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Abstract

A community faces the obligation of providing an indivisible public good. Each member is
capable of providing it at a certain cost and the solution is to rely on the player who can do it
at the lowest cost. It is then natural that he or she be compensated by the other players. The
question is to know how much they should each contribute. We model this compensation
problem as a cost sharing game to which standard allocation rules are applied and related to
the solution resulting from the auction procedures proposed by Kleindorfer and Sertel (1994).
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1. Introduction

A community faces the obligation of providing a public good (or service) for its own benefit.

It is assumed that the public good is indivisible and that each agent is capable of providing it

at a certain cost. The quality of the public good does not depend on who provides it and

individual costs are publicly known. The question is not to know whether the public good

should be provided, nor in which quantity. The question is to know who should provide the

public good and how much each agent should contribute. The division of labor within a

household or the location of noxious facilities within a region are possible illustrations of such

a problem.

This problem was first studied by Kunreuther et al. (1987) in a mechanism design perspective

and later by Kleindorfer and Sertel (1994) who proposed an auction procedure whereby each

agent makes a bid specifying the compensation he or she would ask for in exchange of being

the provider. The public good is then provided by the agent having made the lowest bid and

the required compensation is equally divided among the non-providers. This defines a non-

cooperative game whose Nash equilibria induce a solution satisfying the following properties:

– efficiency the public good is provided by the lowest cost agent

– fairness the non-providers contribute an identical amount

– non envy the non-providers have no interest in providing the public good,

the provider has no interest in non-providing the public good

These three properties define an interval of individual contributions, henceforth called "KS"

solution.

To be more precise, let ci denote the cost associated to agent i (i = 1,…,n) and assume that c1

and c2 are the lowest and next lowest cost i.e. 1 2 20 and for all 1,2.ic c c c i    Efficiency

requires that the public good should be provided by agent 1. Fairness and non-envy lead to an

identical contribution 0t  from each non-provider satisfying the following inequalities:

1 ( 1)

( 1) for all 1i

c n t t

c n t t i

  

   

or

1

1 1
for all 1ic t c i

n n
  

Hence, individual contributions must be within the interval T(c) = [c1/n, c2/n]. The lower

bound is the equal division: every agent supports the same share in the lowest cost. Indeed,

the provider's net cost is then given by c1 – (n–1)c1/n = c1/n. What about the nature of the

upper bound ? We observe that the provider's net contribution may fall below the
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contributions of the non-providers, depending upon the extend of the provider's competitive

advantage measured by the cost difference c2 – c1. It may even be negative: providing the

public good may be a source of revenue. A second question concerns the choice of a

particular compensation level within the interval T(c).

We approach these questions from a cooperative point of view using games with transferable

utility. Given a cost vector 1( ,..., ),nc c c we define a cost sharing game henceforth called

"compensation game". The core of a compensation game has interesting properties. It is non-

empty and includes the allocations associated to KS contributions. Like the KS solution, it

depends exclusively on the two lowest cost components. Furthermore, it has a regular

structure. More precisely, the core is a regular simplex. As a consequence, the nucleolus

coincides with its center of gravity that, in this case, is the average of core's vertices. It define

a particular KS solution, namely its upperbound c2/n.

A compensation game is a kind of "reverse" airport game and its Shapley value is defined by

a simple formula equivalent to the solution of the airport game. While core allocations only

compensate the lowest cost player, the Shapley value often compensate other players as well,

rendering it inadequate as a compensation rule in this context.1 The Shapley value is indeed

based on players' marginal costs and therefore it takes the entire cost distribution into account.

We show that the Shapley value belongs to the core if and only if no more than one player is

compensated.

The analysis is easily extended to the provision of several public goods. The resulting

compensation game is the sum of the compensation games associated to individual public

goods. We show that the core and the nucleolus are additive on the class of compensation

games.

The paper is organized as follows. The auction procedure proposed by Kleindorfer and Sertel

is formalized in Section 2. Cost games and airport games are introduced in Section 3. The

compensation game associated to the provision of an indivisible public good is defined in

Section 4. It is shown to be monotonically decreasing and subadditive. The core and the

nucleolus of a compensation game are characterized in the two subsequent sections. Section 7

is devoted to the Shapley value. The extension to the simultaneous provision of several

indivisible public goods is treated in Section 8. The concluding section includes a discussion

on the nature of the cost components.

