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Abstract: Most organ transplants are from dead donorsioNalt transplant organizations exhibit
considerable differences in terms of their dongpybation rates. Spain’s organization is by far the
most efficient in this respect. We argue that mofcthe productivity advantage of Spain’s transplant
organization proceeds from an efficient organizatdthe production chain, from organ procurement
to transplantation. Transplant inputs from deadodsrare analogous to a common resource for the
transplant community. Their circulation through th&tional transplant organization creates public
good externalities between the care units in charigergan extraction and those in charge of
transplantation. It is shown that a socially e#fiti production of transplant services requires an
optimal control of both the production and the alation of transplant inputs by the institutionstod
transplant system.
Keywords organ transplants; donation; public goods; prtidacrganization
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1. Introduction

The demand for life-saving transplant surgery grawsiost of countries. However, the organ donor
rates as well as the total number of transplarterdiremendously from one country to another.
During the last ten years, Spain appears as thmgiba of the dead donor league. Considering that
90% of organ transplants, in general, are coming framadddonors it is crucial to understand the
reasons of such a success. In practice, the Spaaiséplant system improves survival, it increases
organ demand, and more and more people are takimgntage from transplantation. For many
commentators, these achievements clearly showattggtn donation is the limiting factor to treat
certain pathologies. This is certainly partly trioeit still insufficient to explain the differenceis,
terms of production efficiency, of transplant cagstems around the world. We argue in this article
that the problem is not only, and perhaps not mainith the lack of donors per se, but, rather hwit

the organization of the transplant system, andhptaf its production side.

! IRODaT, 2006.



A surprisingly small number of papers concentrateoganization aspects in the economic literature
on organ transplants. Notable exceptions are thentecontributions of Roth, Sénmez and Unver
(2004, 2005ab, 2006). They consider the case efdigney donations, and design theoretical patterns
of gift-exchange for efficient pairwise matching lafiney donors and recipients from a given set of
pairs of incompatible donor and recipient. Theysprg numerical simulations of the impact of such
discrete optimization procedures on transplantigion, and consider the practical implementation of
these procedures by means of specialized cleanusgiso(see notably Roth et alii (2005a) concerning
the latter).

As recalled above, and acknowledged by these autihemselves (e.g. Roth et alii (2004)), most
transplanted kidneys, as most transplanted orgarngeneral, are from cadavers. Law commonly
makes cadaveric transplant donation much easierliv& transplant donation, notably by presuming
the consent of deceased donors. For instance, ny roauntries, consent is taken for granted in
principle if the brain-dead patient has not expedsker/his refusal explicitly before death through
some relevant legal procedure (usually, his/heistedion on an ad hoc legal file). The medicaffsta
in charge of organ procurement is generally sulechito an obligation to check the wishes of the
deceased regarding donation, by interviewing ctetsive. Moreover, refusal rates usually are much
lower than 50% in organ donations interviews: 150&pain, but also 27% in France and 39% in the
UK for example. These facts point to the cruciapartance, for the productive efficiency of the
transplant care organization, of the latter’s &piln identifying and exploiting opportunities ofgan
procurement from cadaveric donations.

This article develops an economic model of the gptant care system within existing legal
environments, with a particular emphasis on theaiation of the production side of the system. The
ban of organs markets makes transplants a comnsonnee, collected mainly by “exhortation”, that
is, notably, by public calls for donation (Thorn20Q0, 2006)). The bulk of the “resource” is
constituted by brain-dead patients randomly digtgd in hospitals through the statistical variety o
death circumstances, and physically non-transfertdsl a variety of reasons that notably include the
stringent legal obligations relative to the bodyttté deceased. This initial distribution of the coom

resource is naturally mismatched, in general, Withstatistical distribution of the needs of grdfts



transplantation in care production units. Operatingappropriate match of resources and “needs” in
transplant inputs is the basic reason for the emest of institutions in charge of circulating gsaft
such as national transplant agencies, as substfiutébanned transplant markets. Grafts are pratiuce
by hospitals, and circulated by the transplant egeto be used by other hospitals as inputs irr thei
final production of transplant care services. Htasi intermediary graft production thus induces
public good external effects on others’ final protion of care services. The resulting public good
issues are captured through principal-agent intieras; in subgame-perfect equilibria of two-stage
games where hospitals are only concerned thighr own final productiorof care services while the
transplant agency maximizes a social utility fuoctthat aggregates hospitals’ preferences (Bemgstro
(1989), Cornes and Silva (1999)). It is notablywhdhat: (i) a socially optimal control of the aggn
over both the circulation and the productioaf graft inputs achieves social optimum ; (ii) #ha
socially optimal control by the agency oirculation alone generally implies suboptimal under-
provision of transplant inputs and services. Wauarthat the model so captures an essential cause of
the remarkable achievements of the Spanish tramspiganization.

The paper develops as follows. Section 2 analykesSpanish transplant organization. Section 3
presents the model of the transplant care systentio® 4 sets and solves the public good problem of

graft production and circulation. Section 5 conelsidAn appendix collects the proofs.

2. Spain’s transplant organization

The history of organs transplantations in Spainr=em 1965, with the first transplants in Madritda
Barcelona. In 1979, a law is adopted to favour degelopment of transplantations but donations
remain at a low level during the eighties.

In 1989, the Organizacion Nacional de Trasplan@NT) is created to solve this problem. It is an
institution belonging to the Ministry of Health af@@bnsumption, put in charge of developing the
competencies relative to the provision and clinigdization of organs and tissues. To carry oeisth
tasks, it functions as a technical operative und #ulfils its mission of coordinating the actiws of

donation, extraction, preservation, distributiorcleange, and transplantation of organs and tissues



throughout the whole Spanish Health Care Systenthétreation of the ONT, the main idea was that
the problem was not with the number of donors hth tineir identification and the organization oéth
program.

After the creation of the ONT, Spain went from 1@hdrs per million population (pmp) in 1989 to
36,4 donors pmp in 2006. This evolution displayedhie graphic below made Spain evolve from
donation rates ranked in intermediate-low position&urope to the highest rate not just in Europe,

but also worldwide.

Evolution of organs donors rate in Spain
(per 1 million population)
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How has this been possible? The origin of this megar change is internationally known as the
“Spanish Model”, a series of measures taken indbimtry to improve organ donation. This model,
widely described in the scientific literature, Hmesen recommended by the World Health Organization
and is being applied in different regions of therlfavith outcomes very similar to those obtained in
Spain.

Spanish transplant law is very similar to the cgpmnding laws in other Western countries. Although
the law on transplant donation presumes the consledeceased potential donors, according to a
subsequent decree relatives of a potential doncst e approached to determine the deceased's
wishes regarding organ donation. In the absencthief knowledge, close relatives can sign the
authorization, after internal discussion if reqdirét present, Spain’s annual refusal rate for orga
donation is around 15% of all donation intervieeath is defined as the total and irreversible

cessation of brain or cardio-respiratory functiddknical evaluation and complimentary tests reediir



are detailed within the legal text allowing orgaitrieval either from brain-stem death donors omfro
non-heart-beating donors. Like other coordinatiggtesms worldwide, the Spanish system has to
monitor the management of waiting lists, organaatmn, and statistical analysis. Neverthelessai
considered that a continuous monitoring system twerentire organ donation process was essential.
A network of health-care professionals respondifiiéhe organ donation process as a whole has been
set up at all levels (national, regional and hadpifThis implies the need for training, organiaati
and coordination of activities.

It was considered that these professionals woréinfe grass roots level must feel involved andl tha
they must be accountable for performance. Mosheirt are physicians, mainly intensive care unit
(ICU) specialists, and they belong to the staffhef hospital. They generally continue in their neatli
role, but as transplant coordinators their mainecdiiye is to improve the organ donation rate.
Currently, 155 hospitals are officially authorizem take care of organ donor programs. A quality
control system has been developed for the organrdomcess - the ICU mortality registry and the
brain death registry - a common practice in mosthein. By law (RD 2070, 30 December 1999),
transplant coordinators are the professionals resple for the whole donation and retrieval process
National and regional offices are service agensiggporting the organ donation and transplantation
programs. They deal with organ sharing and wailisigmanagement. They arrange organ or team
shifts. They are responsible for the official stttis and reports on organ donation and transpianta
They promote legal statements and binding consemsdelines. They also promote public education
and address any doubt or question about organ idarand transplantation. A 24-h hot line and E-
mail system have been put in place to keep altested groups or individuals informed. They are als
concerned with and involved in training and resegocograms. Any activity that could improve
donation or facilitate the transplant team actgtcan be promoted through this network.

