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Abstract:  Most organ transplants are from dead donors. National transplant organizations exhibit 
considerable differences in terms of their donor population rates. Spain’s organization is by far the 
most efficient in this respect. We argue that much of the productivity advantage of Spain’s transplant 
organization proceeds from an efficient organization of the production chain, from organ procurement 
to transplantation. Transplant inputs from dead donors are analogous to a common resource for the 
transplant community. Their circulation through the national transplant organization creates public 
good externalities between the care units in charge of organ extraction and those in charge of 
transplantation. It is shown that a socially efficient production of transplant services requires an 
optimal control of both the production and the circulation of transplant inputs by the institutions of the 
transplant system. 
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1. Introduction 

 

The demand for life-saving transplant surgery grows in most of countries. However, the organ donor 

rates as well as the total number of transplants differ tremendously from one country to another. 

During the last ten years, Spain appears as the champion of the dead donor league. Considering that 

90% of organ transplants, in general, are coming from dead donors1, it is crucial to understand the 

reasons of such a success. In practice, the Spanish transplant system improves survival, it increases 

organ demand, and more and more people are taking advantage from transplantation. For many 

commentators, these achievements clearly show that organ donation is the limiting factor to treat 

certain pathologies. This is certainly partly true, but still insufficient to explain the differences, in 

terms of production efficiency, of transplant care systems around the world. We argue in this article 

that the problem is not only, and perhaps not mainly, with the lack of donors per se, but, rather, with 

the organization of the transplant system, and notably of its production side.  

                                                 
1 IRODaT, 2006. 



A surprisingly small number of papers concentrate on organization aspects in the economic literature 

on organ transplants. Notable exceptions are the recent contributions of Roth, Sönmez and Ünver 

(2004, 2005ab, 2006). They consider the case of live kidney donations, and design theoretical patterns 

of gift-exchange for efficient pairwise matching of kidney donors and recipients from a given set of 

pairs of incompatible donor and recipient. They present numerical simulations of the impact of such 

discrete optimization procedures on transplant provision, and consider the practical implementation of 

these procedures by means of specialized clearinghouses (see notably Roth et alii (2005a) concerning 

the latter).  

As recalled above, and acknowledged by these authors themselves (e.g. Roth et alii (2004)), most 

transplanted kidneys, as most transplanted organs in general, are from cadavers. Law commonly 

makes cadaveric transplant donation much easier than live transplant donation, notably by presuming 

the consent of deceased donors. For instance, in many countries, consent is taken for granted in 

principle if the brain-dead patient has not expressed her/his refusal explicitly before death through 

some relevant legal procedure (usually, his/her registration on an ad hoc legal file). The medical staff 

in charge of organ procurement is generally submitted to an obligation to check the wishes of the 

deceased regarding donation, by interviewing close relative. Moreover, refusal rates usually are much 

lower than 50% in organ donations interviews: 15% in Spain, but also 27% in France and 39% in the 

UK for example. These facts point to the crucial importance, for the productive efficiency of the 

transplant care organization, of the latter’s ability in identifying and exploiting opportunities of organ 

procurement from cadaveric donations.  

This article develops an economic model of the transplant care system within existing legal 

environments, with a particular emphasis on the organization of the production side of the system. The 

ban of organs markets makes transplants a common resource, collected mainly by “exhortation”, that 

is, notably, by public calls for donation (Thorne (2000, 2006)). The bulk of the “resource” is 

constituted by brain-dead patients randomly distributed in hospitals through the statistical variety of 

death circumstances, and physically non-transferable for a variety of reasons that notably include the 

stringent legal obligations relative to the body of the deceased. This initial distribution of the common 

resource is naturally mismatched, in general, with the statistical distribution of the needs of grafts for 



transplantation in care production units. Operating an appropriate match of resources and “needs” in 

transplant inputs is the basic reason for the existence of institutions in charge of circulating grafts, 

such as national transplant agencies, as substitutes for banned transplant markets. Grafts are produced 

by hospitals, and circulated by the transplant agency, to be used by other hospitals as inputs in their 

final production of transplant care services. Hospital’s intermediary graft production thus induces 

public good external effects on others’ final production of care services. The resulting public good 

issues are captured through principal-agent interactions, in subgame-perfect equilibria of two-stage 

games where hospitals are only concerned with their own final production of care services while the 

transplant agency maximizes a social utility function that aggregates hospitals’ preferences (Bergstrom 

(1989), Cornes and Silva (1999)). It is notably shown that: (i) a socially optimal control of the agency 

over both the circulation and the production of graft inputs achieves social optimum ; (ii) while a 

socially optimal control by the agency of circulation alone generally implies suboptimal under-

provision of transplant inputs and services. We argue that the model so captures an essential cause of 

the remarkable achievements of the Spanish transplant organization. 

The paper develops as follows. Section 2 analyzes the Spanish transplant organization. Section 3 

presents the model of the transplant care system. Section 4 sets and solves the public good problem of 

graft production and circulation. Section 5 concludes. An appendix collects the proofs.  

 

2. Spain’s transplant organization 

 

The history of organs transplantations in Spain begins in 1965, with the first transplants in Madrid and 

Barcelona. In 1979, a law is adopted to favour the development of transplantations but donations 

remain at a low level during the eighties. 

In 1989, the Organizacion Nacional de Trasplantes (ONT) is created to solve this problem. It is an 

institution belonging to the Ministry of Health and Consumption, put in charge of developing the 

competencies relative to the provision and clinical utilization of organs and tissues. To carry out these 

tasks, it functions as a technical operative unit and fulfils its mission of coordinating the activities of 

donation, extraction, preservation, distribution, exchange, and transplantation of organs and tissues 



throughout the whole Spanish Health Care System. At the creation of the ONT, the main idea was that 

the problem was not with the number of donors but with their identification and the organization of the 

program. 

After the creation of the ONT, Spain went from 14 donors per million population (pmp) in 1989 to 

36,4 donors pmp in 2006. This evolution displayed in the graphic below made Spain evolve from 

donation rates ranked in intermediate-low positions in Europe to the highest rate not just in Europe, 

but also worldwide. 

Evolution of organs donors rate in Spain 
(per 1 million population)
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How has this been possible? The origin of this spectacular change is internationally known as the 

“Spanish Model”, a series of measures taken in this country to improve organ donation. This model, 

widely described in the scientific literature, has been recommended by the World Health Organization 

and is being applied in different regions of the World with outcomes very similar to those obtained in 

Spain. 

Spanish transplant law is very similar to the corresponding laws in other Western countries. Although 

the law on transplant donation presumes the consent of deceased potential donors, according to a 

subsequent decree relatives of a potential donor must be approached to determine the deceased's 

wishes regarding organ donation. In the absence of this knowledge, close relatives can sign the 

authorization, after internal discussion if required. At present, Spain’s annual refusal rate for organ 

donation is around 15% of all donation interviews. Death is defined as the total and irreversible 

cessation of brain or cardio-respiratory functions. Clinical evaluation and complimentary tests required 



are detailed within the legal text allowing organ retrieval either from brain-stem death donors or from 

non-heart-beating donors. Like other coordinating systems worldwide, the Spanish system has to 

monitor the management of waiting lists, organ allocation, and statistical analysis. Nevertheless, it was 

considered that a continuous monitoring system over the entire organ donation process was essential. 

A network of health-care professionals responsible for the organ donation process as a whole has been 

set up at all levels (national, regional and hospital). This implies the need for training, organization 

and coordination of activities. 

It was considered that these professionals working at the grass roots level must feel involved and that 

they must be accountable for performance. Most of them are physicians, mainly intensive care unit 

(ICU) specialists, and they belong to the staff of the hospital. They generally continue in their medical 

role, but as transplant coordinators their main objective is to improve the organ donation rate. 

Currently, 155 hospitals are officially authorized to take care of organ donor programs. A quality 

control system has been developed for the organ donor process - the ICU mortality registry and the 

brain death registry - a common practice in most of them. By law (RD 2070, 30 December 1999), 

transplant coordinators are the professionals responsible for the whole donation and retrieval process. 

National and regional offices are service agencies supporting the organ donation and transplantation 

programs. They deal with organ sharing and waiting list management. They arrange organ or team 

shifts. They are responsible for the official statistics and reports on organ donation and transplantation. 

They promote legal statements and binding consensus guidelines. They also promote public education 

and address any doubt or question about organ donation and transplantation. A 24-h hot line and E-

mail system have been put in place to keep all interested groups or individuals informed. They are also 

concerned with and involved in training and research programs. Any activity that could improve 

donation or facilitate the transplant team activities can be promoted through this network. 

Organ transplantation has been considered a hospital medical activity for which a specific budget and 

staff are allocated. This kind of activity does not induce any budgetary overload for hospitals. The 

annual general budget for transplantation procedures in Spain is around 180 million Euros. The annual 

budget for the organ procurement network is around 15 million Euros (less than 10% of the budget 

covering organ procurement activities). The general donation budget covers all extra-salary and extra-



time activities of both coordinators and surgical retrieval teams, as well as any donor evaluation tests, 

the ICU bed daily costs, etc. This budget also covers coordinating offices, training courses and some 

of the educational programs. The type of payment for the extra work of coordination and organ 

retrieval for professionals in charge differs depending on the region. It can be a fixed amount, or it can 

be based on registered activity, or be determined according to a mixed system (it does not usually 

exceed 30% of total salary). 

Table 1 shows that the Spanish organ donor rate per million population is the highest around the 

world. The British rate is only 37,5% of the Spanish rate and the French rate 69,5%. We could 

compute in table 2 a rough estimate of the number of patients waiting for kidney transplantation that 

would obtain in several countries if they achieved the same donor rate as Spain.  

 

Table 1: Organs Donor Rates per 1 million population in 2006 

 2006 

Australia 9 

Canada 14,8 

France 25,3 

Greece 5,8 

Israel 7,7 

Italy 20,9 

Spain 36,4 

Sweden 14,5 

UK 13 

United States 26,6 

 



 

Table 2: Projections of the 2006 Spanish rate on other countries 

 Cadaveric donors (1) Kidneys transplants (1) Patients awaiting for a 

transplant in 2007 (2) 

Australia 202 330 1388 

Australia* 565 1334 343 

Canada 468 712 4195 

Canada* 1151 1751 1705 

France 1441 2352 6491 

France* 2073 3383 4511 

Greece 74 144 903 

Greece* 464 903 144 

Israel 68 87 540 

Israel* 321 411 114 

Italy 1239 2932 7096 

Italy* 2157 5106 4074 

UK 633 1240 6876 

UK* 1772 3472 3472 

United States 8022 10659 76313 

United States* 10909 14496 55767 

(*)Numbers in italic are calculated using the national rates of Table 1  

(1) Source: IRODaT 2006 

(2) Source: Council of Europe, Transplant Newsletter, September 2008 

 

To sum up, the Spanish model consists in a program designed to optimize every stages of the 

transplantation process from the identification of a potential donor. Many factors contribute to the 



extraordinary increase of the Spanish dead-donor rate during the last 20 years. Of course, Spain was a 

pioneer of the opt-out system2, but its success mainly proceeds from an excellent network of organ-

transplant teams operating in hospitals, which routinely screen patients’ records to identify donors, and 

impulse and coordinate the multiple tasks following donors’ identification.  

 

3-A model of production of transplant care services 

 

The simple medical care system that we consider here is made of care production units, named 

hospitals, and a transplant agency in charge of collecting transplants produced from cadavers by 

hospitals, and of distributing them to transplant care units. The use of grafts by hospitals is constrained 

by the following two complementary rules: they must transfer to the transplant agency any graft they 

produce; and they must use for transplant care services any graft they receive from the transplant 

agency. We suppose, for simplicity, undifferentiated resources and needs in transplant inputs (say, a 

single medical indication for transplantation, such as kidney pathology, for example), and hospitals 

identical in all respects except their potential resources in graft inputs (their brain-dead patients, 

principally). 

 

3-1-Agents and commodities 

 

There are n hospitals, 2n ≥ , designated by an index i  running in {1,..., }N n= . The transplant agency 

is denoted by index i =0. 

We partition the set of care services provided by hospitals into two broad classes, namely: Care 

services requiring transplants of organs or tissues such as heart, kidney, liver, lung, skin, cornea, bone 

marrow etc.; and all other care services. We assume that the transplant care services of hospital i , on 

the one hand, and its other care services, on the other hand, are measurable by homogeneous 

                                                 
2 In the opt-out donation system, consent is presumed for deceased donors unless she/he registered on an 
appropriate refusal file when alive. In most opt-out systems, the next of kin’s approval is also required. Spain, 
France, Italy for instance presume consent. In the opt-in system of donation, on the contrary, those willing to 
give their organs upon death must sign up as donors. Countries with opt-out systems have high deceased-donor 
rates.  



continuous variables, respectively denoted by ix  and iy . Moreover, each hospital i  is susceptible to 

produce grafts from cadavers in homogeneous continuous quantity iz . The final output of the medical 

care system in transplant care services (resp. other care services) is vector ( )1, , nx x x= …  (resp.  

( )1, , ny y y= … ). Its intermediary production of transplants is vector ( )1, , nz z z= … . We denote by 

/n iz the vector obtained from z  by deleting its ith-component iz , and by /( , ’ )n i iz z  the vector obtained 

from z  and z’  by substituting ’ iz  for iz  in z . 

Likewise, we bunch the variable inputs of the production of care services in two broad types, also 

viewed as homogeneous continuous quantities, that is, for any hospital i : Transplants, denoted by real 

variable it ; and other inputs, labelled “general” inputs in the sequel, and denoted by real variables x
iv  

if they are used in the production of transplant care services, y
iv  if they are used in the production of 

other (final) care services, and  
z
iv  if they are used in the production of grafts.  We let ( , , )x y z

i i i iv v v v= , 

1( ,..., )r r r
nv v v=  for any { , , }r x y z∈ , and 1( ,..., )nv v v= . 

We use the following notations for vectors of n
R , 1n ≥ : ne  is the diagonal vector (1,...,1) of n

R ; for 

any pair ( , ')x x  of vectors of n
R , 'x x≥  if 'i ix x≥  for all i , 'x x>  if 'x x≥  and 'x x≠ , 'x x≫  if 

'i ix x>  for all i ; n
+R  is the non-negative orthant of nR , that is, set { : 0}nx x∈ ≥R , and n

++R  is its 

positive orthant { : 0}nx x∈ ≫R . 

 

3-2-Feasibility conditions 

 

Hospitals’ potential of graft production is mainly determined, in practice, by the random distribution 

of brain-dead patients in hospitals and by refusal rates in donation interviews. This essential feature of 

the reality of transplant activities, which may be appropriately construed as a set of operative rationing 

constraints over both graft production and transplant care services, is captured in the model notably 

through an exogenous endowment of potential graft production of the hospital, viewed as a non-



negative homogeneous continuous quantity, and denoted by iω  for hospital i .3 This endowment 

operates as an upper bound for hospital’s graft production. We let 1( ,..., )nω ω ω= , and suppose that 

0ω ≫ .  

