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Abstract

In this paper, I compare the OLS and IV estimators for the direct and reverse regression

models in the context of estimating returns to scale and technical progress. It shows that the

direct and reverse OLS estimators are inconsistent, that the direct OLS is always more precise

than the reverse OLS under the normality assumption, and that the direct IV estimator and

its reverse counterpart are consistent and asymptotically equivalent. Working with data from

U.S. manufacturing industries over the last half-century, the estimation results show that in

most industries increasing returns to scale are important and technical progress is small when

it comes to explaining productivity growth.

JEL classi�cation: C13, D24.

1 Introduction

Increasing returns to scale are of great importance for various macroeconomic models (see e.g.
Farmer and Gou 1994, and by Jones, 2004). However, there is a lack of consensus on whether the
assumption of increasing returns to scale is empirically plausible. Di�erent methods of estimating
returns to scale have been used in the literature, and produced divergent results. Therefore, it is
important to understand exactly what each method does and when it might be preferable to use
one over others.

This paper contributes to the existing literature in several ways. First, I conducted a compar-
ative study between the Ordinary Least Squares (OLS) and Instrumental Variable (IV) estimators
for the direct and reverse regression models within the linear Error-in-Variable (EIV) framework,
where both the dependent and explanatory variables are assumed to be subject to errors. Second,
the statistical properties of direct and reverse OLS are derived and analyzed. I prove that the
direct OLS is always more precise than the reverse OLS under the normality assumption. Third,
this paper shows that, in contrast to OLS estimators, both the direct IV estimator and its reverse
counterpart are consistent and asymptotically equivalent in the context of linear EIV models. Fur-
thermore, a complete Monte Carlo simulation is proposed to sketch the �nite-sample properties of
the direct/reverse OLS and IV estimators in a controlled environment. The Monte Carlo experi-
ments show that the �nite-sample bias of IV estimator is essentially dependent on the strength of
instruments but not the true value of the parameter.

An important part of the literature on the estimation of returns to scale relates the output
growth index linearly to the input growth index. The intercept and the slope of the linear equation

∗Xi Chen (xichen@unistra.fr), BETA, Faculty of Economics and Management, University of Strasbourg, 61 Av
de la Forêt Noire, 67085 Strasbourg, France. I would like to thank Bertrand Koebel and François Laisney for helpful
comments.
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appear as a measurement of technical progress and a measurement of returns to scale, respectively.
Whereas the theory provides a deterministic relationship between both variables of interest (output
and input growth rates), from an empirical perspective it is necessary to decide which variable,
the input or the output, is stochastic and therefore measured with errors from the true population
regression line. Suppose that the cloud of observations is represented in a coordinate system, where
the x -axis (abscissa) is the input variable and the y-axis (ordinate) is the output variables. The
direct regression model assumes that the output variable is stochastic and �ts a line that minimizes
the squared vertical distance between the data and the regression line in the direction of y-axis. By
contrast, the reverse regression model thinks of the �reversed� situation, where the input variable
becomes the dependent variable. The model should now be �tted by minimizing the squared
horizontal distance in the direction of x -axis. Both regression models could be supported for some
reasons and have been applied in empirical works. Depending on which regression model is chosen,
the estimating results are often very di�erent. Apart from the lack of consensus on regression
models, researchers are also debating the choice of estimator. Two estimators are considered in the
literature, i.e. the OLS and IV estimators. For instance, Hall (1988, 1990) presents the estimation
results of returns to scale and price-cost markup coe�cients using annual two-digit sectoral data for
1953-1984 by using the IV estimator. His estimated returns to scale are often unreasonably large for
the reverse regression model and even negative for the direct regression model. Bartelsman (1995)
was one of �rst authors to question the IV estimator used by Hall (1990). Bartelsman provided a
series of Monte Carlo experiments to illustrate that the bias is likely to be large when estimating
coe�cients from the reverse approach, and that the IV estimator su�ers from a �nite-sample bias.
An in�uential article by Basu and Fernald (1997) has compared OLS and IV estimation strategies
for the direct regression model. Their OLS-results for thirty-four U.S. private business industries
(1959-1989) show that estimated coe�cients are often much smaller than one (decreasing returns).
Returns to scale are larger in the instrumented regression, but their average value is still close
to one, and cannot con�rm the increasing returns to scale hypothesis. Recently, by applying the
OLS estimation to a larger database (for 1949-2000) of two-digit U.S. industries, Diewert and Fox
(2008) also obtained contradictory results between the direct and reverse approach.

Working with data for twenty one sectors of U.S. manufacturing industries (with two-digit SIC
classi�cation) over the last half-century, I found strong evidence of increasing returns to scale.
On the other hand, the technical progress has made little contribution to U.S. economic growth.
The weak instrument test is employed to assess the quality of instruments and the reliability of
the estimated coe�cients. Compared with prior empirical results on the estimation of returns to
scale, such as Hall (1990), our results are more plausible and support a growing body of theoretical
models emphasizing the importance of increasing returns to scale in explaining the productivity
growth.

The remainder of this paper is organized as follows: I �rst present the econometric model and
the identi�cation issues in Section 2. More attention is given to the discussion of direct/reverse OLS
and IV estimation in Section 3. The empirical application to the U.S. manufacturing industries
data is reported in Section 4. In Section 5, Monte Carlo simulations are performed to con�rm the
empirical �ndings in a controlled environment. Section 6 concludes.

2 Econometric Model

Based on the prior works of Diewert (1976) and Diewert and Fox (2008), this paper follows the
Diewert-Fox method of measuring technical progress and returns to scale, where a (multiple inputs
and multiple outputs) �rm's technology is represented by a non-constant returns to scale translog
cost function. The Diewert and Fox framework not only relaxes a series of simplifying restric-
tions of prior approaches, i.e. single-output, constant returns to scale and perfect competition,
but also establishes a very practical relationship between aggregate inputs index and aggregate
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outputs index. A measurement of technical progress and a measurement of returns to scale appear
respectively in this equation as the intercept and the slope, which seem easy to identify. However,
I will demonstrate that the identi�cation issue is not straightforward, after a broadly acceptable
stochastic speci�cation is chosen. Under a series of restriction on the translog cost function and
the neutral technical change assumption, the deterministic relationship between the log-Törnqvist
input growth index denoted by x∗t and the log-Törnqvist output growth index denoted by y∗t , is

y∗t = α + βx∗t , (1)

where α is the constant rate of cost reduction; β is the degree of returns to scale. When input
increases, if output increases by the same proportional change, i.e. β = 1, then the technology
exhibits constant returns to scale. If output increases by less than that proportional change, i.e.
β < 1, the technology exhibits decreasing returns to scale. If output increases by more than that
proportional change, i.e. β > 1, the technology exhibits increasing returns to scale.