Organ transplantation has been considered a hbeptdical activity for which a specific budget and
staff are allocated. This kind of activity does muduce any budgetary overload for hospitals. The
annual general budget for transplantation procedur&pain is around 180 million Euros. The annual
budget for the organ procurement network is arolfdnillion Euros (less than 10% of the budget

covering organ procurement activities). The gengoalation budget covers all extra-salary and extra-



time activities of both coordinators and surgiatieval teams, as well as any donor evaluatiots,tes
the ICU bed daily costs, etc. This budget also eeordinating offices, training courses and some
of the educational programs. The type of paymenttiie extra work of coordination and organ
retrieval for professionals in charge differs degigg on the region. It can be a fixed amount, aait

be based on registered activity, or be determircebrding to a mixed system (it does not usually
exceed 30% of total salary).

Table 1 shows that the Spanish organ donor ratemiéon population is the highest around the
world. The British rate is only 37,5% of the Spénimte and the French rate 69,5%. We could
compute in table 2 a rough estimate of the numb@atents waiting for kidney transplantation that

would obtain in several countries if they achietlegl same donor rate as Spain.

Table 1: Organs Donor Rates per 1 million populatia in 2006

2006

Australia 9
Canada 14,8
France 25,3
Greece 5,8

Israel 7,7
Italy 20,9
Spain 36,4
Sweden 14,5
UK 13
United States 26,6




Table 2: Projections of the 2006 Spanish rate onlo¢r countries

Cadaveric donors (1) | Kidneys transplants (1) | Pati®s awaiting for a
transplant in 2007 (2)

Australia 202 330 1388
Australia* 565 1334 343
Canada 468 712 4195
Canada* 1151 1751 1705
France 1441 2352 6491
France* 2073 3383 4511
Greece 74 144 903
Greece* 464 903 144
Israel 68 87 540
| srael* 321 411 114
Italy 1239 2932 7096
Italy* 2157 5106 4074
UK 633 1240 6876
UK* 1772 3472 3472
United States 8022 10659 76313
United States* 10909 14496 55767

(*)Numbers in italic are calculated using the naéibrates of Table 1

(1) Source: IRODaT 2006

(2) Source: Council of Europe, Transplant Newsteeptember 2008

To sum up, the Spanish model consists in a progiasigned to optimize every stages of the

transplantation process from the identificationaopotential donor. Many factors contribute to the




extraordinary increase of the Spanish dead-donerdaring the last 20 years. Of course, Spain was a
pioneer of the opt-out systénbut its success mainly proceeds from an excetietwork of organ-
transplant teams operating in hospitals, whichinely screen patients’ records to identify donairs]

impulse and coordinate the multiple tasks followdtugnors’ identification.

3-A model of production of transplant care services

The simple medical care system that we considee feemade of care production units, named
hospitals, and a transplant agency in charge dédaolg transplants produced from cadavers by
hospitals, and of distributing them to transplaarecunits. The use of grafts by hospitals is caistd

by the following two complementary rules: they mtrsinsfer to the transplant agency any graft they
produce; and they must use for transplant careicganany graft they receive from the transplant
agency. We suppose, for simplicity, undifferentiatesources and needs in transplant inputs (say, a
single medical indication for transplantation, sashkidney pathology, for example), and hospitals

identical in all respects except their potentigdogces in graft inputs (their brain-dead patients,

principally).

3-1-Agents and commodities

There aren hospitals,n = 2, designated by an indaxrunning in N ={1,...,n} . The transplant agency

is denoted by indek=0.

We partition the set of care services provided bgpitals into two broad classes, namely: Care
services requiring transplants of organs or tissued as heart, kidney, liver, lung, skin, corriEme
marrow etc.; and all other care services. We assbatethe transplant care services of hospitabn

the one hand, and its other care services, on ther dand, are measurable by homogeneous

2 In the opt-out donation system, consent is presufoe deceased donors unless she’he registerechon a
appropriate refusal file when alive. In most opt-eystems, the next of kin's approval is also reggli Spain,
France, Italy for instance presume consent. Inoftein system of donation, on the contrary, thosiing to

give their organs upon death must sign up as do@msntries with opt-out systems have high decedsedr
rates.



continuous variables, respectively denotedxpyand y,. Moreover, each hospital is susceptible to
produce grafts from cadavers in homogeneous caniggquantityz . The final output of the medical
care system in transplant care services (respr ate services) is vectox=(><1,...,>g1) (resp.

Y =(Y-.., ¥)). Its intermediary production of transplants istee z=(z,..., 7). We denote by
z,,; the vector obtained fromz by deleting its ith-componery, , and by(z,, Z,) the vector obtained

from z andz’ by substitutingz, for z in z.

Likewise, we bunch the variable inputs of the pmithn of care services in two broad types, also

viewed as homogeneous continuous quantities, sh&tiri any hospital : Transplants, denoted by real
variablet; ; and other inputs, labelled “general” inputs ie #equel, and denoted by real variablés
if they are used in the production of transplamecservicesy’ if they are used in the production of
other (final) care services, ang if they are used in the production of grafts. Mtev, = (v, v', ¥),

r

Vi =(V,.. ) forany r0{x vy, 2, andv =(v,...,V,).
We use the following notations for vectorsRf, n>1: e, is the diagonal vectofd,...,1) of R"; for
any pair(x, x') of vectors ofR", x2 x' if x 2x"' forall i, x>x" if x=2x" andx# x', x> x' if

x >x"' forall i; R} is the non-negative orthant ®", that is, se{xOR": x>0} , and R}, is its

positive orthan{x OR": x>0} .

3-2-Feasibility conditions

Hospitals’ potential of graft production is mairdgtermined, in practice, by the random distribution
of brain-dead patients in hospitals and by refuatas in donation interviews. This essential featfr
the reality of transplant activities, which maydypropriately construed as a set of operativemaiip
constraints over both graft production and trangptare services, is captured in the model notably

through an exogenous endowment of potential gredtiyction of the hospital, viewed as a non-



negative homogeneous continuous quantity, and ddnby « for hospital i 2 This endowment
operates as an upper bound for hospital’s graftiypstion. We letw=(a,...,w, ), and suppose that

w>0.

Technically efficient production of hospital is depicted through a triple of production

functionsfi:(f.x fy f.z) transforming nonnegative combinations of inpugs,v)OR? into

technically efficient output combinationéxi,y,;):( (tv), ify(it,iv),ifz(t,iv)). The formal

assumption below supposes, in addition to the stahdorking hypotheses of differentiability and
concavity, the following main features for hosggtatlentical production techniques. General inputs
are indispensabldor production of any type (assumption 1-(ii)),daareproductivein each type of
production taken separately (assumptions 1-(iv) kfd)) and also in the three types of production
taken jointly (assumption 1-(vi)). Transplants andispensableand productivein transplant care
services (assumptions 1-(iii)-(iv)), and in themlyofassumption 1-(v)). Technology exhibits a
crowding externalitybetween the three types of activities of each italsfiransplant care services,
other care services, and graft production), spetifis follows: Increasing the scale of production i
terms of total general inputs in a hospital dintieis the productivity of general inputs in all tyeds
production of this hospital, due to the crowdingaafiumber of fixed inputs implicit in the produgtio

function, such as wards, operating theatres, sytgams etc. (assumptions 1-(iv) and 1-(v)). Finall

% Refusal rates in donation interviews, in particulire treated as exogenous in this model, therlatobject
being the analysis of the efficiency of productiorganization, from the extraction of donated orgams
transplantation. Diminishing refusal rates and iovwimg the organization of production are the twoimrma
channels for improving the global efficiency ofrisplant care systems as measured by their donadgimm
rates. The first channel supposes appropriate &t policies, which may include an adequate rgan&ent
of donation interviews (see Thorne (1996, 2006:5dr) an empirical estimation of the productivity of
exhortation spending). Spain’s low refusal rateoaicts for a part of its high relative performancédarms of the
donor rate, but seemingly not for the main partto€Comparing, for example, the refusal and dorades of
France and Spain, one can produce estimates ofethdve contributions of exhortation policy (sape
“exhortation effect”) and production organizatiosay, the “organization of production effect”) toeth
productivity gap between these two countries gsiitgply as follows: Substituting the French refusdé (27%)
for the Spanish one (15%) in Spanish donation g#&ils a Spanish donor rate net of the difference i
1-0.27

exhortation effect and the organization of producteffect to the productivity gap that are respetyi of

w(S: 46.3% and Mg: 53.7%. Similar calculations conducted on UK data yielthikr
36.4- 25.3 36.4- 25.3

conclusions, namely, an exhortation effect andaalpetion organization effect respectively accountior 44%
and 56% of the productivity gap between SpainthedJK.

exhortation policies 0f36.4x

= 31.2tper million; the latter implies relative contribotis of the



the marginal productivity of general inputs in atype of production exceeds their marginal self-

crowding impact (assumptions 1-(iv) and 1-(v)).