Technically efficient production of hospital i  is depicted through a triple of production 

functions ( ), ,x y z
i i i if f f f=  transforming nonnegative combinations of inputs 4( , )i it v +∈ℝ  into 

technically efficient output combinations ( ) ( ) ( )( ), , , , , , ( , )x y z
i i i i i i i i i i i ix y z f t v f t v f t v= . The formal 

assumption below supposes, in addition to the standard working hypotheses of differentiability and 

concavity, the following main features for hospitals’ identical production techniques. General inputs 

are indispensable for production of any type (assumption 1-(ii)), and are productive in each type of 

production taken separately (assumptions 1-(iv) and 1-(v)) and also in the three types of production 

taken jointly (assumption 1-(vi)). Transplants are indispensable and productive in transplant care 

services (assumptions 1-(iii)-(iv)), and in them only (assumption 1-(v)). Technology exhibits a 

crowding externality between the three types of activities of each hospital (transplant care services, 

other care services, and graft production), specified as follows: Increasing the scale of production in 

terms of total general inputs in a hospital diminishes the productivity of general inputs in all types of 

production of this hospital, due to the crowding of a number of fixed inputs implicit in the production 

function, such as wards, operating theatres, surgery teams etc. (assumptions 1-(iv) and 1-(v)). Finally, 

                                                 
3 Refusal rates in donation interviews, in particular, are treated as exogenous in this model, the latter’s object 
being the analysis of the efficiency of production organization, from the extraction of donated organs to 
transplantation. Diminishing refusal rates and improving the organization of production are the two main 
channels for improving the global efficiency of transplant care systems as measured by their donor population 
rates. The first channel supposes appropriate exhortation policies, which may include an adequate management 
of donation interviews (see Thorne (1996, 2006:5.1) for an empirical estimation of the productivity of 
exhortation spending). Spain’s low refusal rate accounts for a part of its high relative performance in terms of the 
donor rate, but seemingly not for the main part of it. Comparing, for example, the refusal and donor rates of 
France and Spain, one can produce estimates of the relative contributions of exhortation policy (say, the 
“exhortation effect”) and production organization (say, the “organization of production effect”) to the 
productivity gap between these two countries quite simply as follows: Substituting the French refusal rate (27%) 
for the Spanish one (15%) in Spanish donation data yields a Spanish donor rate net of the difference in 

exhortation policies of 
1 0.27

36.4 31.26
1 0.15

−× =
−

per million; the latter implies relative contributions of the 

exhortation effect and the organization of production effect to the productivity gap that are respectively of 
36.4 31.26

46.3%
36.4 25.3

− =
−

 and 
31.26 25.3

53.7%
36.4 25.3

− =
−

. Similar calculations conducted on UK data yield similar 

conclusions, namely, an exhortation effect and a production organization effect respectively accounting for 44% 
and 56%  of the productivity gap between Spain and the UK. 



the marginal productivity of general inputs in any type of production exceeds their marginal self-

crowding impact (assumptions 1-(iv) and 1-(v)). 

 

Assumption 1: (i) For all { , , }r x y z∈ , r
if  is of the type  ( , ) ( , , )r r x y z

i i i i i i i it v g t v v v v→ + + , where r
ig  is 

continuous and concave in 3+ℝ  and 2C  in 3
++R . (ii) ( , , ) 0r r x y z

i i i i i ig t v v v v+ + =  whenever 0r
iv = . (iii) 

( , , ) 0x x x y z
i i i i i ig t v v v v+ + =  whenever 0it = . (iv) x

ig  is 0> , increasing in it , totally increasing in x
iv , 

and is decreasing in total general input x y z
i i iv v v+ +  in 3

++R  (that is, precisely: 0x
ig > , 1 0x

ig∂ > , 

2 3 0x x
i ig g∂ + ∂ >  and  3 0x

ig∂ <  in 3
++R , where x

k ig∂ denotes the partial derivative of xig  with respect 

to its k-th argument, {1,2,3}k ∈ ). (v) For all { , }r y z∈ , r
ig  is everywhere constant in it ; it is 0> , 2C , 

totally increasing in r
iv , and decreasing in x y z

i i iv v v+ +  in 2
+ ++×R R  (i.e., with the notations above: 

1 0r
ig∂ = ; 0r

ig > , 2 3 0r r
i ig g∂ + ∂ >  and 3 0r

ig∂ <  in 2
+ ++×R R ). (vi) For all 3( , )i it v +∈R  and all 

neighbourhood V  of ( , )i it v  in 3
+R , there exists 2

iv +∈ɶ R  such that ( , )i it v V∈ɶ  and  

( , , ) ( , , )r x y z r x y z
i i i i i i i i i ig t v v v v g t v v v v+ + > + +ɶ ɶ ɶ ɶ  for all { , , }r x y z∈ . (vii) Hospitals’ production constraints 

are identical, except for the upper bound on graft production, that is, there exists a triple of  functions 

( , , )x y zg g g  such that, for all i : ( ) ( ), , , ,x y z x y z
i i ig g g g g g= .  

 

Assumption 1 is maintained throughout in the sequel. 

Hospitals can purchase any quantity of general inputs x y z
i i iv v v+ +  on perfectly competitive markets of 

inputs at fixed market price  w . Graft provision is non-profit: It is billed at production cost to the 

transplant agency, which collects transplants and redistributes them to care units free of charge. Each 

hospital i  finances its general inputs for care services from a fixed budget B , the same for all i , 

subject to budget constraint ( )x y
i iw v v B+ ≤ . The latter imposes an upper bound /B w on its aggregate 

consumption of general inputs for care services x y
i iv v+ . The market price of general inputs is 

normalized to 1 in the sequel, that is, we let 1w = , without loss of generality. 



The set of feasible alternatives of hospital i  that deduces from the assumptions above reads: 

6( , ) {( , , , ) : ( , , ) ( , ), , and }x y
i i i i i i i i i i i i i i i iA t x y z v x y z g t v z v v Bω ω+= ∈ ≤ ≤ + ≤ℝ , where g  denotes map 

( , ) ( ( , , ), ( , , ), ( , , ))x x x y z y y x y z z z x y z
i i i i i i i i i i i i i i i i it v g t v v v v g t v v v v g t v v v v→ + + + + + + . 

The transplant agency is endowed with fixed budget 0B , sufficient to cover the cost of graft 

production for any feasible z , that is, 0
z
ii N

B v
∈

≥∑  for all v  such that ( , )z
i i ig t v ω≤  for all i . Its set 

of feasible alternatives therefore reads: 0 1( ) { ( ,..., ) : }n
n i ii N i N

A z t t t t z+ ∈ ∈
= = ∈ ≤∑ ∑ℝ . This 

assumption notably implies, realistically enough we believe, that the rationing constraints over organ 

transplantation are entirely driven by technical and endowment limitations: They owe nothing in this 

model, and owe very little in practice, to the financial constraints of the medical care systems of 

developed economies.  

 

3-3-Hospital’s production possibility frontier 

 

All relevant characteristics of hospitals’ constraints can be conveniently summarized in the following 

notion of a production possibility frontier of the hospital, describing the set of hospital’s accessible 

and technically efficient output combinations ( , , )i i ix y z . The formal definition below uses two 

functions derived in the first lemma of the appendix (see Appendix: A-1), namely: function 

1( ) ( )z
i B iz g z−→ , which yields the quantity of general inputs required to produce iz  for any fixed total 

quantity of general inputs available for transplant and other care services x y
i iv v B+ = ; and function 

( , , ) ( , , )i i i i i ix z t F x z t→ , which yields the efficient production in general care services iy  accessible 

from any fixed accessible ( , )i ix z  and any fixed positive it . 

 

Definition 1: The production possibility frontier of hospital i  is: set 

3 1{( , , ) : 0,  (0, , ( ) ( )) and  }y z
i i i i i B i i ix y z x y g B B g z z ω−

+∈ = = + ≤ℝ  if 0it = ; set 

3 1{( , , ) : ( , , ( ) ( )),  ( , , ) and }x z
i i i i i B i i i i i i ix y z x g t B B g z y F x z t z ω−

+∈ ≤ + = ≤ℝ  if 0it > . 

 



Figures 1a and 1b represent the canonical projection of some production possibility frontier on plane 

( , )i ix y  for fixed  pairs ( , )i iz t  such that it  is respectively null and positive. 

 

 

Fig 1.a 

 

 

Fig 1.b 

The partial derivative of function F  relative to ix  calculated in Lemma 1 is 
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( , , )
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g t B v s
F x z t

g t v s

∂ −∂ = −
∂

, where x
iv  is the quantity of general inputs used in transplant care 

(solving ( , , )x x
i i ix g t v s= ) and scale factor s  is the total consumption of general inputs 

yi 

xi 

 

( ) ( )( )i
Z
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−+

yi 

yi
0
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0 xi 

 

( )iii tzxF ,,1∂



(= 1( ) ( )z
B iB g z−+ ). It interprets as a technical marginal rate of substitution of general care services for 

transplant care services, that is, the marginal variation (decrease) in the provision of general care 

services that is required for maintaining hospital’s production combination on the production 

possibility frontier, following a marginal increase in the provision of transplant care services. It 

corresponds, geometrically, to the slope of the graph of partial function ( , , )i i i ix F x z t→  in plane 

( , )i ix y  (see Figure 1b). We name it marginal rate of transformation in the sequel, although it does not 

exactly coincide with usual meaning of the latter notion, to distinguish it from the marginal rate of 

substitution defined from hospitals’ utility function below. 

Another characteristic of hospital technology which reveals analytically indispensable in this model is 

the marginal rate of compensation of transplant provision by transplant transfer, formally defined as 

follows: 

 

Definition 2:  Let 0it > , and ( , , )i i ix y z  be on hospital i ’s associate production possibility frontier. 

The marginal rate of compensation (MRC) of transplant provision by transplant transfer at ( , , )i i ix y z  

is: 2

3

( , , )

( , , )
i i i

i i i

F x z t

F x z t

∂−
∂

. 

 

Any increase in graft production iz  ceteris paribus induces a downward shift of the graph of 

( , , )i i i ix F x z t→  in plane ( , )i ix y , implying a contraction of hospital’s set of accessible production in 

( , )i ix y , due to the crowding effect exerted on the production of transplant and general care services 

by increased use of general inputs in graft production (see Lemma 1 and Figure 1c). Symmetrically, 

any increase in transplant transfer it  ceteris paribus induces an upward shift of the graph of 

( , , )i i i ix F x z t→  in plane ( , )i ix y  (implying an expansion of hospital’s set of accessible final 

productions ( , )i ix y ) by releasing some quantity of general inputs in transplant care provision, which 

can be freely reallocated between ix  and iy  production without inducing any additional crowding of 



production capacities (Lemma 1 and Figure 1d). The marginal rate of compensation 
* * *

2
* * *

3

( , , )

( , , )
i i i

i i i

F x z t

F x z t

∂−
∂

 

measures the marginal variation (increase) in the transplant transfer *it (>0) received by hospital i  that 

is required for keeping hospital’s production constant (= * * *( , , )i i iF x z t ), following a marginal increase in 

its graft production from*
iz . It corresponds, geometrically, to the slope of the level curve through 

* *( , )i iz t of partial function *( , ) ( , , )i i i i iz t F x z t→  in plane ( , )i iz t  (see Figure 1e). 4 It is determined by 

the ratio of crowding costs to the marginal productivity of inputs, increasing in the former.5 It 

interprets as an indicator of tension on hospital’s production capacities. 

 

Fig 1.c 

                                                 
4 More formally, it follows from Lemma 1 and the implicit function theorem that equation 

* * *( , , ) ( , , ) 0i i i i i iF x z t F x z t− =  implicitly defines it  as a 2C  increasing function [ ]0, iω ++→ R of iz , the graph of 

which is the “level curve” of *( , ) ( , , )i i i i iz t F x z t→ through * *( , )i iz t in plane ( , )i iz t . The implicit function theorem 

moreover implies that the first derivative of this implicit function is 
*

2
*

3

( , , )

( , , )
i i i

i i i

F x z t

F x z t

∂= −
∂

 at any point ( , )i iz t  of its 

graph. 

5 Calculations using the proof of Lemma 1 yield an MRC 3 32
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Fig 1.d 

 

Fig 1.e 

The position of the MRC relative to unity (larger than, equal to, or smaller than 1) is of particular 

importance for the study of equilibrium and social optimum below. To fix ideas, consider the case of a 

hospital that contributes an additional kidney for circulation by the transplant agency ( 1idz = + ) and 

simultaneously receives an additional kidney from the agency for its own transplant care services 

( 1idt = + ). An MRC 1>  (resp. 1= , resp. 1< ) essentially means that its production possibility frontier 

shifts downwards (resp. is left unchanged, resp. shifts upwards) in the plane of final production 

combinations ( , )i ix y  as a consequence of this marginal change in its pair of contribution and transfer 

( , )i iz t .  
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4-Behavioural assumptions: preferences, interactions and equilibrium 

 

In this section, we first return on one of the basic justifications for the existence of a transplant agency 

collecting and dispatching transplants (4-1). We turn next to the modelling of public good issues 

relative to transplants in the presence of the transplant agency (4-2-1 and 4-2-2), and finally design a 

socially optimal transplant care system (4-3).  

 

4-1-Unregulated equilibrium and the optimal production of transplant care services 

 

Our basic behavioural assumption is agent rationality, construed as the maximization of agents’ 

complete and transitive preferences over their sets of alternatives.  

Hospitals, notably, are viewed as rational agents exclusively concerned with their own provision of 

care services. Hospital i  maximizes a utility function u , the same for all i , over the set of pairs 

( , )i ix y  of combinations of transplant and other care services which it performs. We make the 

following set of standard assumptions on utility function, which will be maintained throughout the 

sequel: 

 

Assumption 2: Hospitals’ utility function is a continuous, non-decreasing, quasi-concave function 

over 2
+R , whose restriction to 2

++R  is a 2C , strictly increasing and strictly quasi-concave function.  

Moreover ( , ) (0)i iu x y u> implies ( , ) 0i ix y ≫ .6 

                                                 
6 Note that the boundary condition of Assumption 2, which may interpret as a priority of the final production of 
care services, is incompatible with for-profit behaviour. Assumption 2 can be made compatible with for-profit 
behaviour for production plans that are sufficiently far from the lower boundary of hospital’s production set by 
relaxing the strict quasi-concavity in 2++R  to simple quasi-concavity. Strict quasi-concavity is used in the sequel 

only for the technically convenient uniqueness of hospital’s optimum final production plan that it implies. It can 
be replaced, with the same consequence and without substantial differences for subsequent analysis, by the 
alternative assumption of a quasi-concave utility function and production functions xg  and yg  strictly concave 

in 3
++R . In other words, the main of subsequent analysis applies to the case of for-profit behaviour of care 

production units when equilibrium conditions imply an optimal production plan of the hospital that is sufficiently 
far from the axes. 
 



