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Abstract

This paper investigates how technological distance between firms af-
fects their network of R&D alliances. Our theoretic model assumes that
the benefit of an alliance between two firms is given by their technological
distance. This benefit-distance relationship determines the ego-network of
each firm as well as the overall network structure. Empirical relevance is
confirmed for the bio-pharmaceutical industry. Although we find that the
network structure is largely explained by firm size, technological distance
determines the positioning of firms in the network.

Keywords: technological distance, research alliance, network forma-
tion, pharmaceutical industry

1 Introduction

Joint research and development (R&D) by two or more firms is frequent when
firms face high innovation pressure and technological knowledge is dispersed
among firms (Powell et al., 1996). Then the R&D alliance is important to gen-
erate technical innovations, because it governs the process of recombination of
existing knowledge residing in different firms. 1

∗We are indebted to the ANR project AnCoRA for financial support of this work.
1See (McGee, 1995) for an historical account of technological novelty by recombination.
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For a beneficial alliance it is crucial that both partners are able to evaluate
each others knowledge and to appropriate the results of the alliance. Cohen and
Levinthal (1990) termed this ability the absorptive capacity of a firm. Evalua-
tion of foreign knowledge and integration into the own knowledge base is simpler
when it is related to ones own prior knowledge. Therefore, due to increasing ab-
sorptive capacity, the benefit of joint R&D increases with knowledge relatedness.

However, the knowledge bases of the partners should not be too similar.
Joint knowledge creation is valuable exactly when partners contribute knowl-
edge new to each other and combine it in a new way. In principle, the opportu-
nity to form novel combinations is higher the more diverse the knowledge bases
of the firms are (Nooteboom et al., 2007). Hence, a higher cognitive distance
between two firms yields a novelty gain.

The discussion shows the trade off between absorptive capacity and nov-
elty gain. For a beneficial alliance, absorptive capacity and novelty gain are
both preferred to be high. However, with increasing cognitive distance absorp-
tive capacity decreases and novelty gain increases. This implies that benefit is
maximized at some medium cognitive distance, the point of optimal cognitive
distance (Nooteboom et al., 2007).

The concept of cognitive distance is very broad in that it incorporates any
difference between the mind sets of the firms. Cognition includes not only the
knowledge of facts but also e.g. interpretation, categorization and emotions.
For R&D alliances technological knowledge seems to be most relevant and we
may reduce the concept of cognitive distance to technological distance without
losing too much insight. The implication remains the same: with increasing
technological distance benefits of joint innovation first increase and then de-
crease. This has been tested empirically by (Mowery et al., 1998; Nooteboom
et al., 2007). They found that joint R&D is most likely for pairs of firms having
intermediate technological distances. 2

Observing that the fundamental building block of a network is the bilateral
alliance, the previous results invite the question whether the technological dis-
tance effect is visible in aggregate network structures. Could it determine the
structure of the network and the position of firms therein?

The structure of an R&D network is likely to influence the generation and
diffusion of knowledge in an industry. Specifically, (Cowan and Jonard, 2004)
argue that small world networks (i.e. highly clustered networks with small path
length (Watts and Strogatz, 1998)) foster knowledge accumulation of an indus-
try. On the firm-level, empirical work shows that a firm’s network position

2Similar, (Stuart, 1998) found that firms with higher technological overlap, measured by the
share of common patent citations, are more likely to engage in strategic technology alliances.
His study is particularly close to ours in that he explicitly considers the position of firms in
technological space to infer on their number of alliances.
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affects its knowledge sourcing and production behavior (Ahuja, 2000; Baum
et al., 2000; Cockburn and Henderson, 1998; Gilsing et al., 2008; Powell et al.,
1996; Shan et al., 1994). For example, a central position in the network gives a
firm fast access to knowledge (Singh, 2005).

The question of how the distance-benefit effect between firm pairs con-
tributes to the network structure has not been treated yet in the prior literature.
In this paper, we investigate the question theoretically and empirically.

We model profit-maximizing firms forming alliances. Profits are determined
by the distance-benefit relationship. Whereas the distance-benefit relationship
is common to all firm-pairs, each firm pair has a specific technological distance.
With the relationship and all distances given, we know the alliance decision of all
firm pairs and the network is determined completely. Thus, the network char-
acteristics for the individual firm and the overall network can be derived. The
intuition gained from the model is that the position of firms in the knowledge
space in combination with the benefit-distance relationship affects the network
structure and the position of firms therein.

The model follows the connections model of (Jackson and Wolinsky, 1996)
and its extension, the spatial social network of (Gilles and Johnson, 2000). Our
model set up can be seen as a specification of the latter in that it models the
benefit distance relationship to be inverse-U-shaped. However, in contrast to
the literature on connections models we do not focus on stability and efficiency
(Jackson et al., 2003) but rather on the network characteristics implied by the
model.

The empirical relevance of our model is confirmed for R&D alliances in the
bio-pharmaceutical industry. The analysis proceeds on three levels: i) on the
dyad-level, technological distance is measured with patent data and the benefit-
distance relationship is estimated. These estimates yield expectations of ii) the
individual firm positions and iii) the network structure. We find that both, firm
network positions and the global network structure, are affected by technologi-
cal distance. However, the effect on the network structure is weak once the size
of the firms is taken into account.

Thus, the paper finds that the benefit-distance relationship is a local effect
of dyad formation which influences higher level network structures, especially on
the firm level. This adds an economically motivated local effect to the toolbox
of network analysis, which has hitherto been dominated by socially motivated
local effects like referrals, trust or status (Powell et al., 2005).

The paper is organized as follows: section 2 presents the theoretic model
from which the hypothesis are derived. Section 3 provides insight into the data,
shows how technological distance is measured and the hypothesis are tested.
Empirical results are given in section 4. The last section concludes.
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2 Model

2.1 Technological Distance and Benefit

Consider a population of firms located in a knowledge space with a well-defined
distance metric, t. Value resides not in firms but in alliances between firm
pairs. Assume that the benefit of an alliance depends on technological distance
in knowledge space but cost is fixed. Then, for two firms i and j having distance
tij in the knowledge space, forming an alliance yields a benefit f(tij) and costs
c. The alliance is valuable and hence formed, if f(tij) > c.

This set up can be seen as a simplification of the state space model (Gilles
and Johnson, 2000) in two respects. Firstly, assuming that the value resides in
the link instead of the agent takes away the necessity of specifying bargaining,
side-payments and/or an allocation rule. It suffices to assume that both firms
profit to some extent from a profitable link. Secondly, excluding that third party
agents benefit from spillovers via indirect links allows for analytical derivation
of networks with arbitrarily many agents. Otherwise, the benefit of forming
a link would depend on previously existing links. Then, the order of decision
making becomes relevant and each permutation needs to be considered, which
limits the analysis to a small set of agents.

Both simplifications seem reasonable in the context of R&D alliances. The
value can be considered as residing in the alliance, if the benefit stems mainly
from the new knowledge generated or direct knowledge spillovers from the part-
ner. Ignoring indirect spillovers in the model of link formation does not neglect
their existence. Rather, it implies that firms decide upon the direct effects of
the alliance. The subsequent analysis profits from these assumptions, because
it helps to focus on the effect of optimal technological distance.

The discussion of the technological distance effect implies that the value of
an alliance is an inverse-U-shaped function of distance. In mathematical terms,
f(t) is defined to be a continuous, differentiable, real-valued, single-peaked func-
tion, with t being the technological distance between two firms. Assume further
that there exists a finite t∗ such that ∀t ≥ t∗, f(t) = 0; and possibly there
exists a t∗∗ such that ∀0 ≥ t ≥ t∗∗, f(t) = 0. Because the value function is
single peaked and costs are assumed to be constant, all alliances in some range
[a, a + b] are profitable and hence realized. Definitions of a and b follow from:
f(a+ b) = c and a = 0 if f(0) ≥ c, otherwise, a is defined as f(a) = c (see figure
1).

By forming alliances the firms construct an alliance network. The network
can be described as a graph g, in which the firms are nodes and the alliances
are the links connecting the nodes. Different assumptions about the nature
of the knowledge space and the distribution of firms therein lead to different
networks. This paper examines a one-dimensional knowledge space, in which
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Figure 1: The inverse-U-shaped benefit-distance relationship arises from the
trade-off between absorptive capacity and novelty gain (the figure displays a
multiplicative effect). Taking into account the costs of alliance formation, one
finds the range [a, a+b] in which alliances are profitable. (Adapted from (Noote-
boom et al., 2007))

firms are uniformly distributed. This simplifies the analysis but the intuition
gained from the model can be easily extended to multi-dimensional knowledge
spaces with unevenly distributed firms. We treat two cases: in the first case, the
technological distance effect is illustrated on an infinite knowledge space. In the
second case, boundaries restrict the knowledge space to be finite and thereby
alter the technological distance effect.

In the first case, assume that the knowledge space is unbounded on the real
line over which agents are uniformly distributed. In this case, the knowledge
space is translation invariant, so agent 0, located at the origin, is a representa-
tive agent. This agent will maintain a link to agent i if and only if f(i) ≥ c.
Since f(·) is single-peaked this implies that there are values a and b such that
agent 0 will form links with all agents i ∈ [a, a + b]

⋃

[−a,−a− b] (see figure 1).

In the unbounded knowledge space, all agents face the same problem. Now
suppose the knowledge space is bounded between 0 and 1. Then agents in
the center are in a different position than those at the boundaries because the
boundaries restrict the set of potential partners.

How the boundaries restrict the neighborhood of firms can be seen in fig-
ure 2, e.g. the upper left graph. Consider links to the right of the agent. For
the agent at i = 0, its neighborhood will run from a to a + b. As we increase
i, the neighborhood remains unrestricted until i + a + b > 1, or equivalently,
i = 1 − a − b. As we increase i further, the right boundary restricts the neigh-
borhood of agent i to be [i + a, 1]. Finally, at the point i = 1 − a, agent i no
longer has any neighbors to the right. The partnering problem is symmetric to
left and right, the same effect moving from i = 1 to i = 0 is seen for left side
neighbors. This effect drives all the results on network measures in the bounded
technological space in the next section 2.2.
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Because the assumptions determine the network completely, in principle any
network characteristic can be derived for individual firms as well as the whole
network. In this paper however, we will focus on degree centrality, closeness
centrality and clustering; three of the most common measures used in network
analysis. The following derivations use intuitive arguments; they are based on
mathematically rigorous demonstrations given in the appendix.

