 -2.0%
(3) 3971 571 12.6 2.0%
(1) 476 9611 8.7

Chemicals. Materials (2) 8538 1073 9.6 9.5%
(3) 8827 784 9.0 2.6%
(1) 415 5213 8.8

Pharmaceuticals. Biotechnology (2) 4247 966 9.5 8.6%
(3) 4443 770 8.9 1.7%
(1) 152 3203 9.8

Industrial processes (2) 2769 434 11.2 14.3%
(3) 2882 321 9.9 0.8%
(1) 6 1005 10.4

Mech. engineering. Machines. Transport (2) 994 11 10.4 -0.3%
(3) 987.6 17 10.3 -0.9%
(1) 1 201 5.3

Consumer goods. Civil engineering (2) 200 1 5.3 -0.2%
(3) 199.4 0 5.3 0.2%

C1 = Nr of inventors in the largest component
L = Avg path length of the largest component
For each of the technological fields different rows refer to
(1) The largest component in the observed network
(2) The largest component in the network after removal of academic & CNRS inventors from the largest component of the
observed network
(3) The largest component in the network after removal of control sample (average over 250 random sample draws) from the
largest component of the observed network

As for the effect on AL/L we notice that, in Consumer Goods, Mechanical Engineering and Electrical
Engineering & Electronics, we see again only marginal difference in the effects of removal of “case”
and “controls” on the distances in the network. In Instruments the removal of academics and CNRS

researchers decreases the average path length, but this due to the fact that, after the removal, the

largest component shrinks considerably. In the other three fields the effect of the "case" removal
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largely exceeds the effect of removing the “controls”. In particularly, in Industrial processes, the
removal of academics and CNRS researchers increases the average social distance by 14.3%, while

the effect of random “controls” on distance is below 1%.

This evidence suggests that, in science-based fields, which we know to be characterized both by the
non-negligible presence of academics and CNRS inventors and by small world properties, the
academics and CNRS inventors play an important role in the emergence of two small world

properties, such as the presence of a large component and short average distances.

6. Conclusions

The study of networks of inventors has attracted a great deal of attention, both theoretical and
empirical. Theoretical models such as those by Cowan and Jonard (2003, 2004), which suggest that
small world networks maximize knowledge diffusion and innovation rates, have led to many efforts
of reconstructing networks of inventors from patent data, and to test for the existence of small
world properties. Several studies in this tradition, however, do not take fully into account the
methodological problems that arise when traditional measures of clustering and centralization are
applied to affiliation networks (as networks of inventors), as opposed to the theoretical one-mode
networks they were first thought for (and which have a counterpart in networks based on

sociometric data, as in the tradition of social network analysis).

In this paper we have re-elaborated a set of specific tools for testing for the existence of small world
properties in networks of inventors, and successfully detected them in science-based technological
fields.. In order to do so, we have relied on an extensive data set of patents and inventors in France,
which is the first to identify the contribution of both academics and researchers from CNRS (the

largest French PRO) to patenting.

We have shown that reliance on science as a source of knowledge for inventive activity implies both
to assign a great role to teamwork and to involve a relatively high number of academic and PRO
scientists and PRO researchers in the inventive activity. Both effects contribute to the emergence of
small world properties, which we find to be the stronger the more science-based the technological
field. While the dominance of teamwork contributes to the emergence of small world by increasing
the connectivity of inventors, the presence of academic and CNRS inventors ensures the creation of
several non-redundant ties, which do not detract to cliquishness in the network, but reduces

average distances. This is because academic and CNRS inventors appear to be more mobile across
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applicants, as they are not bound by employer-employee relationships in their choice of projects and
teams. In fact, most of their patents do not belong to their employers (the universities or CNRS) but
to companies with which they collaborate, very much like those of freelance inventors. The presence
of academics and CNRS inventors also contribute to the emergence of small worlds, due to the larger
average size of teams including such inventors. From this finding, an important policy implication
may follow: academic and CNRS inventors appear to contribute to inventive activity not only in a
direct way, through the patents they produce, but also through their mobility across organizations,
which may lead to knowledge diffusion and further inventive activity. This contrasts with the
increasing emphasis placed by European governments (including the French one) on measuring the
quantity of patents produced by universities, rather than on the collaborative features of the
underlying research, which we can detect by analysing the resulting social networks (Della Malva et

al., 2011).

Notice that we find no difference between academic and CNRS inventors neither with respect to
their characteristics (productivity, team size, mobility across applicants) nor with respect to their
network status. This contrasts, at least in principle, with the different status of the groups, the
former being at best part time researchers (due to their teaching duties), the latter being full time
scientists. We need further investigation on the affiliation of academic inventors, who could indeed
come from UMRs, the mixed units of research co-funded by CNRS in several universities and enjoy

some reduction in their teaching load due to their high scientific status.

In the influential survey by Uzzi et al. (2007), the production of more accurate analyses of small
world properties in affiliation networks was listed as a top priority for the small world research
agenda. We have followed that recommendation and plan to follow also the other ones in the near
future. In particular, also as recommended by Uzzi et al. (2007), we will investigate the dynamics of
network formation, and the contribution by academic and CNRS scientists to such dynamics. We also
plan to investigate the consequences of the emergence of small world properties for the speed of
knowledge diffusion, as measured by patent citations, whether to other patents or the non-patent
literature. Ongoing data collection efforts will also help us extending our analysis to other countries

than France.
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Appendix A: academic inventors’ team size

Let q,, for m = 1,2.. be the observed distribution of sizes for all teams (academic and non-
academic), i.e. the probability to extract at random from our data a team of size m, and p be the

probability to select at random from our data an academic inventor.

If the inventors’ teams were assembled at random, then probability for a team of size m to be

“academic” (i.e. to include at least one university researcher) would be equal to
Pr{team of size m is academic} = q,,(1 — (1 — p)™).

It follows that the “baseline” distribution defined as the distribution of sizes of “academic” teams

when research teams are assembled randomly, b,,,, would be

b — 4md-01-p)™)
™ 1-Frar(1-(1-p)¥)

(in the limit of small p this expression reduces to b,, = q,ym/{m) ).

Then we can calculate it for all technological fields, compare to it our observed distribution of

academic and CNRS teams, a,,, in the same field and examine whether the two differ.

Chemicals. Materials

—S— obsened: All teams
~*- obsened: Acad. teams
I "baseline" (Acad.)
o
(\! ]
z °
o ]
©
Qo
e
s 3
o
o -
S 8 .
© [

Figure A 1. Observed and “baseline” distributions of the team sizes in Chemicals & Materials.

As an illustration consider academic patents in technological field Chemicals & Materials. Figure A 1
shows the distribution of all teams (q,,), observed distribution of academic teams (a,,) and

corresponding “baseline” distribution of (b,;). At the first glance the observed distribution of
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academic teams (blue solid circles), differ widely from the distribution for all teams (red hollow
circles). However, once we make the correction for the statistical effect, and calculate the “baseline”
distribution (green squares), the difference between academic teams and all teams “baseline”
distribution become less apparent (although even the corrected “baseline” distribution is still more

right-skewed than the observed one).
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