 

In the absence of a market for transplant inputs, banned by law, and of any institutional substitute for 

the former such as a transplant agency, hospitals would be reduced to a situation of autarky, as far as 

transplant inputs are concerned, that is, produce by themselves, from their own endowment iω  and 

budget iB , the grafts they use in their final production of transplant care services. Formally, each 

hospital would solve program max{ ( , ) : ( , , , , ) 0,i i i i i i iu x y x y z v t ≥  

( , , ) ( , ), , and }x y z
i i i i i i i i i i ix y z g t v t z v v v Bω≤ ≤ ≤ + + ≤ , where hospital’s budget covers all expenses in 

general inputs, including the general inputs z
iv  used in intermediary graft production (hospital’s 

“autarkic” budget constraint). A production equilibrium of this autarkic transplant care system would 

then consist of an input-output combination of the care system ( , , , , )x y z v t  solving simultaneously the 

n independent programs of the hospitals. We name this type of equilibrium an autarkic equilibrium. 

Common sense suggests that such unregulated equilibrium can very easily result in the waste of a part 

of total graft resources, that is, typically, in this highly aggregated model7, disposal, by best endowed 

hospitals, of the fraction of their endowment that exceeds the quantity of graft inputs they need for the 

provision of transplant care services that maximizes their utility in program above. Formally: 

 

Theorem 1: There exists a solution * * * * *( , , , , )i i i i ix y z v t  of the “unconstrained” autarkic program 

max{ ( , ) : ( , , , , ) 0,( , , ) ( , ), ,and }x y z
i i i i i i i i i i i i i i i i iu x y x y z v t x y z g t v t z v v v B≥ ≤ ≤ + + ≤ , that is, of hospital’s 

autarkic program where the rationing constraint over graft production i iz ω≤  has been dropped. This 

solution is the same for all i , unique with respect to * *( , )i ix y , and 0≫ . If there exists 

* { : }i i i Nω ω∈ ∈  such that * * * * *( , , , , )i i i i ix y z v t  verifies rationing constraint *
i iz ω<  with a strict 

inequality, then, for all hospitals j  such that *
j iω ω≥ : * * * * *( , , , , )i i i i ix y z v t  is an autarkic equilibrium 

input-output combination of hospital j ; and hospital j ’s marginal utility of graft resource *iω  is null 

                                                 
7 In a more accurate description of the medical care system, the problem under consideration here would be, 
realistically, formulated as mismatched vectors of potential graft resources (kidneys, corneas,…) and  final 
transplant care services of the hospital at any moment in time. For an application of matching models and 
discrete optimization techniques to the health care system and the economics of transplants, see Alvin Roth et 
alii (2004, 2005ab and 2006). 



at * * * * *( , , , , )i i i i ix y z v t . Moreover, hospitals’ autarkic budget constraints x y z
i i iv v v B+ + ≤  are always 

binding (that is, satiated, with positive hospitals’ marginal utilities of budget) at autarkic equilibrium. 

 

The proof of this theorem, as those of most of the following, is detailed in the appendix (see A-2). 

Only one very short proof will be presented in the present section (Theorem 3). 

The disposal of a part of the resources of the hospitals that are best endowed in terms of their potential 

of graft production will very commonly appear as a social waste if there exists a possibility of making 

a productive use of disposed resources in some other hospitals, in terms of their final production of 

care services. Hospitals’ endowments in the sense above (potential of graft production) being 

physically and legally non-transferable, the notion of social optimum implicit in this normative 

appreciation of “wasteful” disposal actually refers to implicit social preferences over pairs ( , )x y of 

final production of the care system.8 We now introduce such preferences explicitly, with the following 

basic normative priors, summarized in Assumption 3 below: The social preferences aggregate 

hospitals’ preferences, are increasing in both types of final production of care services, express (like 

hospitals’) a priority of production, and imply a preference for an “equal treatment of relevantly 

equals”, that is, a preference for equal provision of final care services over hospitals whenever the 

latter is accessible.  

 

Assumption 3: The social utility function is a continuous, non-decreasing, anonymous9 function 

: nW + +→R R , whose restriction to n
++R  is a 2C , strictly increasing function n

++ ++→R R .  Moreover 

                                                 
8 Brain-dead patients cannot be physically transferred from one hospital to another mainly because of imperative 
legal constraints. In particular, lump-sum transfers of hospitals’ graft endowments cannot be used as instruments 
of a public distribution policy in this context. Grafts are physically transferable between hospitals, subject to the 
legal constraints of the national transplant organization, but they must be extracted on site, due to the reason 
above. Distribution ω  cannot be an object of individual or social preference in our context (if preference 
underlies choice, as is assumed here, naturally). Graft production z  is individually or socially valuable only as 
an intermediary for the final production of transplant care services x . Final production of care services seems, 
therefore, to be the most appropriate object of preferences, both at individual and at social level, in this model of 
the medical care system. 
9 The anonymity property states that any permutation in hospitals’ names (and associate production ( , )i ix y ) 

leaves the agency’s utility unchanged. 



1 1( , ) ( ( , ),..., ( , ))n nx y W u x y u x y→  is strictly quasi-concave in 2n
++R , and such that 

1 1( ( , ),..., ( , )) ( (0),..., (0))n nW u x y u x y W u u>  implies ( , ) (0)i iu x y u>  for all i .  

 

The utilitarian sum of hospitals’ utility functions : ( , ) ( , )i ii N i N
u x y u x y

∈ ∈
→∑ ∑  yields an example of 

a social utility function that verifies Assumption 3.  Assumption 3 is maintained throughout the sequel. 

We can now introduce, as formal Definitions 3 and 4 below, two derived notions that will prove useful 

for the normative appreciation of production equilibrium, namely, the socially efficient production of 

final care services of the medical care system (in short, social optimum), and the social scarcity of 

(potential) graft resources. 

 

Definition 3:  A final production combination ( , )x y  of the medical care system, or associate input-

output combination ( , , , , )x y z v t , is socially efficient if it maximizes the social utility function W  in 

the set of socially accessible input-output combinations 

7{( , , , , ) : ;   ;  ;   and ( , , ) ( , ) forn x y
i i i i i i i i ii N i N i N

x y z v t t z z v v nB x y z g t vω+ ∈ ∈ ∈
∈ ≤ ≤ + ≤ ≤∑ ∑ ∑ℝ  all i} .10 

 

Definition 4:  The potential graft resources of hospital i  are socially scarce if a ceteris paribus 

increase in this hospital’s endowment increases optimal social utility, that is, if 

1 1max{ ( ( , ),..., ( , )) : ( , , , , ) 0; ; '; ;and ( , , )x y
n n i i i i i i ii N i N i N

W u x y u x y x y z v t t z z v v nB x y zω
∈ ∈ ∈

≥ ≤ ≤ + ≤∑ ∑ ∑
( , ) }i ig t v i≤ ∀ > 1 1max{ ( ( , ),..., ( , )) : ( , , , , ) 0; ; '; x y

n n i i i ii N i N i N
W u x y u x y x y z v t t z z v vω

∈ ∈ ∈
≥ ≤ ≤ + ≤∑ ∑ ∑

;and ( , , ) ( , ) }i i i i inB x y z g t v i≤ ∀  whenever 'i iω ω>  and / /' =n i n iω ω .  

 

The next proposition and corollary characterize social optimum and scarcity. 

 

                                                 
10 Note that the specification of the social opportunity set implied by this definition of the social optimum 
supposes, as already stated at the end of 3-2 above, that the constraints binding the production of final transplant 
care services, if any, are the rationing constraints over graft production, as opposed to the budget constraints 
limiting purchases of general inputs.  



Theorem 2: There exist social optima * * * * *( , , , , )x y z v t , which are 0≫ , with a unique optimal 

production of final care services * *( , )x y , and verify the following system of necessary and sufficient 

first-order conditions, where partial derivatives are evaluated at the optimum: (i) * *  i ii N i N
t z

∈ ∈
=∑ ∑ ; 

(ii) * *x y
i ii N

v v nB
∈

+ =∑ ; (iii) for all i , * * * * *( , , ) ( , )i i i i ix y z g t v=  and 1 2

2 2

y

x

u g

u g

∂ ∂=
∂ ∂

; (iv) *z ω≤  and there 

exists ( , ) nλ δ ++ +∈ ×R R  such that 1 1. . x
iW u g λ∂ ∂ ∂ = , 1 3 2 3

2 3

.( . . )x yi
i z z

W
u g u g

g g
δ λ λ∂= + ∂ ∂ + ∂ ∂ <

∂ + ∂
, 

and *.( ) 0i i izδ ω − =  for all i , where λ  and iδ  are the marginal social utilities of aggregate hospitals’ 

contribution and hospital i ’s potential graft resources respectively. The potential graft resources of 

hospital i  are scarce at social optimum if and only if iδ  is 0> . 

 

Corollary 1:  * * * *( , , , )x y z t  is socially optimal if and only if: (i) * *  i ii N i N
t z

∈ ∈
=∑ ∑ ; (ii) for all i , 

* * * *( , , )i i i iy F x z t=  and 
* *

* * *1
1* *

2

( , )
( , , )

( , )
i i

i i i
i i

u x y
F x z t

u x y

∂ = ∂
∂

; (iv) *z ω≤  and there exists ( , ) nλ δ ++ +∈ ×R R  such 

that, for all i , 2 3. .iW u F λ∂ ∂ ∂ = , 2
2 3

3

. . . 1i i

F
W u F

F
δ λ ∂= ∂ ∂ ∂ + < ∂ 

, and *.( ) 0i i izδ ω − = , where the 

partial derivatives are evaluated at the optimum. Hospital i ’s potential graft resources are scarce at 

social optimum if and only if this hospital’s MRC is 1<  at the optimum. 

 

Corollary 1 does not require an explicit proof, as simple consequence of Theorem 2 and Lemma 1. 

The proof of Theorem 2 is detailed in the appendix (A-2).  

To sum up, in a context of scarcity of transplant and general inputs of the health system, and in the 

absence of a market for the former, socially optimal provision of transplant care services should be 

limited by hospital’s rationing constraints i iz ω≤ , implying z ω=  at social optimum, while autarkic 

provision should be limited by hospitals’ autarkic budget constraints x y z
i i iv v v B+ + ≤ , at least for 

those hospitals that are best endowed in terms of their potential graft resources, implying the waste of 

a fraction of the latter, that is, a socially inefficient (under-) provision of transplants (both intermediary 



and final). This yields the basic rationale, within our abstract representation of the medical care 

system, for the introduction of a transplant agency in charge of collecting and circulating grafts in the 

place of the missing market for transplant inputs.  

 

4-2-Regulated equilibrium with public good interactions 

 

We suppose, from there on, that there exists a transplant agency of the type described at the beginning 

of this section, and moreover assume that this agency endorses the social preferences of Assumption 3. 

As noted above, the existence of a transplant agency induces public good externalities of the 

technological type between hospitals, as long as the latter control their production of grafts, that is: 

The graft production decided by any hospital has consequences on the production sets of all others 

through transplant redistribution by the agency. 

Public good interactions between hospitals and the agency are modelled below through a device which 

has become standard in mechanism design theory, namely, subgame-perfect Nash equilibria of two-

stage games (see notably, in the context of models of private contributions to a public good, Guttman 

(1978, 1987), Bergstrom (1989) or Cornes and Silva (1999) and also the detailed references reviewed 

in Mercier Ythier (2006: 6.3 and A.2.1)). We successively consider three possible variants of the two-

stage game, where hospitals and the agency alternate as first and second players in the game. The first 

two are defined below as the myopic game (4-2-1) and the clear-sighted game (4-2-2) respectively. 

The third notion of two-stage game, labelled monitored game, is defined and studied in subsection 4-3. 

 

4-2-1-Myopic equilibrium 

 

In the first variant of the two-stage game, hospitals play second, each one solving 

max{ ( , ) : ( , , , ) ( , )}i i i i i i i i iu x y x y z v A tω∈  with respect to ( , , , )i i i ix y z v  for any given it . We denote by 

iϕ  hospital i ’s reaction correspondence at this stage, defined by 

( ) argmax{ ( , ) : ( , , , ) ( , )}i i i i i i i i i it u x y x y z v A tϕ ω= ∈ , and let 1( ,..., )nϕ ϕ ϕ= . The transplant agency plays 



in the first stage of the game, solving  1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( ) and ( )}n nW u x y u x y x y z v t t A zϕ∈ ∈  

with respect to t . An equilibrium of the game is a state ( , , , , )x y z v t  that solves the latter program. We 

refer to this first notion of equilibrium as the myopic equilibrium in the sequel, due to the short-sighted 

free-riding behaviour of hospitals which it implies. 

We have the following simple benchmark property for the myopic equilibrium: 

 

Theorem 3: The provision of transplant care services and grafts is null at myopic equilibrium. 

 

Proof: Graft production is costly for the hospital, due to its crowding effects on hospital’s production 

of final care services ( , )i ix y , and doesn’t yield any advantage, ceteris paribus (that is, given others’ 

graft provision and agency’s transfers), in terms of hospital’s utility. Therefore 0z = , which implies 

0t = , which implies in turn 0x = .■11 

 

The above result is interesting as a clear-cut, albeit extreme expression of the coordination problem of 

transplant activities. It is individually rational for myopic hospitals to free ride, or shirk, on graft 

production, that is, to attempt to shift over the others the crowding costs induced by graft production12. 

Myopia interprets as a lack of understanding, at individual level, of the collective damages that result 

from generalized free-riding, namely, the dramatic under-provision of transplants (no provision at all, 

in the case under consideration). The existence of a central agency collecting and redistributing 

transplants is not only insufficient, per se, for solving the public good problem; it dramatically 

                                                 
11 The set of myopic equilibria is 7{( , , , , ) : 0;  =0,  /  and 0n z x y

i i i ix y z v t x z t v v v B w y+∈ = = = + ≤ ≤ ≤R  

(0, , ) for all }y y x y
i i ig v v v i+ , implying  an equilibrium utility of hospitals and the agency everywhere equal to 

their minimal values in their respective domains, that is (0)u  and ( (0),..., (0))W u u  respectively.  
12 Note that the formulation of the public good problem as a pure coordination problem here and below does not 
rely on imperfect or costly information. The reason for this is empirical: accounts of the Spanish and other 
experiences of national transplant systems we are aware of put little emphasis, if any emphasis at all, on 
information problems per se. The main difficulty, as far as production units are concerned, seems to be self-
centredness, understood as the propensity of each hospital to concentrate on its own patients, and subsequent 
reluctance to consider costly actions that are not directly related to this priority. One of the main lessons of the 
Spanish experience, it seems to us, is that most problems are solved by simply discharging hospitals, in some 
appropriate way, of the concern of on site organization of graft production (including identification of potential 
donors, and donations interviews).  
 



deteriorates production equilibrium, relative to the autarkic equilibrium, if public good interactions are 

of the myopic type. 

 

4-2-2-Clear-sighted equilibrium 

 

The consequence of Theorem 3 is too extreme to be accepted literally. Hospitals should be, and 

actually are well aware of the damages of shirking (in the sense of footnote 11) for the medical care 

system as a whole, and for themselves as a part of it. Myopia does not appear a realistic assumption, in 

other words, both a priori and in view of its logical implication.  