2.2 Network Measures

2.2.1 Degree Centrality

Degree Centrality of a node is the number of links it has to other nodes in the
network. A firm with many R&D alliances is highly engaged in knowledge gen-
eration (Ahuja, 2000). From a resource based view, the alliances signal access
to the knowledge or other resources residing in the partnering firms (Arora and
Gambardella, 1990). The network degree distribution is commonly used to show
the centralization in the network (Wasserman and Faust, 1994).

In the unbounded knowledge space all firms are in the same situation. The
agent at the origin, 0, forms links with all partners j ∈ [a, a + b] ∪ [−a,−a− b].
Assuming firms are uniformly distributed with density one, the size of the neigh-
borhood of agent 0 is 2b. Because all firms are in the same situation, the degree
distribution of the graph is a point mass at 2b.

In the bounded knowledge space the degree of firm i depends on its posi-
tion in combination with the benefit range [a, a + b]. If a + b < 1, some firms
near the left boundary are not restricted on the right and will have a full right
neighborhood of size b. When moving to the right, first agents are restricted in
their right neighborhood and finally the boundary at one prevents completely a
right neighborhood.3

As the right boundary becomes more restrictive, the left boundary lessens.
Eventually agent i realizes a left neighborhood when moving from position 0
to the right. Whether the gain of lefthand neighbors is higher than the loss
of righthand neighbors depends on the size of the minimum and the maximum
distance, i.e. a and a + b.

Figure 2 shows both cases: if i) a + (a + b) > 1, agents moving away from
zero restrict their right neighborhood before a left neighborhood forms. In this
case, being more central in knowledge space implies lower degree centrality. If

3Assuming that firms are uniformly distributed with density one over the [0, 1] interval in
fact is not sensible, because it implies that only one firm is in the knowledge space. Nev-
ertheless, the results can be applied to an arbitrary number of agents simply by scaling the
density.
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ii) a + (a + b) < 1, agents moving away from zero form a left neighborhood
before their right neighborhood becomes restricted. In this case, agents which
are central in knowledge space are also central in their degree.

links to
right

links to
left

1

b

1-a-b a 1-a a+b

links to
right

links to
leftb

00 11-a-ba 1-aa+b0

links total

1

b

1-a-b a 1-a a+b0

links total

b

11-a-ba 1-aa+b0

case 1:   a > 1 - a - b case 2:   a < 1 - a - b

Figure 2: In the bounded knowledge space (here between 0 and 1) the number
of links of the agent depends on its position. Firms with a central position in
the knowledge space are less (more) central in the network in case 1 (case 2).

When the degree of each node is known, the degree distribution is gained
simply by sorting the nodes according to their degree. Although the two cases
(a > 1−a−b and a > 1−a−b) imply different levels of link formation (the first
case being lower), they do not imply a qualitative difference in the shape of the
distribution. In both regimes, we are going to find a skewed degree distribution
where some agents have many and some agents have few links.

2.2.2 Closeness Centrality

Closeness Centrality of a node is the average distance to all other reachable
nodes:

closenessi = 1/





1

N

N
∑

j=1,j 6=i

dij





where dij is the shortest path (i.e. the minimum number of links) connecting
two vertices i and j in the network. This measure is critical when links guide
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the information flow in the network and the information content is decreasing
with distance. In that situation, firms in a central position have good access
to information and might be influential emitters of information (Singh, 2005).
High average closeness in a network indicates fast spread of information.

This measure is not reasonable when the knowledge space is unbounded,
because each agent will have infinitely long paths. When knowledge space is
bounded, however, distances are all finite and the two cases displayed in figure
2 are qualitatively different.

First, consider case 1 where the minimum distance and the benefit range are
large (a + (a + b) > 1). Agents on the left with i ∈ [0, 1 − a − b] are completely
restricted to the left but not to the right. Thus, they form direct links to right-
hand agents j ∈ [i + a, i + a + b], which means a shortest path of 1. All other
agents (j ∈ [0, i], j ∈ [i, i+a] and j ∈ [i+a+ b, 1]) are reached in two steps (via
the agents i + a, i + 2a and i + b respectively). Thus, the average path length
is 1 b + 2 (1 − b) = 2 − b and closeness is 1/(2 − b).

As i increases towards i = 0.5, agents i ∈ [1− a− b, a] increase their average
path length. Because the neighborhood to the right becomes more and more re-
stricted, the mass of directly connected agents decreases and the mass of agents
reached via two links increases. In total, the average path is 1 + i + a, which
increases with i. Closeness centrality, the inverse of average path length, thus
decreases as firms move away from the boundary. At position a, we reach the
floor with 1/(1+2a). From this point a left neighborhood forms and the effects
of the increasing left neighborhood and the decreasing right neighborhood can-
cel.

As was the case with degree centrality, we get the opposite result in case
2, where minimum distance and the benefit range are small (a < 1 − a − b).
Agents near the boundary, i ∈ [0, a], are in the same situation as agents near
the boundary in case 1 and have an average path of 2 − b. However, because a
is relatively small, firms i ∈ [a, 1 − a − b] connect to left hand agents directly
before the righthand neighborhood is restricted. This reduces their average path
length to (2− b)− (i− a). From position i = 1− a− b the average path length
stabilizes to 1+2a. Thus, in the second case closeness centrality is highest when
firms are more central in knowledge space.

The results for closeness centrality parallel the findings for degree central-
ity: firms being more central in knowledge space have lower or higher closeness
centrality, depending on the minimum (a) and the maximum distance (a + b).
Both cases imply that closeness distribution is skewed.
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2.2.3 Clustering Coefficient

The clustering coefficient of a node quantifies how close the immediate neigh-
borhood of a node is to being fully connected. A firm partnering with firms
which are otherwise unconnected has a low clustering coefficient. Burt [cite
missing] argues that such a position is to be preferred because this firm controls
the information flow and has potentially a strong bargaining position. On the
other hand, in a small-world network average clustering and average closeness
both is high (Watts and Strogatz, 1998). Whereas high clustering might foster
knowledge generation due to specialization of groups of firms, high closeness
enables fast diffusion of knowledge (Cowan and Jonard, 2004).

The clustering coefficient of a node is defined as the number of links among
its neighbors divided by all links that possibly could exist among them:

clustering i =
2| {ejk} |

|Ni|(|Ni| − 1)
,

where the neighborhood Ni is the set of neighbors of i, i.e. those agents, i is
directly connected with, and {ejk} is the number of realized links among the
neighbors. When the two neighbors, j and k, link together, they close a triad
with agent i. Therefore, {ejk} gives the number of triads agent i is involved in.
This is a network measure in its own right, which may be used to indicate the
effect of referrals in a network.

In the unbounded knowledge space one might again consider agent 0 as the
representative agent. Agent 0 has a neighborhood of size 2b, equally divided
into a left and a right neighborhood of size b. A fully connected graph of size
2b contains 1/2(2b)2 = 2b2 links. However, the minimum distance a prevents
the agents in the right (left) neighborhood to fully connect among each other.
Therefore, the right (left) neighborhood yields only 1/2(b− a)2 links. Similarly,
the benefit range prevents some connections among left and right neighbors.
For example, the right-most left agent −a reaches only right neighbors in the
range [a, b]. Therefore, the number of links between left and right neighbors is
1/2(b − a)2.

Thus, the number of links among all neighbors is 3/2(b − a)2. Dividing by
2b2, the number of links in a complete graph formed by a neighborhood of size

2b, yields a clustering coefficient of 3
4

(b−a)2

b2 . In the unbounded knowledge space
this is the same for all agents.

In the bounded knowledge space, the boundaries may restrict the left and/or
the right neighborhood of an agent. Again, this makes the clustering coefficient
a function of the position in knowledge space. However, in contrast to degree
and closeness, here we find that firms which are more central in knowledge space
will always have a lower clustering coefficient than firms at the boundary.
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First consider case 1 with a > 1− a− b. Firms at the boundary only have a
right neighborhood, of size b, and thus a clustering coefficient of (b− a)2/b2. In
the range [1−a− b, a], firms become increasingly restricted in their right neigh-
borhood. This implies that both the number of realized links and the number of
potential links among the neighbors decrease. However, the number of realized
links decreases faster, because the minimum distance a which prevents that all
potential links are realized becomes more important in a smaller neighborhood.
From agent a on, the total size of the neighborhood remains the same when
moving towards the center. However, the right and left neighborhood become
more symmetric. Because the number of realized links is related to the square
of the right and the square of the left neighborhood size, higher symmetry never
increases the number of realized links. Thus, the clustering coefficient further
decreases and, depending on the specification of the benefit range, eventually
remains stable.

The same effect can be observed in case 2 with a < 1 − a − b. Again, firms
start with a clustering coefficient of (b − a)2/b2 at the boundary. In the range
[a, 1−a−b], both the number of realized links and the number of potential links
among the neighbors increase. However, because the symmetry of the left to the
right neighborhood increases along with the total neighborhood, the clustering
coefficient decreases. Moving from 1 − a − b to the center, left and right neigh-
borhood become equally sized whereas the total neighborhood remains stable.
Then, depending on the exact specification of the benefit range, the clustering
coefficient remains stable or to decreases further.

Unlike degree and closeness, the clustering coefficient is always lower for
firms in the center of the knowledge space. This is due to the normalization by
the potential number of links in the neighborhood. However, the two cases make
a difference for the number of triads a firm is involved in: firms in the center
have a lower (higher) number of triads in the first (second) case. Therefore, the
number of triads is considered next to the clustering coefficient in the empirical
section.