Assumption I (i) For all rO{x vy, 3, f' is of the type (t,v) - g'({,V .V + ¥V +V), whereg, is
continuous and concave iR and C* in R2,. (i) g'(t,V,y +V + V)=0 wheneverv =0. (iii)

g (t, v, v+ v+ v)=0 whenevert =0. (iv) g* is >0, increasing int,, totally increasing inv,
and is decreasing in total general inpit+ v’ +v* in R3, (that is, precisely:g* >0, 9,9° >0,
0,9°+0,9*>0 and 8,9° <0 in R?,, whered,g*denotes the partial derivative of with respect
to its k-th argumentk 0{1,2,3}). (v) Forallr O{y, 3 , g/ is everywhere constant ip; itis >0, C?,
totally increasing inv/, and decreasing in* +v’ +vy* in R, xRZ, (i.e., with the notations above:
0,0 =0; g >0, 9,9’ +d,4 >0 and d.g' <0 in R, xR%). (vi) For all (t,v)OR? and all
neighbourhood V. of (t,v) in R?, there exists v, OR?> such that ¢ YV and
9'(t, v, V+V+V)> d(it, v, v+ v+,V) forall r O{x vy, 3 . (vii) Hospitals’ production constraints
are identical, except for the upper bound on gredtuction, that is, there exists a triple of fiimas

(9%, 9%, g%) such that, for all : (gix,gy, gz) :( g’ ¢, gz).

Assumption 1 is maintained throughout in the sequel
Hospitals can purchase any quantity of generalt;xgti+ v¥ + y* on perfectly competitive markets of

inputs at fixed market pricav . Graft provision is non-profit: It is billed at gauction cost to the
transplant agency, which collects transplants alistributes them to care units free of chargehEac

hospital i finances its general inputs for care services fefiixed budgetB, the same for ali,
subject to budget constraimt v(+ V' <)B. The latter imposes an upper bouBdw on its aggregate
consumption of general inputs for care serviagstv’. The market price of general inputs is

normalized to 1 in the sequel, that is, wewet 1, without loss of generality.



The set of feasible alternatives of hospitalthat deduces from the assumptions above reads:
A.@)={(% ¥, 2 WORS: (% ¥%,9< G4V, =@, and W "< | where g denotes map
(6.%) — (@ (1 YLV V' V), GGV, Ve VW), gtV W, v, ).

The transplant agency is endowed with fixed bud@gt sufficient to cover the cost of graft

production for any feasible, that is, B, = ZiDN v* for all v such thatg” { v ¥« foralli. Its set

of feasible alternatives therefore readsé\)(z)={t=(t1,...,p)DRZ:ZiDN;sZiDN z}. This

assumption notably implies, realistically enough lvedieve, that the rationing constraints over organ
transplantation are entirely driven by technicad @mdowment limitations: They owe nothing in this
model, and owe very little in practice, to the fio&l constraints of the medical care systems of

developed economies.

3-3-Hospital's production possibility frontier

All relevant characteristics of hospitals’ congttaican be conveniently summarized in the following
notion of aproduction possibility frontieof the hospital, describing the set of hospitaksessible
and technically efficient output combinatior(;, y;,z). The formal definition below uses two
functions derived in the first lemma of the appendsee Appendix: A-1), namely: function
z - (d)™(2), which yields the quantity of general inputs regdito producez for any fixed total
quantity of general inputs available for transplantl other care services + v’ = B; and function
(x,z,t) - F(x, z,t), which yields the efficient production in genecalre servicesy, accessible

from any fixed accessibléx ,z) and any fixegositivet, .

Definition 1: The production possibility frontier of  hospital i is:  set
{(x, ¥, 2 OR%: x=0, y= d(0, BB (§)"(;2)and = ] if t =0; set

{(x, ¥, 27 OR3: x< d(;t BB-( §7(2 = F x z)xand =g lif t>0.



Figures 1a and 1b represent the canonical projedficome production possibility frontier on plane

(x,y) forfixed pairs(z,t) such thatt is respectively null and positive.

Vi A
o'lo..B+(02)(2)
X;
Fig 1.a
Vi A
N 0F(x,2.)
yio ————————————————————
Xio X

Fig1l.b

The partial derivative of function F relative to x calculated in Lemma 1 is

_0,9°(t,B-V', 9
0,9 (t,v", 9

0,F(x,z,1)= , wherev?* is the quantity of general inputs used in transiptare

(solving x =g*(t,v,9) and scale factors is the total consumption of general inputs



(=B+(di)*(z)). Itinterprets as a technicalarginal rate of substitutioof general care services for

transplant care services, that is, the marginalatian (decrease) in the provision of general care
services that is required for maintaining hospstaproduction combination on the production

possibility frontier, following a marginal increase the provision of transplant care services. It

corresponds, geometrically, to the slope of theplyraf partial functionx — F(x,z,t) in plane
(%.,Y) (see Figure 1b). We namaniiarginal rate of transformatiom the sequel, although it does not

exactly coincide with usual meaning of the lattetion, to distinguish it from the marginal rate of
substitution defined from hospitals’ utility funoti below.

Another characteristic of hospital technology whielieals analytically indispensable in this model i
the marginal rate of compensatiaaf transplant provision by transplant transfernfally defined as

follows:

Definition 2: Let t >0, and (x,Y,z) be on hospital 's associate production possibility frontier.

Themarginal rate of compensatigqiViRC) of transplant provision by transplant trasat (x, Y, z)

o _0F(x.2.1)
05F(X.7.1)

Any increase in graft productiorz, ceteris paribus induces a downward shift of thapgr of
x - F(x,z,1) in plane(x,Y), implying a contraction of hospital’'s set of actibke production in
(x,y), due to the crowding effect exerted on the prdadacdf transplant and general care services

by increased use of general inputs in graft pradoctsee Lemma 1 and Figure 1c). Symmetrically,

any increase in transplant transfer ceteris paribus induces an upward shift of theplyraf
X - F(x,z,t) in plane (x,y) (implying an expansion of hospital's set of acdass final
productions(x, y)) by releasing some quantity of general inputsamgplant care provision, which

can be freely reallocated betwe&nand y, production without inducing any additional crowgliof



production capacities (Lemma 1 and Figure 1d). flaeginal rate of compensatimm

0,F(x.Z.1)
measures the marginal variation (increase) inrdmesplant transfet, (>0) received by hospital that
is required for keeping hospital’s production canst(=F (x ,Z ,{)), following a marginal increase in
its graft production fronz . It corresponds, geometrically, to the slope & tavel curve through
(Z,{)of partial function(z,t) - F(X, z,t) in plane(z,t) (see Figure 1ej.It is determined by

the ratio of crowding costs to the marginal prodiist of inputs, increasing in the formérlt

interprets as an indicator of tension on hospitadtsduction capacities.

Vi A

v

Fig 1.c

* More formally, it follows from Lemma 1 and the ifigit function theorem that equation

F(x.Z.t)= F(X, z.;t)= 0 implicitly definest, as aC’ increasing functior]0,&] - R, of z, the graph of
which is the “level curve” ofz,t) -~ F(X, z,t)through(Z,{)in plane(z,t). The implicit function theorem

moreover implies that the first derivative of tmsplicit function is = _9:F(x.2.1) at any point(z,t) of its

9;F(X.7.1)
graph.
X X y
® Calculations using the proof of Lemma 1 yield aiR® = - 21 Z[a3gx+6ng.asg yj, which is
0,9°+0,9°( 0,9 0.,9" 0,9

increasing in|6gg'| forall rO{x vy, 3 .
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Fig 1.e
The position of the MRC relative to unity (largéiah, equal to, or smaller than 1) is of particular
importance for the study of equilibrium and socptimum below. To fix ideas, consider the case of a
hospital that contributes an additional kidney é¢oculation by the transplant agencgz(=+1) and
simultaneously receives an additional kidney frdra tagency for its own transplant care services
(dt =+1). An MRC >1 (resp.=1, resp.<1) essentially means that its production possibflintier
shifts downwards (resp. is left unchanged, resgtsshpwards) in the plane of final production

combinations(x, ) as a consequence of this marginal change in itsopaontribution and transfer

(1)



4-Behavioural assumptions: preferences, interactigand equilibrium

In this section, we first return on one of the basstifications for the existence of a transplagency
collecting and dispatching transplants (4-1). Wen toext to the modelling of public good issues
relative to transplants in the presence of thesfsamt agency (4-2-1 and 4-2-2), and finally design

socially optimal transplant care system (4-3).

4-1-Unregulated equilibrium and the optimal producion of transplant care services

Our basic behavioural assumption is agent ratibnationstrued as the maximization of agents’
complete and transitive preferences over theirafegtternatives.