In the variant of the two-stage game that we introduce now, the agency plays second, solving  

1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( , ) for all , and ( )}n n i i i i i i iW u x y u x y x y z v A t i t A zω∈ ∈  with respect to 

( , , , )x y v t  for any given z ω≤ . We denote by 0 0 0
1( ,..., )nϕ ϕ ϕ=  the agency’s transfer correspondence 

at this stage, where 0iϕ  yields the agency’s optimal transfers to hospital i  for any fixed z . Hospitals 

play first, each one solving max{ ( , ) :i iu x y  0( , , , ) ( , ); ( )}i i i i i i i i ix y z v A t t zω ϕ∈ ∈  with respect to 

( , , , )i i i ix y z v  for any given vector of graft production of other hospitals /n iz . An equilibrium of the 

game is a Nash non-cooperative equilibrium of the first-stage game, that is, a state * * * * *( , , , , )x y z v t  

such that: * 0 *( )t zϕ∈ ; and for all i , * * * *( , , , )i i i ix y z v  solves 

0 *
/max{ ( , ) : ( , , , ) ( , ); (( , ))}i i i i i i i i i i i n i iu x y x y z v A t t z zω ϕ∈ ∈ . We name it the clear-sighted equilibrium in 

the sequel, because it embodies hospitals’ clear awareness of the public good externality associated 

with graft production, and individual damages from free-riding behaviour that it implies for them. 

We establish below that clear-sightedness, if it actually improves the functioning of the transplant care 

system relative to the myopic game, by implying a positive production of grafts and transplant services 

(Theorem 4-(i)), nevertheless does not suffice for solving the under-provision problem. Precisely, it is 

shown that a fraction of the system’s resources for graft production remains unexploited, in general, at 

clear-sighted equilibrium when graft resources are socially scarce (Theorem 4-(ii)).  



We restrict attention, in this subsection, to the medical care systems that have clear-sighted equilibria. 

The existence property of clear-sighted equilibrium is analyzed in detail in the appendix (A-4). It is 

shown there (Lemma 5) that the critical feature which conditions existence is that hospitals’ first-stage 

reaction correspondences be convex-valued. A minimal sufficient condition on preferences and 

technology for the latter is that the first-stage reduced form of hospitals’ utility functions 

( , ) ( , ( , , ( ))i i i i i ix z u x F x z zϕ→  be quasi-concave (A-4: Lemma 4). Formally: 

 

Definition 5:  The medical care system ( , , , )W u gω  is convex if, for all i , the first-stage reduced form 

of hospital i ’s utility function *
/( , ) ( , ( , , (( , )))i i i i i i n i ix z u x F x z z zϕ→  is quasi-concave over 

2{( , ) : 0 }i i i ix z z ω+∈ < ≤R  for all * { : }nz z z ω+∈ ∈ ≤R  and quasi-concave over 

2{( , ) : 0 }i i i ix z z ω+∈ ≤ ≤R  for all *
/{ : ;0 }n

n iz z z zω+∈ ∈ ≤ <R .  

 

Theorem 4: Let ( , , , )W u gω  be convex. (i) Clear-sighted equilibria exist and are 0≫ . (ii) Transplant 

care services are underprovided, in general, at clear-sighted equilibrium (that is, equilibrium graft 

production is ω< ) when hospitals’ graft resources are all scarce at social optimum. (iii) Clear-sighted 

equilibrium is a social optimum notably if programs max{ ( , ( , , )) : }i i i i i iu x F x z z z ω≤  yield a same 

solution ( , )i ix z  for all hospitals.  

 

The details of the proof are given in the appendix (A-5). We concentrate here on the essence of the 

argument underlying the second and third parts of the theorem, beginning with the optimality property 

of the latter. 

The first-order conditions characterizing social optimum (Corollary 1) and clear-sighted equilibrium 

(Lemmas 2 and 3) differ on a single essential point, namely, hospitals’ marginal utilities of graft 

resources, which read 2
2 3

3

. . 1
F

u F
F

 ∂∂ ∂ + ∂ 
 (= / )i iWδ ∂  for social optimum and 0 2

2 3
3

. . i i

F
u F

F
ϕ ∂∂ ∂ ∂ + ∂ 

 



for social equilibrium13. The transfer policy 0ϕ  of the transplant agency will therefore completely 

solve the coordination problem of the care system, that is, make hospitals’ equilibrium and optimum 

evaluation of graft resources coincide in all circumstances if, and in general only if 0( ) 1i i zϕ∂ =  for all 

i  and all z , that is, if 0ϕ  is the identity function z z→  of n
R . The latter transfer policy consists of 

returning each hospital its contribution in all circumstances. 

Clearly enough, this perfect or complete solution to the coordination problem should, in general, 

conflict with the end-objectives of allocation efficiency and distribution equity implied by the social 

preference relation. In other words, returning each hospital its contribution in all circumstances is 

generally not an optimal transfer policy of the transplant agency at the second stage of the clear-

sighted game. The main first-order conditions for the latter are 2 3. .iW u F λ∂ ∂ ∂ = , equating marginal 

social utilities of transfers to the marginal social utility of hospitals’ aggregate contribution14. The 

anonymity and convexity properties of the social preference relation (Assumption 3) imply that 

marginal social utilities iW∂  are identical if and only if hospitals’ utilities are identical (and (0)u> ). 

The identity function z z→  solves, therefore, the agency’s second-stage problem if, and in general 

only if the following two conditions hold: (i) a constant function 3 ( , , )i i i iz F x z z→ ∂ ; (ii) and  

hospital’s first-stage reduced form programs max{ ( , ( , , )) : }i i i i i iu x F x z z z ω≤  yielding a same solution 

( , )i ix z  for all hospitals.  

Condition (ii) above interprets as follows: Hospitals, producing their transplant care services from 

their own production of transplant inputs, and financing their purchases of general inputs for their 

intermediary graft production from the agency’s budget, choose the same production combination 

* * *( , ( , , ), ) ( , , )i i i i ix F x z z z x y z=  in their individual opportunity sets. In terms of the rationing 

                                                 
13 The other difference lies in the specification of budget constraints, namely, aggregate budget constraint at 
social optimum versus individual budget constraints at equilibrium. We assume implicitly here and explicitly in 
the case of the monitored equilibrium studied in the next subsection that social optimum is always 
decentralizable, in the sense that if an input-output combination of the care system can be achieved from its 
aggregate budget, then it can also be achieved from the set of hospitals’ individual budgets. This assumption is 
not much demanding in our setup, since hospitals are assumed identical in all respects except potential graft 
endowment and social optimum verifies hospitals’ rationing constraints by definition.  
14 The other conditions that are relevant for allocation efficiency are the first-order conditions equating hospitals’ 
marginal rates of substitution with their marginal rates of transformation. This set of conditions is automatically 
verified, in a decentralized way, at the solutions of hospitals’ first-stage programs of the clear-sighted game. 



constraints over graft production, this type of configuration is compatible with only two possibilities: 

either none of these constraints are binding; or all hospitals’ endowments are equal, if a constraint is 

binding for some hospital (that is, satiated, with positive associate hospitals’ marginal utility of 

endowment). We establish in the appendix the intuitively clear fact that, in such cases, status quo 

transfers 0 * *( . ) .n nz e z eϕ =  are equilibrium transfers, and that * * *( . , . , . )n n nx e y e z e  is a socially efficient 

clear-sighted equilibrium production combination for such transfers. Example 2 below yields an 

instance of a calculable care system with constant unitary MRC where the optimality property of 

Theorem 4-(iii) applies and status quo is the agency’s transfer policy. 

To sum up, the agency’s end-objectives of allocation efficiency and distribution equity should conflict 

with coordination objectives in most circumstances, the only notable exception corresponding to the 

case where hospitals spontaneously achieve social optimum because rationing constraints are either 

non-binding or identical for all of them. In realistic circumstances, where rationing constraints are 

binding at social optimum and there is some diversity in hospitals’ endowments, the status quo transfer 

policy which consists of returning each hospital its contribution cannot be an optimal policy (that is, 

cannot yield equal social marginal utilities of transfers for all hospitals), at social optimum and in the 

close neighbourhood, for anonymous, increasing, strictly convex social preferences.  The agency’s 

transfer policy is therefore bound to introduce some discrepancies between hospitals’ marginal 

evaluations of their graft resources computed from the standpoint of social optimum 

( 2
2 3

3

. . 1
F

u F
F

 ∂∂ ∂ + ∂ 
) and equilibrium ( 0 2

2 3
3

. . i i

F
u F

F
ϕ ∂∂ ∂ ∂ + ∂ 

), through hospitals’ marginal returns of 

individual contribution 0
i iϕ∂  distinct from 1.  

In the practically relevant case where graft resources are scarce at social optimum (that is,  marginal 

rates of compensation 2

3

1
F

F

∂− <
∂

 for all i  at social optimum, implying  that socially optimal graft 

production is z ω= ) social optimum is not a clear-sighted equilibrium if and only if the marginal 

return of contribution of some hospital is smaller than its marginal rate of compensation, that is, if and 

only if 0 2

3

( )i i

F

F
ϕ ω ∂∂ < −

∂
 for some i , implying that hospital i  then wants to deviate from socially 



optimal i iz ω=  by diminishing its contribution. In Example 1 below, we present a family of calculable 

care systems, with symmetric log-linear utility function of hospitals, additive utilitarian social utility 

function, and square root Cobb-Douglas production functions, where the agency’s second-stage 

optimal transfer policy turns out to be the equal sharing of aggregate contribution, that is,   

0 1
( )i ii N
z z

n
ϕ

∈
= ∑  for all i  for all z . Hospitals’ marginal return of own contribution  0( )i zϕ∂  

therefore is equal to 1 / n  in the example, hence smaller than 1 if there is more than one hospital and 

decreasing to 0 as hospitals’ number grows to infinity. We show that the Nash equilibrium of the first 

stage of the clear-sighted game, which coincides by definition with clear-sighted equilibrium for 

agency’s optimal policy above, reduces to an example of the general class of symmetric Nash 

equilibrium with public goods of Chamberlin (1974)15 when hospitals’ number is sufficiently large. In 

particular: hospitals’ individual contribution is positive, decreasing in hospitals’ number, and tends 

asymptotically to 0 as the latter grows to infinity; hospitals’ aggregate contribution increases in 

hospitals’ number, at a lower speed than the latter. This notably implies that no rationing constraint is 

binding in first-stage hospitals’ programs, and that clear-sighted equilibrium is therefore independent 

of the initial distribution of potential graft resources, when the number of hospitals is sufficiently 

large. Moreover, we show that graft resources are scarce at social optimum, whatever the number of 

hospitals, for suitable equal distributions of potential graft resources. Transfers actually practiced by 

transplant agencies certainly are much closer to equal sharing policy 
1

ii N
z z

n ∈
→ ∑  than to status quo 

policy z z→ , so that hospitals’ marginal returns of contribution 0( )i zϕ∂  should be considered much 

closer to 1 / n  than to 1 in reality, hence much closer to 0 than to 1 in view of actual numbers of care 

production units in charge of providing the transplant care services (155 in the case of Spain, for 

example: see section 2 above). Inefficient under-provision therefore seems a more plausible outcome 

of the clear-sighted game, for realistic assumptions on preferences, technology and number of 

production units. 

                                                 
15 See also the generalizations and extensions of Chamberlin’s result by Andreoni (1988) and Fries et alii (1991), 
and the related literature reviewed in Mercier Ythier (2006: 6.2) 



Theorem 4-(iii) is a rotten kid theorem (Becker (1974, 1981)). Precisely, it identifies configurations of 

principal-agent interactions where the optimal transfer policy of the (benevolent) principal drives the 

(non-cooperative, self-centred) agents to implement a social optimum which coincides with the 

principal’s optimum. The conditions under which this property obtains in this model of the transplant 

care system are quite different from Becker’s (1974, 1981), Bergstrom’s (1989) and also from Cornes 

and Silva’s (1999).   

The public good externalities of first-stage equilibrium pre-exist to transfer policy in the game of 

Cornes and Silva. This and the neutrality property of transfers allow the principal to use transfer policy 

as a pure coordination device in their setup: in the absence of any trade off between allocation and 

distribution objectives (due to neutrality), the principal’s optimal transfer policy achieves social 

optimum by equating individual marginal valuations of the public and private goods at first-stage 

equilibrium with their marginal valuations at social optimum. The public good externalities of the 

first-stage equilibrium of the transplant care game, if any, are, by contrast, generated by the principal’s 

transfer policy (as in Becker’s and Bergstrom’s game); moreover, transfer policy induces public good 

externalities if and only if it is not of the status quo type, that is, if and only if it does not merely 

consist of returning each agent its contribution. Only if status quo is the agency’s optimal transfer 

policy can the mechanism of Cornes and Silva be successfully replicated in the context of the 

transplant care game, that is, use transfer policy as a pure coordination device for achieving social 

optimum. Theorem 4-(iii) gives the sufficient, and in general necessary, condition for status quo 

transfer policy to be the agency’s second-stage optimal policy. 

Bergstrom (1989) states that the rotten kid theorem applies if, and in general only if, agents’ utilities 

are conditionally transferable. Bergstrom’s general property, like Becker’s original theorem, do not 

apply to the transplant care game if rationing constraints are binding at social optimum. Becker’s 

theorem applies in the context of competitive market exchange, essentially because (perfect) 

competitive exchange automatically achieves allocation efficiency for any distribution of money 

income, thereby allowing the principal to optimize the sole distribution of income, by means of lump-

sum endowment (or numeraire) transfers (see the Hick’s composite theorem in Bergstrom (1989), and 

also the Example 2 of Mercier Ythier (2007)). The rotten kid property still obtains outside competitive 



market exchange if the allocation efficiency frontier is invariant to redistribution and if the principal 

can freely redistribute aggregate money income between self-centred agents (Bergstrom (1989): 

Proposition 1).  None of these conditions apply to the transplant care game, except in the special case 

where rationing constraints are non-binding at equilibrium (see the argument of footnote 16 and  the 

proof of Theorem 4-(iii) in the appendix). Moreover, the ban on markets of transplant inputs, which 

makes competitive markets fail in the transplant economy, also is the main explanation, both in theory 

and in practice, for the existence of binding rationing constraints in the production of transplant care 

services. The virtuous rotten kids of Becker’s theorem are, so to speak, daughters and sons of 

abundance.  