2.3 Hypothesis

The implication of the model is that when the distance benefit range is small
(large) relative to the technological space, a firm which is central in technolog-
ical space is more (less) central in the research network. An obvious way to
proceed would be to determine the relevant case for a population of firms and
test the implication of the model directly. To this end, one need to measure the
distance benefit range, the diameter of the knowledge space and how central a
firm is in knowledge space.

However, whereas in the model firms are uniformly distributed in a one-
dimensional space, in reality we are confronted with unevenly distributed firms
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in a multi-dimensional space. But what is the diameter of a multi-dimensional
rectangular? And how should distance and firms be weighted to calculate the
center? Answers to these questions seem arbitrary.

Therefore, we do not test directly the relationship between central positions
in technological space and firm network positions as well as global network
structures. Although the empirical section provides statistical evidence on this
specific implication, the hypotheses rather follow the analysis of the model. In
detail, we derive three hypothesis: the first hypothesis tests the key-assumption
of the model, which is the distance-benefit relationship on the dyad level. The
second hypothesis tests its implications on the network characteristics on the
firm level. Finally, the third hypothesis tests the implications on network distri-
butions on the global level. This makes hypothesis testing independent from the
dimension of the knowledge space and furthermore allows for disentangling the
assumption on the benefit-distance range from its effect on higher level network
structures.

The main assumption of the theoretic model is that the alliance formation
of any two firms depends on their technological distance. Because the literature
suggests specifically an inverse-U-shaped function, we formulate:

Hypothesis 1 The probability of two firms forming an alliance will be a curvi-

linear function of their technological distance.

Note that the functional form itself is not crucial to make the model work.
As long as there is a benefit-distance relationship, one might consider it as a
local network effect. The model shows how such a local network effect would
determine the network if it was the only effect at work. For three network mea-
sures, degree, closeness and clustering, the resulting network has been analyzed
on two levels: on firm level and network level.

On firm level, network characteristics of individual firms became a function
of their position in knowledge space. Depending on the exact specification of
the benefit-distance relationship, higher centrality in knowledge space implied
higher or lower centrality in the network as well as lower clustering. Thus,
knowledge of the firms’ position in network space and of the benefit distance
relationship should enable us to infer at least tendencies of individual firms’
network characteristics:

Hypothesis 2 Firm level network characteristics depend on the firms’ position

in knowledge space for a given benefit-distance relationship.

On the network level, network measures describe the architecture of a net-
work by neglecting the individuality of the nodes. The analytical derivations
showed that depending on the specification of the local effect network distribu-
tions will be more or less skewed and on a higher or lower level. The relevance
of the model for the network architecture is tested by

11



Hypothesis 3 Distributions of network measures are related to the firms’ dis-

tribution in knowledge space for a given benefit-distance relationship.

The hypotheses are formulated in broad terms to capture the main idea of
the model: the benefit-distance relationship is a local effect, which determines
the alliance decision of firm pairs. Because the network is the aggregate of
all alliance decisions, the local effect shapes firm network characteristics and
network distributions.

3 Empirical Methods

3.1 The Pharmaceutical Industry

The hypotheses are tested on the pharmaceutical industry, because the theo-
retical model is expected to be especially relevant for this industry. Firstly, the
alliance network is large and half of the alliances focus on joint research & de-
velopment. Secondly, firms possess distinctive technological competences. Both
can be traced back to the biotechnology revolution (Arora and Gambardella,
1990; Galambos and Sturchio, 1998; Henderson et al., 1999; Orsenigo et al.,
2001). Starting in the late 1970s, the emergence of a wide array of new scientific
disciplines in life sciences lead to various new methods and processes. Because
the scientific advances originated outside the established firms in universities
and public research organizations, the technological change induced industrial
change. The population of firms changed because biotech start-ups entered the
industry. They were typically founded by researchers to commercialize their sci-
entific discoveries and therefore are based on specific technological competence.
For the established pharmaceutical firms, one important pathway to adopt the
new technological competences have been alliances with new specialized firms.

Nowadays all pharmaceutical firms are based on modern life sciences (Cock-
burn et al., 1999). Nevertheless, research alliances remain important in the in-
dustry. No firm is able to master all the fields which are potentially relevant for
the development of new drugs. Therefore firms need to specialize and when nec-
essary join complementary technological knowledge in research alliances (Powell
et al., 2005). This makes the pharmaceutical industry a promising candidate
for an empirical application.

3.2 The Sample

The firm sample is drawn from the CGCP database. The CGCP database is
a comprehensive collection of publicly announced formal agreements. [include
perhaps overall coverage time, industries, types]. A valuable feature is that it
classifies alliances by industry and type (such as e.g. joint venture, commercial
or research alliance).4 The classification allows us to focus on research and de-

4For a description see www.cgcpmaps.com .
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velopment alliances in the pharmaceutical industry.

The sample consists of the 250 firms, being most active in the pharmaceutical
industry. To derive the sample, first all dyadic (bio-)pharmaceutical alliances
between the years 2001 and 2006 (inclusive) have been extracted. Because firm
level information needs to be added, not all firms involved could enter the sam-
ple. Selecting the 250 firms having most alliances assured to get a dense network
with many alliances among the selected firms.

This sample is not representative; neither of the pharmaceutical industry
nor of the global pharmaceutical network. However, the dependent variable is
the alliance decision of the firm-dyad and not the number of alliances of the
firm. Because selection is not based on the dependent variable, estimates need
not be biased.

The technological position of firms is measured with patent data. The ad-
vantages and disadvantages of measuring technological capabilities with patent
data have been discussed elsewhere (e.g. (Pavitt, 1982)). Because in the phar-
maceutical industry firms patent extensively (Arundel and Kabla, 1998), we
think that patent information reflects sufficiently the technological activity of
the firms. The objectivity, information content and availability of patent data
makes it superior to other information sources in our case.

The patent data has been extracted from the EPO Patstat database (EPO,
2008). Only those patents, which seem relevant for the bio-pharmaceutical in-
dustry have been considered. The restriction is based on concordances of the
international patent classification (IPC) on four digit level to the biopharma-
ceutical industry. In detail, the set of IPC classes considered comprises those of
the OECD definition (OECD, 2008b), the MERIT definition (Verspagen et al.,
1994) and the ISI definition (Schmoch et al., 2003). One invention often is
patented via a priority application to a national office and equivalent foreign
versions of the application. In these cases, double counting has been avoided by
considering only the priority application (OECD, 1994).

The hypotheses imply a direction of causality, namely that a firm’s tech-
nological characteristics effects its alliance activity. This is accounted for by
sampling the patent data from a time period previous to the time period of
the alliance data. Whereas the alliances took place between the years 2001 and
2006, the patents have a priority date between the years 1995 and 2000.

The firm names given in the alliance database denote mostly a pharmaceu-
tical business, either the entire group or a subsidiary. Therefore patents have
been matched on the same level when possible. In those cases, where the phar-
maceutical business is part of a diversified group but applies for patents solely
in the name of the group no matching can be done. Additionally, for some firms
no patents have been found due to the time or IPC restriction.
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The patent matching yielded patent applications within the given priority
date and IPC classes for 212 firms or their respective pharmaceutical business.
For ten firms, mostly software and service firms, no patents could be found at
all. Six firms only applied for patents on behalf of a diversified group. Twenty-
two firms applied for patents but after the given year span.

In order to control for firm size, the number of employees has been collected
from publicly available information, mostly annual reports of the SEC. About
seventy per cent of the figures are at or before 2001. For the rest of firms this
information could only be obtained from later years. For 14 out of the 250 firms,
the number of employees could not be gained.

Thus, the final sample consists out of 250 firms. 38 firms have zero or missing
patent assignments, 14 firms have missing employee information and 45 firms
have neither patent nor employee information assigned. Finally, for 205 firms,
which is 82% of the sample, patenting and employee information is given and
these firms constitute the sample we work with.

3.3 Measures

3.3.1 Joint technological agreement

The dependent variable on the dyad-level, joint technological agreement (joint-

tech), is defined as a joint project of two firms, in which both firms contribute
to research and/or development. This definition excludes for example research
projects conducted by one firm and financed by another. The fact that only
publicly announced agreements enter the CGCP data base inevitably imposes
a restriction to formal agreements.

3.3.2 Firm network position and network structure

The dependent variable on the firm-level is the firm network position. On the
network-level it is the network structure. The firm network position as well
as the network structure are described using the four network measures degree
centrality, closeness centrality, clustering coefficient and the number of triads a
firm is involved in. (Short notations are degree, closeness, clustering and triads

respectively (for definitions see 2.2)). All network measures are calculated from
the network of joint technological agreements among the firms, for which the
distance-benefit relationship is estimated.

3.3.3 Technological position

The technological position of a firm is given by its technological distance to all
other firms. The technological distance between any two firms is measured on
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their patent portfolios, where we take into account the size of the patent port-
folios as well as the technological classes covered by the portfolio.

During examination, a patent examiner of the patent office assigns each
patent according to the inventions claimed to one or several technological classes
of the international patent classification (IPC) (OECD, 1994, page 30). There-
fore, the IPC classes of a firm’s patents reveal in which technological fields a firm
is active. For indication, we use the main and secondary IPC classes. Naturally,
two firms are technologically close when they patent in the same technological
fields. The IPC overlap measures how close two firms are. It is the number of
IPC classes covered jointly by both firms divided by the number of IPC classes
covered by at least one firm:

overlapij =
|IPCi

⋂

IPCj |
|IPCi

⋃

IPCj |
,

where IPCi is the set of IPC, in which firm i had at least one patent applications
and || denotes the size of the set. In order to allow for a curvilinear relationship
the square of the overlap (overlap2

ij) is included in the estimations as well.

The overlap measure loses information on the size of the patent portfolios.
Therefore, the complete information on the size of the patent portfolios of firms
i and j is captured by two further variables: the sum and the absolute differ-
ence of the log-transformed patent count of firm i and j (absDiffLnPC ij and
sumLnPC ij).

Note that absDiffLnPC ij and sumLnPC ij are information equivalent to two
variables indicating the log transformed patent count of the smaller and the
bigger portfolio. The number of patents is log-scaled in order to take into ac-
count the decreasing importance of one more patent in a bigger patent portfolio.
Technically, the log-scale leads to less skewed distributions.

