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ABSTRACT

A group of firms consider collaborating on a project which requires a combination of
elements which are owned by some of them. These elements are nonrival but excludable
goods i.e. public goods with exclusion like for instance knowledge, data or informations,
patents or copyrights. We address the question of how firms should be compensated for the
goods they own. We shown that this problem can be framed as a cost sharing game to which
standard allocation rules like the Shapley value, the nucleolus or accountings formulas can be
applied and compared. Our analysis is inspired by the need for a cooperation between
European chemical firms within the regulation program REACH which requires them to
submit by 2018 a detailed analysis of the substances they produce or import.
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1. Introduction

Imagine the following situation. A group of firms consider collaborating on a project which

requires a combination of elements which are owned by some of them. These elements are

nonrival but excludable goods i.e. public goods with exclusion like for instance knowledge,

data or informations, patents or copyrights.1 The question is not to share the cost of these

goods because they are already available. Their costs are sunk. The question is instead to

possibly compensate the firms who own these goods, knowing that any additional cost would

be shared independently. This problem can be framed as a cost sharing game in which the

value of the grand coalition is zero. These are compensation games to which standard cost

allocation rules can be applied, taking possibly into account the relative size of the players by

assigning weights to each player e.g. firms' market shares or production volumes.

In what follows we shall use the term "data" for expository reasons and talk about "data

(sharing) games". Data games are defined on the basis of the replacement cost of the goods

involved e.g. the present cost of acquiring the data or developing alternative technologies.

The origin of the present paper is the cost sharing problem faced by the EU chemical industry,

following the requirements imposed by the European Commission under the achronym

"REACH". Each European firm must indeed submit by 2018 a detailed analysis on the

substances it produces or imports, with a particular attention to toxicity. This is a huge

program. Indeed there are about 30,000 substances and an average of 100 parameters for each

substance! The European Commission is encouraging firms to cooperate, in particular by

sharing the data they have gathered over the past.2 Beyond the cost reducing motivation, the

idea is also to avoid unecessary replications of analysis involving living beings.

To illustrate the problem, consider the simple case of three firms and a single data owned by

one firm. How much should that firm receive as a compensation? Alternatively, how much

should the other two firms pay? Asking them to cover the total value, say K, would not be

fair. Instead they should be asked to contribute one third of K and the firm owning the data

would then receive 2K/3. If there were n firms and a single data owned by t firms, the n–t

firms without data should contribute K/n and the t firms owning the data would then receive

1 To quote Drèze (1980, p.6): "Public goods with exclusion are public goods … the consumption of which by
individuals can be controlled, measured and subjected to payment or other contractual limitations."

2 Guidance for the implementation of REACH is provided by the European Chemical Agency (ECHA). For more
details, see http://echa.europa.eu/reach_en.asp. As far as data sharing is concerned, only ad hoc methods are
being proposed at this stage.
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K/t – K/n: the cost of the complete dataset is uniformly allocated among all players and the

cost of each data is uniformly redistributed to the players owning it. This turns out to be

exactly the Shapley value of the associated cost game and it coincides with the nucleolus if

t = 1. If instead t ≥ 2, the nucleolus actually excludes any compensation, a property of the

core.

Data games are essential, monotone decreasing and subadditive though they are generally not

concave. They can be decomposed into a sum of "elementary" data games, one for each data.

This is a useful feature – especially within a context involving a large number of data like

REACH – for computing the Shapley value, possibly weighted, which is then the sum of the

values attached to the elementary data games. Data games have a nonempty core as it always

contains the no compensation allocation: no coalition can object when no one is asked to pay.

In some situations the core is reduced to that trivial allocation, like for instance when each

data is owned by at least two players.

Additional results are obtained when individual datasets form a partition of the complete

dataset, a situation which fits perfectly the case of patents or copyrights.3 Partition data games

are concave and their core is a regular simplex. As a consequence, the nucleolus and the

Shapley value coincide with the core centroid which is then simply defined as the average of

its vertices. Surprisingly, simple accounting rules such as equal charge or separable costs

remaining benefits (SCRB), when applied to partition data games, result in allocations which

coincide with the Shapley value and thereby belong to the core.