1 See Dehez and Tellone (2010) for a compensation problem where the Shapley value is a compensation rule that
appears more appropriate than the nucleolus.
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2. Auctioning an indivisible public good

Each player has the capacity to provide the public good at a given cost, ci for player i. Without

loss of generality, we order players in terms of their cost:

1 20 ... nc c c    (1)

with cn > 0.

Kleindorfer and Sertel (1994) have proposed an auction procedure whereby each player

submits a sealed bid stipulating the compensation he or she requires to provide the public

good. For a given a bid profile 1( ,..., ) ,n
nb b b  the provider is identified as the first lowest

bidder:

( ) { | ( )}ji b Min j b b  

where the lowest bid ( ) i N ib Min b is equally divided among the other players.2 The utility

for player i associated to a bid profile 1( ,..., )nb b b is then given by:

1( ,..., )i nu b b 

( ) if ( )

1
( ) if ( )

1

ib c i i b

b i i b
n

 










This defines a game in normal form. Kleindorfer and Sertel show that any Nash equilibrium

1( ,..., )nb b b of this game identifies player 1 as the provider, ( ) 1,i b  who receives a

compensation 1( )b b satisfying

1 2

1
( ) ( ) ( ) where ( )i i

n
c b c c c

n
  


  

where the interval 1 2[ ( ), ( )]c c  corresponds to the interval of individual contributions

T(c) = [c1/n, c2/n] defined in the introduction. Moreover, any compensation in the interval

1 2[ ( ), ( )]c c  can be associated to a Nash equilibrium i.e. compensations in 1 2[ ( ), ( )]c c  are

fully Nash implementable through that simple auction procedure.3 Hence 2 ( )c is the

maximum equilibrium bid by player 1. Incidentally, i(c) is the maximin (prudent) bid by

player i.

In the case where 1 2c c there is a unique Nash equilibrium since the interval then reduces to a

single point: T(c) = {c1/n}.

2 Ties are broken by refering to the natural order of the players.

3 Actually Kleindorfer and Sertel show that compensation in R(c) are Nash implementable by an auction
procedure of the"kth lowest bidder" type (2 ≤ k ≤ n) with full implementation if the number of players
having a cost equal to the minimum cost does not exceed n – k + 1.
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3. Cost games and airport games

A set {1,..., }N n of players, 2,n  have a common project and face the problem of dividing

its cost. The cost of realizing the project to the benefit of the members of any given coalition

is also known. This defines a real-valued function C – a cost function – on the subsets of N.

By convention, it satisfies ( ) 0.C   The pair ( , )N C is a cost game.4 A sharing rule 

associates a cost allocation ( , )y N C to any cost game ( , )N C such that

1
( , ) ( ).

n

ii
N C C N




Airport games form a particular class of cost games.5 The project is to build a facility (e.g. a

runway) capable of meeting all players' needs. The cost of a facility meeting player i's needs

is denoted by , 0.i ic c  It is assumed that the facility whose cost is ci also covers the needs of

players with a lower cost. The associated cost game ( , )N C is then defined by:

( ) i S iC S Max c

It is a monotonically increasing and concave (and thereby subadditive) game:

( ) ( )

, ( ) ( ) ( ) ( )

S T C S C T

S T N C S C T C S T C S T

  

      

Notation: The letters n, s, t,… denote the size of the sets N, S, T,… For a vector x, ( )x S

denotes the sum over S of its coordinates, with ( ) 0x   by convention. Coalitions are

identified as ijk… instead of { , , }...i j k For any set S, \S i denotes the coalition from which

player i has been removed.

4. Compensation games

Consider a cost vector 1( ,..., )nc c c satisfying (1). If a coalition forms, it relies on the player

with the lowest cost. The associated compensation game ( , )N C is then defined by:

( ) for all ,i S iC S Min c S N S    (2)

with ( ) 0.C   In particular 1( ) .C N c The cost function C can alternatively be written as:

0 0
( ) ( ) where ( ) ( )

i S i
C S C S C S Max c


    (3)

However C0 does not define a proper airport game, because its cost components are negative.