In the literature also other distance measures based on patents have been
used. (Mowery et al., 1998; Schoenmakers and Duysters, 2006) calculated the
overlap of patent citations. The information on technological classes so far en-
tered the cosine index (Jaffe, 1986, 1989), the correlated revealed technological
advantage (cRTA) (Cantwell and Colombo, 2000; Gilsing et al., 2008; Noote-
boom et al., 2007) or the euclidean distance (Rosenkopf and Almeida, 20030601).
Some of these will be considered in the sensitivity analysis.

3.3.4 Firm size

Features of drug development and commercialization hint to further drivers of
alliance formation (Galambos and Sturchio, 1998; OECD, 2008a). Development
of new drugs is extremely costly and time consuming. In average 800 million
dollars need to be expendet over 10 years to bring a new drug to the market.
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Drug application processes are country-specific and demand strong organiza-
tional competencies to meet legal requirements. Because production costs are
low compared to the high initial development expenses, sales revenues need to
be maximized. This can only be achieved with strong marketing and distribu-
tion channels in the national markets.

Pharmaceutical firms are heterogeneous in their access to technological, fi-
nancial and organizational resources (Pfeffer and Nowak, 1976; Eisenhardt and
Schoonhoven, 1996). Therefore, research and development alliances are also
motivated by financial and organizational interdependencies and these are es-
pecially strong between small and large pharmaceutical firms.

Because the size of the patent portfolio is strongly correlated with the size
of the firm, controlling for firm size is crucial to sort out technological from
financial and organizational interdependencies. This is achieved by introducing
the two variables absDiffLnEmployeesij and sumLnEmployeesij combining the
size information of two firms i and j. As for the size of the patent portfolios
they denote the sum as well as the absolute difference of the log-transformed
number of employees of two firms i and j.

3.4 Analysis

3.4.1 Statistical analysis

To test the first hypothesis, the local effect of technological distance on joint
technological agreements is estimated. The estimates assign to each firm-pair
a probability of forming an alliance and, when aggregated, yield expections on
the network. The expected network implies expected firm network positions and
expected network distributions. The relevance of the local effect on the network
is revealed by comparing the expected with the observed firm network positions
(hypothesis two) as well as the network distributions (hypothesis three). The
next paragraphs discuss these steps in more detail.

A logit function is an appropriate model for the decision of two firms to
form an alliance. However, when estimating link formation in a network, the
non-independence of observations is a problem (van Duijn and Vermunt, 2006).
An important source of dependence is the repeated observation of one firm over
several firm-pairs. This is likely to cause correlation of estimated errors over
firm-pairs, because some firms are more susceptible to form alliances then others
for unknown reasons. Then, maintaining the independence assumption reduces
the standard errors unduly and potentially gives biased coefficient estimates.

This problem is similar to that of repeated observations of one firm over
time in a panel. In the panel setting, the problem is usually handled by intro-
ducing unobserved firm specific effects (Cameron and Trivedi, 2005). Under the
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assumption that firm specific effects are uncorrelated with other independent
variables, one estimates a random effects model. When correlated, the random
effects model yields biased coefficient estimates and the less efficient fixed ef-
fects model is appropriate. Which model to choose is decided upon a Hausman
test, which tells whether the coefficients can be assumed to be equal given their
variances.

We apply the standard solution for panel data to the estimation of link
formation in a network. 5 Different from panel data we are handling dyads.
Therefore each equation contains not one but two unobserved firm specific ef-
fects. As common for panel data models, we distinguish random and fixed
effects.

The fixed effects model is estimated simply by introducing a dummy vari-
able for each firm (Stuart, 1998). This does not cause the incidental parameter
problem because the number of firm pairs (observations) increases much faster
then the number of firms (variables). However, firms which have no links with
other firms in the sample need to be excluded, because their fixed effect is minus
infinity (not defined). This is not a problem for the random effects model, where
the inclusion of these firms rather increases the variance of the random effects
distribution. A random effects model has been proposed by (Hoff, 2003). We
estimate it by maximum simulated likelihood under the assumption that firm
specific effects are independent, normally distributed.

Because a Hausman test showed that the coefficient estimates of the random
effects model are similar to those of the fixed effects model, we present only the
results of the more efficient random effects model; estimated on the complete
sample. Econometric details and results for fixed and random effects estimation
are given in the appendix.

Introduction of firm specific effects does not necessarily make observations
independent. Errors might still be systematically correlated, for example when
firms favor alliances with firms being already close in the network. One strategy
is to incorporate sufficient statistics for different kind of dependencies, as in the
framework of Markov Graphs (van Duijn and Vermunt, 2006). The problem is
that estimation might not be possible for some (larger) networks (Hunter et al.,
2007), which happened in our case when introducing statistics of a dyadic de-
pendence model. Because firm specific effects probably control for the most
important source of bias and variance deflation, we leave the problem of more
complicated network dependencies to future research.

The estimates obtained from the logit model are used to form expectations
on the firm network positions. In principle expectations can be analytically

5This is advantageous to correcting the deflated standard error (Fafchamps and Gubert,
2007) of the logit estimation without specific effects, because it is more efficient and takes into
account that estimates are possibly biased.
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derived. For example the expected degree centrality of a firm is simply the sum
of the probabilities of link formation over all firm dyads the firm is involved
in. Analytical derivation of the expectations of the other network measures is
more complicated but easily obtained by simulation. One instance of a net-
work is simulated by random realization of all links given their probability to
be formed. From each simulated network the position of each firm in terms
of degree, clustering, closeness and number of triads is calculated. Then, the
average over all simulations yields the expected firm position. The presented
expectations are based on 1000 simulations, so that different simulation runs
give the same results. Significant correlation of the expected network positions
with the observed ones verifies hypothesis two.

Hypothesis three is similarly tested by comparing the expected with the
observed network distributions. From each simulated network the network dis-
tributions are obtained. Their average gives the expected network distributions.
Visual comparison of the distributions is valuable to judge the validity of hy-
pothesis three (Hunter et al., 2008). In addition, we provide the Kullback Leibler
Information Criterion (KLIC) (see e.g. (Cameron and Trivedi, 2005)).

3.4.2 Data analysis

In total there are 205 firms for which patent and size information is given.
Crossing all firms yields 13695 firm-pairs which are used for estimation. These
firm-pairs joined for 332 technological agreements, corresponding to 2% of all
potential links.

Firms contributed unequally to link formation in the observed network.
Whereas 39 firms have no links with other firms in the sample and 41 firms
have one link only, five firms have fourteen or more links within the network.
The high degree centralization is coupled with high closeness centralization.
Clustering in the network is low compared to other industrial networks (check-
ref); we observe not more than 27 triads.

Figures 3 and 4 give a coherent picture of the case in which centrality in
technological space leads to high centrality in the network and a higher number
of triads. Figure 3 positions the firms in a (two-dimensional) knowledge space
and displays their research network. It seems that firms being more central in
knowledge space are also more central in the network. Technological distance
of most alliances is rather short. Most alliances span only half the technological
space and there are no alliances which span the entire space. This means that
the benefit-range is small relative to technological space, which implies the sec-
ond case derived in section 2.2.

This is confirmed in figure 4, where the average overlap of one firm to all
other firms measures the firm’s position in technological space. Firms with large
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Figure 3: The network of joint technological agreements. Nodes are mapped into
two dimensional knowledge space based on firm-pair overlap using the fruchter-
man reingold algorithm. Size of the nodes equals the log-transformed number
of agreements within the network.

average overlap are close to most other firms and, therefore, can be considered
to be close to the center of the technological space. The top left panel in figure
4 plots degree centrality as a function of average overlap. It seems that the
population is divided at an average overlap of 0.3. There are only two firms
which are distant from the technological center (average overlap below 0.3) and
yet have more than five alliances in the sample. Although there are firms which
are close to the center in technological space (overlap above 0.3) and have few
alliances, firms closer to the technological center in general have more alliances.
The absence of any firm being at the boundary of technological space and hav-
ing a high degree even suggests that being central in technological space is a
prerequisite for having many research alliances.

The effect on closeness centrality, shown in the top right panel in figure 4,
is less clear cut. Here, the Pearson’s correlation, with a coefficient of 0.34 and
a significance level below 0.001%, gives a clear indication. Again, firms located
near the center of the technological space tend to have high closeness centrality.
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Figure 4: Average overlap versus firm network characteristics. The higher the
overlap to all other firms in the sample, the more central a firm is in technological
space. Firms having a degree or closeness centrality of zero are singletons, not
connected to the network.

However, the clustering coefficient, given in the bottom left panel, deviates from
theoretical prediction in that it is higher for firms being close to the technolog-
ical center. The reason can be found in the bottom right panel, which displays
the number of triads. Whereas in the model firms at the boundary of techno-
logical space have a higher clustering coefficient due to having fewer triads and
even lower degree, in our sample they are involved in practically no triads and,
therefore, their clustering coefficient becomes zero.

Thus, our statistical evidence is internally consistent with the model results.
Specifically, the observed relationship of the firms’ position in technological
space and their network characteristics is implied by the second case of the
model. Hypothesis testing, in the next section, is oriented on the principal
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mean std.dev 1 2 3 4 5 6

jointtech (1) 0.02 0.13
sumLnPC (2) 8.77 2.94 0.09***

absDiffLnPC (3) 2.38 1.75 0.06*** 0.14***
overlap (4) 0.32 0.23 0.04*** 0.57*** -0.37***

overlapSq (5) 0.15 0.17 0.04*** 0.51*** -0.35*** 0.95***
sumLnEmpl (6) 13.11 3.41 0.07*** 0.56*** 0.23*** 0.22*** 0.23***

absDiffLnEmpl (7) 2.74 2.05 0.08*** 0.16*** 0.34*** -0.15*** -0.18*** 0.29***

Table 1: 20910 firm pairs from crossing 205 firms. Mean, standard deviations
and pearson correlations for variables used in estimations. *,**,*** signify 5%,
1% and 0.1% rejection levels of significance.

steps of the model analysis and takes into account additional variables. There-
fore, the independent variables need to be transformed and then combined on
dyad level.