Hospitals, notably, are viewed as rational agertdusively concerned with their own provision of
care services. Hospitdl maximizes a utility functionu, the same for ali, over the set of pairs
(x,y) of combinations of transplant and other care sessiwhich it performs. We make the
following set of standard assumptions on utilitydtion, which will be maintained throughout the

sequel:

Assumption 2: Hospitals’ utility function is a continuous, noneatteasing, quasi-concave function
over R?, whose restriction tdR?, is a C?, strictly increasing and strictly quasi-concavediion.

Moreoveru(x, y)> u0)implies (x,y)>0 8

® Note that the boundary condition of AssumptiomRich may interpret as a priority of the final prmdion of
care services, is incompatible with for-profit beloar. Assumption 2 can be made compatible withpfiafit
behaviour for production plans that are sufficigriflr from the lower boundary of hospital’s prodantset by

relaxing the strict quasi-concavity IR?, to simple quasi-concavity. Strict quasi-concavétyised in the sequel

only for the technically convenient uniqueness aggital’s optimum final production plan that it ifigs. It can
be replaced, with the same consequence and wituhsgtantial differences for subsequent analysisthiey

alternative assumption of a quasi-concave utiliyction and production functiong” and g’ strictly concave
in R2, . In other words, the main of subsequent analygjsies to the case of for-profit behaviour of care

production units when equilibrium conditions implyg optimal production plan of the hospital thagusficiently
far from the axes.



In the absence of a market for transplant inpuasned by law, and of any institutional substitute f
the former such as a transplant agency, hospitalddabe reduced to a situation of autarky, as ¢ar a

transplant inputs are concerned, that is, prodycthémselves, from their own endowmedt and
budget B , the grafts they use in their final productiontcinsplant care services. Formally, each
hospital would solve program max{u(x, y):(x, y, z, v, )= 0,
(%, ¥%,2)< dt, V), ts zsw, and, ¥+, v+, ¥< B, where hospital’s budget covers all expenses in
general inputs, including the general inputs used in intermediary graft production (hospital's

“autarkic” budget constraint). A production equililbm of this autarkic transplant care system would

then consist of an input-output combination of thee systen(x, y, z v, ) solving simultaneously the

nindependent programs of the hospitals. We nameypésof equilibrium arautarkic equilibrium
Common sense suggests that such unregulated emguiliban very easily result in the waste of a part
of total graft resources, that is, typically, instihighly aggregated modeMdisposal, by best endowed
hospitals, of the fraction of their endowment thateeds the quantity of graft inputs they needter

provision of transplant care services that maxisineir utility in program above. Formally:

Theorem 1: There exists a solutior(x,Y ,Z,V,t) of the “unconstrained” autarkic program
max{u(x, y¥): (X, Y,z v, )= 0,(x,,y, 2 dt V), £, zand*w, "+ *¥ |, thatis, of hospital's
autarkic program where the rationing constraintr@raft productionz < «) has been dropped. This
solution is the same for ali, unique with respect to(x,y ), and >0. If there exists
« O{@:i0ON} such that (x,y,Z,Vy,t) verifies rationing constraintz <« with a strict
inequality, then, for all hospital§ such thatw 2« : (X,Y,7,V,t) is an autarkic equilibrium

input-output combination of hospitgl; and hospitalj’s marginal utility of graft resourcey is null

" In a more accurate description of the medical system, the problem under consideration here wbeld
realistically, formulated as mismatched vectorspofential graft resources (kidneys, corneas,...) dimhl

transplant care services of the hospital at any eminm time. For an application of matching modatwl

discrete optimization techniques to the health sem and the economics of transplants, see Avwith et
alii (2004, 2005ab and 2006).



at (x,y,Z,V,t). Moreover, hospitals’ autarkic budget constrainfs+ Vv’ +v’< B are always

binding (that is, satiated, with positive hospitatarginal utilities of budget) at autarkic equiiilom.

The proof of this theorem, as those of most offtil®wing, is detailed in the appendix (see A-2).
Only one very short proof will be presented in pnesent section (Theorem 3).

The disposal of a part of the resources of theitalsghat are best endowed in terms of their gaikn

of graft production will very commonly appear asaial waste if there exists a possibility of makin
a productive use of disposed resources in some btiepitals, in terms of their final production of
care services. Hospitals’ endowments in the serms®ea (potential of graft production) being
physically and legally non-transferable, the notimihsocial optimum implicit in this normative

appreciation of “wasteful” disposal actually reféosimplicit social preferences over paifs, y) of

final production of the care systémiVe now introduce such preferences explicitly, wita following
basic normative priors, summarized in Assumptiorbeédow: The social preferences aggregate
hospitals’ preferences, are increasing in bothgygiefinal production of care services, expredee(li
hospitals’) a priority of production, and imply aeference for an “equal treatment of relevantly
equals”, that is, a preference for equal provisibriinal care services over hospitals whenever the

latter is accessible.

Assumption 3: The social utility function is a continuous, noeedeasing, anonymousunction

W:R! - R,, whose restriction tR", is a C?, strictly increasing functioR", - R Moreover

0

8 Brain-dead patients cannot be physically transtefrom one hospital to another mainly becausenpkrative
legal constraints. In particular, lump-sum transfef hospitals’ graft endowments cannot be usadsisiments

of a public distribution policy in this context. &ts are physically transferable between hospitalbject to the
legal constraints of the national transplant orgatidon, but they must be extracted on site, duthéoreason
above. Distributionw cannot be an object of individual or social prefere in our context (if preference
underlies choice, as is assumed here, naturallgft @roductionz is individually or socially valuable only as
an intermediary for the final production of trareapl care servicex. Final production of care services seems,
therefore, to be the most appropriate object ofepeaces, both at individual and at social lewekhis model of
the medical care system.

° The anonymity property states that any permutaiiohospitals’ names (and associate produciign y ))

leaves the agency’s utility unchanged.



(X, y) > WU X, ¥),-... UX, Y¥)) is strictly quasi-concave in R?}, and such that

WU %, ¥),..., WX, ¥))> W 0),..., UO) impliesu(x, y)> u0) foralli.

The utilitarian sum of hospitals’ utility functionEiDN u:(xy - z u_ x, y) yields an example of

iON
a social utility function that verifies Assumpti@n Assumption 3 is maintained throughout the skque
We can now introduce, as formal Definitions 3 aruktbw, two derived notions that will prove useful
for the normative appreciation of production edwilim, namely, thesocially efficient productiomf

final care services of the medical care systenmsfiort, social optimuny and thesocial scarcity of

(potential) graft resources

Definition 3: A final production combinatior{x, y) of the medical care system, or associate input-
output combination(x, y, z Vv, t), is socially efficientif it maximizes the social utility functioWV in

the set of socially accessible input-output comibimes

{(xyzv)OR:> t<> 7z =w )y  Y+¥s nBand(x,y, 2 @1 Vfoali}.”

Definition 4: The potential graft resources of hospitalare socially scarceif a ceteris paribus

increase in this hospital's endowment increases imapt social utility, that is, if

maxqW (u(%, ¥),-, u(%, ¥)):(x yzvR 0y EY> Z2w’) € n@nd( % ¥
<g(4,v) Dib>max(u(x, y),-, ux, ¥ (X Y 2V 0 KD (220D, ¢ e

nB;and (x ,y ,z )< 9(t,v)d ijwheneverw,> @ andw',,, =w

n/i *

The next proposition and corollary characterizeaaptimum and scarcity.

19 Note that the specification of the social oppaitiurset implied by this definition of the social tapum

supposes, as already stated at the end of 3-2 athatdhe constraints binding the production o&fitransplant
care services, if any, are the rationing constsaover graft production, as opposed to the budgestcaints
limiting purchases of general inputs.



Theorem 2: There exist social optimgx,y,z,Vv,t), which are> 0, with a unique optimal
production of final care servicgx',y ), and verify the following system of necessary anfficient

first-order conditions, where partial derivativee @valuated at the optimum: (E . ZiDNi ;

(i) > v+ =nB; (iii) for all i, (x,y,z)= o, V) and —= o _9,0" . ; (iv) Z <w and there
iON azu azg
: o ow y
exists ¢ o JR,, xR} such thatoW.0,ud,g' =4, d =1 +W.(alu.asg +0,u0,09")<A4,
2 3

andd.(w@ -2z )=0 forall i, whereA and & are the marginal social utilities of aggregateplitass’
contribution and hospital's potential graft resources respectively. The pié graft resources of

hospitali are scarce at social optimum if and onlyifis >0.