A special attention is devoted to situations where there are reasons to treat players

asymmetrically, independently of the initial distribution of data. Firms engaged into a joint

project may have different size as measured for instance by their market shares. Such

situations can be accomodated by using the asymmetric Shapley value based on weights

assigned to the players. The case where some player are assigned a zero weight is of particular

importance within a context of data sharing. Some players may indeed own data while not

being otherwise part of the joint project. This is for instance the case within REACH where

independent laboratories, like university laboratories, own relevant data on chemical

substances but are not part of the submission process.

3 The particular case where datasets are nested gives rise to a type of "reverse" airport game. See Dehez (2008).
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The paper is organized as follows. Cost sharing games and their characterization in terms of

elementary cost games are introduced in Section 2 together with the concept of marginal cost

vector. Section 3 is devoted to the definition and properties of data games. Their core and

Shapley value are analyzed in the subsequent sections, including the asymmetric (weighted)

Shapley value. Accounting methods are defined and applied to data games in Section 7.

Concluding remarks are offered in the last section.

2. Cost games

A set N = {1,…,n} of players, n  2, have a common project and face the problem of dividing

its cost. The cost of realizing the project to the exclusive benefit of any coalition is also

known. This defines a real-valued function C on the subsets of N with C() = 0.4 A pair

(N,C) defines a cost game and the cost to be divided is C(N). A sharing rule  associates a

cost allocation y =  (N,C) to any cost game (N,C) such that i yi = C(N). The dual (N,C*) of

the game (N,C) is defined by C*(S) = C(N) – C(N\S). The surplus game (N,v) associated with

the game (N,C) is defined by:

( ) ( ) ( )
i S

v S C i C S


 

Cost and surplus allocations y and x are linked by the n identities 1( ), ,..., .i iy x C i i n  

Notation: The letters n, s, t,… will denote the size of the sets N, S, T,… For a vector y, y(S)

will denote the sum over S of its coordinates. Coalitions will be identified as ijk… instead of

{i,j,k}… For any set S, S\i will denote the coalition from which player i has been removed.

The set G(N) of functions defined on the subsets of some finite set N is a vector space and the

collection of 2n – 1 unanimity games

( ) 1 if
0 if not

Tu S T S 



defined for all T  N, T ≠, forms a basis of G(N).5 Here we shall use the basis formed by

the collection of 2n – 1 games

( ) 1 if
0 if not

Te S S T   



defined for all T  N, T ≠.

4 See for instance Young (1985b) or Moulin (1988, 2003).

5 These games were introduced by Shapley in 1953 to prove existence and uniqueness of the value.
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These games have been introduced by Kalai and Samet (1987) as duals of the unanimity

games: eT = uT*.6

Given a coalition S and a player i in S, the marginal cost of player i to coalition S is defined

by C(S) – C(S\i). Marginal costs play an central role in cost allocation. Let n be the set of all

players' permutations. To each permutation  = (i1,...,in)  n we associate the vector of

marginal costs () whose elements are given by:

1 1 1

1 1 1

( ) ( ) ( ) ( )

( ) ( ,..., ) ( ,..., ) ( 2,..., )
k

i

i k k

C i C C i

C i i C i i k n

 

  

   

  

It is easily seen that it defines a cost allocation: ( ) ( ).i
i N

C N 




A cost game (N,C) is essential if ( ) ( ).
i N

C N C i


 It is subadditive if S T  implies

( ) ( ) ( ).C S T C S C T   It is concave if ( ) ( ) ( ) ( )C S T C S C T C S T     for all S and T.

Hence concavity implies subadditivity: concavity is a stronger form of economies of scale

than subadditivity. Equivalently, a cost game (N,C) is concave if for all i, the marginal costs

C (S) – C(S\i) are non increasing with respect to set inclusion.7 The surplus game associated

with a subadditive (resp. concave) cost game is superadditive (resp. convex) and the total

surplus to be divided is positive if the cost game is essential.