The distribution of number of patents is extremely right skewed, as is the
number of employees. Number of patents range from one patent for eleven firms
to 10500 patents for one firms, with a median of 62 and a mean of 591. The
histogram becomes symmetric in log-scale with median being 4.2 and mean 4.3.
Sizes of the firms ranges from 5 to 120000. Again, log-transformation centers
the histogram around a value of 6.

The patent and employee information is used to construct the independent
variables describing the dyad. Overlap is slightly right skewed with 11.1% of
dyads having no overlap and 0.2% having complete overlap. Since overlap is
mostly between 0 and 1, it is a valid metric which is capable of differenciating
the firm-pair distances. Because the number of patents and employees have
been log-scaled before being summed and differenced, the resulting variables all
have a smooth distribution ranging between 0 and 30.

Table 1 shows that all variables are significantly correlated. The high signif-
icance is partly the effect of inflating the observations by forming firm-dyads.
Nevertheless, all technological indicators are highly correlated with jointtech,
supporting the importance of technological characteristics for joint technolog-
ical agreements. However, the correlation of the employee information with
technological characteristics hint to organizational and financial drivers of al-
liance formation and the importance to control for such drivers.
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4 Results

4.1 Hypothesis Testing

4.1.1 Hypothesis 1

Table 2 reports the results of the regression analysis on the local effect of tech-
nological distance on joint technological agreements. The estimations support
the first hypothesis. There is a curvilinear relationship between our structural
measure of technological distance, overlap, and joint technological agreements,
jointtech. Furthermore, we find a preference to combine with unequal partners
regarding the size of the patent portfolio as well as firm size.

In table 2, model 1 is the baseline equation, containing the firm size con-
trol variables. The sum and absolute difference of log-employees (sumLnEmpl

and absDiffLnEmpl) are positive, showing that big and small firms are likely
to ally. This supports previous findings on the interdependencies of small and
big firms in the pharmaceutical industry (Powell et al., 2005). Model 2 adds
the sum and absolute difference of patent portfolio sizes (sumLnPC and abs-

DiffLnPC ). Their significance and a decreasing Akaike Information Criterion
(AIC) assigns high relevance to both variables. The decrease of the size control
variables supports the idea that the interdependencies between big and small
firms are partly technological. Model 3 supports hypothesis one of a curvilinear
relationship, with overlap being positive and overlap2 negative.

model 1 model 2 model 3
intercept -7.28*** (0.349) -7.96*** (0.372) -8.46*** (0.421)

overlap – – 4.05*** (0.989)

overlap2 – – -2.63** (1.039)
absDiffLnPC – 0.09** (0.034) 0.21*** (0.042)

sumLnPC – 0.2*** (0.026) 0.1*** (0.032)
absDiffLnEmpl 0.25*** (0.026) 0.21*** (0.029) 0.22*** (0.031)

sumLnEmpl 0.16*** (0.019) 0.05* (0.024) 0.07** (0.024)
σ2(1) 0.3 (0.097) 0.4 (0.101) 0.32 (0.1)

converged converged converged converged
AIC 3218.09 3146.58 3124.94

Table 2: Random effects logit models with dependent variable jointtech. 20910
firm pair observations from crossing 205 firms. Standard errors in brackets;
*,**,*** signify 5%, 1% and 0.1% rejection levels of significance. (1) The esti-
mate of random effects variance follows a log-normal distribution and are there-
fore strictly positive.

In order to test hypothesis 1, three models estimated a local effect of network
formation: the first model the heterophily of big and small firms, the second
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model adds the heterophily of firms with big and small patent stocks and the
third model adds the distance benefit relationship of technological distance. All
local effects are significant - separately and jointly.

4.1.2 Hypothesis 2

Hypothesis 2 proposes that network characteristics of a firm depend on its po-
sition in the knowledge space and that the relationship is determined by the
benefit-range. Based on simulation of networks using the model estimates gained
above, we derived the expected network position of each firm. Correlation of
expected with observed network positions shows how well the respective model
of dyad formation explains the higher-level phenomenon of a firm’s network po-
sition.

Table 3 supports the hypothesis for all network measures except clustering.
Already the first model, only taking into account the size of the firms, is ca-
pable of predicting degree centrality and number of triads. Adding the size of
the patent portfolios improves the predictive power for degree, triads and espe-
cially closeness. All three measures become more correlated in model 3 when
the distance benefit relationship in terms of overlap and its square are included.
Clustering is not explained by any of the models. Probably due to the low num-
ber of triads in the network and the normalization by degree it is very difficult to
predict. Nevertheless, we find that including the firm position in technological
space, in model 2 the size dimension and in model 3 the structural dimension,
helps to explain the firm position in network space.

model 1 model 2 model 3
degree 0.51*** 0.62*** 0.64***

closeness 0.13 0.29*** 0.32***
clustering -0.07 -0.03 0
nb. triads 0.19** 0.3*** 0.33***

Table 3: Pearson’s correlation of observed and expected firm level network char-
acteristics. Expected network characteristics are based on estimates of the
random firm effects model by simple monte carlo estimation with 1000 draws.
*,**,*** signify 5%, 1% and 0.1% rejection levels of a t-test of non-correlation.

4.1.3 Hypothesis 3

Hypothesis 3 proposes that network distributions depend on the firms’ distri-
bution in knowledge space. This hypothesis is supported but the effect is weak.
The firms’ technological characteristics, i.e. size of patent stock and overlap
in IPC classes, improve explanation of the observed network distributions only
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slightly after the size of firms is taken into account.

Figure 1 compares observed with expected network distributions. The per-
formance of the three models can be judged on how they improve the random
model. The random model contains no firm information but only an intercept.
This implies that all dyads have the same probability to be formed and the
density of the observed network is met. 6 Interestingly, the process itself of
dyad-wise partnering decision is likely to generate a centralized network with
some clustering/triads. However, centralization and clustering/triads is lower
than in the observed network and introduction of firm level information im-
proves the expected distributions.

For all four network distributions we find a big improvement from the ran-
dom model to model 1, where firm size is introduced. Introduction of the firm
position in knowledge space, with model 2 and model 3, yields minor improve-
ments relative to model 1.

The degree distribution is met best. The reason is that the regression esti-
mates dyad formation and this is highly related to degree, which is simply the
sum over all dyads formed by a firm. The other measures depend on more com-
plex network structures. Closeness takes into account the whole network, triads
the links between three firms and clustering the ratio of triads to degree. One
important result is that these more complex network structures are predicted
better by refinements of dyadic decision making other than including references
to these structures. The distribution of firm size in the population together with
the estimated heterophily of big and small firms implies higher closeness cen-
tralization and more triads/clustering than the random model does. However,
improvements due to the distribution of firms in technological space is not that
significant once firm size is controlled for.

4.2 Sensitivity Analysis

The results discussed above are based on the random effects logit, which as-
sumes that firm specific effects are not correlated with other covariates. Besides
the random effects logit, we estimated a fixed effects logit and compared the
coefficients using a Hausman test (see Appendix B). The Hausman test shows
that both models yield similar coefficient estimates, which justifies focusing on
the random effects model.

A further problem might be inclusion of firms with few patents. Patents
signal the technological position of firms. When a firm applies for few patents
during the period of observation, the signal might not give the full range of
technological fields a firm in fact covers. Then, the firm might be wrongly taken

6The random model is also known as Erdoes-Renyi model.
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clustering ( 0, 0.015, 0.041, 0.1, 0.167), nb. triads ( 1, 2).

Figure 5: network level
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as being at the boundary of technological space. The sensitivity of our results
with respect to this problem is tested on firms having more than five patents and
thus signal more reliably their position. This restriction does hardly change the
coefficient estimates, whereas the level of significance of overlap and overlap2

increases to 1% and 5% respectively. This is due to higher standard errors along
with the reduced number of observations. Therefore, regression on the restricted
sample supports hypothesis 1. Also, hypothesis 2 and hypothesis 3 are equal in
magnitude and significance to the results already discussed above.

Finally, other distance measures than overlap have been applied. We re-
peated the analysis for the uncentered correlation of firms technology vector,
introduced by (Jaffe, 1986, 1989), and the correlated revealed technological ad-
vantage (cRTA), introduced by (Soete, 1987; Patel and Pavitt, 1987). These
measures have been developed for different reasons. As its predecessor, revealed
comparative advantage, revealed technological advantage (RTA) has been ap-
plied to compare the relative specialization of countries. Jaffe (1986) aggregated
all IPC classes into 49 technology fields to calculate the uncentered correlation
for firms of various sectors.

Both distance measures are highly significant in regressing joint technolog-
ical agreements. However, hypothesis one of an inverse-U-shaped relationship
is not supported as the square of distance remains insignificant. Consequently,
tests of hypothesis two and three are based on the preference for technological
proximity as a local effect. Both hypothesis are supported similar in strength to
those presented in the previous section. Thus, estimation with alternative dis-
tance measures strongly supports the existence of a local technological distance
effect on the network. However, the exact shape of the local effect depends on
the distance measure.

5 Discussion and Conclusion

5.1 Summary

This paper proposes a theoretic model of network formation and tests it empir-
ically. In the theoretic model, firms are positioned in technological space. Two
firms form a link whenever their technological distance is in some specified bene-
ficial range. The model shows how the firms’ distribution in technological space
and the specification of the benefit-distance-range determines the alliancing de-
cisions of all firm pairs. In the aggregate, the dyadic decisions imply a specific
network structure and a specific network position for each firm. Variations
on the nature of the technological space and the specification of the benefit-
distance-range lead to qualitatively different network structures and network
firm positions.
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The empirical analysis confirms the relevance of technological distance for
dyadic alliancing decisions and estimates this effect. Parallel to the theoretic
model, the estimates yield expectations on the network structure and firm net-
work positions. We find that the firms’ position in the network is explained
better when their position in technological space is taken into account. How-
ever, the network structure is largely defined by firm size. These results have
been shown to be robust to more stringent estimation, sample restriction and
alternative distance measures.