Corollary 1: (x,y,z,t) is socially optimal if and only if: (|)ZIDN , Zmz‘* ; (i) for all i,

y =F(X,2,1) and%—a F(X,Z,t); (iv) Z <w and there existsA(d, DR,, xR} such

62£]</1, and J3.(@ -2z )=0, where the

3

that, for all i, dW.0,ud,F=A, & =0iW.62U.63F.(1+

partial derivatives are evaluated at the optimurospital i 's potential graft resources are scarce at

social optimum if and only if this hospital's MRE «1 at the optimum.

Corollary 1 does not require an explicit proof,siteple consequence of Theorem 2 and Lemma 1.
The proof of Theorem 2 is detailed in the apperidiR).

To sum up, in a context of scarcity of transplami general inputs of the health system, and in the
absence of a market for the former, socially optipravision of transplant care services should be

limited by hospital’s rationing constraints < «), implying z=w at social optimum, while autarkic
provision should be limited by hospitals’ autarkiodget constraints/* +v” + y* < B, at least for

those hospitals that are best endowed in termisedf potential graft resources, implying the waste

a fraction of the latter, that is, a socially inefint (under-) provision of transplants (both mmtediary



and final). This yields the basic rationale, wittonr abstract representation of the medical care
system, for the introduction of a transplant ageincgharge of collecting and circulating graftstlire

place of the missing market for transplant inputs.

4-2-Regulated equilibrium with public good interacions

We suppose, from there on, that there exists sptant agency of the type described at the beginnin
of this section, and moreover assume that this@gendorses the social preferences of Assumption 3.
As noted above, the existence of a transplant ggémtuces public good externalities of the
technological type between hospitals, as long edatier control their production of grafts, that i
The graft production decided by any hospital hassequences on the production sets of all others
through transplant redistribution by the agency.

Public good interactions between hospitals ancigency are modelled below through a device which
has become standard in mechanism design theoryelpasubgame-perfect Nash equilibria of two-
stage games (see notably, in the context of maafgisivate contributions to a public good, Guttman
(1978, 1987), Bergstrom (1989) or Cornes and Sih@99) and also the detailed references reviewed
in Mercier Ythier (2006: 6.3 and A.2.1)). We suciesly consider three possible variants of the two-
stage game, where hospitals and the agency akeandirst and second players in the game. Thie firs
two are defined below as tlmyopic gamd4-2-1) and theclear-sighted gamé4-2-2) respectively.

The third notion of two-stage game, labellednitored gamgis defined and studied in subsection 4-3.

4-2-1-Myopic equilibrium

In the first variant of the two-stage game, hodpitgplay second, each one solving
max{u(x, y):(x, y, z. VO A tw )} with respect to(x, Y, z,y) for any givent,. We denote by
@ hospital i’s reaction correspondence at this stage, definedy b

g.(t)y=argmaxp(x .,y ):(x,y,z.,.v)d A(tw )}, and letg =(4,,....¢, ). The transplant agency plays



in the first stage of the game, solvingax{W(u( %, ¥),...u(X%, ¥)):(x ¥y z YW@ (yand@ A(2
with respect ta . An equilibriumof the gamas a state(x, y, z v, f) that solves the latter program. We
refer to this first notion of equilibrium as thgyopic equilibriumin the sequel, due to the short-sighted
free-riding behaviour of hospitals which it implies

We have the following simple benchmark propertytf@ myopic equilibrium:

Theorem 3 The provision of transplant care services anf@tgia null at myopic equilibrium.

Proof. Graft production is costly for the hospital, dweits crowding effects on hospital’'s production

of final care service¢x,y), and doesn'’t yield any advantage, ceteris par{that is, given others’

graft provision and agency’s transfers), in terrhbaspital’s utility. Thereforez=0, which implies

t =0, which implies in turnx = 0.m"*

The above result is interesting as a clear-cugiixtreme expression of the coordination probégém
transplant activities. It is individually ration&r myopic hospitals to free ride, or shirk, on fgra
production, that is, to attempt to shift over thleess the crowding costs induced by graft produttio
Myopia interprets as a lack of understanding, dividual level, of the collective damages that fesu
from generalized free-riding, namely, the dramatider-provision of transplants (no provision at all
in the case under consideration). The existence eoentral agency collecting and redistributing

transplants is not only insufficient, per se, falvihg the public good problem; it dramatically

' The set of myopic equilibria is{(x y z v)OR": x= z= £0; ¥=0, ¥+ V< B wand & ¥
g’ (0,v’,y*+ v¥) for all i}, implying an equilibrium utility of hospitals arthe agency everywhere equal to
their minimal values in their respective domaithstts u(0) andW(w0),...,u(0)) respectively.

12 Note that the formulation of the public good prablas a pure coordination problem here and belows doe
rely on imperfect or costly information. The readon this is empirical: accounts of the Spanish arider

experiences of national transplant systems we eseaof put little emphasis, if any emphasis at afi

information problems per se. The main difficulty far as production units are concerned, seeme teel-

centredness, understood as the propensity of eaghithl to concentrate on its own patients, andsegbent
reluctance to consider costly actions that aredivetctly related to this priority. One of the ma@ssons of the
Spanish experience, it seems to us, is that madtlgms are solved by simply discharging hospitalsome
appropriate way, of the concern of on site orgaminaof graft production (including identificatioof potential

donors, and donations interviews).



deteriorates production equilibrium, relative te tutarkic equilibrium, if public good interactioase

of the myopic type.

4-2-2-Clear-sighted equilibrium

The consequence of Theorem 3 is too extreme tocbepted literally. Hospitals should be, and
actually are well aware of the damages of shiringhe sense of footnoté) for the medical care
system as a whole, and for themselves as a part\yopia does not appear a realistic assumpfion,
other words, both a priori and in view of its logfiamplication.

In the variant of the two-stage game that we intoed now, the agency plays second, solving
maxW(u( %, ¥),....w %, ¥)): (X y..z,vO A & )forall jand A )¥ with respect to
(x,y,v, 1) for any givenz< w. We denote by° =(¢/,....4°) the agency’s transfer correspondence

at this stage, wherg’ yields the agency’s optimal transfers to hospitdbr any fixed z. Hospitals

play first, each one solvingmax{u(x,y): (x,¥,z,v)0 A(t.w);t0¢°(2} with respect to
(x%,¥,z,y) for any given vector of graft production of othewspitalsz . An equilibrium of the
game is a Nash non-cooperative equilibrium of irst-6tage game, that is, a stdte,y ,z,Vv,t)
such that: t 0¢°(2); and for all i, (X,¥,2,V¥) solves
maxu(x, y):(x, Y,z WO A tw); 0¢° (.7 » 2)}- We name it thelear-sighted equilibriunin

the sequel, because it embodies hospitals’ clearemgss of the public good externality associated
with graft production, and individual damages frivere-riding behaviour that it implies for them.

We establish below that clear-sightedness, iftiia@ty improves the functioning of the transplaate
system relative to the myopic game, by implyingoaifive production of grafts and transplant service
(Theorem 4-(i)), nevertheless does not sufficesfilving the under-provision problem. Preciselysit i

shown that a fraction of the system’s resourcegffaft production remains unexploited, in geneasl,

clear-sighted equilibrium when graft resourcessai@ally scarce (Theorem 4-(ii)).



We restrict attention, in this subsection, to thedioal care systems that have clear-sighted eqailib
The existence property of clear-sighted equilibriignanalyzed in detail in the appendix (A-4). It is
shown there (Lemma 5) that the critical featurechhdonditions existence is that hospitals’ firstggt
reaction correspondences be convex-valued. A minsgu#ficient condition on preferences and
technology for the latter is that the first-stageduced form of hospitals’ utility functions

(%,2z) - ux, Hx, z¢ (3 be quasi-concave (A-4: Lemma 4). Formally:

Definition 5: The medical care systefWV, u, g,w) is convexif, for all i, the first-stage reduced form
of hospital i’s utility function (x,z) - ux, (X, z¢# ((,z,,2)) is quasi-concave over
{(x,z) OR?:0< 7 < w} for al ZO{zOR": =@ and  quasi-concave  over

{(x,2) OR?:0< z<w} forall Z O{zOR]: z<w0< 7} .

Theorem 4 Let (W, u, g,w) be convex. (i) Clear-sighted equilibria exist amd > 0. (ii) Transplant

care services are underprovided, in general, a@r-sighted equilibrium (that is, equilibrium graft
production is< w) when hospitals’ graft resources are all scar@aial optimum. (iii) Clear-sighted
equilibrium is a social optimum notably if programsax{u(x,F(x, z, z)): z<w} yield a same

solution (x, z) for all hospitals.

The details of the proof are given in the apper{@d6). We concentrate here on the essence of the
argument underlying the second and third partb®theorem, beginning with the optimality property
of the latter.