The class of concave cost games is interesting because most solution concepts agree, as was

proved by Shapley (1971) and Maschler, Peleg and Shapley (1972, 1979):

(i) the core is the unique stable set (in the sense of von Neumann and Morgentern);

(ii) the core coincides with the bargaining set (with respect to the grand coalition);

(iii) the kernel and the nucleolus coincide;

(iv) the Shapley value belongs to the core and is centrally located.8

3. Data games

We denote by Mi the set of data owned by player i and by MS the set of data owned by

coalition S:

S i
i S

M M




6 The elementary games eT are normalized fixed costs games: coalitions containing players from T entail a fixed
cost equal to 1. They are used in Dehez (2009) to characterize the weighted Shapley value in terms of the
allocation of fixed costs, along the lines suggested by Shapley (1981b).
7 See Shapley (1971).
8 More precisely, the Shapley value is the center of gravity of core's vertices, accounting for multiplicity.
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where MN = M is the complete dataset and Mi  M for some i  N. Hence players may own no

data (Mi = ) or own the complete dataset (Mi = M). We denote by dh the cost of reproducing

data h  M, with dh > 0 for all h  M. The cost associated with a non empty coalition is the

cost of acquiring the missing data:

0
\

( ) for all
S S

h h
h M M h M

C S d d d S
 

      (1)

0where .h M hd d  This defines a class of cost games that we call "data games". Because

C(N) = 0, data games are pure "compensation" games.

In what follows we shall consider two examples involving three players and three data, with a

common cost vector. Only the distribution of data among players will change. Player 1 will

however be assumed to own no data in both examples.

Example 1 The game associated with the datasets M1 = , M2 = {1,2} and M3 = {2,3}, and

replacement cost vector d = (6, 9, 12), is given by:

C(1) = d1 + d2 + d3 = d0 = 27

C(2) = C(12) = d3 = 12

C(3) = C(13) = d1 = 6

C(23) = C(123) = 0

As a matter of illustration, the marginal costs vector associated with the permutation

 = (3,1,2) is given by () = (6,0,-6).

Lemma 1 Data games are essential and subadditive. Furthermore they are monotonically

decreasing: implies ( ) ( ).S T C S C T 

Proof M  Mi for some i implies 0( ) 0.
i

hi N i N h M
C i nd d

  
     Essentiallity then

follows from C(N) = 0. To verify subadditivity, assume S  T = . We then have:

0 0( ) ( ) 2 ( ) ( )
S T S T

h h h
h M h M h M M

C S C T d d d C S T d d C S T
   

           

Finally, if S  T we have MS  MT and ( ) ( ) 0.
S T

h hh M h M
C T C S d d

 
     

Let us now consider the case where datasets form a partition of M:

for alli jM M i j  
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If
ii h M hk d  denotes the value of the data owned by player i, the value of the data owned by

a coalition S can be written as

S i
h h ih M i S h M i S

d d k
   

    

Using (1), a "partition" data game (N,C) is then simply defined by:

0( ) i
i S

C S d k


  (2)

Lemma 2 Partition data games are concave.

Proof For any subsets S and T, we have ( ) ( ) ( ) ( ) 0C S T C S T C S C T      if they have

a nonempty intersection. Otherwise, ( ) 0C S T  and 0( ) ( ) ( ) 0.C S T C S C T d      

Looking at marginal costs, we observe that C(S) – C(S\i) = – ki for all i  S and all S  {i}

while C(i) – C() = d0 – ki > – ki. Hence marginal costs are negative. They are constant when

associated with proper coalitions and decreasing when associated with singletons. This

confirms concavity.9 The surplus game (N,v) associated with a partition data game (N,C) is

symmetric: 0( ) ( 1) .v S s d 

Example 2 The following datasets M1 = , M2 = {1} and M3 = {2,3} form a partition. The

game associated with the cost vector d = (6,9,12) is given by:

C(1) = d0 = 27

C(2) = C(12) = d2 + d3 = 21

C(3) = C(13) = d1 = 6

C(23) = C(123) = 0

Let Th = {i  N | h  Mi} denote the subset of players owning data h. In the partition case, the

Th's are singletons. An "elementary" data game (N,Ch) can be associated with each data h:

( ) 0 if

if

h h

h h

C S S T

d S T

  

  

for all S  N, S  . Clearly data games can be decomposed as sums of elementary data
games:

\
( ) ( )

S

h h
h M h M M

C S d C S
 

  

9 Notice that partition data games are not constant sum games: C(S) + C(N\S) = d0 for all S  .
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and elementary data games can be written in terms of fixed cost games:

( ) (1 ( ))
hh T hC S e S d  (3)

4. The core

An imputation y is an individually rational cost allocation:

( ) ( ) and ( ) ( ) for ally N C N y i C i i N  

Data games being essential, the set of imputations is nonempty. Actually there are cost

allocations which are better than the stand-alone costs for all players. The core is the set of

imputations y against which no coalition can object

( ) ( ) for ally S C S S N  (4)

i.e. no coalition pays more that its stand-alone cost.10 In general, the core is a convex

polyhedron, possibly empty, whose dimension does not exceed n–1. Following Shapley

(1971), the core of a concave cost game is the convex hull of its marginal cost vectors.11

Because it always contains the trivial allocation 0 = (0, 0,…, 0) defined by the absence of

compensation, the core of a data game as defined by (1) is nonempty. Indeed, C(S)  0 for all

S  N. For the game defined in Example 1, the core is the set of allocations (y1, y2, y3) such

that y1 + y2 + y3 = 0, 0 ≤ y1 ≤ 18, –6 ≤ y2 ≤ 12 and –12 ≤ y3 ≤ 6.

Proposition 1 If one and only one player owns the complete dataset M, there are core

allocations different from 0 and only that player is possibly compensated. If every data is

owned by at least two players, the core reduces to {0} and the nucleolus reduces to 0.

Proof Let y be a core allocation. If Mn = M, (4) implies y(N/i)  C(N/i) = 0 for all i  n.

Combining this with y(N) = 0, we get yi  0 for all i  n and yn ≤ 0. If each data is owned by at

least two players, C(N/i) = 0 for all i. Combining (4) with y(N) = 0, we get yi  0 for all i. This

is possible only if y = 0. The nucleolus being contained in the core, it reduces to 0. 12

10 Equivalently, an allocation y belongs to the core if and only if y(S) ≥ C(N) – C(N\S) for all S  N. There is no
cross-subsidization in the sense that every coalition pays at least its marginal cost. See Faulhaber (1975).
11 The core of a concave cost game coincides with the Weber set which is the set of all random order values. See
Weber (1988).
12 The nucleolus is a single-valued solution introduced by Schmeidler (1969). It is always defined and belongs to
the core if nonempty.
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If Mn = M and Mi  M for all i  n, the allocation yb = (b,b,…,(1-n)b) where b = C(N/n)/n > 0

belongs to the core. Indeed,

( ) ( \ ) ( ) if

( ) 0 ( ) if

by S sb nb C N n C S n S

s n b C S n S

    

    

for all coalition S  N. 

Remark 1 The absence of compensation results from the competition between the players

owning the same data. It is in particular the case if two players own the complete dataset.

In the partition case, the game is concave and consequently the core is the convex hull of the

marginal cost vectors associated with the n! players' permutations. Actually there are n

distinct marginal costs vectors and the core is a regular simplex i.e. an equilateral triangle for

n = 3, a regular tetrahedron for n = 4,…

Proposition 2 The core of a partition data game (2) is a regular simplex of full dimension

whose n vertices are v1 = (d0 – k1, – k2,…, – kn ), v2 = (– k1, d0 – k2,…, – kn),

… , vn = (– k1, – k2,…, d0 – kn).

Proof If player i is first in a given permutation he/she pays his or her cost d0 – ki. Otherwise

he/she saves the cost ki of the data he/she owns. Hence there are n distinct marginal costs

vectors each with a multiplicity equal to (n–1)! The vector vi associated with the permutations

where player i is first is defined by 0 and for alli i
i i j iv d k v k j i     . The n marginal

costs vectors v1,…, v n are affinely independent. Indeed assume that

1 1
0 and 0

n n
i

i i
i i

v 
 

  

for some 1,…,n. We then have 01
for all implying 0 for all 1,... .i

n

i j ii
k d j i n  


  

This ensures that the core is a simplex. Its vertices are connected to each other by line

segments of identical length 21/2d0. This implies its regularity. Positivity of d0 ensures its full

dimensionality. 