The intercept and the slope of equation (1) are the two parameters of interest. Since these
factors can never be measured or observed perfectly in the real world, a common practice is to
introduce additive error terms. Suppose that there are T observations in the sample, where the
observable values are denoted by (xt, yt). They are measured with additive random errors, u and
v. Let

x = x∗ + u and y = y∗ + v . (2)

The model (1)-(2) is a linear EIV model, which can be also rewritten in a more compact form
with only the observable variables, y = α + βx + ε, where ε ≡ v − βu. We made some statistical
assumptions to restrict our stochastic framework.

Assumptions A: u and v are two i.i.d. zero-mean mutually independent variables. Error
variances do not vary over time (homogeneity of variance). Formally, let

V [u] ≡ σ2
u and V [v] ≡ σ2

v

and V [ε] = E[(v − βu)2] ≡ σ2
ε . The latent variables (x∗, y∗) are uncorrelated with error terms;

suppose that the �rst and second moments exist. Let

E[x∗] ≡ µ and V [x∗] ≡ σ2 .

The set of parameters that we want to estimate in this model is θ ≡ (α, β, µ, σ, σu, σv).

The symmetric treatment of x and y seems to be a simple extension of classical stochastic
speci�cation, where only one variable is assumed to be subject to error. The introduction of the
second error term increases dramatically the di�culty of estimation. A surprising consequence
is that the unique intercept and slope of the �tting line cannot be identi�ed from the bivariate
data set (x, y) alone. This is the well-known identi�cation problem of EIV model which was �rstly
highlighted by Adcock (1878) who tried to handle it by using the Orthogonal regression (which
is a consistent estimation method only if both variables are subject to errors that have the same
variance, i.e. σ2

u = σ2
v). Adcock's intuition is the origin of Total least squares (TLS) estimation,

which was generalized one hundred years later by Golub and Van Loan (1980). Another idea on
the estimation of measurement error models was introduced by Wald (1940) with the objective of
proposing a method in which strong assumptions regarding the error structure are not required (e.g.
σ2
u = λσ2

v , ∀λ ∈ R with λ is known). Unfortunately, this class of estimators is not feasible. Since
the publication of Wald's method, the problem of estimating EIV models, has received increasing
attention from researchers. There have been several surveys, including Madansky (1959), Stefanski
(2000) and Gillard (2006). Two books, Fuller (1987) and Carroll et al (2006) cover the linear and
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nonlinear measurement error models, respectively. In the following subsection the identi�cation
problem of EIV model is formally described; some special cases show how additional information
can allow us to identify the model.

Identi�cation In the context of the EIV model, identi�cation means that there is a unique set
of parameters θ consistent with the observed data. Formally, identi�cation involves being able
to obtain unique estimates of structural parameters given the sample moments of data. Under
Assumptions A, Kendall and Stuart (1973) derived the �ve �rst and second order moment equations
by using the Law of Large Numbers:

plim x̄− µ = 0; (3)

plim ȳ − α− βµ = 0; (4)

plim sxx − σ2 − σ2
u = 0; (5)

plim syy − β2σ2 − σ2
v = 0; (6)

plim sxy − βσ2 = 0. (7)

The sample moments of x and y are computed as

x̄ = T−1
T∑
t=1

xt; ȳ = T−1
T∑
t=1

yt .

sxx = T−1
T∑
t=1

(xt − x̄)2; syy = T−1
T∑
t=1

(yt − ȳ)2

and

sxy = T−1
T∑
t=1

(xt − x̄)(yt − ȳ) .

The identi�cation problem of EIV models is apparent from an examination of the system (3)-
(7), where there are only �ve moment equations but six unknown parameters. Thus, we have not
enough moment conditions to ��x� the �tting line in order to identify θ. Under Assumptions A, the
bivariate data set which contains only the input and output growth index does not provide enough
information for consistent estimation of returns to scale and technical progress. Prior knowledge
can help to overcome the identi�cation problem. For instance, given a �xed α the consistent
estimator of returns to scale can be simply computed as β̂ = −α/x̄ + ȳ/x̄. In the same spirit, I
give here two examples of consistent estimator given prior knowledge concerning true variances of
the error terms, further examples are given in Judge et al. (1980, p.509-531).

Example 1: the error variance σ2
u or σ

2
v is known. Let α̂, β̂, µ̂, σ̂2, σ̂2

v and σ̂
2
u be consistent

estimators of α β, µ, σ2, σ2
v and σ2

u, respectively. Simply by using the second order moment
conditions, (5), (6) and (7), we can either estimate the slope β by β̂ = sxy/(sxx − σ2

u) (if σu is

known) or β̂ = (syy − σ2
v)/sxy (if σv is known). Once we have the consistent estimate of β, the

other the parameters can be also identi�ed as follows.

� α̂ = Ȳ − β̂x̄;

� σ̂2 = sxy/β̂

� σ̂2
u = sxx − σ̂2 (if σv is known)

� σ̂2
v = syy − β̂2σ̂2 (if σu is known)

4



Example 2: the variance ratio λ ≡ σ2
v/σ

2
u is known. Multiplying (5) by λ,

λsxx = λσ̂2 + σ̂2
v . (8)

by using (6), (7) and (8) we obtain a quadratic equation of β̂.

β̂2sxy − β̂(syy − λsxx)− λsxy = 0 . (9)

Given the restriction that β̂ has the same sign as sxy (because sxy = β̂σ̂2), the unique relevant
solution of this quadratic equation is:

β̂ =
(syy − λsxx) +

√
(syy − λsxx)2 − 4λs2xy

2sxy
. (10)

Once again all parameters are uniquely determined by solving a system of �ve equations with �ve
unknowns. Adcock's orthogonal regression (or Total least squares) estimation method is a special
case of Example 2, which assumes that λ = 1.

The class of estimators based on prior knowledge of the parameters is called by Wansbeek
and Meijer (2000) the Consistent Adjusted Least Squares estimation method. Example 1 and 2
show that the strategy for identifying key model parameters is to obtain the variance-covariance
structure of the error terms from a preliminary study (e.g. replication measurement), which in
general is impossible in economics. There are other propositions in the literature to deal with the
identi�cation in EIV models. Wald (1940) suggested splitting the observations into two groups
according to a valid grouping rule.1 However, a crucial drawback of the grouping method, noticed
by Wald himself and many others, such as Pakes (1982), is that in general the grouping criteria
cannot be learned from the observations alone, we need extraneous information on grouping cri-
teria; the estimator based on an invalid grouping criterion has the same bias as the classical OLS
estimator. The use of third moment based estimators has been also considered in the literature,
but it is rarely the case that the observed values of x and y are su�ciently asymmetric to allow
third order moment equations to be used with any degree of con�dence.2 In addition, sample sizes
needed to identify third order moments are somewhat larger than is the case for �rst and second
order moments. Therefore, estimates are often unstable in �nite samples, see e.g. Drion (1951).
So far, we can conclude that the identi�cation of the linear EIV model is possible only if additional
a priori assumptions are made. Paul Samuelson (1942, p.80), in his essay, �A note on alternative
regressions�, already emphasized this point:

�These assumptions must be in the nature of postulates; by no possible method can they be
determined inductively from an examination of the data, even in an in�nitely large sample.�

3 Estimation

Two types of estimators are commonly used in empirical studies estimating returns to scale. Some
authors, such as Hall (1988, 1990) have suggested using IV estimators. Others like Basu and
Fernald (1997), Diewert and Fox (2008) emphasize the OLS approach. This section presents a
theoretical comparison between the two methods for both direct and reverse regressions.