 

Example 1: A calculated example of Olson-Chamberlin underprovision 

We study the following calculable medical care system ( , , , )W u gω : production functions are the 

concave Cobb-Douglas of 
1 1 1 1

2 2 2 2( , ) ( ) (( ) ,( ) ,( ) )x y z x y z
i i i i i i i i ig t v v v v t v v v

−
= + + ; hospitals’ utility function is 

the log linear ( , ) log logi i i iu x y x y= + ; social utility function is the utilitarian sum 

                                                 
16 Transferable utility translates as follows into our framework: The preference relation underlying hospitals’ 
(identical) reduced form utility functions ( , ( , , ))i i i iu x F x z t  admits a utility representation of the type 

. ( , )i i iA t C x z+ , where A is a 0>  real number and C  is a real-valued function decreasing in iz . Suppose for 

simplicity (without significant loss of generality by Mas-Colell (1985): 2.3.11) that 
( , ( , , )) . ( , )i i i i i i iu x F x z t A t C x z= +  for all i . This implies 2 3 2 2 2 3 2/ ( . ) / ( . ) /F F u F u F C A∂ ∂ = ∂ ∂ ∂ ∂ = ∂ , where the 

points of evaluation of partial derivatives are omitted to alleviate notations. Denoting by iu  a utility level of 

hospitali , the utility possibility set conditional on the system of agents’ actions  ( , )x z  is the simplex 

1 1 1{( ,..., ) ( ( , ),..., ( , )) :n n nu u C x z C x z≥  . ( , )}i i i ii N i N i N
u A z C x z

∈ ∈ ∈
≤ +∑ ∑ ∑ . The rotten kid theorem implies the 

maximization of “social income” . ( , )i i ii N i N
A z C x z

∈ ∈
+∑ ∑  relative to socially accessible agents’ actions  ( , )x z  

at equilibrium. The f.o.c. for a maximum of . ( , )i i ii N i N
A z C x z

∈ ∈
+∑ ∑  such that 0x≫  subject to rationing 

constraints z ω≤  read: 1 ( , ) 0i iC x z∂ = , 21 0
C

A

∂+ ≥  and 21 .( ) 0i i

C
z

A
ω∂ + − = 

 
 for all i , and therefore coincide 

with the f.o.c. for the solutions of max{ ( , ( , , )) : }i i i i i iu x F x z z z ω≤  with positive ix . Supposing an anonymous 

utility function of the principal, this set of conditions characterize a socially optimal clear-sighted equilibrium, 
with status quo second-stage optimal transfer policy 0 : z zϕ → , if and only if programs 

max{ ( , ( , , )) : }i i i i i iu x F x z z z ω≤  have a same solution, that is, if and only if rationing constraints are either non-

binding in all these programs or identical in all of them (the latter implying identical hospitals’ endowments). In 
particular, Proposition 1 of Bergstrom (1989) does not apply if, and in general only if, distinct rationing 
constraints are binding in at least two of these programs. The assumption of Bergstrom’s proposition that fails to 
hold, in general, in the latter case is that the principal can choose any vector of transfers in set 
{ : }n

i ii N i N
t t z+ ∈ ∈
∈ ≤∑ ∑R , implying that the principal’s transfers are not limited by rationing constraints in the 

cases covered by the proposition.■  



1 1 1( ( , ),..., ( , )) ( , )n n n i ii N
W u x y u x y u x y

∈
=∑ . It verifies assumptions 1, 2 and 3. Associate function F  

reads 

1
2 2

2( , , ) 1 i
i i i i

i

x
F x z t z

t

 
= − − 
 

. The first-order conditions of Lemma 2 then yield 

0( ) (1 / )i ii N
z n zϕ

∈
= ∑  for all i , that is, the agency’s optimal distribution policy is equal sharing of 

aggregate hospitals’ contribution.17 Substituting optimal transfer 0( )i zϕ  for it  in F  yields the 

following reduced form for hospital i ’s first stage objective function: 

2
0 2( , ( , , ( ))) log (1/ 2) log 1 i

i i i i i i
jj N

x
u x F x z z x z n

z
ϕ

∈

 
 = + − −
 
 ∑

, viewed as a function of ( , )i ix z  for 

fixed /n iz . The path of hospital i ’s optimal final production conditional on iz  is 

1 1
2 22 21 1

{( , ) : 0 }
2 2

i i
i i

z z
t z ω   − − ≤ ≤   
   

. By further restricting to this path the objective function above, 

we get the following final reduced form for hospital i ’s first stage program 

2max{(1/ 2) log log(1 ) (1/ 2) log log2 :0 }j i i ij N
z z n z ω

∈
+ − − − ≤ ≤∑ , where the objective function is 

(differentiably) strictly concave. Let us provisionally ignore the rationing constraint in the latter 

program. The first-order necessary and sufficient condition for an unconstrained maximum reads 

2

:
5 4( ) 1 0i j ij N j i
z z z

∈ ≠
+ − =∑ . Solving for iz  yields the unique 0>  solution 

( )2

: :
(2 / 5) (1/ 5) 5 4i j jj N j i j N j i

z z z
∈ ≠ ∈ ≠

= − + +∑ ∑ . Letting *
iz z=  for all i  in the solution and solving 

for *z yields the symmetric individual contribution *
1

4 1
z

n
=

+
. In particular, there exists 0n  such 

that * . nz e ω≪  for all 0n n≥ , implying that *z  is a symmetric equilibrium contribution of the medical 

care system, with non-binding rationing constraints, when the number of hospitals is at least as large 

as 0n . This is then the unique equilibrium contribution, as a special case of Cornes and Hartley, 

                                                 
17 Notably : f.o.c. 1

1
2

( , ( , , ))
( , , )

( , ( , , ))
i i i i

i i i
i i i i

u x F x z t
F x z t

u x F x z t

∂ = −∂
∂

 yields 
2

2i
i

i

x
y

t
=  for all i ; substituting into f.o.c. 

2 3( , ( , , )). ( , , )i i i i i i iu x F x z t F x z t λ∂ ∂ =  and adding up over i  then yields both 2 / jj N
n zλ

∈
= ∑  and 

(1/ )i jj N
t n z

∈
= ∑ .  



2007.18 Equilibrium  individual contribution lies in ] [0,1  for all 0n n≥ . It is decreasing, 

asymptotically equivalent to 
1

2 n
, converging to 0 as the number of hospitals grows to infinity, while 

aggregate equilibrium contribution 
4 1

ii N

n
z

n∈
=

+∑  is increasing, growing to infinity with the 

number of hospitals but at a lower speed than the latter.19 One verifies easily from the first-order 

conditions of Theorem 2 that these equilibria are socially inefficient. The marginal social utility of 

hospitals’ aggregate contribution is 
2 ii N

n

z
λ

∈

=
∑

, and the marginal social utility of hospital i ’s 

potential graft resources is 
2

2
2 1

i
i

i ii N

n z

z z
δ

∈

= −
−∑

 for all i  in the f.o.c.. Letting 
1

4 1
iz

n
=

+
 for all 

i  in the latter yields positive values of iδ  for all 2n ≥ , which are inconsistent with social optimality 

for 0n n≥  (since 
1

4 1
i

n
ω<

+
 for all i  then). Suppose, finally, that initial endowments are equally 

distributed, that is, . neω ω= ɶ  for some ω ++∈ɶ R  for all n . The MRC at ( , , ) 0i i ix z t ≫  is 22 ( / )i i iz t x . 

On the path of hospital i ’s optimal final production conditional on iz , and for agency’s optimal 

                                                 
18 The reader can check this by proceeding to the following change of variable: Let the utility function in the 
framework of Cornes et alii be 2( , ) log( 2 ) (1 / 2) log (1/ 2) log log2i i i jj N

U x G x x g n
∈

= − + + + − −∑ , where 

ix denotes their “private good” (not to be confused with our “provision of transplant care services”), 

jj N
G g

∈
=∑ is the public good, and jg  is j ’s individual contribution to G . Let their agent’s endowment (not 

to be confused with our “potential of graft production”) be 1= . Their reduced utility function, obtained by 
substituting budget constraint 1i ix g+ =  in the former, is (1 , )i i iU g g G−− + =  

2log(1 ) (1/ 2) log( ) (1 / 2) log log2i i ig g G n−− + + + − − , where 
:i jj N j i

G g− ∈ ≠
=∑ , which is identical to the reduced 

form of the utility function of our calculated example. A simple calculation shows that function 
(1 , )i i iU g g G−− +  verifies the normality condition of Chamberlin (1974), which implies in turn the condition for 

uniqueness of Cornes and Hartley (2007).  
19  

4 1

n

n +
 is asymptotically equivalent to 

1

2
n . Its instantaneous growth rate is 

1 1
1

2
2

n n
−

+
, which is positive 

and 1<  for all 1n ≥ , decreasing with n , asymptotically equivalent to 
1

2n
, and, in particular, tending to 0 as n  

grows to infinity. The asymptotic behaviour of hospitals’ contributions reproduces the qualitative features of the 
general property of Chamberlin (1974). We established in a footnote above that the first-stage Nash equilibrium 
of this example reduces to a special case of Chamberlin’s symmetric Nash equilibrium when the number of 
hospitals becomes large enough to make all rationing constraints slack at equilibrium. 



transfer associated with z , this yields: 
21

4. .i ii N

i

z z

n z
∈ −∑ . Therefore, hospitals’ potential graft 

resources are all scarce at social optimum if and only if ] [24(1 ) 0,1ω− ∈ɶ , that is, if and only if  

1
0,

5
ω  ∈  

 
ɶ . 

 

Example 2: Linear transferable transplant technology 

In this example, we consider the case of convex medical care systems with constant unitary MRC. We 

label this special case the transferable transplant case, by analogy with transferable utility (Bergstrom 

and Cornes (1983), Bergstrom and Varian (1985ab) and Bergstrom (1989)).20 We further restrict 

attention, for calculation purposes, to linear hospital technology. Linear technology being inconsistent 

with the boundary conditions of Assumption 1, we suppose, more precisely, that there exists a positive 

real number inf{ : }i i Nε ω≤ ∈ , which may be taken arbitrarily close to 0, such that 

( , , )i i i i i iF x z t ax bz bt c= − − + + , 3( , , )a b c ++∈R , whenever ( , , , ( , , )) ( , , , )i i i i i ix z t F x z t ε ε ε ε≥  (see 

Figures 2a and 2b). 

Let * *( , )i ix y  denote a local maximum of u  in 2{( , ) : }i i i ix y y ax c+∈ ≤ − +R . Note that such a point: 

necessarily exists by continuity of u ; is 0≫  by the boundary condition of Assumption 2, and 

therefore is the unique global maximum of  u  in 2{( , ) : }i i i ix y y ax c+∈ ≤ − +R  by the strict quasi-

concavity of utility in 2
++R ; is such that * *

i iy ax c= − +  (u  being strictly increasing in 2
++R ) ; and 

verifies first-order condition 
* *

1
* *

2

( , )

( , )
i i

i i

u x y
a

u x y

∂ =
∂

. We suppose in the sequel that * *( , ) ( , )i ix y ε ε≫  (see 

Figure 2c). 

                                                 
20 These characteristics of F  obtain easily from Assumption 1 by letting functions rg , { , , }r x y z∈ , be linear 

whenever ( , , ) ( , , ) 0i i ix y z ε ε ε≥ ≫ . A suitable choice of coefficients in the linear representations of functions  
rg yields a linear graph ofF , with ( , , )i i iF x z t ε≥  and unit MRC, for ( , , ) ( , , )i i ix z t ε ε ε≥ . As should be clear 

from footnote 15 above, transferable transplants neither implies, nor is implied by, transferable utility. 
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Fig 2.c 

The first-order conditions of the second Lemma of the appendix (see Appendix: A-3) then readily 

imply that the agency’s optimal distribution policy at the second stage of clear-sighted equilibrium is 

to transfer each hospital its own contribution when all hospitals contribute at least ε , that is, 

formally: the restriction of 0ϕ  to { : . }n
nz e zε ω+∈ ≤ ≤R  is the identity z z→ .21 The first-order 

conditions of the third Lemma of the appendix (Appendix: A-3) then imply in turn that all hospitals 

have essentially the same set of optimal production combinations at the first stage of clear-sighted 

equilibrium, precisely: all elements of set * * 3{( , , ) : }i i i i ix y z zε ω+∈ ≤ ≤R , where * *( , )i ix y  is the same 

for all i  (but where, of course, iω  may vary with i ), solve hospital i ’s first stage program for all 

/ 1.n i nz eε −≥ . In other words, if all hospitals contribute at least  ε , the agency’s transfer policy makes 

each hospital’s decision independent of others’ decisions, and also makes hospital’s final production 

of transplant and other care services independent of its own intermediary production of grafts for the 

agency; so that all hospitals end up choosing the same output combination for their final care services, 

and also end up indifferent to their intermediary graft production over range [ ], iε ω . 

                                                 
21 Let i iz t=  and * * * *( , ) ( , ) ( , )i i i ix y x y x y= =  for all i  in the f.o.c., and recall the anonymity property of the 

social utility function implies that marginal social utilities of hospitals’ utilities are equal whenever hospitals’ 
utilities are equal. 
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Let * * * *( , ) ( , )i ix y x y= . It clearly follows from definitions and paragraph above that any * *( . , . , )n nx e y e z 

such that .ne zε ω≤ ≤  is a clear-sighted equilibrium production of the medical care system, and that 

t z=  is the corresponding vector of equilibrium transfers. Note, finally, that: other equilibria might 

exist; * *( . , . )n nx e y e  is the unique socially efficient final production combination of the medical care, as 

a simple consequence of the first-order conditions of Theorem 2 and Corollary 1; and z ω<  for all 

equilibria above except * *( . , . , )n nx e y e ω . In particular, the marginal social utility of the potential graft 

resources of all hospitals is null in this example (while the marginal social utility of hospitals’ 

aggregate contribution ii N
z

∈∑  is positive).22 More precisely, some fraction of aggregate transplant 

resources does have a positive marginal social utility since hospitals and the agency have (0)u  and 

( (0),..., (0))W u u  utility levels if 0ii N
ω

∈
=∑ , but any . neω ε≥  suffices for sustaining the equilibria 

above. That is: transferable transplants technology applies if aggregate resources exceed threshold nε  

(technology being linear only for ( , , , ) ( , , , )i i i ix y z t ε ε ε ε≥ ); and this particular technology then makes 

any amount of aggregate transplant resources in excess of this threshold (any positive difference 

ii N
nε ω

∈
− +∑ ) socially useless.  

 

4-3--Monitored graft production 

 

A simple solution to the coordination problem raised in subsection 4-2 is the monitoring of graft 

production by the transplant agency. This solution actually appears trivial in the setup above, from the 

viewpoint of formal logic. It is interesting to develop because it captures, we believe, the 

organizational features of the Spanish transplant system that are at the origin of the latter’s remarkable 

achievements analyzed in section 2 above. 

The model is amended as follows. The transplant agency hires physicians and delegates them in 

hospitals in order to supervise graft production in each of them, with an objective of maximization of 

                                                 

22  From the corollary of Theorem 2: 2
2 3

3

. . . 1 0i i

F
W u F

F
δ

 ∂= ∂ ∂ ∂ + = ∂ 
, while 2 3 2. . . . 0i iW u F W u cλ = ∂ ∂ ∂ = ∂ ∂ > , 

for all i . 



the latter subject to the legal, technical and endowment constraints detailed above. Formally, this new 

organizational trait amounts to letting the agency decide (through its delegates in hospitals) over 

hospitals’ levels of graft production in 1( ,..., )nz z z= . That is, the agency’s monitoring opportunity set 

now reads 0 ( )MA ω = 3{( , , ) :  ; ( , , ) and  for all i}z n z z x y z
i i i i i i i i i ii N i N

z v t t z z g t v v v v z ω+ ∈ ∈
∈ ≤ ≤ + + ≤∑ ∑ℝ , 

while its monitoring budget 0
MB  now covers the wages of supervisors in addition to the other costs of 

transplant provision. Similarly, Hospitals’ monitored opportunity sets are defined as: 

4( , ) {( , , , ) : ( , , );  ( , , );and } M z x y x x x y z y y x y z x y
i i i i i i i i i i i i i i i i i i i i iA v t x y v v x g t v v v v y g t v v v v v v B+= ∈ ≤ + + ≤ + + + ≤ℝ

 

The public good externality between hospitals vanishes in this new specification of the transplant 

system, since it followed from their individual choice of a level of graft production, which now is 

essentially endorsed by the agency. The distinction between a myopic and a clear-sighted behaviour 

becomes pointless, consequently, in the sense that the (Nash non-cooperative) equilibrium of the 

transplant game is now independent of hospitals’ understanding of agency’s policy. The two-stage 

game may be specified, accordingly, as follows. Hospitals play second, each one solving 

max{ ( , ) : ( , , , ) ( , )}x y M z
i i i i i i i i iu x y x y v v A v t∈  with respect to ( , , , )x y

i i i ix y v v  for any given ( , )z
i iv t . We 

denote by M
iϕ  hospital i ’s monitored reaction correspondence at this stage (solving program above 

for any ( , )z
i iv t ), and let Mϕ denote the associate product correspondence defined by  

( , ) {( , , , ) : ( , , , ) ( , ) for all }M z x y x y M z
i i i i i i iv t x y v v x y v v v t iϕ ϕ= ∈ . The transplant agency plays in the first 

stage of the game, solving  

1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( , ) and ( , , ) ( )}x y M z z M
n nW u x y u x y x y v v v t z v t Aϕ ω∈ ∈  with respect to 

( , , )zz v t . An equilibrium of the game is a state ( , , , , )x y z v t  that solves the latter program. We refer to 

this third notion of equilibrium as the monitored equilibrium. 