The first-order conditions characterizing sociatimpm (Corollary 1) and clear-sighted equilibrium

(Lemmas 2 and 3) differ on a single essential paiaimely, hospitals’ marginal utilities of graft

resources, which rea@izu.a3F.(1+ ZZE] (=9 /0,W) for social optimum anaBzu.agF.(ai(biO + 32:3
3

3



for social equilibriun®. The transfer policyg® of the transplant agency will therefore completely
solve the coordination problem of the care systisat, is, make hospitals’ equilibrium and optimum

evaluation of graft resources coincide in all cinstances if, and in general onlydfg°(z) =1 for all

i and all z, that is, if ° is the identity functionz . z of R". The latter transfer policy consists of
returning each hospital its contribution in allccimstances.

Clearly enough, this perfect or complete solutionttie coordination problem should, in general,
conflict with the end-objectives of allocation eféincy and distribution equity implied by the sdcia
preference relation. In other words, returning ebobpital its contribution in all circumstances is
generally not an optimal transfer policy of thengplant agency at the second stage of the clear-
sighted game. The main first-order conditions fog tatter areo W.0,ud,F=A1, equating marginal
social utilities of transfers to the marginal soaitility of hospitals’ aggregate contributitih The
anonymity and convexity properties of the sociaéfprence relation (Assumption 3) imply that

marginal social utilitiesdW are identical if and only if hospitals’ utilitiese identical (and u(0)).
The identity functionz - z solves, therefore, the agency’s second-stage gmolfl, and in general
only if the following two conditions hold: (i) a ostant functionz - d,F(x, z, z); (i) and
hospital’s first-stage reduced form programsax{u(x, F(%, z, z)): z< w} yielding a same solution
(x,z) for all hospitals.

Condition (ii) above interprets as follows: Hosfstaproducing their transplant care services from
their own production of transplant inputs, and ficiag their purchases of general inputs for their

intermediary graft production from the agency’s deid choose the same production combination

(x,F(%,2,2), 2=(X%, Y, 2 in their individual opportunity sets. In terms dfie rationing

3 The other difference lies in the specificationbofdget constraints, namely, aggregate budget einstt
social optimum versus individual budget constraaitequilibrium. We assume implicitly here and éiflyy in

the case of the monitored equilibrium studied ire thext subsection that social optimum is always
decentralizable, in the sense that if an input-outmmbination of the care system can be achiewauah its
aggregate budget, then it can also be achieved tinenset of hospitals’ individual budgets. Thiswasption is
not much demanding in our setup, since hospitadsaasumed identical in all respects except potegiadt
endowment and social optimum verifies hospitalsbrang constraints by definition.

1 The other conditions that are relevant for allmraefficiency are the first-order conditions eqogthospitals’
marginal rates of substitution with their marginates of transformation. This set of conditionaugomatically
verified, in a decentralized way, at the solutiohfospitals’ first-stage programs of the cleahsigl game.



constraints over graft production, this type of figuration is compatible with only two possibiliie
either none of these constraints are binding; lon@dpitals’ endowments are equal, if a constraint
binding for some hospital (that is, satiated, wtbsitive associate hospitals’ marginal utility of
endowment). We establish in the appendix the inilit clear fact that, in such cases, status quo
transfersg¢®(z'.e) = z. e are equilibrium transfers, and th@t'.e , y .e, z. g) is a socially efficient
clear-sighted equilibrium production combinatiorr fuch transfers. Example 2 below yields an
instance of a calculable care system with constiaitary MRC where the optimality property of
Theorem 4-(iii) applies and status quo is the agsrtcansfer policy.

To sum up, the agency’s end-objectives of allocagfiiciency and distribution equity should confflic
with coordination objectives in most circumstandés, only notable exception corresponding to the
case where hospitals spontaneously achieve sqgishum because rationing constraints are either
non-binding or identical for all of them. In reaiéscircumstances, where rationing constraints are
binding at social optimum and there is some ditginihospitals’ endowments, the status quo transfe
policy which consists of returning each hospitaldbntribution cannot be an optimal policy (that is
cannot yield equal social marginal utilities ofrtséers for all hospitals), at social optimum andha
close neighbourhood, for anonymous, increasingstigtrconvex social preferences. The agency’s
transfer policy is therefore bound to introduce sodiscrepancies between hospitals’ marginal

evaluations of their graft resources computed frdhe standpoint of social optimum

0,F

(azu.63F.(1+ : 9,F

F]) and equilibrium Ozu.a3F.(ai¢i° + 3 F]), through hospitals’ marginal returns of

3 3

individual contributiond,¢° distinct from 1.

In the practically relevant case where graft resesirare scarce at social optimum (that is, margina

rates of compensatiorrgz—E<1 for all i at social optimum, implying that socially optimgdaft
3

production isz= w) social optimum is not a clear-sighted equilibriifrand only if the marginal
return of contribution of some hospital is smathean its marginal rate of compensation, that ianid

0,F

only if 9.¢°(w)<-
y if 0,4 (w) o

for somei, implying that hospitali then wants to deviate from socially



optimal z =« by diminishing its contribution. In Example 1 belowe present a family of calculable

care systems, with symmetric log-linear utility étion of hospitals, additive utilitarian social lityi
function, and square root Cobb-Douglas productioncfions, where the agency’s second-stage

optimal transfer policy turns out to be the equbhring of aggregate contribution, that is,
¢i0(z):12m z for all i for all z. Hospitals’ marginal return of own contributiond¢’(z)
n |

therefore is equal té/n in the example, hence smaller than 1 if there asenthan one hospital and
decreasing to 0 as hospitals’ number grows toiigfilwe show that the Nash equilibrium of the first
stage of the clear-sighted game, which coincidesddfinition with clear-sighted equilibrium for
agency’s optimal policy above, reduces to an exangdl the general class of symmetric Nash
equilibrium with public goods of Chamberlin (1974\hen hospitals’ number is sufficiently large. In
particular: hospitals’ individual contribution isogitive, decreasing in hospitals’ number, and tends
asymptotically to 0 as the latter grows to infinityospitals’ aggregate contribution increases in
hospitals’ number, at a lower speed than the laftieis notably implies that no rationing constragt
binding in first-stage hospitals’ programs, and ttiaar-sighted equilibrium is therefore independen
of the initial distribution of potential graft resices, when the number of hospitals is sufficiently
large. Moreover, we show that graft resources eagce at social optimum, whatever the number of

hospitals, for suitable equal distributions of mot@ graft resources. Transfers actually practibgd

transplant agencies certainly are much closer talezharing policyz — lzim z than to status quo
n

policy z - z, so that hospitals’ marginal returns of contribotd@’(z) should be considered much

closer tol/n than tol in reality, hence much closer to 0 than to 1 iwwiof actual numbers of care

production units in charge of providing the tramspl care services (155 in the case of Spain, for
example: see section 2 above). Inefficient undewigion therefore seems a more plausible outcome
of the clear-sighted game, for realistic assumgti@m preferences, technology and number of

production units.

15 See also the generalizations and extensions ahBédin’s result by Andreoni (1988) and Fries éit(d1991),
and the related literature reviewed in Mercier ¥th{2006: 6.2)



Theorem 4-(iii) is a rotten kid theorem (Becker{491981)). Precisely, it identifies configuraticsfs
principal-agent interactions where the optimal ¢fan policy of the (benevolent) principal drive®th
(non-cooperative, self-centred) agents to implemergocial optimum which coincides with the
principal’s optimum. The conditions under whichstiproperty obtains in this model of the transplant
care system are quite different from Becker's (19881), Bergstrom’s (1989) and also from Cornes
and Silva’s (1999).

The public good externalities of first-stage edmilim pre-exist to transfer policy in the game of
Cornes and Silva. This and the neutrality propeftyansfers allow the principal to use transfeliqyo

as a pure coordination device in their setup: @ dabsence of any trade off between allocation and
distribution objectives (due to neutrality), theingipal’'s optimal transfer policy achieves social
optimum by equating individual marginal valuatioofsthe public and private goods at first-stage
equilibrium with their marginal valuations at sdcaptimum. The public good externalities of the
first-stage equilibrium of the transplant care gaihany, are, by contrast, generated by the poits
transfer policy (as in Becker’s and Bergstrom’s ggnmoreover, transfer policy induces public good
externalities if and only if it is1ot of the status quo type, that is, if and only ildes not merely
consist of returning each agent its contributiomlyGf status quo is the agency’s optimal transfer
policy can the mechanism of Cornes and Silva becessfully replicated in the context of the
transplant care game, that is, use transfer pealicy pure coordination device for achieving social
optimum. Theorem 4-(iii) gives the sufficient, aimd general necessary, condition for status quo
transfer policy to be the agency’s second-stagenappolicy.