1A valid grouping rule satis�es two conditions:
i) The limit inferior of | x̄G1 − x̄G2 |> 0, the subscripts G1 and G2 denote Group 1 and Group 2, respectively.
ii) The grouping rule should be independent of measurement errors.
2the third moment of latent variable exists and is not zero.
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3.1 Direct and reverse OLS estimation

This section shows that OLS is biased and that the direct and reverse OLS regressions produce
upper and lower bounds on the true value of returns to scale. The direct OLS estimator is de�ned
as β̂ols = sxy/sxx with:

plim (β̂ols − β
σ2

σ2 + σ2
u

) = 0.

Since the ratio σ̂2/(σ̂2 + σ̂2
u) (which is called the reliability ratio in the literature) is always less

than one, the OLS estimate is downward biased w.r.t. the consistent estimator of the true slope.
The regression coe�cient is attenuated by the measurement error. The reverse OLS estimator is
de�ned as β̂rols = syy/sxy with:

plim (β̂rols −
β2σ2 + σ2

v

βσ2
) = 0

and it is upward biased.
The direct and reverse OLS regressions are widely used in empirical studies. For instance,

labor economists typically try to answer a pair of dual questions: �Are men paid more than equally
quali�ed women?� and �Are men less quali�ed than equally paid women?� by running respectively
the regression of an earnings variable on a quali�cation variable and the reverse counterpart,
see Goldberger (1984). However, little is known about the distribution of direct and reverse
OLS estimators in the context of EIV models, especially the second-order moment of the reverse
estimator, which is important for the construction of con�dence regions and test statistics.3 I follow
Richardson and Wu (1970), and investigate the statistical properties of the direct OLS estimator
and extend the results to the reverse OLS estimator under the assumption of joint normality, i.e.,

Assumption B: Suppose that

(x∗, u, v) ∼ N [(µ, 0, 0)′, diag(σ2, σ2
u, σ

2
v)] .

It follows from the structural model (1)-(2) and Assumption B that the vector (y, x) is dis-
tributed as a bivariate normal vector:(

x
y

)
∼ N

[
µ

α + βµ
,

(
σ2 + σ2

u βσ2

βσ2 β2σ2 + σ2
v

) ]
.

Under the normality assumption, Anderson (1985) showed that the statistics sxx, sxy and syy are
jointly distributed as a non-central Wishart distribution. The density function of the direct OLS
estimator β̂ols = sxy/sxx is then obtained by replacing the variable sxy of the joint density function

by β̂olssxx and integrating w.r.t. (sxx ,syy). This way we obtain the density function of the direct
and reverse OLS estimators, as well as their mean and variance. Before stating the result formally,
let us de�ne the following quantities:

� h20 = σ2 + σ2
u

� h02 = β2σ2 + σ2
v

� h11 = βσ2

� H = h20h02 − h211

� Γ denotes the Gamma function.

3Richardson and Wu (1970) derived exact results for the �rst two moments of the direct OLS estimator in the
context of EIV models.
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Proposition 1: Under Assumption B, the exact density function of the direct OLS regression
estimator is

fβ̂ols(β) =
Γ(T

2
)

√
πΓ(T−1

2
)
· H

T−1
2

h
T−2
2

20 (h20β2 − 2h11β + h02)T/2
. (11)

The mean and variance of β̂ols are respectively

E(β̂ols) = β

(
1− σ2

u

σ2 + σ2
u

)
; (12)

V (β̂ols) =
1

T − 3

[
σ2
v

σ2 + σ2
u

+
β2σ2σ2

u

(σ2 + σ2
u)

2

]
. (13)

Proposition 2: Under Assumption B, the exact density function of the reverse OLS regression
estimator is

fβ̂rols(β) =
Γ(T

2
)

√
πΓ(T−1

2
)
· H

T−1
2

h
T−2
2

02 β2(h02β−2 − 2h11β−1 + h20)T/2
. (14)

The mean is

E(β̂rols) = β

(
1 +

σ2
v

β2σ2

)
. (15)

The approximating variance is

V (β̂rols) '
1

T − 3
[
(β2σ2 + σ2

v)
2(β2σ2σ2

u + σ2
vσ

2
u + σ2σ2

v)

β4σ8
] . (16)

Some interesting observations emerge from the above propositions. First, the direct OLS esti-
mator's bias is only due to σ2

u 6= 0 (variance of the error term which a�ects x) and the reverse OLS
estimator's bias is due to σ2

v 6= 0 (variance of the error term which a�ects y). Second, one of the
important results of this paper, is that the variance of the reverse OLS estimator is always larger
than the variance of direct OLS estimator under the normality assumption.

Corollary 1: Under Assumption B, the direct OLS estimator is always more precise than the
reverse OLS estimator.

The intuition behind the Corollary 1 is simply that the variance of the reverse estimator is
mechanically ampli�ed by the reciprocal mapping. The empirical recommendation stemming from
Corollary 1 is that the comparison of direct and reverse OLS estimates may be not always appro-
priate, because the two estimators have di�erent proprieties. Formal proofs of Propositions 1, 2
and Corollary 1 are given in Appendix A.
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3.2 Direct and reverse IV estimation

In the previous subsection, we have seen how the direct and reverse OLS estimators behave in
the EIV context under the normality assumption. In particular, both estimators are biased and
not consistent. Now, I will show that both direct and reverse IV estimators are feasible and
consistent. This result should support the use of IV estimator in empirical research, despite the
early reluctance raised by Bartelsman (1995) or Basu and Fernald (1997).

Let us discuss the issue of identi�cation in the case where there is one valid instrument z, which
is correlated with the latent variable x∗:

x∗t = π0 + π1zt + et , (17)

where e is the error term of the prediction equation, which has zero mean and is uncorrelated with
z. By construction of the model, the instrument z is also linearly correlated with the observed
variables x and y:

xt = π0 + π1zt + et + ut , (18)

yt = α + β(π0 + π1zt + et) + vt . (19)

The mean and variance of z are respectively denoted by µz and σ
2
z . The instrumental variable z is

independent from the error terms e, u and v. By including the additional variable z into our model
(1) and (2), we win the following four additional moment equations:

plim z̄ − µz = 0; (20)

plim szz − σ2
z = 0; (21)

plim syz − βπ1σ2
z = 0; (22)

plim sxz − π1σ2
z = 0, (23)

where

z̄ = T−1
T∑
t=1

zt ; szz = T−1
T∑
t=1

(zt − z̄)2

and

sxz = T−1
T∑
t=1

(xt − x̄)(zt − z̄) ; syz = T−1
T∑
t=1

(yt − ȳ)(zt − z̄) .