We establish below that monitored equilibrium and social optimum coincide, provided that socially 

efficient production can be achieved by hospitals endowed with equal budgets B . This optimality 

property implies, in particular, in view of Theorem 2, that a monitored equilibrium exists, and that the 

corresponding socially optimal production of final care services is unique. 



 

Theorem 5: Suppose that, for any social optimum ( , , , , )x y z v t , there exists a combination of general 

inputs vɶ  such that x y
i iv v B+ =ɶ ɶ  and ( , , ) ( , )i i i i ix y z g t v= ɶ  for all i . Then, the monitored equilibrium is a 

social optimum. 

 

Theorem 5 implies a clear advantage of monitored equilibrium, relative to clear-sighted equilibrium, in 

terms of the production of final care services of the medical care system. Optimizing the distribution 

of transplants does not suffice, in other words, for achieving socially efficient production. The latter 

supposes that some control be exerted also on graft production.  This implies in turn some additional 

monitoring costs, captured in the simple model above through the (positive) difference 0 0
MB B−  

between the agency’s budgets in the monitored and clear-sighted games. A complete comparative 

evaluation of the two modes of regulation of the transplant care system supposes that their differences 

in terms of socially efficient production be balanced against their differences in terms of budgetary 

costs. The data collected in section 2 suggest that monitoring costs are actually low, relative to their 

remarkable impact on graft production. In other words, the Spanish experience shows a high 

productivity of monitoring expenses. 

 

Conclusion 

 

The economic organization of the transplant care system was characterized as a production economy 

of the public sector operating on the background of incomplete markets of inputs. The collection and 

circulation of transplants by the transplant agency induce public good interactions between hospitals. 

A socially optimal distribution policy of the agency cannot achieve alone the coordination of 

hospitals’ production decisions at equilibrium and cannot in general attain alone the social optimum 

when potential graft resources are scarce, that is, equivalently, when the rationing constraints over the 

production of transplant inputs are binding at social optimum. Social optimum is attained by 

eliminating the public good interactions between hospitals through the optimal control of both the 



distribution and the production of transplant inputs by the agency. The data suggest that more than one 

half of Spain’s donor rate differential with other countries proceeds from an adequate management of 

this public good problem by its national transplant organization. Improving the coordination of 

hospitals’ production of transplants seems the principal and most efficient way for improving national 

donor rates. The other major way consists of lowering donation refusal rates through adequate 

exhortation policies and an adequate management of donation interviews. 

 

Appendix 

 

A-1: Hospital’s production possibility frontier  

 

Lemma 1: There exists a function F  such that, for any [ ]( , ) 0,i i iz t ω ++∈ ×ℝ , the set of technically 

accessible output combinations of hospital i  is: 

3 1{( , , ) : ( , , ( ) ( )),  ( , , ) and }x z
i i i i i B i i i i i i ix y z x g t B B g z y F x z t z ω−

+∈ ≤ + ≤ ≤ℝ , where 1( )Bg −  denotes the 

inverse of increasing partial function ( , , )z z z z
i i i iv g t v B v→ + . Function F  is defined over sets 

2{( , , ) : ( , , ); ( , , ); 0}x z z z z z
i i i i i i i i i i ix z t x g t B B v z g t v B v v+ ++∈ × ≤ + ≤ + ≥ℝ ℝ , and 2C  in the (non-empty) 

intersection of these convex domains with 3
++R . It is decreasing and concave in ix , decreasing in iz  

and increasing in it . Its partial derivatives read: 2
1
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g
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g
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 where  the partial derivatives of F , 

xg , yg  and zg  are respectively evaluated at ( , , )i i ix z t , ( , , )x
i it v s , ( , , )x

i it B v s−   and 1( ,( ) ( ), )z
i B it g z s−  

such that 1( ) ( )z
B is B g z−= +  and ( , , )x x

i i ix g t v s= .  

Proof: Let 1: ( , , ) ( , , ( ) ( ))r r r r z
i i i i i B iG t v z g t v B g z−→ + , { , }r x y∈ . Function xG , being increasing in xiv  

in 2
++ +×R R  (see Assumption 1), then admits a partial inverse  relative to this variable, that is, there 

exists a function xh  such that 1( , ( , , ), ( ) ( ))x x z
i i i i B i ig t h x z t B g z x−+ =  for all 



( , , ) {( , , ) : ( , , ); ( , , ); 0}x z z z z z
i i i i i i i i i i i i i ix z t x z t x g t B B v z g t v B v v++ + ++∈ ∈ × × ≤ + ≤ + ≥ℝ ℝ ℝ . This domain 

of xh is convex and has a non-empty intersection with 3
++ℝ  by Assumption 1. The implicit function 

theorem moreover implies that xh  is 2C  in the intersection of its domain with 3
++ℝ , with: 

1 21/x xh g∂ = ∂ , 2 3 2 2 3/ ( ( ))x x x z zh g g g g∂ = −∂ ∂ ∂ + ∂  and 3 1 2/x x xh g g∂ = −∂ ∂ , where  the partial 

derivatives of xh , xg  and zg  are respectively evaluated at ( , , )i i ix z t , 1( , ( , , ), ( ) ( ))x z
i i i i B it h x z t B g z−+  

and 1 1( ,( ) ( ), ( ) ( ))z z
i B i B it g z B g z− −+ . And xh  is: increasing and convex in ix  as inverse of increasing 

concave partial functions 1( , , ( ) ( ))x x x z
i i i B iv g t v B g z−→ + ; increasing in iz  and decreasing in it  by the 

derivatives calculated above and Assumption 1. We may let F  be defined by:  

( , , ) ( , ( , , ), )y x
i i i i i i i iF x z t G t B h x z t z= −  if 0ix > ; ( , , ) ( , , )y

i i i i iF x z t G t B z=  if 0ix = . One verifies 

immediately that F is concave, decreasing in ix  and in iz , increasing in it . Its restriction to 3
++ℝ  is 

2C , and 2
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 where  the 

partial derivatives of F , xg  and yg  are respectively evaluated at ( , , )i i ix z t , 

1( , ( , , ), ( ) ( ))x z
i i i i B it h x z t B g z−+  and 1( , ( , , ), ( ) ( ))x z

i i i i B it B h x z t B g z−− + .■ 

 

A-2: Autarkic equilibrium, social optimum 

 

The proofs of this subsection are simple applications of standard techniques of convex optimization 

(Arrow and Enthoven (1961)). 

Proof of Theorem 1: The existence of * * * * *( , , , , )i i i i ix y z v t  is a simple consequence of the continuity of 

hospital’s utility function, maximized in non-empty compact set 

7{( , , , , ) : ( , , ) ( , ), , and }x y z
i i i i i i i i i i i i i i ix y z v t x y z g t v t z v v v B+∈ ≤ ≤ + + ≤R  (see Assumptions 1 and 2). 

The solutions are 0≫  by Assumptions 1 and 2 (a (0)u>  utility suppose a 0≫  production ( , )i ix y  of 

final care services by Assumption 2, which implies in turn a 0≫  vector ( , , )i i iz v t  of intermediary 

graft production and inputs by Assumption 1). The uniqueness of the optimal final production of care 



services * *( , )i ix y follows from the strict quasi-concavity of utility function in 2
++R  and convexity of 

opportunity set 7{( , , , , ) : ( , , ) ( , ), , and }x y z
i i i i i i i i i i i i i i ix y z v t x y z g t v t z v v v B+∈ ≤ ≤ + + ≤R  (the latter 

implied by the concavity of production functions rg , { , , }r x y z∈ ). “Unconstrained” program 

max{ ( , ) : ( , , , , ) 0,( , , ) ( , ), ,and }x y z
i i i i i i i i i i i i i i i i iu x y x y z v t x y z g t v t z v v v B≥ ≤ ≤ + + ≤   being identical for 

all i , so is the solution * * * * *( , , , , )i i i i ix y z v t . If * * * * *( , , , , )i i i i ix y z v t  verifies rationing constraint *
i iz ω≤  with 

a strict inequality, that is, if * *
i iz ω< , then it solves “constrained” program 

*max{ ( , ) : ( , , , , ) 0,( , , ) ( , ), ,and x y z
i i i i i i i i i i i i i i i i i iu x y x y z v t x y z g t v t z v v vω≥ ≤ ≤ ≤ + +  }B≤   as a simple 

consequence of definitions. The Kuhn and Tucker first-order conditions (f.o.c.) for the constrained 

program characterize * * * * *( , , , , )i i i i ix y z v t  by Arrow and Enthoven (1961: Theorems 1 and 2)23. They read 

as follows: (i) * * *x y z
i i iv v v B+ + = ; (ii) * * * * *( , , ) ( , )i i i i ix y z g t v= ; (iii) 1 2

2 2

y

x

u g

u g

∂ ∂=
∂ ∂

 (evaluated at 

* * * * *( , , , , )i i i i ix y z v t ); (iv) and there exists iγ +∈R  such that *.( ) 0i i izγ ω − = . Since * *
i iz ω<  by 

assumption, we must have 0iγ =  in the Kuhn and Tucker conditions, that is, iγ  is determinate and 

0=  in the f.o.c., and interprets then as the hospital i ’s marginal utility of potential graft resources. 

The same applies to any hospital j  such that *
j iω ω≥ . Finally, hospital’s budget constraints are 

binding at autarkic equilibrium as a simple consequence of Assumption 1-(vi) and increasing utility, 

that is, these assumptions straightforwardly imply that any ceteris paribus increase in hospital’s budget 

increases its maximal utility level in associate autarkic opportunity set.■ 

Proof of Theorem 2: The social opportunity set 7{( , , , , ) : ; n
i ii N i N

x y z v t t z+ ∈ ∈
∈ ≤∑ ∑ℝ   

;  ;and ( , , ) ( , ) for all i}x y
i i i i i i ii N

z v v nB x y z g t vω
∈

≤ + ≤ ≤∑  is non-empty (it contains 0), compact (by 

continuity of g ) and convex (by concavity of g ). It has a non-empty intersection with 7n
++R  by our 

assumptions relative to the productivity of hospital’s technology (see Assumption 1, notably parts (iv), 

                                                 
23 These theorems of Arrow and Enthoven apply here, in spite of the non-differentiability of objective and 
constraint functions on the lower boundary of their domains (the boundary conditions of Assumptions 1, 2 and 
3), because these functions admit quasi-concave differentiable extensions with same solutions of the program. 
The same remark applies to our use of the first-order conditions of Mas-Colell (1985): D.3.3 in Lemma 3 below: 
the objective and constraint functions of the program admit 1C  extensions with same solutions of the program.    



(v) and (vi)). The continuity of social utility function 1 1( , ) ( ( , ),..., ( , ))n nx y W u x y u x y→  therefore 

implies the existence of a social optimum* * * * *( , , , , )x y z v t , which must be 0≫  by Assumption 1 and 

the boundary conditions of Assumption 2 and 3. The optimal production of final care services * *( , )x y  

is unique by the strict quasi-concavity of 1 1( , ) ( ( , ),..., ( , ))n nx y W u x y u x y→  in 2n
++R  and convexity of 

the social opportunity set. The Kuhn and Tucker first-order conditions are necessary and sufficient at a 

0≫  solution of convex program 1 1max{ ( ( , ),..., ( , )) : ( , , , , ) 0; ;n n i ii N i N
W u x y u x y x y z v t t z

∈ ∈
≥ ≤∑ ∑  

'; ; and ( , , ) ( , ) for all }x y
i i i i i i ii N

z v v nB x y z g t v iω
∈

≤ + ≤ ≤∑  by Arrow and Enthoven (1961: Theorems 

1 and 2). Strictly increasing utility and production functions in the positive orthant readily imply that 

constraints i ii N i N
t z

∈ ∈
≤∑ ∑ and ( , , ) ( , )i i i i ix y z g t v≤ are binding, with positive associate multipliers, 

in the f.o.c.. Strictly increasing utility and Assumption 1-(vi) moreover imply that aggregate budget 

constraint x y
i ii N

v v nB
∈

+ ≤∑  is also binding, with a positive associate multiplier, at social optimum. 

These remarks and some calculations yield the following system of characterizing f.o.c., where partial 

derivatives are evaluated at the optimum: (i) * *  i ii N i N
t z

∈ ∈
=∑ ∑ ; (ii) * *x y

i ii N
v v nB

∈
+ =∑ ; (iii) for all 

i , * * * * *( , , ) ( , )i i i i ix y z g t v=  and 1 2

2 2

y

x

u g

u g

∂ ∂=
∂ ∂

; (iv) and there exists ( , ) nλ δ ++ +∈ ×R R  such that 

1 1. . x
iW u g λ∂ ∂ ∂ = , 1 3 2 3

2 3

.( . . )x yi
i z z

W
u g u g

g g
δ λ λ∂= + ∂ ∂ + ∂ ∂ <

∂ + ∂
, and *.( ) 0i i izδ ω − =  for all i , 

where λ  is the multiplier associated with constraint i ii N i N
t z

∈ ∈
≤∑ ∑ . Finally, the characterization of 

scarcity in the last part of Theorem 2 is a simple consequence of definitions and the characterizing 

f.o.c. above. ■ 

 

A-3: Agents’ behaviour at clear-sighted equilibrium 

 

Lemma 2: Agency’s transfer policy: The agency’s transfer correspondence at the second stage of the 

clear-sighted game identifies with a continuous function 0 : { : 0 }n nz zϕ ω +∈ ≤ ≤ →R R  such that 

0(0) 0ϕ =  and 0( ) 0zϕ ≫  for all 0z > . Its restriction to { : 0 }nz z ω+∈ < ≤R  solves, for any given z , 



the following system of first-order conditions in ( , )x t : (i) i ii N i N
t z

∈ ∈
=∑ ∑ ; (ii) for all i , 

1
1

2

( , ( , , ))
( , , )

( , ( , , ))
i i i i

i i i
i i i i

u x F x z t
F x z t

u x F x z t

∂ = −∂
∂

; (iii) and there exists λ ++∈R  such that, for all i , 

1 1 1 1 2 3( ( , ( , , )),..., ( , ( , , ))). ( , ( , , )). ( , , )i n n n n i i i i i i iW u x F x z t u x F x z t u x F x z t F x z t λ∂ ∂ ∂ = .  