Bergstrom (1989) states that the rotten kid theoapplies if, and in general only if, agents’ uidg
are conditionally transferable. Bergstrom's gengralperty, like Becker’s original theorem, do not
apply to the transplant care game if rationing tanss are binding at social optimum. Becker's
theorem applies in the context of competitive mark&change, essentially because (perfect)
competitive exchange automatically achieves allonaefficiency for any distribution of money
income, thereby allowing the principal to optimibe sole distribution of income, by means of lump-
sum endowment (or numeraire) transfers (see the'dHoomposite theorem in Bergstrom (1989), and

also the Example 2 of Mercier Ythier (2007)). Théen kid property still obtains outside compettiv



market exchange if the allocation efficiency frentis invariant to redistribution and if the pripal

can freely redistribute aggregate money income éetwself-centred agents (Bergstrom (1989):
Proposition 1). None of these conditions applyhi transplant care game, except in the special cas
where rationing constraints are non-binding at léariim (see the argument of footndfeand the
proof of Theorem 4-(iii) in the appendix). Moreoyéte ban on markets of transplant inputs, which
makes competitive markets fail in the transplamnemy, also is the main explanation, both in theory
and in practice, for the existence of binding naitig constraints in the production of transplameca
services. The virtuous rotten kids of Becker’s teeo are, so to speak, daughters and sons of

abundance.

Example 1: A calculated example of Olson-Chamberlimnderprovision
We study the following calculable medical care sgst(W, u, g,w): production functions are the

1 1 1 1

concave Cobb-Douglas @f(t,v) = (v + V' + V) 2((;tV)2,(V)?,(;)2); hospitals’ utility function is

the log linear u(x,y)=logx+logy; social utility function is the utilitarian sum

1% Transferable utility translates as follows intor dtamework: The preference relation underlying pitss’
(identical) reduced form utility functionsu(x, F(x, z,t)) admits a utility representation of the type

At +C(x%, z), where A is a >0 real number andC is a real-valued function decreasingin Suppose for
simplicity  (without significant loss of generality by Mas-Colell (1985): 2.3.11) that
u(x, F(x, z,t)= At+ A x,2 for all i . This implieso,F /d,F =(0,u.0,F)/(0,ud ;F)=0,C/ A, where the
points of evaluation of partial derivatives are tied to alleviate notations. Denoting hy a utility level of
hospitali , the utility possibility set conditional on the stgm of agents’ actions (x,z) is the simplex

{(Uys ) 2(C(%, 2)se, QXL 7)) D WS AY, 2+ QX 2}. The rotten kid theorem implies the
maximization of “social income’AziDN zZ +ZiDN C( x, g) relative to socially accessible agents’ actiops 2)

at equilibrium. The f.o.c. for a maximum otkzim pA +ZiDN C(x, g) such thatx>0 subject to rationing

constraintsz< w read:9,C(x, z) =0, 1+02TC 20 and [1+ afj.(cq -z )=0forall i , and therefore coincide

with the f.o.c. for the solutions afmax{u(x, F(X, z, z)): z< @} with positive x, . Supposing an anonymous
utility function of the principal, this set of comtidns characterize a socially optimal clear-sighégjuilibrium,
with status quo second-stage optimal transfer poli@’:z - z, if and only if programs
max{u(x, F(x, z, z)): z<w} have a same solution, that is, if and only ifaming constraints are either non-

binding in all these programs or identical in dltleem (the latter implying identical hospitals’dawments). In
particular, Proposition 1 of Bergstrom (1989) daoes apply if, and in general only if, distinct @ting
constraints are binding in at least two of thesgmms. The assumption of Bergstrom’s propositiat fails to
hold, in general, in the latter case is that théngipal can choose any vector of transfers in set

{tOR7: ZiDN t < ZiDN z} , implying that the principal’s transfers are niatited by rationing constraints in the
cases covered by the propositmn.



Wu(x, %), 4 (%, y)):ziDN U X y)- It verifies assumptions 1, 2 and 3. Associatection F

22
reads F()g,z,t)z(l— zz—)i'—'j. The first-order conditions of Lemma 2 then yield

#°(2) =1/ n)ziDN z for all i, that is, the agency’s optimal distribution polisyequal sharingof

aggregate hospitals’ contributiod Substituting optimal transfep’(z) for t in F yields the

following  reduced form  for hospital i’'s first stage  objective  function:

2

u(x, F(x, z,¢°(2)) = log x+ (1/2)I0{1— Z- Fnz)gizj viewed as a function ofx,z) for
jON T

fixed z,. The path of hospitali’s optimal final production conditional onz is

1 1
—22Y\2 (1= 722
{( [ti 1 22‘ j ,[1 ; J ):0<z<w} . By further restricting to this path the objectiumction above,

we get the following final reduced form for hospitai’s first stage program
max{(1/2) IogzjDN Z; + log(- 72> (1/2)logn- log2:& z<« , where the objective function is

(differentiably) strictly concave. Let us provisally ignore the rationing constraint in the latter

program. The first-order necessary and sufficiemdition for an unconstrained maximum reads

5;2+4(ZJDN:j¢iq)z—1: 0. Solving for z yields the unique >0  solution

z = —(2/5)ijj¢i Z+ (1/5)\/5+ ‘(ij;;ﬂ- q)z . Letting z = Z for all i in the solution and solving

for z yields the symmetric individual contribution =

. In particular, there exists, such

1
Van+1

that Z.e < w for all n>n, implying thatz' is a symmetric equilibrium contribution of the niead

care system, with non-binding rationing constraimtsen the number of hospitals is at least as large

as n,. This is then the unique equilibrium contributics a special case of Cornes and Hartley,

,u(x, FOX, 7. 1) _ e X2 . N
. =-0,F(x,z,f) yields ——=y~ for all i; substituting into f.o.c.
ou(x FOx 7)) A {

ou(x, F(x,z,t)0,F(x,z,)=A4 and adding up overi then yields both A =2n/z
t; =(1/n)zjDN z.

" Notably : f.o.c

o Z and



2007 Equilibrium  individual contribution lies in]0,] for all nxn,. It is decreasing,

asymptotically equivalent tel—, converging to 0 as the number of hospitals grimasfinity, while

2Jn
aggregate equilibrium contributioE_DNzi =%1 is increasing, growing to infinity with the
1 n+

number of hospitals but at a lower speed than altterf® One verifies easily from the first-order

conditions of Theorem 2 that these equilibria aveialy inefficient. The marginal social utility of

hospitals’ aggregate contribution %= , and the marginal social utility of hospitals

_n
2Y %

22 for all i inthe f.o.c.. Lettingz =

n
-2
ZZiDN Z 1-7

i in the latter yields positive values of for all n>2, which are inconsistent with social optimality

for all

potential graft resources § =

1
NJan+1

. 1 . . .
for n> since < for all i then). Suppose, finally, that initial endowmenits aquall
n ( NYE « )- Supp y qually

distributed, that isw= de, for some @OR,, for all n. The MRC at(x,z,1)> 0 is 2z (1 / x)°.

On the path of hospital’s optimal final production conditional oz, and for agency’s optimal

'8 The reader can check this by proceeding to tHeviing change of variable: Let the utility function the
framework of Cornes et alii beJ(x,G)=log(-%"+2x)+ (1/2)IogzjDN g +- (1/2)logn- log:, where
x denotes their “private good” (not to be confusedhwbur “provision of transplant care services”),
G= ij g; is the public good, andy; is j's individual contribution toG . Let their agent's endowment (not

to be confused with our “potential of graft prodant) be =1. Their reduced utility function, obtained by
substituting budget constraint x +g =1 in the former, is U(l-g,0+G)=
log(1-g%)+ (1/2)logQ@ + G, »* - (1/2)logn— log:, whereG_, = szN:jzi g; , which is identical to the reduced
form of the utility function of our calculated exate. A simple calculation shows that function
U(l-g,,9 +G,) verifies the normality condition of Chamberlin 79, which implies in turn the condition for
uniqueness of Cornes and Hartley (2007).

19

\/4n_1 is asymptotically equivalent t%\/ﬁ . Its instantaneous growth rate—%s— , which is positive
n+

1
2n+1
2

and <1 for all n=1, decreasing witm, asymptotically equivalent tezl—, and, in particular, tending to 0 &s
n

grows to infinity. The asymptotic behaviour of hita[s’ contributions reproduces the qualitativetfeas of the
general property of Chamberlin (1974). We establisim a footnote above that the first-stage Nashlibgum

of this example reduces to a special case of Chdimilsesymmetric Nash equilibrium when the numbédr o
hospitals becomes large enough to make all ratipoémstraints slack at equilibrium.