5.2 Implications on Theory

The model builds on the concept of optimal cognitive distance (Nooteboom
et al., 2007), which is implied by the absorptive capacity of a firm (Cohen and
Levinthal, 1990). Our empirical findings largely strengthen prior results that
medium technological distance between firms is beneficial for research alliances
(Mowery et al., 1998). The main contribution to this stream of research how-
ever is to show its implications on network formation, both theoretically and
empirically.

The theoretic model continues the connection models of (Jackson and Wolin-
sky, 1996; Gilles and Johnson, 2000) by incorporating the concept of optimal
cognitive distance. Contrary to previous work, we do not search for stability
and efficiency configurations but focus on how certain benefit-distance specifi-
cations affect the network structure and firm positions.

This question is typical for social network analysis (Powell et al., 2005, e.g.).
For answering it, we built on its strong empirical tradition (Hoff, 2003; Hunter
et al., 2008) and, in order to account for dyadic independence, paralleled the
typical fixed/random effects approach for panel data (Cameron and Trivedi,
2005).

Originally, social network analysis put socially motivated local effects on the
forefront. This paper brings in a local effect which is motivated from research
in knowledge economics (Cohen and Levinthal, 1990).

5.3 Implications on Research

The sensitivity analysis revealed that different distance measures result in differ-
ent distance-benefit relationships. Whereas optimal cognitive distance has been
attested by overlap of the firms IPC-vector, uncentered Correlation of IPC-
vectors and correlated revealed technological advantage yielded a preference for
proximity. Each distance measure has advantages over others in a certain con-
text; i.e. is justified depending on the effects focused on and the sample chosen.
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For example, we think that the overlap measure captures best the idea of ab-
sorptive capacity in research alliances, because it relates the technological fields
new to the partner to the technological fields common to both firms. However,
this is rather ad hoc and we are still missing sound micro-economic justifications
for when to apply which distance measure. This also means to better connect
patent based distance measures with other distance measures. This would im-
prove measurement and help to gain a better intuition on patent based distance
measures.

The measurement problem also becomes relevant, when extending our study
to other industries. In the pharmaceutical industry patenting is current as ap-
propriation, coordination and signaling device (Penin, 2005). We also found
that bio-pharmaceutical patent classes differentiate among the firms, meaning
that firms are active in different patent classes. Other industries might not be
as convenient for measurement.

On the other hand, extending the analysis on other industries might prove
fruitful. A strong feature of the pharmaceutical industry is its asymmetry be-
tween big and small firms. It seems that this prevented to see bigger effects
of technological distance on the network structure. Research networks consist-
ing of more equal firms might be structured more according to technological
space. Furthermore, the theoretic model implies the potential existence of ad-
verse benefit-distance effects. In other industries firms being central in knowl-
edge space might have low network centrality. Such instances still need to be
found.

Taken from a wider perspective, this paper tries to integrate different re-
search streams to understand better network formation, as asked for by (Jack-
son et al., 2003). Why not make use of the rich literature on alliance formation
in order to better explain the formation of networks? Recent advances in em-
pirical methodology offer now a unified approach for such an endeavor.

5.4 Implications on Management

Big pharmaceutical firms have been and still are the central actors in the phar-
maceutical industry. They are also central in the research network, whose struc-
ture is largely explained by firm size. This paper suggests that their centrality is
not only due to their strong capabilities in financial and organizational aspects.
In addition, technological diversification puts them in a central position in tech-
nological space and thus, opens up many opportunities for research alliances.

Emphasizing the effect of technological position on network position also
yields management implications. In the short run, management can not freely
envisage profitable network positions but is bounded by the firms technological
endowment. This needs to be considered in the technology strategy of the firm.
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Firms which focus on distant technological niches to reduce competitive pres-
sure might find themselves isolated in the research network as well. Considering
opportunities for cooperation besides unique technological qualification is cru-
cial, because research alliances are important sources of financing and internal
technological development.

5.5 Conclusion

This paper examines how the technological position of firms affects network
formation. The theoretic model proposes that firms form research alliances
depending on their mutual technological distance. In particular, firms do not
consider the network structure or their position in the network. The theoretic
model shows that such dyadic decision making is capable of producing different
networks and putting firms in different network positions. The empirical study
confirms that such a simple model indeed helps to explain industrial networks.
Based on estimates of the dyadic alliance decision, we find that the network
positions of firms are related to their position in knowledge space. The network
structure seems to arise mainly due to size differences among the firms, which
emphasizes the importance of financial and organizational interdependence in
the pharmaceutical industry. In this way the paper sheds light on technological
distance as a local effect of network formation.
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A Derivation of Network Measures

A.1 degree centrality

The degree of a firm can be derived by integrating the neighbors over the neigh-
borhood range of the firm. In the unbounded knowledge space all firms are
in the same situation. The agent in the origin 0 forms links with all partners
j ∈ [a, a+b]∪ [−a,−a−b]. Assuming a neighborhood density of one, the degree

for any firm i becomes 2
∫ a+b

a
1 dj = 2b and the degree distribution of the graph

is a point mass at 2b.

In the bounded knowledge space the degree of firm j depends on its position
and the relative sizes of a and a+b. We can calculate the degree of the right-hand
links for three kinds of agents j:

forj ∈ [0, 1 − a − b] degreej =
∫ j+a+b

j+a
1 di = b

forj ∈ [1 − a − b, 1 − a] degreej =
∫ 1

j+a
1 di = 1 − j − a

forj ∈ [1 − a, 1] degreej =
∫ 1

1
1 di = 0

The first kind of agent realizes all links in the right-hand benefit range, the
second is partly restricted by the boundary 1 and the third does not realize any
right hand neighbors. Similarly, the left-hand links for any agent j are deter-
mined. The degree is then the sum over right- and left-hand links for agent j.
Given the span of the benefit distance range this results in the two cases given
in the main text.

A.2 closeness centrality

Closeness centrality is defined as one divided by the average shortest path be-
tween a vertex i and all other vertices reachable from it:

closenessi = 1/





1

N

N
∑

j=1,j 6=i

dij





where dij is the shortest path (i.e. the minimum number of links) connecting
two vertices i and j in the network.
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When knowledge space is unbounded the network of firms is infinitely large.
Therefore, each firm has infinitely long paths which implies a closeness coeffi-
cient of 0 for all nodes.

To prove this formally, define the average path length of agent 0 path0 in-
cluding agents reached in sr steps to the right:

path0 =
1

sr(a + b)





sr
∑

j=1

j(a + b) + a



 =

sr
∑

j=1

j

sr
+

a

sr(a + b)

if sr → ∞, the second term a
sr (a+b) → 0 and we need to consider only the first

term
∑sr

j=1
j
sr

:

∑sr

j=1
j
sr

=
∑sr

j=1
sr−j

sr

=
∑sr

j=1

(

1 − j
sr

)

=
∑sr

j=1 1 − ∑sr

j=1
j
sr

=
∑sr

j=1 1/2

= sr 1/2

The first equation reorders the sum. The last equation shows that the average
path length to right agents goes to infinity with sr. Because all agents are in
the same situation, closeness is 0 for all of them.

A general formula for closeness may be derived for the bounded knowledge
space. Closeness of a firm i is derived by averaging the shortest paths to all
firms on its left and on its right. Besides the first and the last step, the mass of
firms covered in one step again is (a + b). Because the space is bounded, a firm
at position i has ⌊i/(a + b)⌋ = sl full steps to the left and ⌊(1 − i)/(a + b)⌋ = sr

steps to the right. Taking into account the first and the last step, the sum of
shortest paths to agents on the left becomes:

pathsl
i =

{ ∑sl

j=1 j(a + b) + (sl + 1)(i − sl(a + b)) + a if i > 2a | a < i < 1 − a

2i if i < a & i < 1 − a

where the first term in the first line sums up the mass of agents covered in each
full step, weighted by the path length j. The second term adds the last step
which covers (i − sl(a + b)) agents and the last term corrects for the first step.
The second line takes into account the case, where no alliances with firms on the
left are beneficial for i and thus left firms can only be reached via partners from
the right. As long as 1 − a > i (there are partners to the right) and b > a all
left firms can be reached in the second step via the closest firm to the right (i+a).

The sum of all paths to agents on the right is similar:
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pathsr
i =

{ ∑sr

j=1 j(a + b) + (sr + 1)(1 − (i + sr(a + b))) + a if i < 1 − a

2(1 − i) if i > 1 − a and i > a

Both together, pathsl
i and pathsr

i , yields a function of the average path of firm
i depending on its position i in knowledge space. Applying these more general
formulas to the two cases where firms in the center of the knowledge space are
more (case 1) or less (case 2) restricted by the boundaries yields the result de-
scribed in the main text.

A.3 clustering coefficient

Define the neighborhood of node i as the set of all neighbors Ni = {j|dij = 1}
where dij is the distance between i and j in network space. In an undirected

graph of size |Ni| there could exist |Ni|(|Ni|−1)
2 links. If we write the existing

links among neighbors as {ejk} where j, k ∈ Ni, the clustering coefficient for

node i becomes clustering i =
2|{ejk}|

|Ni|(|Ni|−1) .

In the unbounded knowledge space one might again consider agent 0 as
representative agent. Consider NR

0 = {j > 0 ∈ N0} = [a, a + b], that is agent
0’s right neighbors. For any agent j ∈ NR

0 , the mass of links to k ∈ NR
0 is

NR
j ∩ NR

0 . To avoid the double counting due to bi-directional links, we can

consider only links of j to the right of j located in NR
0 . This will be the set of

agents lying between the leftmost neighbor of j and the right-most neighbor of

0. That is, [j +a, a+b] for j ≤ b. For any agent j, NR
j ∩NR

0 =
∫ a+b

j+a
1dk = b−j.