Proof: Sets of alternatives ( , ) i i iA t ω  and 0( )A z  being non-empty, compact and convex for all non-

negative ( , )t z  such that z ω≤ , and the agency’s utility function being continuous, program 

1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( , ) for all , and ( )}n n i i i i i i iW u x y u x y x y z v A t i t A zω∈ ∈   has one solution 

( , , )x y t  at least, for any fixed non-negative z ω≤ . That is, correspondence 

0 : { : 0 }n nz zϕ ω +∈ ≤ ≤ →R R  is well-defined (i.e. has non-empty values over its domain). Its values 

are compact by continuity of u , and convex by convexity of 

0{( , ) : ( , , , ) ( , ) for all , and ( )}i i i i i i ix y x y z v A t i t A zω∈ ∈  and quasi-concavity of u . 

0(0) {0}A =  by definitions, and 6(0, ) {(0, , , ) :i i i i i iA y z v yω += ∈ ≤ℝ  

(0, , ),  (0, , ),   and }y y x y z z z x y z x y
i i i i i i i i i i i i ig v v v v z g v v v v z v v Bω+ + ≤ + + ≤ + ≤   for all i  by definitions and 

Assumption 1-(iii). These facts and Assumptions 1 and 2 imply that the set of solutions of the 

agency’s program when 0z =  coincides with the corresponding set of alternatives of the agency’s 

program, that is, with set {( , , ) : 0 and 0 (0, , ) for all }y
ix y t x t y g B B i= = ≤ ≤ , the agency’s and 

hospitals’ utilities being then (0)W=  over this whole set. In particular: { }0(0) 0ϕ = .  

Suppose from now on that 0z ω< ≤ . 

0( ) nA z ++∩R  is non-empty whenever 0z > , that is, it is always possible for the agency to make 

positive transplant transfers to all hospitals whenever some >0 quantity of transplant is available. The 

agency’s set of alternatives 7
0{( , , , ) : ( , , , ) ( , ) for all , and ( )}n

i i i i i i ix y v t x y z v A t i t A zω+∈ ∈ ∈R  is convex 

for all z , by the concavity of production functions ,  { , , }rg r x y z∈  (see Assumption 1). The boundary 

conditions of Assumptions 2 and 3 relative to utility functions, the strict quasi-concavity of the social 

utility function in 2n
++R , and Assumption 1 then readily imply that the solutions of the agency’s 

program are 0≫  vectors ( , , , )x y v t , which moreover imply a unique optimal production of final care 



services ( , )x y , whenever 0z > . From Lemma 1 and strictly increasing hospital’s utility, such interior 

solutions can be characterized, equivalently, as interior solutions to : 

1
1 1 1 1 0max{ ( ( , ( , , )),..., ( , ( , , ))) : 0 ( , , ( ) ( )),and ( )}x z

n n n n i i B iW u x F x z t u x F x z t x g t B B g z t A z−≤ ≤ + ∈ where 

“interior” now means either that ( , , ) 0x y t ≫  or, equivalently, that 0t ≫  and 

10 ( , , ( ) ( ))x z
i i B ix g t B B g z−< < +  for all i . The necessary first-order conditions (f.o.c.) for the latter 2C  

program read as follows (e.g. Mas-Colell (1985): D.3.3): (i) i ii N i N
t z

∈ ∈
≤∑ ∑ ; (ii) for all i , 

1
1

2

( , ( , , ))
( , , )

( , ( , , ))
i i i i

i i i
i i i i

u x F x z t
F x z t

u x F x z t

∂ = −∂
∂

; (iii) and there exists a 0≥  real number λ  such that 

1 1 1 1 2 3( ( , ( , , )),..., ( , ( , , ))). ( , ( , , )). ( , , )i n n n n i i i i i i iW u x F x z t u x F x z t u x F x z t F x z t λ∂ ∂ ∂ =  and 

( ) 0i ii N i N
z tλ

∈ ∈
− =∑ ∑  for all i .  

Utility functions being strictly increasing in the positive orthant (see Assumptions 2 and 3) and 

function F being strictly increasing relative to 0it >  in 3
++R  (see Lemma 1), the third part of the f.o.c. 

readily implies that 0λ >  and i ii N i N
t z

∈ ∈
=∑ ∑ , that is, the agency’s marginal utility of aggregate 

graft provision is >0 and aggregate graft production is entirely transferred to hospitals at agency’s 

optimum.  

The non-convex program 1 1 1 1max{ ( ( , ( , , )),..., ( , ( , , ))) : 0n n n n iW u x F x z t u x F x z t x≤ ≤  

1
0( , , ( ) ( )), and ( )}x z

i B ig t B B g z t A z−+ ∈  being equivalent to the convex program 

1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( , ) for all ,and ( )}n n i i i i i i iW u x y u x y x y z v A t i t A zω∈ ∈ , the necessary f.o.c. 

above are also necessary first-order conditions for the latter. And the f.o.c. of program 

1 1 0max{ ( ( , ),..., ( , )) : ( , , , ) ( , ) for all , and ( )}n n i i i i i i iW u x y u x y x y z v A t i t A zω∈ ∈  are also sufficient 

conditions for an interior solution of the latter by Arrow and Enthoven (1961: Theorem 1). They 

characterize, therefore, the solutions whenever 0.z >  

Let us prove, to finish with, that 0ϕ  is single-valued and continuous over { : }nz z ω+∈ ≤R .  

We already proved that 0(0) {0}ϕ = . Let 0z >  and * * *( , , )x y t  solve 

1
1 1 1 1 0max{ ( ( , ( , , )),..., ( , ( , , ))) : 0 ( , , ( ) ( )); ( )}x z

n n n n i i B iW u x F x z t u x F x z t x g t B B g z t A z−≤ ≤ + ∈ . We 



established above that optimal ( , )x y  is unique, = * *( , )x y , and that * 0t ≫ . Function F  being 

increasing in transfer, *it  is necessarily unique for all i , as unique solution of equation in it : 

* *( , , )i i i iy F x z t= . Therefore, 0ϕ  is single-valued over { : }nz z ω+∈ ≤R . It identifies, in other words, 

with a function { : }n nz z ω+ +∈ ≤ →R R  over this domain. 

Let sequence ( )q
qz ∈ℕ  of elements of { : }nz z ω+∈ ≤R  converge to *z . Suppose first that * 0z > . Then 

0 *( ) 0zϕ ≫  and there exists 0q ∈ℕ  such that 0qz >  and 0( ) 0qzϕ ≫  for all 0q q≥ . Therefore, *z  and 

all qz  such that 0q q≥  verify the system of 1C  f.o.c. above. 
0

0( ( ))q
q qzϕ ≥ , being a sequence of 

elements of compact set { : 1}n
ii N

t t+ ∈
∈ ≤∑R , has at least one limit point *t  in that set. *t  verifies the 

f.o.c. at *z  by continuity of the latter. Therefore *t = 0 *( )zϕ , and continuity in { : 0 }nz z ω+∈ < ≤R  is 

established. Suppose, finally, that * 0z = . By definition of 0ϕ ,  0( )qzϕ  is 0≥  and verifies inequalities 

00 ( )q q
i ii N i N

z zϕ
∈ ∈

≤ ≤∑ ∑  for all q . Therefore 0

0, 0
lim ( )

q q

q

z z
zϕ

→ ≥
 is well-defined, 00 (0)ϕ= = , and 

continuity at 0 is established.■ 

 

Lemma 3: Hospital’s behaviour: Hospital i ’s reaction correspondence at the first stage of the clear-

sighted game is a well-defined, upper hemi-continuous correspondence 6: { : }C n
i z z zϕ ω+ +∈ ∈ ≤ →R R  

such that: 6( )C
i zϕ ++⊂ R  whenever / 0n iz = ; 2 2( )C

i zϕ ++ + ++ +⊂ × × ×R R R R  whenever / 0n iz ≠ . Let 

1{ : }nz z z ω−
+∈ ∈ ≤ɶ R  be fixed, * * * *( , , , ) ( )C

i i i i ix y z v zϕ∈ ɶ  be such that * 0iz > , and suppose that 

0
/(( , ))i i n i iz z zϕ→ ɶ  is 1C  in  some interval open in ( ]0, iω  containing *

iz . Then, * * * *( , , , )i i i ix y z v  verifies 

the following system of first-order conditions: (i) * * * 0 *
/( , , (( , )))i i i i n i iy F x z z zϕ= ɶ ; (ii) 

* * * 0 * *
/( , , ) ( (( , )), )i i i i n i i ix y z g z z vϕ= ɶ  ; (iii) 

* *
* * 0 *1

1 /* *
2

( , )
( , , (( , )))

( , )
i i

i i i n i i
i i

u x y
F x z z z

u x y
ϕ∂ = −∂

∂
ɶ ; (iv) and there exists 

iδ +∈R  such that * * * * 0 * * * 0 * 0 *
2 2 / 3 / /( , ).( ( , , (( , ))) ( , , (( , ))). (( , )))i i i i i n i i i i i n i i i i n i i iu x y F x z z z F x z z z z zϕ ϕ ϕ δ∂ ∂ + ∂ ∂ =ɶ ɶ ɶ  

and *( ) 0i i izδ ω − = . If function 0
/( , ) ( , ( , , (( , ))))i i i i i i n i ix z u x F x z z zϕ→ ɶ  is, moreover, quasi-concave over 

2{( , ) : 0 }i i i ix z z ω+∈ < ≤R , then, the first-order conditions above characterize the 0≫  elements of 



( )C
i zϕ ɶ , that is, * * * *( , , , ) ( )C

i i i i ix y z v zϕ∈ ɶ  and is 0≫  if and only if * * * *( , , , )i i i ix y z v  verifies the f.o.c. and is 

0≫ . 

Proof: Note first that set 0( ( ), )i i iA zϕ ω  being non-empty and compact for all ( , ) 0iz ω ≥  and utility 

function u  being continuous, program 0max{ ( , ) : ( , , , ) ( ( ), )}i i i i i i i i iu x y x y z v A zϕ ω∈  has one solution at 

least for any fixed ( , ) 0iz ω ≥ . Therefore, correspondence 1 6:C n
iϕ +

+ +→R R  is well- defined. 

Let / 0n iz = . We established in Lemma 2 that 0(0) 0ϕ =  and 0( ) 0zϕ ≫  whenever 0z > . And we 

supposed in Assumption 1 that (0, ) 0x
ig v =  for all iv . Therefore, hospital i ’s optimal graft 

production iz  is positive, for then and only then is a (0)u>  utility level accessible for hospital i  by 

Assumption 2. In other words, if other hospitals contribute nothing, hospital i  is willing to contribute 

something, in order to receive some positive transfer from the agency that allows for a 0≫  final 

production ( , )i ix y  and (0)u>  utility. 

Let 1
/ / / /{ : }n

n i n i n i n iz z z ω−
+∈ ∈ ≤R  be fixed from there on. 0 *

/(( , )) 0n i iz zϕ ≫  for any optimal graft 

production *
iz  of ( )C

i zϕ  by the paragraph above, so that program 

0
/max{ ( , ) : ( , , , ) ( (( , )), )}i i i i i i i i n i i iu x y x y z v A z zϕ ω∈  can be rewritten equivalently as  

0 0 1
/ /max{ ( , ( , , (( , )))) : 0 ( (( , )), , ( ) ( )),   and  0 }x z

i i i i n i i i i n i i B i i iu x F x z z z x g z z B B g z zϕ ϕ ω−≤ ≤ + ≤ ≤  

by Lemma 1. Solutions in ( , )i ix y  are “interior”, that is, * 0 *
/( , ( , , (( , )))) 0i i i i n i ix F x z z zϕ ≫ , by the 

boundary condition of Assumption 2. But we may have a corner solution in iz , that is, an optimal 

graft production *
iz  equal to either 0 or iω  ( * 0iz =  only if / 0n iz > ).  

Suppose that optimal graft production *
iz  is positive, and that 0

/(( , ))i i n i iz z zϕ→  is 1C  in an interval 

open in ( ]0, iω  containing *
iz . The necessary first-order conditions for solution *( , )i ix z  of the reduced 

program above then read as follows (e.g. Mas-Colell (1985): D.1): (i) 

* 0 *
* 0 *1 /

1 /* 0 *
2 /

( , ( , , (( , ))))
( , , (( , )))

( , ( , , (( , ))))
i i i i n i i

i i i n i i
i i i i n i i

u x F x z z z
F x z z z

u x F x z z z

ϕ ϕ
ϕ

∂ = −∂
∂

; (ii) and there exists iδ +∈R  such that 

* 0 * * 0 * 0 *
2 2 / 3 / /( , ).( ( , , (( , ))) ( , , (( , ))). (( , )))i i i i i n i i i i i n i i i i n i i iu x y F x z z z F x z z z z zϕ ϕ ϕ δ∂ ∂ + ∂ ∂ =  and  *( ) 0i i izδ ω − = . 

Conversely, if 0
/( , ) ( , ( , , (( , ))))i i i i i i n i ix z u x F x z z zϕ→  is quasi-concave over 2{( , ) : 0 }i i i ix z z ω+∈ < ≤R , 



if 0
/(( , ))i i n i iz z zϕ→  is 1C  in an interval open in ( ]0, iω  containing * 0iz > , and if *( , ) 0i ix z ≫  verifies 

the f.o.c. above, then * *( , )i ix z  solves reduced program 0
/max{ ( , ( , , (( , )))) : }i i i i n i i i iu x F x z z z zϕ ω≤ , by 

Arrow and Enthoven (1961: Theorem 1). Let us establish, finally, that C
iϕ  is upper hemi-continuous 

(u.h.c.) in { : }nz z ω+∈ ≤R  for all i .  

Let ( )q
qz ∈ℕ  be a sequence of elements of  { : }nz z ω+∈ ≤R  converging to *z , and sequence 

(( , , , ))q q q q
i i i i qx y z v ∈ℕ  be such that ( , , , ) ( )q q q q C q

i i i i ix y z v zϕ∈  for all q  and converge to * * * *( , , , )i i i ix y z v . We 

want to prove that * * * * *( , , , ) ( )C
i i i i ix y z v zϕ∈ . Note that * * * * 0 *( , , , ) ( ( ), )i i i i i i ix y z v A zϕ ω∈ =  

6 0 *{( , , , ) :   ( , , ) ( ( ), ),    ,  and }x y
i i i i i i i i i i i i ix y z v x y z g z v z v v Bϕ ω+∈ ≤ ≤ + ≤ℝ   by continuity of g  and 

0
iϕ . Let ( , , , )i i i ix y z vɶ ɶ ɶɶ  be any element of 0 *( ( ), )i i iA zϕ ω .  

If ixɶ  or iyɶ  is 0= , then * *( , ) ( , ) (0)i i i iu x y u x y u≥ =ɶ ɶ  by Assumption 2.  