In particular, the function C0 is superadditive.

4 For an introduction to the theory of cost allocation, see Young (1985).

5 Airport games were introduced by Littlechild and Owen (1973). See Thomson (2007) for a complete survey.
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Lemma 1 Compensation games are monotonically decreasing, subadditive and essential.

Proof Consider a compensation game ( , )N C as defined by (2). For any two coalitions S and

T in N, we have successively:

( ) ( ) 0i T i i S iS T C T C S Min c Min c      

( ) ( ) ( )i T i i S i i S T iS T C S C T Min c Min c Min c C S T          

Furthermore,

0 ( ) ( )n i i N ii N i N
c C i c Min c C N 
     

Hence the game ( , )N C is monotonically decreasing, subadditive and essential. 

Compensation games are generally not concave except in special cases like for instance if the

n–1 last cost components are equal.

Lemma 2 The compensation game defined by an ordered cost vector nc  such that

1 20 ... nc c c    is concave.

Proof Let us define ( ) ( ) ( ) ( ).C S C T C S T C S T       To check for concavity, we

have to verify that  ≥ 0 for all S and T in N.

The case where S T   is covered by subadditivity (actually  = c2 once ).S T  

If S and T are such that ,S T   there are four possible cases:

1 \ or 1 \

1

1

S T T S

S T

S T

 

 

 

It is easily verified that  = 0 in all three cases. 

Example 1 The 3-player game associated to the cost vector (3,9,15)c  is defined by:

C(1) = C(12) = C(13) = C(123) = 3

C(2) = C(23) = 9

C(3) = 15

Here c1 = 15 and the cost to be divided is 3.
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Example 2 The 4-player game associated to the cost vector (0,3,9,12)c  is defined by:

C(S) = 0 for all coalition S containing player 1

C(2) = C(23) = C(24) = C(234) = 3

C(3) = C(34) = 9

C(4) = 12

Here c1 = 0 and the cost to be divided is 0.

5. The core

An imputation y is an individually rational cost allocation:

( ) ( ) and ( ) ( ) for ally N C N y i C i i N  

The set of imputations is denoted by ( , ).I N C For essential and subadditive cost games,

( , )I N C is a non-empty subset of n of dimension 1n  . The core is the set of imputations

against which no coalition can object:

1( , ) { | ( ) and ( ) ( ) for all }nN C y y N c y S C S S N     

i.e. no coalition pays more that its stand alone cost.6 Equivalently, an imputation y belongs to

the core if and only if there is no cross-subsidization7 in the sense that every coalition pays at

least its marginal cost:

1( , ) { | ( ) and ( ) ( ) ( \ ) for all }nN C y y N c y S C N C N S S N       (4)

In general, the core is a convex polyhedron, possibly empty. Its maximal dimension is 1.n 

The core of a compensation game is non-empty. It contains the allocations corresponding to

the KS contributions:

1( ) { | ( ( 1) , ,..., ), ( )}nKS c y y c n t t t t T c     

Indeed 1if ( ) then ( ) andy KS c y N c 

( )y S 

2
2

1 1

( ) if 1 S

1
( ) if 1 S

1

c
s t s c C S

n

s
c t c C S

n

   


   



6 The concept of core of a TU-game was introduced by Gillies (1953).

7 See Faulhaber (1975).
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The core also contains the no-compensation allocation 0
1( ,0,...,0).y c Indeed, we have:

0 0
1 1( ) and ( ) ( ) for ally N c y S c C S S N   

The following proposition establishes that the core of a compensation game is a regular

simplex.8 It has full dimension if 2 0c  and reduces to 1 2{0} if 0.c c  Furthermore, the

core depends only on the two lowest cost components c1 and c2.

Proposition 1 The core of the compensation game defined by the ordered cost vector
nc  is a regular simplex whose n vertices are:

1
1

2
1 2 2

3
1 2 2

1 2 2

( ,0,...,0)

( , ,...,0)

( ,0, ,0,...,0)

...