Together with the �ve moment equations (3)-(7), we now have nine non-redundant moment con-
ditions to estimate a set of nine parameters, (α, β, π1, µ, µz, σ, σz, σu, σv) which are just-identi�ed.
Under the assumption that the coe�cient π1 6= 0, the consistent estimator of β is simply the ratio
syz/sxz, which is a classical linear IV estimator. The intercept π0 of the prediction equation cannot
be identi�ed, which is not worrying as our interest is focused on the structural relationship and the
measurement error structure. When more instruments are added into the data set, we earn more
moment conditions and the parameters of interest can be estimated more e�ciently by Two-Stage
Least Squares (2SLS).

Two-Stage Least Squares Now, assume that we have more than one instrumental variable
for the input index. Let Z ≡ [z1, ..., zL] be a vector of L instruments, each of these instruments
correlated with latent variables x∗ and observable variable x. A compact form of the direct 2SLS
estimator of β can be written as

β̂2sls = (x̃′PZ x̃)−1x̃′PZ ỹ . (24)

Similarly, the reverse 2SLS estimator is
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β̂r2sls = (ỹ′PZ x̃)−1ỹ′PZ ỹ , (25)

where x̃ ≡ x− x̄, ỹ ≡ y− ȳ and PZ ≡ Z(Z ′Z)−1Z ′ is the orthogonal projection on the column space
of Z. A key assumption of consistency of 2SLS is the rank condition, namely rankE[Z ′x̃] = 1, which
can be tested using a standard F or LM statistic for the Null hypothesis H0: π1 = 0,...,πL = 0.
Rejection of this hypothesis con�rms the choice of instruments provided the instruments are not
endogenous.

Before applying 2SLS to the data, I summarize here the asymptotic properties of the direct
and reverse 2SLS estimator for our EIV model. The formal proofs are given in Appendix B. Here,
we need three assumptions which were already introduced informally.

Assumption C.1: orthogonality conditions
E[Z ′u] = E[Z ′v] = E[Z ′e] = 0 .

Assumption C.2: rank conditions
rankE[Z ′Z] = L with L ≥ 1, and rankE[Z ′x̃] = rankE[Z ′ỹ] = 1.

Assumption C.3: homoskedasticity assumption
E[ε2Z ′Z] = σ2

εE[Z ′Z], where ε = v − βu.

Proposition 3: Under Assumptions C.1-C.3, the direct 2SLS estimator de�ned in (24) is con-
sistent for β and asymptotically normally distributed as

√
T (β̂2sls − β) ∼ N(0, σ2

εA
−1) , (26)

where A ≡ E(x̃′Z)E(Z ′Z)−1E(Z ′x̃).

Proposition 4: Under Assumptions C.1-C.3, the reverse 2SLS estimator de�ned in (25) is con-
sistent for β and asymptotically normally distributed as

√
T (β̂r2sls − β) ∼ N(0, σ2

εA
−1) . (27)

A direct corollary to Propositions 3 and 4 is that
√
T (β̂2sls − β)

d→
√
T (β̂r2sls − β). This result

complements Bartelsman's (1995, p.61) �nding on the relationship between the direct and reverse
2SLS, which are related to the squared correlation between the projections of x and y on the
instruments Z (equation (28) below). The next corollary states that this correlation converges
asymptotically to 1, and implies that the direct and reverse 2SLS are asymptotically equivalent.

Corollary 2: The relationship between β̂2sls andβ̂r2sls is

β̂2sls = β̂r2sls[(ỹ
′PZ x̃)−1ỹ′PZ x̃(x̃′PZ x̃)−1x̃′PZ ỹ]. (28)

Asymptotically
(ỹ′PZ x̃)−1ỹ′PZ x̃(x̃′PZ x̃)−1x̃′PZ ỹ

p→ 1. (29)

Bartelsman (1995) concluded that the direct and reverse 2SLS estimates are equal, even in
�nite-samples, if Z contains only one instrument. Corollary 2 extends his result, asymptotically,
to the case of L ≥ 1 instruments. The problem when using only one instrument, is that estimation is
less precise than estimation results from over-identi�ed 2SLS, given small sample size. Bartelsman
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also claimed that the bias of reverse 2SLS increases as the true parameter β becomes smaller. I
will show by performing Monte Carlo simulation that the actual cause of this bias is the weak
instrument, and in fact the bias increases as the instrument becomes weaker.

4 Evidence of Increasing returns to Scale

4.1 Presentation of data

The data set used in this work comes from the U.S. Bureau of Labor Statistics (BLS), especially the
historical KLEMS database for 1949-2001.4 The BLS's Multifactor Productivity (MFP) program
publishes annual measures of output and combined input quantity indexes, which are calculated
using the Törnqvist index formula. The combined input is an aggregate of capital, labor, energy,
material and purchased business services inputs. The associated output and input prices are also
provided. Twenty one manufacturing sectors including three aggregate sectors are considered in
this study. The input and output growth indexes x and y correspond to the �rst-di�erence of
inputs and output quantity indexes, respectively.

Choice of instruments Choosing instruments is often a di�cult task in practice. A valid in-
strument must satisfy two conditions, the exogeneity and the rank condition, which are formally
stated in Assumptions C.1 and C.2. In empirical production analysis, prices are typically assumed
to be valid instruments. Studies by Staiger and Stock (1997), Shea (1997), Stock and Yogo (2002a,
2002b) and Hahn and Hausman (2002) show that, in addition to the two classical requirements, a
valid instrument must also be highly correlated with the endogenous variable. Instruments which
do not have a high degree of explanatory power, can magnify the bias of 2SLS. Fortunately, the
degree of the correlation between instruments and endogenous variables can be measured, and
the quality of instruments is statistically testable. However, there is no formal test of instru-
ment exogeneity without imposing subjective decisions. For example, usually we assume that one
set of instruments which guarantees the just-identi�cation are exogenous and test only the over-
identifying restrictions. I consider input prices to be exogenous.5 The changes (�rst-di�erences) in
the price of capital, labor, energy, material and services make up my set of instruments, which is
denoted by Z. The prices expressed in level as instrument set have also been considered, but the
�rst-stage F statistics show that the prices expressed in �rst-di�erence are more powerful, when
its come to explaining the regressor.

4.2 Estimation results

Equation (1) is estimated using OLS and 2SLS with the instrument set in which the weakest
instrument is dropped. The main outcomes of these estimations are summarized in Table 1 and
2, which report the estimates of returns to scale and technical progress parameters, respectively.
The values in the parenthesis are the t-ratio for testing the null hypothesis that β = 1 and α = 0.