Suppose that ( , ) 0i ix yɶ ɶ ≫ . Note that, then, 0 *( ) 0i zϕ >  and 0 * 1( ( ), , ( ) ( ))x z
i i B ix g z B B g zϕ −< +ɶ ɶ  by the 

definition of 0 *( ( ), )i i iA zϕ ω  and Assumption 1. We construct a sequence (( , , , ))q q q q
i i i i qx y z v ∈ℕɶ ɶ ɶɶ  that 

converges to ( , , , )i i i ix y z vɶ ɶ ɶɶ  and is such that 0( , , , ) ( ( ), )q q q q q
i i i i i i ix y z v A zϕ ω∈ɶ ɶ ɶɶ  for all q . There exists 

0q ∈ℕ  such that 0( ) 0q
i zϕ >  and 0 1( ( ), , ( ) ( ))x q z q

i i B ix g z B B g zϕ −< +ɶ ɶ  for all 0q q≥ , by continuity of xg , 

0
iϕ  and 1( )z

Bg − . If 0 *( , , ( ))i i i iy F x z zϕ<ɶ ɶ ɶ , then, by construction of F (see the proof of Lemma 1), either 

x y
i iv v B+ =ɶ ɶ  and 0 *( ( ), , )y y x y z

i i i i i iy g z v v v vϕ< + +ɶ ɶ ɶ ɶ ɶ  or x y
i iv v B+ <ɶ ɶ ; therefore, by continuity of  F ,  0

iϕ  

and g , there exists 1q ∈ℕ  such that, for all 1q q≥ :  0( , , ( ))q
i i i iy F x z zϕ<ɶ ɶ ɶ , and either there exists  

,x q x y
i i iv v v< +ɶ ɶ  solving 0 , 0 *( ( ), , ) ( ( ), , )x q x q x y z x x x y z

i i i i i i i i i ig z v v v v g z v v v vϕ ϕ+ + = + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ  such that 

0 ,( ( ), , )y q x y x q x y z
i i i i i i i ig z v v v v v v yϕ + − + + >ɶ ɶ ɶ ɶ ɶ ɶ , if x y

i iv v B+ =ɶ ɶ , or there exists   ,x q
iv  solving 

0 , 0 *( ( ), , ) ( ( ), , )x q x q x y z x x x y z
i i i i i i i i i ig z v v v v g z v v v vϕ ϕ+ + = + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ  and ,y q

iv  solving 

0 , 0 *( ( ), , ) ( ( ), , )y q y q x y z y y x y z
i i i i i i i i i ig z v v v v g z v v v vϕ ϕ+ + = + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ  such that , ,x q y q

i iv v B+ <ɶ ɶ , if x y
i iv v B+ <ɶ ɶ . 

We let then: ( , , ) ( , , )q q q
i i i i i ix y z x y z=ɶ ɶ ɶ ɶɶ ɶ ,  , ,x q x q

i iv v=ɶ , ,y q
ivɶ  be either ,x y x q

i i iv v v= + −ɶ ɶ  (if x y
i iv v B+ =ɶ ɶ ) or 

,y q
iv=  (if x y

i iv v B+ <ɶ ɶ ), and  ,z q z
i iv v=ɶ ɶ , for all 0 1max{ , }q q q≥ ; ( , , , )q q q q

i i i ix y z vɶ ɶ ɶɶ  be an arbitrary element 



of 0( ( ), )q
i i iA zϕ ω  for all 0 1max{ , }q q q< . If 0 *( , , ( ))i i i iy F x z zϕ=ɶ ɶ ɶ , we have then x y

i iv v B+ =ɶ ɶ , 

1( ) ( )z z
i B iv g z−=ɶ ɶ  and 0 *( , , ) ( ( ), )i i i i ix y z g z vϕ=ɶ ɶ ɶɶ  by construction of F (see Lemma 1), and we let: 

q
i ix x=ɶ ɶ , q

i iz z=ɶ ɶ ,  0( , , ( ))q q
i i i iy F x z zϕ=ɶ ɶ ɶ , ,x q

ivɶ  solve 0 , 1( ( ), , ( ) ( ))x q x q z
i i i B ix g z v B g zϕ −= +ɶ ɶ ɶ , ,y q

ivɶ  solve 

0 , 1( ( ), , ( ) ( ))q y q y q z
i i i B iy g z v B g zϕ −= +ɶ ɶ ɶ , and , 1( ) ( )z q z z

i B i iv g z v−= =ɶ ɶɶ  for all 0q q≥ ; ( , , , )q q q q
i i i ix y z vɶ ɶ ɶɶ  be an 

arbitrary element of 0( ( ), )q
i i iA zϕ ω  for all 0q q< . One verifies immediately that the sequence 

converges to ( , , , )i i i ix y z vɶ ɶ ɶɶ . We have ( , ) ( , )q q q q
i i i iu x y u x y≥ ɶ ɶ  for all q  by construction, so that 

* *( , ) ( , )i i i iu x y u x y≥ ɶ ɶ  by continuity of u . Therefore * * * * *( , , , ) ( )C
i i i i ix y z v zϕ∈ , and the upper hemi-

continuity of C
iϕ  is established.■ 

 

A-4: Existence of clear-sighted equilibrium 

 

The existence of a clear-sighted equilibrium is not warranted, in general, under Assumptions 1, 2 and 

3. The appropriate tool for establishing existence is Debreu’s social equilibrium existence theorem 

(1952), applied to the Nash non-cooperative equilibrium of the first stage of the clear-sighted game. 

The general condition for existence, implied by this theorem, which may fail to hold in the case of 

clear-sighted equilibrium is convex-valued reaction correspondences of hospitals. We show below that 

an equilibrium exists in an acceptable subset of the wider class of medical care systems considered in 

this article. 

 

Lemma 4: If ( , , , )W u gω  is convex, then C
iϕ  is convex-valued for all i . 

Proof: We established in the proof of Lemma 3 that hospital i ’s first-stage program 

0
/max{ ( , ) : ( , , , ) ( (( , )), )}i i i i i i i i n i i iu x y x y z v A z zϕ ω∈  was equivalent to program 

0
/max{ ( , ( , , (( , )))) : 0 }i i i i n i i i iu x F x z z z zϕ ω≤ ≤  for any fixed 1

/ / / /{ : }n
n i n i n i n iz z z ω−

+∈ ∈ ≤R , and yielded 

positive optimal graft production of hospital i  whenever / 0n iz = . The convexity assumption of 



Definition 5 is therefore exactly sufficient for the convexity of ( )C
i zϕ  for all i  and all 

{ : }nz z z ω+∈ ∈ ≤R .■ 

 

Lemma 5: Let the medical care system ( , , , )W u gω  be such that C
iϕ  is convex-valued for all i . Then 

there exists a clear-sighted equilibrium of ( , , , )W u gω . 

Proof: 0ϕ  is a continuous function { : }n nz z ω+ +∈ ≤ →R R  by Lemma 2, and C
iϕ  is an upper hemi-

continuous correspondence 6{ : }nz z ω+ +∈ ≤ →R R  for all i  by Lemma 3. Let the canonical projection 

( , , , )i i i i ix y z v z→  be denoted by 3pr . 3 1 3: ( ( ( )),..., ( ( )))C C C
nz pr z pr zϕ ϕΦ →  is an upper hemi-

continuous, convex-valued correspondence { : } { : }n nz z z zω ω+ +∈ ≤ → ∈ ≤R R . Set { : }nz z ω+∈ ≤R  

being non-empty compact and convex, CΦ  has a fixed point in { : }nz z ω+∈ ≤R  by Kakutani’s fixed 

point theorem, that is, there exists * { : }nz z z ω+∈ ∈ ≤R  such that * *( )Cz z∈Φ . There exists, therefore, 

a state * * * * *( , , , , )x y z v t  such that * 0 *( )it zϕ=  and * * * * *( , , , ) ( )C
i i i i ix y z v zϕ∈  for all i .  * * * * *( , , , , )x y z v t  is 

an equilibrium of the  clear-sighted game by construction.■ 

 

The medical care systems of Examples 1 and 2 are convex.  

 

A-5: Rotten kids and abundance 

 

Proof of Theorem 4: Part (i) of the Theorem is a simple consequence of Lemmas 4 and 5 (existence) 

and of Lemmas 2 and 3 (positivity). The qualitative aspects of parts (ii) and (iii) are supported by the 

discussion and the examples that follow Theorem 4 in subsection 4-2-2. Part (iii) is complemented by 

the following clear-cut statements, established below: If all programs { ( , ( , , )) : }i i i i i iu x F x z z z ω≤  have 

a same solution * *( , )x z , then: rationing constraints are either all identical and binding or all non-

binding at * *( , )x z  in programs { ( , ( , , )) : }i i i i i iu x F x z z z ω≤ ; * * * * *( . , ( , , ). , . )n n nx e F x z z e z e  is a clear-

sighted equilibrium production combination, and agency’s corresponding equilibrium transfer is 



0 * *( . ) .n nz e z eϕ = ; 0 *( )zϕ∂  is ne=  if rationing constraints are all non-binding in programs 

{ ( , ( , , )) : }i i i i i iu x F x z z z ω≤ , and ne≪  otherwise.   

Let * *( , )x z  be a solution of { ( , ( , , )) : }i i i i i iu x F x z z z ω≤ , the same for all i , and let * * *( , , )F x z z  be 

denoted by *y . The boundary condition of Assumption 2 implies that production combination 

* * *( , , )x y z  is 0≫ . The characterizing first-order conditions for this maximum read: 1
1

2

u
F

u

∂ = −∂
∂

, 

2

3

1
F

F

∂− ≤
∂

, and *2

3

1 .( ) 0i

F
z

F
ω

 ∂+ − = ∂ 
 for all i , where partial derivatives are evaluated at the 

optimum. 

Identical * *( , )x y  imply that marginal social utilities * * * *( ( , ),..., ( , ))iW u x y u x y∂  are identical for all i  

by the anonymity property of Assumption 3. Identical * *( , )x z  imply that hospitals have same 

* * *
3(( , , )F x z z∂ . The f.o.c. of Corollary 1 then imply that * * *( . , . , . )n n nx e y e z e  is a socially optimal 

production combination of ( , , , )W u F ω .  

If some rationing constraint is binding at * *( , )x z  in programs above, that is,  if 
* *

2
* *

3

( , )
1

( , )

F x z

F x z

∂− <
∂

 and 

*
iz ω=  for some i , then, clearly, all rationing constraints are binding and identical, so that, in 

particular, all hospitals have the same endowment, *z= . In other words, rationing constraints are 

either all identical and binding or all non-binding at * *( , )x z  in programs { ( , ( , , )) : }i i i i i iu x F x z z z ω≤ . 

Function F  being 2C  wherever it is defined in 3
++R , and then such that 3 0F∂ > , the implicit function 

theorem implies the existence of open neighbourhoods U  and V  of *z  in ++R  and of a 1C  function 

:U Vψ →  such that * *( )z zψ = , and, for all s U∈ ,  * *( , , ( ))y F x s sψ=   and 

* *
2 3( ) ( ( , , ( )) / ( , , ( )))s F x s s F x s sψ ψ ψ∂ = − ∂ ∂ . The f.o.c. of Lemma 2 then imply that the agency’s 

second-stage optimal transfer policy identifies with function 1 1( ,..., ) ( ( ),..., ( ))n nz z z zψ ψ→  over 

{ : ;  such that . }n
nz U z z eω α α++∈ ≤ ∃ ∈ =R  (since all hospitals have same *

3( , , ( ))i i iF x z zψ∂  for all z  

in the latter set). In particular: 0 * *( )z zϕ = ; and 0 *( )zϕ∂  is ne=  if rationing constraints are all non-



binding in programs { ( , ( , , )) : }i i i i i iu x F x z z z ω≤ , and ne≪  otherwise, that is, if rationing constraints 

are all binding and identical in these programs. The f.o.c. of Lemma 3 and the quasi-concavity 

properties of 0 *
/( , ) ( , ( , , ( , )))i i i i i n i ix z u x F x z z zϕ→  (implied by the convexity of ( , , , ))W u F ω  then 

imply that * *( , )x z  solves 0 *
/max{ ( , ( , , (( , )))) : }i i i i n i i i iu x F x z z z zϕ ω≤  for all i  (see Lemma 3), and 

therefore that * * *( . , . , . )n n nx e y e z e  is a clear-sighted equilibrium production combination of 

( , , , ))W u F ω , and that * . nz e  is the corresponding optimal transfer of the agency.■ 

 

A-6: Monitored equilibrium  

 

Proof of Theorem 5: Let  * * * * *( , , , , )x y z v t  be a monitored equilibrium. Assumptions 1, 2 and 3 and the 

definition of monitored equilibrium clearly imply that * * * * *( , , , , ) 0x y z v t ≫ . Hospital i ’s monitored 

opportunity set * 4( , ) {( , , , ) :M z x y
i i i i i i iA v t x y v v += ∈ℝ  

* *( , , ),  ( , , ),  and } x x x y z y y x y z x y
i i i i i i i i i i i i i ix g t v v v v y g t v v v v v v B≤ + + ≤ + + + ≤ is compact, convex, and has 

a non-empty intersection with 4
++R . The Kuhn and Tucker first-order conditions are therefore 

necessary and sufficient for convex program max{ ( , ) : ( , , , ) ( , )}x y M z
i i i i i i i i iu x y x y v v A v t∈  at interior 

equilibrium solution * * * *( , , , )x y
i i i ix y v v  by Arrow and Enthoven (1961: Theorems 1 and 2). They read: (i) 

* *x y
i iv v B+ = ;  (ii) * * * * *( , , ) ( , )i i i i ix y z g t v= ;  and (iii) 

* * * * * * *
1 2

* * * * * * *
2 2

( , ) ( , , )

( , ) ( , , )

y y x y z
i i i i i i i

x x x y z
i i i i i i i

u x y g t v v v v

u x y g t v v v v

∂ ∂ + +=
∂ ∂ + +

. Or 

equivalently, by Lemma 1: (i) * *x y
i iv v B+ = ;  (ii) * * * *( , , )i i i iy F x z t= ;  and (iii) 

* *
* * *1

1* *
2

( , )
( , , )

( , )
i i

i i i
i i

u x y
F x z t

u x y

∂ = ∂
∂

.  

Suppose that * * * * *( , , , , )x y z v t  is not a social optimum and let us derive a contradiction. There exists 

then, by Theorem 2, a social optimum ( , , , , )x y z v t  such that 

* * * *
1 1 1 1( ( , ),..., ( , )) ( ( , ),..., ( , ))n n n nW u x y u x y W u x y u x y> . But then ( , , , ) ( , )x y M zx y v v v tϕ∈  if x y

i iv v B+ =  

for all i , by the characterizing f.o.c. of Theorem 2 and of paragraph above. This may be supposed 



without loss of generality for ( , , , , )x y z v t  by the hypothesis of Theorem 8. But 0( , , ) ( )z Mz v t A ω∈ , as 

an immediate consequence of the definition of a social optimum.  Therefore * * * * *( , , , , )x y z v t  is not a 

monitored equilibrium, the wished contradiction.■ 
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