( ,0,...0, )n

v c

v c c c

v c c c

v c c c



 

 

 

(5)

It has full dimension if 2 0c  and ( , ) {0}N C  if 1 2 0.c c 

Proof Using the alternative definition of the core given by (4), the core of a compensation

game can be written simply as

1 1 1 2( , ) { | ( ) , and 0 for all 1}n
iN c y y N c y c c y i        (6)

Indeed, if ( , )y N c we have successively:

1

2

( \ ) ( \ ) for all 1

( \1) ( \1)

y N i C N i c i

y N C N c

  

 

(6) then follows from 1( ) .y N c If now y satisfies (6) and ,S N we have successively:

1

1 2 2

if 1 : ( \ ) 0 ( ) ( )

if 1 : ( \ ) ( ) ( )

S y N S y S c C S

S y N S c c y S c C S

    

     

Hence, ( , ).y N c Translating the core – as defined in (6) – by adding the vector

2 1( ,0,...,0),c c we obtain the standard simplex 2{ | ( ) }.ny y N c  9 It has full dimension

if 2 0c  and ( , ) {0}N c  if 1 2 0.c c  

8 A simplex in
n

 is the convex hull of n affinely independent vectors. A simplex is a polyhedral set. A facet is a
maximal proper face of a polyhedral set. See Grünbaum (2003).

9 If 2 0,c  the unit simplex { | ( ) 1}
n

n
y y N


    is obtained by dividing by 2.c
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Hence the core of a compensation game is an equilateral triangle for 3,n  a regular tetrahe-

dron for 4,...n  The distance between vertices is equal to 2 2.c Its n facets have dimension

2.n  They are given by:

1 1 1 1 2 1 2

1 1 1

{ | ( ) , } { | ( ) , ( \1) }

{ | ( ) , 0} { | ( ) , ( \ ) } ( 2,... )

n n

n n
i i

F y y N c y c c y y N c y N c

F y y N c y y y N c y N i c i n

        

        

 

 
(7)

The following figure illustrates Proposition 1 for the case where 3n  and 1 20 .c c 

Referring to (6), we observe that the equal division (ED) allocation 1 1( / ,..., / )y c n c n also

belongs to the core. Except in the case where 1 2 ,c c y differs from the centre of gravity of

the core that, by regularity, is here defined by the average of core's vertices: 10

2 2
1 2

1
, ,...,

n c c
c c

n n n

 
 

 

We observe that the core of the compensation game ( , )N C defined by the ordered cost vector
nc  coincides with the core of the concave cost game ( , )N C defined by the ordered cost

vector nc  where 1 1 2and for all 1.ic c c c i   The marginal cost vectors associated to

the game ( , )N C are then precisely the core's vertices (5).

10 The centre of gravity of the core has been introduced as a solution concept by Gonzales-Diaz and Sanchez-
Rodriguez (2007).

0
1( ,0,0)y c

1 2 2( , ,0)c c c 1 2 2( ,0, )c c c

1 2 1

3 0

y y c

y

 



SV
2 3 2 1 1 2y y c y c c   

NUC

ED

KS
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6. The nucleolus

For an imputation ( , )y I N C and a coalition ( , ),S N S N  we define the gain of

coalition S at the imputation y:

( , ) ( ) ( )e y S C S y S 

as the difference between the cost of coalition S and what it contributes under y. The least

core and the nucleolus (NUC) are solution concepts that are concerned with the maximization

of these gains. An imputation y belongs to the core if ( , ) 0e y S  for all .S N The least

core is the set of imputations that maximizes the lowest loss:

( , )
,

( , )y I N C S N
S N

Max Min e y S 


It has dimension at most 2.n  If the core is non-empty, the least core is obviously a subset of

the core. The nucleolus introduced by Schmeidler (1969) goes further by comparing excesses

lexicographically so as to eventually retain a unique allocation.

We have 2 1( \1) and ( \ ) for all 1.C N c C N i c i   Using (7), the facets of the core of a

compensation game can be written as

1{ | ( ) , ( \ ) ( \ )} 1,...n
iF y y N c y N i C N i i n    

where

2

1

( \1)

( \ ) for all 1

C N c

C N i c i



 
(8)

The definition of the least core then simplifies to:

( , ) ( , \ )y I N C i NMax Min e y N i 

By regularity of the core, the least core is the set of allocations y such that 1( )y N c and

( , \ ) for alle y N i a i N 

for some real a. Using (8), we get:

2 1 1 2

1 1 1

( , \1) ( \1) ( )

( , \ ) ( \ ) ( ) ( 2,..., )i i

e y N y N c c y c

e y N i y N i c c y c y i n

    

       

The solution is given by:

1 1 2

i

y c c a

y a

  

 
where 2 .

c
a

n
 



10

The least core being uniquely defined, it coincides with the nucleolus. This proves the

following proposition.