4See BLS website http://www.bls.gov/mfp/. The data for 1950, 1951 and 1952 are missing. An older version of
this data set was used by Diewert and Fox (2008).

5I do not include the output prices in the instrument set, for two reasons. First, the output prices cannot be
directly observed, the prices provided by database are computed as the ratio of annual pro�t and output quantity.
Thus some errors can a�ect the output price index. Second, the exogeneity of output price is particular questionable
when the market is imperfect.

10



Table 1: Estimates of returns to scale
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Table 2: Estimates of technical progress

Sector D-OLS R-OLS D-2SLS R-2SLS

Manufacturing 0.006 (2.11) 0.002 (-1.04) 0.003 (0.92) 0.002 (0.62)

Nondur. Goods 0.002 (0.72) -0.002 (1.79) -0.008 (-1.29) -0.011 (-1.90)

Food & Kindred Prod. 0.014 (3.54) -0.004 (1.93) 0.007 (0.01) -0.010 (-1.05)

Textile Mill Prod. 0.024 (8.94) 0.021 (-7.80) 0.024 (8.50) 0.024 (7.17)

Apparel & Related Prod. 0.011 (4.83) 0.008 (-3.93) 0.011 (4.07) 0.003 (0.23)

Paper & Allied Prod. 0.000 (-0.01) -0.004 (1.90) -0.002 (-0.31) -0.004 (-0.75)

Printing & Publishing -0.010 (-2.46) -0.008 (5.60) -0.013 (-0.01) -0.025 (-5.10)

Chem. & Allied Prod. 0.005 (0.70) -0.004 (1.69) -0.006 (-0.59) -0.029 (-2.36)

Petroleum Re�ning 0.000 (-0.27) -0.001 (0.86) -0.001 (-0.64) -0.002 (-1.33)

Rubber & Plastic Prod. 0.003 (0.88) 0.000 (0.15) -0.004 (-0.73) -0.007 (-1.17)

Durable Goods 0.011 (3.57) 0.006 (-2.86) 0.010 (2.87) 0.009 (2.51)

Lumber & Wood Prod. 0.013 (2.93) 0.008 (-1.78) 0.011 (2.44) 0.011 (2.18)

Furniture & Fixtures 0.003 (1.26) 0.001 (-0.69) -0.001 (-0.22) -0.002 (-0.63)

Stone, Clay & Glass 0.002 (0.54) 0.000 (0.26) -0.005 (-0.90) -0.006 (-1.18)

Primary Metal Ind. -0.001 (-0.25) -0.001 (0.39) -0.002 (-0.37) -0.002 (-0.40)

Fabricated Metal Prod. 0.000 (0.10) -0.001 (0.28) -0.002 (-0.68) -0.002 (-0.76)

Ind. Machinery, Comp.Eq. 0.018 (3.52) 0.008 (-2.44) 0.014 (2.41) 0.012 (1.81)

Electric & Electr. Eq. 0.025 (5.49) 0.013 (-4.16) 0.024 (4.41) 0.021 (3.10)

Transportation Equip. 0.005 (1.33) 0.003 (-1.01) 0.004 (1.04) 0.003 (0.65)

Instruments 0.015 (3.56) 0.009 (-2.34) 0.012 (2.48) 0.009 (1.77)

Misc. Manufacturing 0.010 (1.90) 0.001 (-0.36) 0.018 (2.15) -0.053 (1.20)

Average 0.007 0.003 0.004 -0.003

Compared with Diewert and Fox's (2008) estimation results, our OLS estimator produces sim-
ilar results which show that most sectors exhibit increasing returns to scale. Our results are also
similar to those found by Koebel and Laisney (2010) who use the same data. The estimates rate
of returns to scale from the direct OLS regression averages to about 1.117 and the reverse OLS
regression averages to about 1.377, the average di�erence between direct and reverse estimates is
0.26. As already noted in Section 3, this di�erence is mainly due to the opposite bias of the direct
and reverse OLS. Diewert and Fox (2008) claimed the legitimacy of OLS estimation, but both
type of OLS estimates are obviously inconsistent in the EIV framework. Despite the fact that the
null hypothesis of constant returns to scale can generally be rejected at 5% level of signi�cance.
For few sectors the results are contradictory. For instance, the direct OLS regression suggests a
statistically signi�cant decreasing returns to scale of 0.468 for the �Food & Kindred Prod� sector.
On the other hand, the reverse OLS reports an increasing returns to scale of 2.083 for the same
sector. Similarly to Diewert and Fox (2008), Table 2 shows that the estimates of technical progress
are low and insigni�cantly di�erent from zero at the 5% level of signi�cance for a majority of
estimates.

A simple response to the weak instruments problem is to limit the number of instruments used,
for reference see Donald and Newey (2001) and Cameron and Trivedi (2008). Dropping the weakest
instrument (selected by examining the �rst-stage regression) does not change dramatically the
estimation outcomes, but the average �rst-stage F statistic is signi�cantly increased. The direct
and reverse 2SLS estimates are closer than those of the OLS estimates, except for two sectors,
�Appeared & Related prod� and �Misc. Manufacturing�. Theoretically, according to Propositions
3 and 4, the direct and reverse 2SLS are asymptotically equivalent. Nevertheless, a relatively small
di�erence is due to the �nite sample bias, which is formally given by Hahn and Hausman (2002).
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The 2SLS estimates suggest larger degree of returns to scale than the OLS, all 2SLS estimates of
returns to scale are signi�cantly non-decreasing, and these outcomes are much more plausible than
Hall's (1990) results. For instance, Hall reports direct and reverse estimated returns to scale of
-0.21 and 139.47, respectively for �Chem & Allied prod� sector and I obtain 1.50 and 2.25. We can
also notice that, for example, the �Lumber & Wood Prod� sector exhibits constant returns to scale
and positive technical progress e�ects (according to the 2SLS estimate). Therefore, we can say
that productivity growth of this sector is mainly driven by technical progress. The same results
are also found for the �Textile Mill Prod� and �Instruments� sectors.

Four di�erent estimation outcomes are reported in Tables 1 and 2, they are the direct OLS,
the reverse OLS, the direct 2SLS, and the reverse 2SLS. Thus, we have to ask here the question
of which estimator should be preferred in practice. In order to answer this question, we �rstly
consider the OLS estimators versus the 2SLS estimators, then the direct regressions versus the
reverse regressions.