Remark 2 Translating and normalizing (by adding the vector (k1, k2,…, kn) and dividing by

d0) the core is transformed into the standard unit simplex. Applying this transformation to the

partition data games defined by the vector (k1,…,kn), we obtain the (strategically) equivalent

"constant" cost game defined by C(S) = 1 for all S  . 13

13 Two games (N,C) and (N,C') are strategically equivalent if '( ) ( ) ( ) for some 0 and .n
C S aC S b S a b   
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Remark 3 Looking at an elementary data game, there are two possibilities: either only one

player owns the data and we fall in the partition case, or more than one player owns the data

and the core reduces to 0.

Being a regular simplex, the core's centroid y is simply the average of its vertices:14

0 1( ,..., )i i

d
y k i n

n
   (5)

and it coincides with least core and the nucleolus.15 The only players to be compensated are

those endowed with a dataset whose value exceeds the per capita cost of the complete data

set. We shall see later that it also coincides with the Shapley value.

Marginal costs vectors in example 2 are given by v1 = (27,–6,–21), v2 = (0,21,–21) and v3 =

(0,–6,6). The resulting core's centroid is given by (9, 3, 12).y  

5. The Shapley value

The (symmetric) Shapley value of a cost game (N,C) is the average marginal cost vector:

1( , ) ( )
!

N C
n 

  


  (6)

It is the unique additive allocation rule which satisfies symmetry (players with identical

marginal costs are substitutes and pay the same amount) and dummy (players with zero

marginal costs are dummies and pay nothing). Additivity, efficiency, symmetry and dummy

are the original axioms introduced by Shapley (1953, 1981a).16

The value defines an imputation for subadditive cost games and belongs to the core of

concave cost games. Because data games can be written as sums of elementary games,

computation of the value is straightforward as a result of additivity.

Proposition 3 The Shapley value of a data game (N,C) defined by the datasets (M1,…,Mn)

and data costs (d1,…,dm) is given by:

0 1( , ) ( ,..., )
i

h
i

h M h

d d
N C i n

n t




   (7)

where th denotes the number of players owning data h.

14 See Gonzales-Diaz and Sanchez Rodriguez (2007) for a definition of the core centroid (or barycenter).
15 The nucleolus is a single-valued solution introduced by Schmeidler (1969). It is always defined and belongs to
the core if nonempty. For a definition of the least core and nucleolus, see for instance Maschler et al. (1979) .
16 There are alternative axiomatizations in particular the one proposed by Young (1985a). They are reviewed by
Moulin (2003). The nucleolus satisfies symmetry and dummy but not additivity.
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Proof The Shapley value of a fixed cost game (N,eT) is given by:

1( , ) for all

0 for all

i TN e i T
t

i T

  

 

Indeed players outside T are dummies and players in T are substitutes. The Shapley value is a

linear operator. Using (3), the value of an elementary data game (N,Ch) is then given by:

( , ) for all

for all

h h
i h h

h

h
h

d d
N C i T

n t

d
i T

n

   

 

A data games can be written as a sum of elementary data games. By additivity, the value of

the data game (N,C) defined by (M1,…,Mn) and (d1,…,dm) is given by (7). 

Hence the cost of the complete dataset is uniformly allocated among all players and the cost

of each data is uniformly redistributed to the players owning it. In Example 1, the Shapley

compensation is given by (9,–1.5,–7.5) while the compensation derived from the nucleolus is

given by (6,0,–6).

Remark 4 What a player receives increases with the cost of the data he/she she owns and

decreases with the number of players owning the same data.

Proposition 4 In partition data games, the Shapley value and the nucleolus coincide.

Proof In the partition case, the associated surplus game is symmetric. The Shapley value and

the nucleolus satisfying symmetry, they both divide the surplus equally:

0
0 0 0

1 1( ) ( )i i i

dn n
y C i d d k d k

n n n

 
      

It is the core centroid (5). Setting th = 1 for all h in (7) confirms the result. 