Proposition 2 The nucleolus of the compensation game ( , )N C defined by the ordered cost

vector nc  depends only on the two lowest cost components 1 2and .c c It

is given by:

2 2 2 2 2
1 2 2 1

1
( , ) , ,..., ( ), ,...,

n c c c c c
N c c c c c

n n n n n n


   
       
   

(9)

The lowest cost player supports the cost of producing the public good and receives a

compensation from the other players. It is proportional to the second lowest cost and all

contribute the same amount. Applying (9) to the the examples 1 and 2, we obtain the

allocations ( 3, 3, 3) and ( 2.25, 0.75, 0.75, 0.75) respectively.

Given core's regularity, the nucleolus coincides with the centre of gravity of the core: it is

located at equal distance from the facets and at equal distance from the vertices. Computing

the nucleolus is simple and only requires the identification of the two lowest cost components.

As illustrated in the figure, the equal division allocation y is located on the segment joining

the nucleolus to the no-compensation allocation 1 0v y depending on the value of c1:
1 0y v  if 1 0c  and ( , )y N c if 1 2.c c

Equal charge is a well known accounting rule. It is defined by:

 
1

1
( , ) ( ) ( \ ) ( ) ( ) ( \ ) 1,...,

n

i
j

N C C N C N i C N C N C N j i n
n




 
      

 


Applying it to the compensation game defined by the ordered cost vector nc  and using

(8), we obtain exactly (9) i.e. ( , ) ( , ).N c N c 

7. The Shapley value

Consider a cost game ( , )N C and the set of player's permutations N . To each permutation

1( ,..., )n Ni i   we associate a marginal cost vector that is the allocation ( )t  whose

elements are given by:

1 1

1 1 1 2

( ) ( )

( ) ( ,..., ) ( ,..., ) for ,...,
k

i

i k k

t C i

t C i i C i i k n



 



  

The Shapley value is then simply the average marginal cost vector

1
( , ) ( )

!
N

i iN C t
n 

 


 
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It is the unique additive sharing rule that satisfies symmetry and dummy.11 Alternative axioms

have been proposed.12 The Shapley value is individually rational for subadditive cost games.

It does not necessarily belong to the core except for some classes of games like concave cost

games.

Proposition 3 The Shapley value of the compensation game defined by the ordered

cost vector nc  is given by the allocation ( , )N c where:

1
1

1 2 3
1 1 2

( , )

( , )
1

...

( , ) ...
1 2

n
n

n n n
n

n n n

c
N c

n

c c c
N c

n n

c c c c c
N c c c

n n















 



 
     



(10)

Proof The allocation defined by (10) is actually the Shapley value of the airport game defined

by a cost vector 1( ,..., )nc c satisfying the inequalities 1 1... .n nc c c   13

Using the linearity of the Shapley value and the alternative definition (3) of a compensation

game ( , )N C we get:

0( , ) ( , )N C N C  

Because the cost vector satisfies reversed inequalities 1 1...n nc c c      , we then obtain

exactly (10). 

We observe that the Shapley value and the nucleolus coincide in the particular case where

2 for all 3.ic c i  It is a consequence of the convavity of the game and the regularity of the

core.

The recursive structure of the formula allows the Shapley value to be written in matrix form

as y = A.c where A is a n n triangular matrix whose elements are:

1 1
for all and for all

( 1)
ij iia j i a i

j j i


  



with 0ija  otherwise.

11 These are the original axioms used by Shapley (1953): players with identical marginal costs pay the same
amount (symmetry) and players with zero marginal costs pay nothing (dummy). The nucleolus satisfies
symmetry and dummy but not additivity.

12 See for instance Young (1985). In the context of cost sharing it is shown that the Shapley sharing rule is the
unique rule which allocates fixed costs uniformly. See Dehez (2009).