Integration over all nodes j ∈ NR
0 possibly contributing to clustering yields

NR
NR

0

∩ NR
0 =

∫ b

a
(b − j)dj = 1/2(b − a)2. Since distance is symmetric around

the originating agent, the neighborhood to the left of agent 0 is identical in this
respect: NL

NL
0

∩ NL
0 = NR

NR
0

∩ NR
0 . It remains to find the neighbors to the left

who are linked to neighbors on the right: NR
NL

0

∩NR
0 . Again, for agent j ∈ NL

0 ,

this is from the left-most neighbor of 0 to the right-most neighbor of j, i.e. the

range [a, j + a + b] yielding NR
0 ∩ NR

j =
∫ j+a+b

a
1dk = j + b. Integration over

the left neighborhood gives: NR
0 ∩ NR

NL
0

=
∫ −a

−b
(j + b)dj = 1/2(b − a)2. Thus,

the total number of links among neighbors of node 0 is 3/2(b − a)2 and we can
state directly:

Proposition 4 For each agent, the clustering coefficient is 3
4

(b−a)2

b2 .

In the bounded knowledge space, the general principle of clustering is iden-
tical to the infinite case. However the intervals of integration change depending
on the position of the agents. It is convenient first to derive the clustering for
general boundaries and then inserting the boundaries for different cases.
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Consider agent i. Define his left and his right neighborhood as NL
i =

[Li,M , Li,m] and as NR
i = [Ri,m, Ri,M ] respectively. If an agent j ∈ NRi has

neighbors in NR
i , this contributes to i’s clustering coefficient. As before, if we

consider only j’s right neighbors, we avoid double-counting links. The overlap
NR

i ∩ NR
j runs from the left-most right neighbor of j to the rightmost right

neighbor of i: [Rj,m, Ri,M ]. This we integrate over j ∈ NR
i :

ER
i =

∫ Ri,M

Ri,m

max(0, Ri,M − Rj,m)dj

Similarly regarding i’s left neighborhood:

EL
i =

∫ Li,m

Li,M

max(0, Lj,m − Li,M )dj

Finally, there could be left-hand neighbors of i who are connected to right-hand
neighbors of i:

ELR
i =

∫ Li,m

Li,M

max(0, Rj,M − Ri,m)dj

The sum is the number of links among neighbors of agent i, EN
i = ER

i + EL
i +

ELR
i . Whereas in the unbounded case integration was simply over the neighbor-

hood, in the bounded knowledge space the effect of the boundaries need to be
taken into account. The boundaries might have i) no effect on the neighborhood
(NO), ii) restrict the neighborhood (R) or iii) completely prevent a neighbor-
hood (P). In order to calculate the clustering coefficient of an agent i, the effect
of the 0 boundary on the left-hand neighborhood as well as the effect of the
1 boundary on the righ-hand neighborhood needs to be considered. Because
of symmetry it suffices to distinguish the combinations (NO, NO), (R,NO),
(P,NO), (R,R), (P,R).

(NO, NO) If no neighborhood is affected, the result of the unbounded knowl-

edge space applies and the clustering coefficient of agent i becomes 3
4

(b−a)2

b2 .

(R, NO) The left neighborhood is restricted if i ∈ [a, a + b]. Additionally, i
needs to be ∈ [0, 1 − a − b] to be not restricted in the right neighborhood. For
this to be the case, both sets need to overlap, which implies that i ∈ [a, a + b]
if 1 > 2(a + b) or i ∈ [a, 1 − a − b] if 1 < 2(a + b). In both cases the clustering
coefficient is the same, because the boundaries for integration are the same. We
derive the clustering coefficient for i ∈ [a, a + b] in the following way: since i is
not restricted on the right-hand, the right-neighborhood of i is NR

i = [i + a, i +
a + b]. Restriction on the left-hand gives NL

i = [0, i − a]. An agent of the right
neighborhood jr ∈ NR

i might be restricted or not:

NR
jr

=

{

[j + a, j + a + b] if j < 1 − a − b
[j + a, 1] if j > 1 − a − b
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Agents of the left neighborhood are necessarily restricted or prevented on the
left side

NL
jl

=

{

[0, j − a] if j > a
⊘ else

, whereas no restriction will be on the right side NR
jl

= [j + a, j + a + b]. To de-
rive the number of links in the neighborhood, it suffices to fill in the boundaries
of the specific case. For (R,NO) we get:

ER
i =

∫ Ri,M

Ri,m
max(0, Ri,M − Rj,m) dj

ER
i =

∫ i+a+b

i+a
max(0, i + a + b − (j + a)) dj

ER
i =

∫ i+b

i+a
(i + b − j) dj

where the last equation shifts the boundary of integration to simplify the inner
expression and b > a is assumed. Similarly, the links among left-hand neighbors:

EL
i =

∫ Li,m

Li,M
max(0, Lj,m − Li,M ) dj

EL
i =

∫ i−a

0
max(0, j − a − 0) dj

EL
i =

∫ i−a

a
(j − a) dj

for agents with i − a > a or i > 2a, otherwise EL
i = 0. Links among left and

right-hand neighbors are:

ELR
i =

∫ Li,m

Li,M
max(0, Rjl,M − Ri,m) dj

ELR
i =

∫ i−a

0
max(0, j + a + b − (i + a)) dj

ELR
i =

∫ i−a

0
(j + b − i) dj if i < b

ELR
i =

∫ i−a

i−b
(j + b − i) dj if i > b

Calculation of the integrals yields: ER
i = 1

2 (b − a)2, EL
i = 1

2 (i − 2a)2 for
i > 2a and EL

i = 0 for a < i < 2a and ELR
i = 1

2 (i − a)(b − a) for i < b and
ELR

i = 1
2 (b − a)2 for i > b. The total number of links among neighbors of an

agent i, which is partly restricted on one side is therefore always smaller than for
the unrestricted agent. However, the clustering coefficient norms the number of
realized links by the number of potential links, which is 1/2(i−a+b)2. Both, the
number of links and the potential number of links, are functions of the position
in the knowledge space (f(i)). Because the number of potential links increases
faster with i moving away from the boundary, the clustering coefficient decreases
along the way. (To see this compare the slopes of both functions for specific i’s.)
Thus, the higher the restriction on one side, the higher the clustering coefficient.

(P,NO) When agent i has no left-hand neighborhood but a right-hand neigh-
borhood over the whole benefit range, we can state directly Ei = ER

i = 1
2 (b−a)2,

which yields a clustering coefficient of (b−a)2

b2 . This case is at the extreme of the
previous case. Thus, as the restriction of the neighborhood due to a boundary
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increases, the clustering coefficient increases from 3
4

(b−a)2

b2 up to (b−a)2

b2 . The
number of links among the neighborhood of course decreases from 3/2(b − a)2

to (b − a)2.

(P,RE) agents with no left-hand neighborhood and a restricted right-hand
neighborhood might only occur in case 1 of figure 2, where 1 < 2a + b. Again,
it suffices to consider the right-hand contribution of links:

ER
i =

∫ Ri,M

Ri,m
max(0, Ri,M − Rj,m) dj

ER
i =

∫ 1

i+a
max(0, 1 − (j + a)) dj

ER
i =

∫ 1−a

i+a
(1 − a − j) dj

ER
i = 1

2 (1 − 2a − i)2

Because the size of the neighborhood is 1−a−i, the clustering coefficient be-
comes (1−2a−i)2/(1−a−i)2, which is a decreasing function with i given a > 0.
In case 1 of figure 2, clustering decreases until i = a to (1−3a)2/(1−2a)2. This
might be more or less than the unbounded clustering coefficient 3/4(b− a)2/b2,
depending on the specification of a and b. When i > a, the left hand side needs
to be considered and we move to the next regime (R,R).

(R,R) For a restriction on the left-hand to occur i needs to be ∈ [a, a+b], for
the right-hand i ∈ [1−a− b, 1−a]. This will only happen if the diameter of the
knowledge space is smaller than two times the benefit range, i.e. if 1 < 2(a+ b).
A restriction on both sides might occur in both cases displayed in figure 2. In
case 1, where a > 1 − a − b, i ∈ [a, 1 − a]. Case 2, with a < 1 − a − b implies
that i ∈ [1 − a − b, a + b]. However, the boundaries implied for the neighbor-
hood of the focal agent i are the same in both cases, with NR

i = [i + a, 1] and
NL

i = [0, i − a]. For agent jr and jl out of the right and left neighborhood
respectively, the neighborhood range is:

NR
jr

=

{

[j + a, 1] if j > 1 − a
⊘ else

NR
jl

=

{

[j + a, j + a + b] if j < 1 − a − b
[j + a, 1] if 1 − a − b < j < 1 − a

NL
jl

=

{

[0, j − a] if j > a
⊘ else

As before the contribution of the right- and left-hand neighborhood alone
and the links from the left to the right-hand neighborhood are:
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ER
i =

∫ Ri,M

Ri,m
max(0, Ri,M − Rj,m) dj

ER
i =

∫ 1

i+a
max(0, 1 − (j + a)) dj

ER
i =

∫ 1−a

i+a
(1 − a − j) dj

ER
i = 1

2 (1 − 2a − i)2

for agents with 1 − a > i + a or i < 1 − 2a, otherwise ER
i = 0. Similarly, the

links among left-hand neighbors:

EL
i =

∫ Li,m

Li,M
max(0, Lj,m − Li,M ) dj

EL
i =

∫ i−a

0
max(0, j − a − 0) dj

EL
i =

∫ i−a

a
(j − a) dj

EL
i = 1

2 (i − 2a)2

for agents with i − a > a or i > 2a, otherwise EL
i = 0. Links among left and

right-hand neighbors are:

ELR
i =

∫ Li,m

Li,M
max(0, Rjl,M − Ri,m) dj

To insert the boundaries, one needs to distinguish the cases, where the con-
tributing part of the left-hand neighborhood is restricted (i < b) and the con-
tributing part of the right-hand neighborhood is restricted (i > 1 − b). Each
combination in principle is possible:

ELR
i =



















∫ i−a

0
(j + b − i) dj if i < 1 − b & i < b

∫ i−a

i−b
(j + b − i) dj if i < 1 − b & i > b

∫ 1−a−b

0
(j + b − i) dj +

∫ i−a

1−a−b
(1 − a − i) dj if i > 1 − b & i < b

∫ 1−a−b

i−b
(j + b − i) dj +

∫ i−a

1−a−b
(1 − a − i) dj if i > 1 − b & i > b

ELR
i =















(b − i)(i − a) + 1/2(i − a)2 if i < 1 − b & i < b
1/2(b − a)2 if i < 1 − b & i > b
−1/2(1 − a − b)2 + (1 − a − i)(i − a) if i > 1 − b & i < b
(b − (1 − i))((1 − i) − a) + 1/2((1 − i) − a)2 if i > 1 − b & i > b

To see, how clustering changes with i moving along the line, we might look
at the derivations. The links contributed solely by the left and right hand
side change with ∂(ER

i + EL
i )/∂i = 2i − 1. Thus, the link contribution is first

decreasing with i until i = 1/2 and then increasing again. For the left to right
changes in link contribution, we find:

∂ELR
i

∂i
=















b − i if i < 1 − b & i < b
0 if i < 1 − b & i > b
1 − 2i if i > 1 − b & i < b
1 − b − i if i > 1 − b & i > b
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Consider case 1 in figure 1. In the regime, where the agent is restricted on
both neighborhoods, we move from a to 1 − b where i < 1 − b and i < b. Thus,
the contribution changes with a slope (∂Ei/∂i = (2i − 1) + (b − i) = i + b − 1.
Since i < 1 − b ⇒ i + b − 1 < 0, the contribution is decreasing. In the range
of 1 − b to b, where i > 1 − b and i < b changes level off and the links among
neighbors remain constant. Beyond b the links increase again as they decreased
before because of symmetry.

In case 2 in figure 2 the same dynamic is happening. Since we come from
the (NO,R) regime where the number of links decreases and in the new regime
the links decrease even more with the size of the neighborhood being stable,
the clustering coefficient is smaller in the whole regime with some valley in the
middle.

Hence, the main qualitative result is that the boundaries reduce the neigh-
borhood of a firm if its left and/or right benefit-range is at least partly outside
the boundaries. Independent of the setting of the benefit-range, i.e. the values
of a and b, a firm closer to one boundary will always have a higher clustering
coefficient than a firm closer to the center. This is because the number of real-
ized links among neighbors increases always slower than the number of potential
links when firms move away from the boundary.

B Random and Fixed Effects

B.0.1 models and estimation

For the logit model with firm specific effects the conditional probability of al-
liance formation is:

pij = Pr[yij = 1|xij , ai, aj ] =
exp(x′

ijβ + ai + aj)

1 + exp(x′
ijβ + ai + aj)

,

where pij is the probability that firm i and j form an alliance (i.e. yij = 1),
xij is a vector of dyadic-covariates, and ai and aj are firm specific effects. The
probability mass function is written as:

f(yij |xij , ai, aj) = p
yij

ij (1 − pij)
1−yij

The model assumes that firm specific effects are the only source of depen-
dence and hence, given ai and aj , the dyadic observations are assumed to be
independent.

Estimation of the fixed effects model is easily done with introduction of
firm dummies. The assumption is that whereas the number of firms is fixed
(n → constant) the number of observations goes to infinity (n(n − 1)/2 → ∞)
which is not true but approximately given. Then, estimation is feasible via
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Maximum Likelihood.

However, direct estimation of firm dummies is inefficient. To estimate the
more efficient random effects model, the firm specific effects are integrated out.
We do this with a direct monte carlo simulator under the assumption that the
ai are i.i.d. from a normal distribution N(0, σ2). The average of S draws yields
the simulated probability, now conditional on known (simulated) firm specific
effects and the variance of the distribution to be optimized:

f̂(yij |xij , ais, ajs, σ) =
1

S

∑ exp(x′
ijβ + σais + σajs)

1 + exp(x′
ijβ + σais + σajs)

,

where the ais are i.i.d. draws from N(0, 1) and transformed to firm specific
effects by multiplication with the parameter σ. The simulated densities enter
the maximum simulated likelihood estimator, which maximises:

lnL(β) =
∑

ln f̂ [yij |xij , ais, ajs, σ]

over all firm-pairs. As long as S,N → ∞ and
√

N/S → 0, the single simulations
(one draw) are unbiased and the usual assumptions for likelihood estimation
apply, the estimator has a limit normal distribution with

√
N(θ̂MSL − θ0)

d→ N [0, A−1(θ0)]

with

A(θ0) = −plim

[

N−1
∑ δ2 ln f(yij |xij , θ)

δθδθ

]

see (CameronTrivedi2005, p.393ff). The variance matrix is needed to derive con-
fidence intervals and can be estimated in various ways. We choose the simplest
estimator which is the BHHH estimate for the information matrix (Cameron-
Trivedi2005, p.393ff).

The simulated likelihood is estimated with the iterative BroydenFletcher-
GoldfarbShanno (BFGS) method. Here, as in other optimization procedures
(e.g. Newton-Raphson, BHHH) the direction of the steps towards the optimum
is given by the gradient in the current step and the size of the step is deter-
mined by the slope of the likelihood-function. The difference is that whereas
other approaches use information for the slope only given by the current position
(for Newton-Raphson the Hessian matrix, for BHHH the information matrix),
BFGS determines the slope of the likelihood function by differences of the gra-
dient caused by non-marginal position changes. This gives speed advantages in
non-simple environments (Train, 2003, p.201) as can be expected for our prob-
lem.

For optimization we use the optim function in the R-stats-package to which
we provide the simulated likelihood function:
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lnL(β) =
2

N(N − 1)

N
∑

i=1

N(N−1)/2
∑

j=i+1

ln
1

S

S
∑

s=1

(

exp(.)

1 + exp(.)

)yij
(

1

1 + exp(.)

)1−yij

,

where exp(.) = x′
ijβ + σai + σaj . To ensure a positive variance σ, we optimize

log(σ) which results in a log-normal distribution for its standard error. In order
to increase estimation speed, we derive the gradient of the MSL estimator.
Because there is no principal difference between β and σ in the following, we
combine them to θ with indicators for firm specific effects also incorporated in
xij .

δlnL(θ)

δθ
=

2

N(N − 1)

N
∑

i=1

N(N−1)/2
∑

j=i+1







δ 1
S

∑S
s=1

(

exp(.)
1+exp(.)

)yij
(

1
1+exp(.)

)1−yij

/δβ

1
S

∑S
s=1

(

exp(.)
1+exp(.)

)yij
(

1
1+exp(.)

)1−yij







because
δ ln fij

δθ =
δfij/δθ

fij
and after some calculation

δlnL(θ)

δθ
=

2

N(N − 1)

N
∑

i=1

N(N−1)/2
∑

j=i+1







1
S

∑S
s=1

((

yijxij
exp(.)

(1+exp(.))2

)

−
(

(1 − yij)xij
exp(.)

(1+exp(.))2

))

1
S

∑S
s=1

(

exp(.)
1+exp(.)

)yij
(

1
1+exp(.)

)1−yij







Comparison of fixed and random effects models is based on the simplified
version of the Hausman test. Under the assumption that the random effects
estimate is fully efficient the covariances among the coefficients of the two models
equal the variance of the efficient model coefficients (Cameron and Trivedi, 2005,
p.272). This allows for separate estimation of both models, which simplifies the
Hausman test.

B.1 results

In the fixed effects model the firm dummy controls for the overall alliance activ-
ity of the firm. If for a firm no alliance is observed, the dummy coefficient takes
on minus infinity and hence is not defined. Therefore, a comparison of fixed and
random effects can only be done on the restricted set of 166 firms, which have
alliance partners in the network.

Table 4 gives the results of the random and fixed effects model as well as the
Hausman test, which compares their coefficients. Except for absDiffLnPC, for
no coefficient the null hypothesis of random and fixed effects estimation being
equal can be rejected. This justifies to base analysis in the main text on the
random effects estimates.
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The random effects model coefficients overlap and overlap2 are still signifi-
cant when estimated on the restricted firm sample. However, compared to the
estimation on the complete sample magnitude decreases (see table 4.1.1 in the
main text). Figure 3 reveals the reason: many firms with no alliance partners
are at the boundary of the knowledge space; which supports hypothesis one.

In the fixed effects model overlap and overlap2 are not significant. Although
the Hausman test confirms that coefficients are similar to the random effects
estimation, increasing standard errors prevent significance. This effect can be
largely attributed to the efficiency loss due to firm dummy estimation. There-
fore the fixed effects estimation does not necessarily refuse Hypothesis one.

The heterophily of big and small firms in terms of patent counts and em-
ployees is confirmed in both models. Although, the coefficient capturing the
difference in the number of patents changes significantly, it remains positive
and significant even in the fixed effects model.

random effects fixed effects H-value Pr(> |H|)
intercept -7.39*** (0.439) – – –

overlap 3.44*** (1.01) 2.38 (1.83) 0.48 0.49

overlap2 -1.81* (1.061) -1.79 (1.74) 0.00 0.99
absDiffLnPC 0.25*** (0.043) 0.14** (0.061) 5.78 0.02

sumLnPC 0.05 (0.033) 0 (0.911) 0.00 0.96
absDiffLnEmpl 0.22*** (0.032) 0.2*** (0.038) 1.50 0.22

sumLnEmpl 0.04 (0.025) -0.49 (1.016) 0.27 0.60
firmDummies no yes – –

σ2 0.53 (0.111) – – –
AIC 2907.01 2956.75 – –

Table 4: Random and fixed effects models compared using the Hausman test.
13695 firm pair observations from crossing 166 firms. Standard errors in brack-
ets; *,**,*** signify 5%, 1% and 0.1% rejection levels of significance. Hausman
test null hypothesis: coefficients of random and fixed effects estimations are
equal. Pr(> |H|) is significance level of rejection of equality of coefficients
derived from the chi-square distributed H-value with one degree of freedom.

In total, the comparison of random and fixed models justifies the focus on
the random effects model and further supports hypothesis one.
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