6. The asymmetric (or weighted) Shapley value

The weighted Shapley value allows to take into account asymmetries between players.17 Let

(w1,…wn) denote the weights assigned to the players. At this stage we assume that wi > 0 for

all i  N. The case where some players are assigned a zero weight will be considered later.

17 Weighted values were introduced in Shapley's Ph.D. dissertation and have been later axiomatized by himself
(1981b) in a cost allocation context and by Kalai and Samet (1987). The set of all weighted values contains the
core and a cost game is concave if and only if the set of weighted values and the core coincide. See Monderer,
Samet and Shapley (1992) .
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In a cost allocation context, wi determines the share of player i in a fixed cost i.e.

1( , ) ( ,..., )
( )

i
i

w
N C F i n

w N
  

for the game (N,C) defined by C(S) = F for all S  N, S ≠. More generally, the value of a

fixed cost game (N,eT) is given by:

( , ) for all
( )

0 for all

i
i T

w
N e i T

w T

i T

  

 

where w(T) is the weight of coalition T. The symmetric case corresponds to wi = 1/n and

w(T) = t/n. Using (3), the value of the elementary data game (N,Ch) associated with weights

(w1,…wn) is given by:

( , ) for all
( ) ( )

for all
( )

i i
i h h h h

h

i
h h

w w
N C d d i T

w N w T

w
d i T

w N

   

 

We observe that, for a given data h, the ratio between what two players in Th pay or receive is

equal to their weight ratio, and the same applies to players outside Th:

( , ) for all , and for all ,
( , )

i h i
h h

j h j

N C w
i j T i j T

N C w




  

Using addivity, we obtain the following proposition which generalizes Proposition 3.

Proposition 5 Given positive weights (w1,…wn), the weighted Shapley value of the data

game (N,C) defined by the datasets (M1,…,Mn) and data costs (d1,…,dm) is

given by:

0 1( , ) ( ,..., )
( ) ( )

i

i i
i h

h M h

w w
N C d d i n

w N w T




   (8)

The weighted value is not necessarily monotonic with respect to weights: what a player pays

may well decrease while his or her weight increases. Monderer, Samet and Shapley (1992)

have shown that concavity is a necessary and sufficient condition for monotonicity. This is

well illustrated by partition data games. Indeed w(Th) = wi for all h  Mi and (8) reduces to:

0 1( , ) ( ,..., )
( )

i
i i

w
N C d k i n

w N
    (9)
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In the examples 1 and 2, the Shapley compensations associated with the weights (1, 1, 2) are

given respectively by (6.75,–2.25,–4.5 ) and (6.75, 0.75,–7.5), to be compared to the Shapley

compensations (9,–1.5,–7.5) and (9, 3,–12 ) under equal weights.

So far we have considered the case where weights are positive. A zero weight can be assigned

to players who own data but are not interested in completing the dataset. Let us denote by

{ | 0}, ,iZ i N w Z N    the set of zero weight players and by Uh = Th  Z the set of zero

weight players owning data h. Consider the sequences (w) defined by i iw w  for all i  N\Z

and 0 for all .iw i Z   Then players' permutation in which a zero weight player precedes a

nonzero weight player has a zero limit probability.18 As a consequence, we have the following

proposition:

Proposition 6 Zero weight players are compensated for a data they own if and only if no

positive weight player owns the same data.

In particular, if a data is owned by a single zero weight player, he/she receives the total value

of his or her data. If a data is owned exclusively by several zero weight players, the way they

share the value of the data is indeterminate. It there is no reason to discriminate among zero

weight players, we may consider only sequences (w) where 0iw t   for all i  Z. The

resulting value of an elementary game (N,Ch) is then unchanged for nonzero weight players

while, for zero weight players, we get:

( , ) if

0 otherwise

h
i h h

h

d
N C T Z

u
   



where .h hu U Hence we have:

1( , ) for all
i

h

i h
h M h
T Z

N C d i Z
u





  