4.2.1 OLS estimators versus 2SLS estimators

Proposition 1-4 already pointed out the consistency of 2SLS estimations and the inconsistency of
OLS estimations in the EIV framework. However, weak instruments lead to a 2SLS estimator
with non-normal asymptotic distribution, so that conventional IV inference is misleading. Two
consequences of the weak instruments problem are the introduction of bias and the loss in precision.
Cameron and Trivedi (2008, p106, 107) illustrate these problems with two simple relationships.
First, the 2SLS relative bias, which is the ratio of the 2SLS bias to the OLS bias, can be expressed
as

plimβ̂2sls − β
plimβ̂ols − β

=
Cor[x̂, ε]

Cor[x, ε]
· 1

R2
, (30)

where x̂ and R2 denote respectively the �tted value and the coe�cient of determination from the
regression of x̃ on Z. In practice, the term Cor[x̂, ε]/Cor[x, ε] is close to zero (but probably not
null) which represents a relatively small �nite-sample bias. When an instrument set is weak, the
R2
p is low, say 0.1, for example. As a consequence, this �nite-sample bias is multiplied by 10.

Second, the variance of the 2SLS estimator is

V [β̂2sls] =
σ2
ε/x̃

′x̃

[(Z ′x̃)2/(Z ′Z)(x̃′x̃)]
. (31)

We notice that the numerator of (29) is the variance of a classical unbiased OLS estimator; the
denominator is the squared sample correlation coe�cient. In the case where the squared sample
correlation coe�cient between Z and x̃ equals 0.1, the standard error of the 2SLS estimator is 10
times larger than the standard error of OLS.

There is not a unique de�nition of the weak instrument problem. Cameron and Trivedi (2008)
de�ne a weak instrument set as one for which the F statistic for the regression of x̃ on Z (which
is a function of R2) is small. A more precise de�nition is given by Stock and Yogo (2002b), who
consider that a set of instruments is strong when the 2SLS relative bias is at most 10% (or 20%).
Otherwise, the instruments are weak. For example, when four instruments are used, Stock and
Yogo report that the null hypothesis of a relative bias larger or equal to 20% can be rejected in
favor of the alternative at the 5% level of signi�cance, if F ≥ 6.72. The threshold value of F is
10.29 for a more rigorous test with the null hypothesis that the relative bias is larger or equal to
10%. On the other hand, the 2SLS estimation with a F statistic less than 5, produces problematic
estimates (more bias together with less precision w.r.t. OLS estimates). The weak instrument issue
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explains the contradictory results of 2SLS estimation by Hall (1990) and Basu and Fernald (1997).6

The average �rst-stage F statistics of our 2SLS by dropping the weakest instruments reaches 7 for
direct regression and 10 for reverse regression, which means the estimates have corrected at least
80% of the inconsistency of OLS.

4.2.2 Direct regressions versus reverse regressions

Direct OLS and reverse OLS Proposition 1 and 2 provide us a guidance to discuss the
inconsistency and e�ciency of OLS. Let us for instance consider the case of β = 1 . The direct
OLS is more biased than the reverse OLS when σ2

u > σ2
v , otherwise, the reverse OLS is more biased.

When σ2
u = σ2

v , the direct OLS is more biased than the reverse OLS as long as β > 1. Since both
factors which a�ect the bias, namely, the true value of β and the ratio of σ2

u and σ2
v , are not

observed, it is hard to say which estimator should be preferred in term of consistency. However,
by assuming that the latent variable x∗ and the error terms are normally distributed, Corollary 1
points out that the variance of the direct OLS estimator is always smaller than the variance of the
reverse OLS estimator.

Direct 2SLS and reverse 2SLS Under the assumption that the instrument set used is valid,
Propositions 3 and 4 point out that both direct and reverse 2SLS regression estimate consistently
the true value of β with the same e�ciency. However, there are three interesting points which
emerge from examination of the empirical results.

First, the direct 2SLS estimates di�er from the reverse 2SLS estimates due to �nite-sample
bias. According to Propositions 3 and 4, the di�erence converges asymptotically to zero when the
F -test rejects the hypothesis of weak instruments. I found some empirical (�nite sample) support
for this result, as the di�erences between the direct and reverse 2SLS estimates are often smaller
than those obtained with OLS.

Second, the F statistics of the reverse 2SLS (the F statistic of the regression of y on Z) are
generally larger than those of the direct 2SLS (the F statistic of the regression of x on Z). In order
to explain this phenomenon, recall the model structure, ỹ = βx̃∗ + v − βu. The instrument set Z
is assumed to be exogenous w.r.t. u and v, and correlated with the latent variables x∗. Then by
construction the F statistic of the reverse regression is larger when β > 1. The di�erence between
the F statistics of the direct and reverse 2SLS regression increases with the degree of returns to
scale. Therefore, the comparison of F statistics can be viewed as a sort of indicator of increasing
returns to scale.7 In our 2SLS estimation results the reverse regressions have a larger �rst-stage F
statistic and generally the estimated returns to scale are larger than 1. For example, both direct
and reverse 2SLS indicate that the �Chem & Allied Prod� sector exhibits strong increasing returns
to scale, 1.498 and 2.249, the �rst-stage F statistic of direct regression is 4.78, much smaller than
its reverse counterpart 10.91.

Third, the empirical evidence and the Monte Carlo simulation (see next section) seem to show
that in a �nite sample, the reverse 2SLS estimator is less e�cient than the direct 2SLS estimator
when instruments are weak. In the �Misc. Manufacturing� sector for instance, the reverse 2SLS
estimate for the returns to scale is 5.362 (with F = 1.75) whereas the direct 2SLS estimate is
0.436 (with F = 1.46). Even more exaggerated results are given by Hall (1990), the reverse 2SLS
estimator suggests increasing returns to scale of 139.47 for �Chem & Allied Prod� sector and 33.53
for �Food & Kindred Prod� sector. Bartelsman (1995) also found the same results by using Monte
Carlo simulations. An intuitive explanation is that the 2SLS estimator tends to behave like the
inconsistent OLS estimator when the set of instruments is weak, and the 2SLS regression produces

6For instance, the average �rst-stage F statistics of 2SLS estimation is 3, in the empirical study of Basu and
Fernald (1997).

7However, this claim holds only if the errors are relatively small.
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a much less precise estimation result. Since Corollary 1 pointed out that the direct OLS is always
more e�cient that the reverse OLS, therefore, we can think that the reverse 2SLS is also less
e�cient than the direct 2SLS. However, this suggestion needs to be con�rmed by working out
formally the �nite-sample properties of the direct and reverse weak 2SLS estimators.

So far, I summarize here the theoretic results and the empirical evidences presented in this
paper. 1) The direct and reverse OLS estimators are biased in opposite directions. 2) The direct
OLS is asymptotically more e�cient than the reverse OLS. 3) The direct and reverse 2SLS are
consistent and asymptotically equivalent when instruments are not weak. 4) The direct 2SLS
seems to be more precise than its reverse counterpart when instruments are weak. 5) The reverse
2SLS regression has larger �rst-stage F statistics than the direct 2SLS. In the next section all these
points will be illustrated by Monte Carlo simulations.

5 Monte Carlo Simulation

Informally, Monte Carlo simulation is essentially a way to generate many arti�cial �nite samples
from a parametrized model. The statistics of interest are calculated on each of these samples and
analyzed. Here, the experiment is designed to con�rm the results of our analytical development.