13 See Littlechild and Owen (1973).
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Applying (10) to the examples 1 and 2, we obtain the allocations

( 4, 2, 5) and ( 4, 1, 2, 3)  respectively. Only the first allocation belongs to the core because

in the second, two players are compensated.

Proposition 4 The allocation y derived from the Shapley value of the compensation game

defined by the ordered cost vector nc  belongs to the core if and only if

none of the last 1n  players are compensated: 0 for all 1.iy i 

Proof Let ( , )y N C be the allocation derived from the Shapley value (10). If y belongs to

the core, we know from (6) that 0 for all 1.iy i  To prove the "if" part, we observe that

2 0y  implies 1 2 1 2 1 2( )y y c c c c     . Hence (6) is verified if 0 for all 1.iy i  

Actually, it suffices to check that 2 0.y  Indeed, the allocation y derived from the Shapley

value satisfies 1 1... .n ny y y  Hence 2 0y  implies 0 for all 1.iy i  This gives a single

the condition on the ci's under which the Shapley value belongs to the core:

2

3

1

2 ( 1)

n

j
j

c
c

j j






We observe that this inequality is independent of the lowest cost c1. For 3,n  it reduces to

3 23 .c c Graphically, the Shapley value is located along the line segment (SV) starting at the

nucleolus for 3 2c c and passing through the lower-right vertex 1 2 2( ,0, )c c c for 3 23 .c c

For 4,n  the inequality reads 4 3 22 6 .c c c 

8. Extension to several public goods

Let {1,..., }M m be the set of public goods to be supplied. A cost vector is associated to each

public good, h na  for good .h M The resulting compensation game is denoted by

( , ).hN C The cost game ( , )N C associated to the simultaneous provision of the m public

goods is the sum of the individual compensation games:

( ) ( )h
h M

C S C S


  where ( ) Min h
h i S iC S a

This is a general compensation game. Its core has a simple relationship to the core of the

elementary compensation games ( , ).hN C

Proposition 5 The core of a general compensation game is the sum of the cores of

the elementary compensation games:

( , ) ( , )h
h M

N C N C


  

It is a regular simplex whose vertices are the sum of the vertices of the

cores of the elementary games.
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Proof We denote by 1 2andh hc c the two lowest costs of producing public good h, with

1 20 .h hc c  We shall first show that the core of the general compensation game can be

written as:

1 1 2( , ) { | ( ) , ( ) for all }
i

n h h h
i

h M h M

N C y y N c y c c i
 

       (11)

where 1 2{ | }h h h
i iM h M c c c    is the set of public goods for which player i has the strictly

lowest cost (recalling that sums over empty sets are zero.) The sets 0 1, ,..., nM M M form a

partition of M where 0 1 2{ | }.h hM h M c c  

(i) If ( , )y N C we have:

2 1
\

( \ ) ( \ ) for all
j j

h h

h M h M h M M

y N j C N j c c j N
  

     

Since 1( ) h

h M

y N c


  we get:

1 2 for all
j j

h h
j

h M h M

y c c j N
 

   

(ii) If y satisfies (11) and ,S N we have successively:

0

1 2 1
\

( ) ( )
i i

h h h
h

h M i S h M i N S h M h M

C S C S c c c
     

       

and

0

1 2
\

1 1 2 1 1 2
\ \

( \ ) ( )

( ) ( )

i

i i i

h h

i N S h M

h h h h h h

h M i N S h M h M i S h M i N S h M

y N S c c

y S c c c c c c

 

       

 

      

 

      

Hence ( ) ( ) for ally S C S S N  and ( , ).y N C

(iii) Translating (11) by adding the vector nb defined by

2 1( ) 1,...,
i

h h
i

h M

b c c i n


  

we obtain the standard simplex 2{ | ( ) }.n h

h M

y y N c


   Indeed

0

1 2 2

( , ) and

0 and ( )
i

h h h
i

h M i N h M h M

y N C z y b

z z N c c c
   

  

      



recalling that 1 2 0for all .h hc c h M  This confirms that ( , )N C is a simplex.
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(iv) The n vertices 1,..., nv v of ( , )N C are obtained by subtracting b from the vertices of the

simplex 2{ | ( ) }.n h

h M

y y N c


   Following (5), they are defined by:

1 2
\

1 2

( ) if

( ) ( ) if

i i

i

j h h j
i i

h M h M M h M

h h j
i

h M h M

v c c v h i j

c c v h i j

  

 

   

   

  

 
(12)

where 1( ),..., ( )nv h v h are the vertices of the elementary game ( , )hN C given by:

0 1

1 2

0 2

0 2

for all \ and ( ) if

if

for all \ and ( ) if

0 if

for all and for all ( ) if

0 if

h j h
i

h h

h j h
i

j h
i

h M M i i v h c j i

c c j i

h M M i i v h c j i

j i

h M i v h c j i

j i

   

  

   

 

  

 

where for all 0\ ,h M M ih denotes the lowest cost player i.e. 1 .h

h

i
a c This concludes the

proof of Proposition 1. 

The core of a general compensation game being a regular simplex, the nucleolus coincides

with the center of gravity that is easily characterized using (12). Furthermore, it is the sum of

the nucleoli associated to the elementary compensation games.

Corollary The nucleolus of the aggregate compensation game is given by:

2 2 1

1
( , ) ( ) ( ( ) ( )) ( , )

i

i i h
h M h M h M

N C c h c h c h N C
n

 
  

     

Hence, the core and the nucleolus (as well as the Shapley value) are additive on the set of all

general compensation games.

Example 3 Consider the combination of Example 1 with the game associated to the cost

vector 2 (18,12,15).a  Given the cost vector 1 (3, 9,15)a  used in Example 1, the resulting

compensation game is given by:

C(1) = 21, C(2) = 21, C(3) = 30

C(12) = 15, C(13) = 18, C(23) = 21

C(123) = 15
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Its nucleolus is the sum of the nucleoli: (2,5,8) ( 3,3,3) (5, 2, 5).   The public goods are

provided by player 1 and player 2 respectively.

9. Concluding remarks

The paper of Kleindorfer and Sertel (1994) provides non-cooperative foundations to the

interval T(c) of individual contributions resulting from the properties of efficiency, fairness

and non-envy. The present paper provides cooperative foundations. In both approaches, the

question of the nature of the cost components emerges naturally. The answer depends on the

context.

If the problem concerns a chore within a household, like for instance moving the garbage,

some may be willing to pay more than others to avoid that unpleasant task. This is reflected in

the individual cost components that measure the disutility associated to that task. The

individual cost components may as well reflect the capacity – physical and/or mental – of

each player to carry a particular task within a community.

If the problem concerns the location of a noxious facility, like for instance a waste incinerator,

ci is understood as the nuisance value for player i expressed in monetary terms, to which one

may add the cost of building the facility. This is however not necessary if this cost is

independent of who host the facility. This is a fixed cost that should be divided equally among

the players. Indeed, if c is the cost vector defined by i ic c F  for some fixed cost F > 0,

( ) if and only if ( )
F

t T c t T c
n

   

and the nucleolus is given by:

( , ) ( , ) for all 1,...,i i

F
N c N c i n

n
   

The cost component may also include a possible benefit related to being provider. This is the

case if the problem concerns the location of a desirable facility.14 Our analysis covers such

cases if the benefit never exceeds the cost, ensuring that the ci are all non-negative. This

excludes the case where some players would be willing to pay to be provider. The auction

procedure proposed by Kleindorfer and Sertel still applies in this case but the stability of KS

contributions is not ensured: some (or all) associated cost allocations may not belong to the

core. KS contributions may even fail to be individually rational. The problem is that the

compensation game is not subadditive, resulting in an empty core. There may even be no

14 Kleindorfer and Sertel suggest the location of European institutions or scientific meetings as possible
examples.
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imputations. This is for instance the case for the cost vector ( 6, 3,2)c    for which we have:

3( ) [ 2, 1] and ( ) { | ( 6 2 , , ), 2 1}T c KS c y y t t t t           

Obviously no KS allocation is individually rational. This indicates that the non-negativity of

the cost components is an essential assumption. This also suggests that the way the problem is

modeled here is not appropriate to a situation where some players are willing to pay to be

provider while some others are willing to be compensated.
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