7. Accounting rules

There are various accounting rules for dividing joint costs based on players' marginal costs

computed with respect to the grand coalition. They are typically of the form:

1

1( , ) ( ( ) ) ( ,..., )
n

i i i j
j

N C MC C N MC i n 


    (10)

18 See Dehez (2009) for more details.
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where MCi = C(N) – C(N\i) is the "separable cost" of player i the i's are weights satisfying

0  i  1 for all i and ii = 1. There are two well known rules. The "equal charge" rule

which uses equal weights and the "separable costs remaining benefits" rule (SCRB) whose

weights are given by:19

( )
i

i

b

b N
 

where bi = C(i) – MCi is the "remaining benefits" of player i and b(N) = i bi.

When weights are independent of the cost game,  is an additive (actually linear) sharing rule

which satisfies the symmetry axiom but not the dummy axiom. The equal charge rule is

additive while the SCRB rule is not. The latter is however scale invariant.

For an elementary data game (N,Ch), we observe that Ch(N\i) = 0 for all i if th ≥ 2 in which

case ( , ) 0.hN C  Hence only data owned by a single player actually enter into (10). If th = 1,

we have:

( \ ) if

0 if
h h h

h

C N i d i T

i T

 

 

and, consequently,

( , ) ( 1) if

if
i h i h h

i h h

N C d i T

d i T

 



  

 

Applied to a general data game, it leads to the following allocation:

* *

1( , ) ( ,..., )
i

i i h h

h M h M

N C d d i n 
 

    (11)

where *M is the subset of data owned by a single player and * *.i iM M M  The only

players to be compensated are those who are alone to own some data. Like for core

allocations, there is no compensation if every data is owned by at least two players.

In the partition case, *M = M and (11) reduces to

0 1( , ) ( ,..., )i i iN C d k i n    (12)

That equation defines an allocation which belongs to the core, for any choice of weights.

19 See for instance Young (1985b).
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Indeed we have:

0 1( ) ( ) ( ) 0 for alli
i S

C S y S d S N


    

It coincides with the weighted Shapley value (9) whenever wi = i for all i. In particular the

equal share allocation coincides with the symmetric Shapley value which is also the allocation

resulting from the SCRB method. Indeed we have:

0 0( ) ( ) for alli i ib d k k d i N     

and consequently i = 1/n for all i  N.

8. Concluding remarks

The Shapley value is the natural allocation rule to be used in cost sharing as well as in the

compensation framework considered here. The resulting allocation may not belong to the core

because it involves cross subsidization. This should not be a reason to dismiss the Shapley

value as a compensation mechanism because what the core suggests may be unacceptable. We

have seen that the core excludes compensations when each data is held by two players or

more. More generally if data are not sufficiently spread among players, compensations remain

typically small. This appears forcefully in the situation where only two players own data, say

players n and n-1, and the datasets they own differ only by a single data, say data 1:

1 1 1){1,..., }, {2,..., } and ( ,...,n n iM m M m M i n    

In this case, the core imposes that only player n may be compensated with an amount not

exceeding d1 – the cost of the missing data – while the other players may be asked to pay up

to d1, including player n-1. The nucleolus goes even further by imposing that the n-1 first

players pay the same amount, namely d1/n.

This is to be compared with the allocation derived from the Shapley value. Using (7) we get:

0

0 1
1 0

2

0 1
1 0

2

( 1,... 2)

2
2 2 2

2
2 2 2

i

m
h

n
h

m
h

n
h

d
y i n

n

d d dn
y d

n n

d d dn
y d d

n n






  


    


     





It is definitely more acceptable for the players: those without data pay the per capita cost of

the complete dataset while players n and n-1 are both compensated, the difference between

what they receive being precisely equal to the cost of the missing data.
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In actual cost sharing problems, like the one faced by the European chemical industry, there

must be an agreement on the compensation formula and on the costs parameters.20 Reaching a

consensus on the cost parameters is clearly the most difficult part in particular because, under

the Shapley value, we know from Remark 4 that what a player pays decreases with the cost of

the data he/she owns. One should however keep in mind that these cost parameters measure

the present cost of reproducing the data and not the actual cost that has been sunk in the past.
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