Data generating process By using a pseudo-random number generator, I simulate �ve series
of sample size T = 50 of normally distributed exogenous variables, which are denoted by z1,..., z4
and e. The �rst four variables are considered as instruments. The series of latent variables, x∗ and
y∗ are built as

x∗ = π1z1 + π2z2 + π3z3 + π4z4 + e ;

y∗ = α + βx∗ .

The true value of α and β are respectively 0.001 and 1.5. Without loss of generality, I restrict
π1 = π2 = π3 = π4 ≡ q. The term e follows a zero-mean normal distribution with standard error
equals 4. The coe�cient q adjust the correlation between latent variables and instruments, hence
the strength of the instrument set. The observable variables x and y are additively a�ected by u
and v as in (2). The error terms u and v follow a zero mean normal distribution with the same
standard error σu = σv = 2.

Results The statistics of interest, including the mean of OLS and 2SLS estimates, the corre-
sponding standard error, the average �rst-stage F statistics and the ratio of average bias are
reported in Table 3 for the direct and reverse regressions. Figure 1 provides the empirical dis-
tributions of the estimates generated by six Monte Carlo experiments. Each experiment, of one
thousand replications, corresponds to the model with di�erent quality of instruments.
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Table 3: Monte Carlo results

q 0.1 0.5 0.7 0.8 9 1.2

Direct Regression

Mean(F) 1.07 2.61 4.19 5.11 6.31 10.27

Mean(β̂ols) 0.75(0.14) 0.85(0.15) 0.90(0.14) 0.93(0.14) 0.97(0.13) 1.06(0.13)

Mean(β̂2sls) 0.80(0.75) 1.27(0.42) 1.36(0.37) 1.40(0.30) 1.41(0.28) 1.45(0.20)

Bias2sls
Biasols

94% 35% 23% 17% 16% 11%

Reverse Regression

Mean(F) 1.12 3.22 5.38 6.67 8.15 13.94

Mean(β̂ols) 2.27(0.51) 2.08(0.37) 2.00(0.34) 1.94(0.31) 1.92(0.28) 1.80(0.22)

Mean(β̂2sls) 3.28 (26.03) 1.86(1.17) 1.57(1.97) 1.64(0.46) 1.60(0.36) 1.56(0.23)

Bias2sls
Biasols

231% 62% 14% 31% 24% 18%

Figure 1: Simulated distribution of estimators
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f) Experiment with q=1.2

Six �gures illustrate the simulated distributions of direct and reverse OLS/IV estimators of β with di�erent value of q. Simulated
distributions of the direct (black) / reverse (gray) OLS and 2SLS are respectively depicted by a continuous and dashed line. The vertical
straight line represents the true β = 1.5.

The parameter q in Table 3, varies from 0.1 to 1.2, and as a direct consequence the F statistic
increases from 1.07 to 10.27 for direct 2SLS and from 1.12 to 13.94 for reverse 2SLS. We notice
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that the F statistics of reverse 2SLS are larger than those of direct regressions. If we run a series of
experiments with β < 1, the opposite results can be found. The simulated distribution of estimators
in Figure 1, show that neither direct OLS nor reverse OLS estimators can approximate the true
value of β. The direct OLS estimators, however, are more precise than their reverse counterpart.
Given the parametrization of this DGP, the reverse OLS estimates are less biased than the direct
OLS estimates (which illustrates Corollary 1). The distributions of the 2SLS estimator in Figure
1 shows that the �nite-sample bias of 2SLS estimator is essentially dependent on the strength of
the instruments. When q is high, both direct and reverse 2SLS estimates are close to the true
value of β. For instance, for q = 1.2 the direct and reverse 2SLS estimates are respectively 1.45
and 1.56. They have corrected about 89% and 82% of the bias of OLS estimations. On the other
hand, the 2SLS estimator produces a particularly bad result when instruments are weak. For
example, when q = 0.1 the instruments are too weak to reduce the bias (F equals 1.07 and 1.12).
In the reverse regression, the 2SLS estimator is even worse than OLS (the relative bias of 2SLS is
231%). Therefore, I believe that the weak instrument problem is the main reason for explaining the
Hall's implausible results. Finally, the main message which we learned from this series of Monte
Carlo simulations, is that the relative bias and the standard errors of 2SLS estimators decrease
progressively with the quality of instruments which is characterized by �rst-stage F statistics.

6 Conclusion

Following the theoretical developments, the empirical outcomes of this paper provide evidence of
increasing returns to scale and relatively small technical progress e�ects. Compared with prior
studies, including Hall (1990), Bartelsman (1995), Basu and Fernald (1997) and Diewert and Fox
(2008), this paper contains a more complete econometric analysis and more convincing empirical
results on the estimation of returns to scale.

In this paper, a comparative study between the OLS and 2SLS estimators for the direct and
reverse regression models is conducted within the EIV framework. Our �ndings suggest that the
2SLS is clearly a better estimation strategy, because both direct and reverse 2SLS are consis-
tent and they are asymptotically equivalent. The gap between direct and reverse 2SLS estimates
are generally smaller than those of OLS estimates. Both empirical evidences and Monte Carlo
simulations show that the reliability of 2SLS estimates is highly dependent on the strength of
the instruments. This �nding implies that the weak instrument test needs to be systematically
included in empirical studies. The next step of research on this topic may be oriented towards
exploring richer databases, such as the four-digit NAICS manufacturing industries database from
BLS or the six-digit NAICS database from NBER-CES, and using the panel data analysis. A fur-
ther purpose is to generalize these �ndings to nonlinear speci�cations of the production technology
along the lines of Kumbhakar and Tsionas (2011).
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Appendix

Appendix A: Statistical Properties of the direct and reverse OLS estimators

A.1 Proof of Proposition 1

The density function of the direct OLS estimator, β̂ols = sxy/sxx, see Cramer (1946):

fβ̂ols(β) =
Γ(T2 )

√
πΓ(T−12 )

· H
T−1
2

h
T−2
2

20 (h20β2 − 2h11β + h02)T/2
.

We perform a change of variable.

S =
h20
√
T − 1√
H

(β̂ols − β21) ,

where β21 ≡ h11/h20. Thus, the density function of this new variable is

fS(s) =

√
H

h20
√
T − 1

Γ(T2 )
√
πΓ(T−12 )

· H
T−1
2

h
T−2
2

20 (h20β2 − 2h11β + h02)T/2

=
Γ(T2 )√

π(T − 1)Γ(T−12 )
[
h20
H

(h20β
2 − 2h11β + h02)]

−T/2

=
Γ(T2 )√

π(T − 1)Γ(T−12 )
[(

s2

(T − 1)
+ 2

h20
√
Hβ21s

H
√
T − 1

+
h220β

2
21

H
)

−2(
h11
√
H

H
√
T − 1

s+
h11h20
H

β21) +
h20h02
H

]−T/2

where β21 = h11/h20 and H = h20h02 − h211. Therefore,

fS(s) =
Γ(T2 )√

π(T − 1)Γ(T−12 )
[1 +

s2

(T − 1)
]−T/2 .

It implies that S is distributed as a Student's distribution with degree of freedom T − 1. Hence, the

variance of S is T−1
T−3 , and the variance of β̂ols is

V (β̂ols) =
H

h220(T − 3)
.

Replacing H and h20 by their expressions, then we �nd

V (β̂ols) =
1

T − 3
[

σ2v
σ2 + σ2u

+
β2σ2σ2u

(σ2 + σ2u)2
] .

A.2 Proof of Proposition 2

By permuting the indexes of the density function of the direct OLS estimator, we obtain the density

function of ρ̂ols ≡ sxy/syy = 1/β̂rols.

fρ̂ols(ρ) =
Γ(T2 )

√
πΓ(T−12 )

· H
T−1
2

h
T−2
2

02 (h02ρ2 − 2h11ρ+ h02)T/2
.

The reverse OLS estimator is the inverse of ρ̂ols, its density function is obtained from fs after a change in

variables β = 1/ρ.
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fβ̂rols(β) =
Γ(T2 )

√
πΓ(T−12 )

·
H T−1

2

β2h
T−2
2

02 (h02β−2 − 2h11β−1 + h02)T/2
.

This change of variable makes the density function even more nonlinear and hard to solve. So that, in

order to obtain the variance I prefer to use directly the density function of ρ̂ols. Similarly, de�ne a variable

P =
h02
√
T − 1√
H

(ρ̂ols − β12) ,

where β12 ≡ h11/h02, we can show that P follows a Student distribution of degree of freedom T − 1.
Therefore the variance of ρ̂ols is

V (ρ̂ols) =
1

T − 3
[

σ2u
β2σ2 + σ2v

+
σ2σ2v

(β2σ2 + σ2v)
2
] .

By using a �rst order Taylor expansion of 1/ρ̂ols around E(ρ̂ols) and assume that E(ρ̂ols) 6= 0, the variance
of the reverse OLS estimator can be approximated as

V (β̂rols) '
1

E(ρ̂ols)4
V (ρ̂ols)

=
1

T − 3
[
(β2σ2 + σ2v)

2(βσ2σ2u + σ2vσ
2 + σ2vσ

2
u)

β4σ8
]

A.3 Proof of Corollary 1

The variance of the direct and reverse OLS estimators can be respectively rewritten as

V (β̂ols) =
1

T − 3
[
β2σ2σ2u + σ2vσ

2 + σ2vσ
2
u

(σ2 + σ2u)2
]

and

V (β̂rols) =
1

T − 3
[
(β2σ2 + σ2v)

2(β2σ2σ2u + σ2vσ
2 + σ2vσ

2
u)

β4σ8
] .

Then

V (β̂rols)− V (β̂ols) =
(β2σ2σ2u + σ2vσ

2 + σ2vσ
2
u)

T − 3
· 4 ,

where

4 =
(β2σ2 + σ2v)

2

β4σ8
− 1

(σ2 + σ2u)2

=
(β2σ2 + σ2v)

2(σ2 + σ2u)2 − β4σ8

β4σ8(σ2 + σ2u)2
> 0 .

Therefore, the variance of the reverse OLS regression estimator is always larger than the variance of the

direct OLS regression estimator.
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Appendix B: Asymptotic Properties of the direct and reverse 2SLS estimators

B.1 Proof of Proposition 3

The direct 2SLS estimator of our model can be written as

β̂2sls = [(
T∑
t=1

x̃′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tx̃t)]
−1(

T∑
t=1

x̃′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tỹt) .

Since the observable output index is ỹt = βx̃t + εt, we can rewrite the estimator as

β̂2sls = β + [(

T∑
t=1

x̃′tZt)(

T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tx̃t)]
−1(

T∑
t=1

x̃′tZt)(

T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tεt) .

Under Assumption C.2 and the law of large numbers,

(
T∑
t=1

x̃′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tx̃t)

is non singular and Assumption C.1 implies that

plim[(
T∑
t=1

x̃′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tεt)] = 0 .

Thus, we have plim[β̂2sls] = β +A−10 = β. We can write

√
T (β̂2sls − β) = [(T−1

∑T
t=1 x̃

′
tZt)(T

−1∑T
t=1 Z

′
tZt)

−1(T−1
∑T

t=1 Z
′
tx̃t)]

−1

(T−1
∑T

t=1 x̃
′
tZt)(T

−1∑T
t=1 Z

′
tZt)

−1(T−1/2
∑T

t=1 Z
′
tεt) .

Under Assumption C.2,

[(T−1
T∑
t=1

x̃′tZt)(T
−1

T∑
t=1

Z ′tZt)
−1(T−1

T∑
t=1

Z ′tx̃t)]
−1 −A−1 = op(1) .

The central limit theorem implies that

(T−1
T∑
t=1

x̃′tZt)(T
−1

T∑
t=1

Z ′tZt)
−1(T−1/2

T∑
t=1

Z ′tεt) ∼ N(0, B) ,

where B ≡ E(x̃′Z)E(Z ′Z)−1E(ε2Z ′Z)E(Z ′Z)−1E(Z ′x̃). Therefore,

√
T (β̂2sls − β) = A−1(T−1

T∑
t=1

x̃′tZt)(T
−1

T∑
t=1

Z ′tZt)
−1(T−1/2

T∑
t=1

Z ′tεt) + op(1)

and √
T (β̂2sls − β) ∼ N(0, A−1BA−1) .

Assumption C.3, namely the homoskedasticity assumption allows to simplifying the form of 2SLS asymp-

totic variance to σ2εA
−1 .
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B.2 Proof of Proposition 4

The reverse 2SLS estimator is

β̂r2sls = [(
T∑
t=1

ỹ′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tx̃t)]
−1(

T∑
t=1

ỹ′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tỹt)

= β + [(

T∑
t=1

ỹ′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tx̃t)]
−1(

T∑
t=1

ỹ′tZt)(
T∑
t=1

Z ′tZt)
−1(

T∑
t=1

Z ′tεt) .

Similarly to Proposition 3, this estimator is consistent under Assumption C.1, C.2 and C.3. plim[β̂r2sls] =
β + C−10 = β, where C ≡ [E(ỹ′Z)E(Z ′Z)−1E(Z ′x̃)]. Again, by using the central limit theorem, we have

√
T (β̂r2sls − β) ∼ N(0, C−1DC−1) ,

where D ≡ E(ỹ′Z)E(Z ′Z)−1E(ε2Z ′Z)E(Z ′Z)−1E(Z ′ỹ). Then, using Assumption D.3,

Avar[
√
T (β̂r2sls − β)] = σ2ε [E(x̃′Z)E(Z ′Z)−1E(Z ′x̃)]−1 = σ2εA

−1 .
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