Z:iDNa 1-z?
n z

transfer associated witlz, this vyields: 4. . Therefore, hospitals’ potential graft

resources are all scarce at social optimum if amlg @ 4(1—&12)D]O,:[, that is, if and only if
1
o0 0,—~| .
Pl

Example 2: Linear transferable transplant technology

In this example, we consider the case of convexicakdare systems with constant unitary MRC. We
label this special case tlrmansferable transplantase, by analogy with transferable utility (Bergst

and Cornes (1983), Bergstrom and Varian (1985ak) Bergstrom (1989)° We further restrict
attention, for calculation purposes, to linear lit@gpechnology. Linear technology being incongiste
with the boundary conditions of Assumption 1, wpmse, more precisely, that there exists a positive

real number e<inf{w: 0N}, which may be taken arbitrarily close to 0, suchatt

F(x,z,1)=—ax— bz+ bt+ | (a,b,c)DRi, whenever (x,z,t,F(x,z,t)2E£££) (see
Figures 2a and 2b).

Let (x,y ) denote a local maximum af in {(x, y) OR%: y <-ax+ . Note that such a point:
necessarily exists by continuity af; is >0 by the boundary condition of Assumption 2, and

therefore is the unique global maximum aof in {(x, y) OR?: y <—ax+ ¢ by the strict quasi-

2., is such thaty =-ax + ¢ (u being strictly increasing irR?,) ; and

++ 7

concavity of utility in R

verifies first-order condition%za. We suppose in the sequel that,y ) > (¢,&) (see
MUX L Y
Figure 2c).

% These characteristics dF obtain easily from Assumption 1 by letting funeisog’, r0{x y, 2 , be linear
whenever(x,y,z)2 (¢,£,£)> 0. A suitable choice of coefficients in the lineapresentations of functions
g'yields a linear graph d&f , with F(x,z,t)=¢ and unit MRC, for(x,z,t)= (¢,€.£). As should be clear
from footnote™ above, transferable transplants neither impliesjsimplied by, transferable utility.
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Fig 2.c
The first-order conditions of the second Lemmahs appendix (see Appendix: A-3) then readily
imply that the agency’s optimal distribution poliay the second stage of clear-sighted equilibrisim i

to transfer each hospital its own contributiomhen all hospitals contribute at least, that is,
formally: the restriction ofg® to {zOR!: £ < z<& is the identity z - z.# The first-order

conditions of the third Lemma of the appendix (Apge: A-3) then imply in turn that all hospitals

have essentially the same set of optimal produatmmbinations at the first stage of clear-sighted
equilibrium, precisely: all elements of stx, y, z) OR}: < z< )}, where (X, Y ) is the same
for all i (but where, of courseqy may vary withi), solve hospitali ’s first stage program for all
z,; 2 £.€_,. In other words, if all hospitals contribute aadé &£, the agency’s transfer policy makes

each hospital’'s decision independent of othersisitmts, and also makes hospital’s final production
of transplant and other care services independeitd own intermediary production of grafts for the

agency; so that all hospitals end up choosing dheesoutput combination for their final care sersice

and also end up indifferent to their intermediargfgproduction over rangh,cq] :

et z=t and (x,y)=(X,y)=(X, ¥y) forall i in the f.0.c., and recall the anonymity properfyttee

social utility function implies that marginal sokiatilities of hospitals’ utilities are equal wherer hospitals’
utilities are equal.



Let (x,¥)=(X,y). It clearly follows from definitions and paragraphove that anyx .e,, y.€, 2
such thate e, < z< w is a clear-sighted equilibrium production of thedital care system, and that
t =z is the corresponding vector of equilibrium tramsfeNote, finally, that: other equilibria might
exist; (X .e,, y .€) is the unique socially efficient final productioambination of the medical care, as
a simple consequence of the first-order conditioh$heorem 2 and Corollary 1; amd< w for all
equilibria above exceptx .€,, y .e,w). In particular, the marginal social utility of tpetential graft
resources of all hospitals is null in this exampléhile the marginal social utility of hospitals’
aggregate contributiorim z is positive)”> More precisely, some fraction of aggregate traamstpl
resources does have a positive marginal sociatyusince hospitals and the agency hay@) and
W(wO0),...,u(0)) utility levels if zimcq =0, but anyw= ¢.e, suffices for sustaining the equilibria
above. That is: transferable transplants technosgaplies if aggregate resources exceed threshold
(technology being linear only faix, ¥, z, )= (£,£.,£.£)); and this particular technology then makes
any amount of aggregate transplant resources imsexof this threshold (any positive difference

-ng + ZiDN @) socially useless.

4-3--Monitored graft production

A simple solution to the coordination problem rdisa subsection 4-2 is the monitoring of graft
production by the transplant agency. This solutiotually appears trivial in the setup above, from t
viewpoint of formal logic. It is interesting to delep because it captures, we believe, the
organizational features of the Spanish transplgstes that are at the origin of the latter’s rerahtk
achievements analyzed in section 2 above.

The model is amended as follows. The transplanh@gdires physicians and delegates them in

hospitals in order to supervise graft productioeath of them, with an objective of maximization of

2 From the corollary of Theorem 2§ zaiW.02u63F.(1+ 0,F ) =0, while A =9W.0,ud,F=9,Wd,uc>0,
0,F

3
forall i.



the latter subject to the legal, technical and amdent constraints detailed above. Formally, thiw ne
organizational trait amounts to letting the agedegide (through its delegates in hospitals) over

hospitals’ levels of graft production in=(z,..., 7). That is, the agencyisionitoring opportunity set
now readsA) (o) ={(z v, ORI Y t<> z; z< g(;t ¥ v+ ¥+ 9and, =@ foralli,

while its monitoring budgeB)' now covers the wages of supervisors in additiothéoother costs of
transplant provision. Similarly, Hospitals'monitored opportunity setsare defined as:

AT D ={0n Y, VO ORT: x< gtV VvV 95 g f 4 % W fand % ¥ X

The public good externality between hospitals aggsin this new specification of the transplant
system, since it followed from their individual ¢b® of a level of graft production, which now is
essentially endorsed by the agency. The distindietveen a myopic and a clear-sighted behaviour
becomes pointless, consequently, in the sensethka{Nash non-cooperative) equilibrium of the
transplant game is now independent of hospitalslewstanding of agency’s policy. The two-stage

game may be specified, accordingly, as follows. gitats play second, each one solving
max{u(x, y):(x,y,¥,V)O A (%, )} with respect to(x,y,V,y) for any given (v’,t). We
denote byg" hospitali’s monitoredreaction correspondence at this stage (solvingrarogabove
for any (v,t)), and let ¢" denote the associate product correspondence defimged
PV (V) ={(x Y VS V) (x Yy W VOgM( Y, ) forall §. The transplant agency plays in the first
stage of the game, solving
maxfW(u(x, ¥),... W x, ¥)):(x y ¥, ¥)0g" (¥, yand (zv,H Ad ) with respect to
(z, V%, t). An equilibriumof the gamas a state(x, v, z v, t) that solves the latter program. We refer to

this third notion of equilibrium as threonitored equilibrium

We establish below that monitored equilibrium andial optimum coincide, provided that socially
efficient production can be achieved by hospitaldosved with equal budgetB. This optimality
property implies, in particular, in view of Theoremthat a monitored equilibrium exists, and thwst t

corresponding socially optimal production of figalre services is unique.



Theorem 5 Suppose that, for any social optimum vy, z v, t), there exists a combination of general
inputs v such thatv* + %' = B and (x, y,z)= o(t, V) for all i . Then, the monitored equilibrium is a

social optimum.

Theorem 5 implies a clear advantage of monitoredliegum, relative to clear-sighted equilibriurm i
terms of the production of final care serviceshd tmedical care system. Optimizing the distribution
of transplants does not suffice, in other words,dchieving socially efficient production. The &att

supposes that some control be exerted also ongaduction. This implies in turn some additional
monitoring costs, captured in the simple model abtivough the (positive) differencB)' - B,

between the agency’s budgets in the monitored #ear-sighted games. A complete comparative
evaluation of the two modes of regulation of trengplant care system supposes that their diffesence
in terms of socially efficient production be baladcagainst their differences in terms of budgetary
costs. The data collected in section 2 suggestntiwaiitoring costs are actually low, relative toithe

remarkable impact on graft production. In other agorthe Spanish experience shows a high

productivity of monitoring expenses.

Conclusion

The economic organization of the transplant castesy was characterized as a production economy
of the public sector operating on the backgrounthodmplete markets of inputs. The collection and
circulation of transplants by the transplant ageincligce public good interactions between hospitals.
A socially optimal distribution policy of the agenaannot achieve alone the coordination of
hospitals’ production decisions at equilibrium arahnot in general attain alone the social optimum
when potential graft resources are scarce, thagisivalently, when the rationing constraints oer
production of transplant inputs are binding at ab@ptimum. Social optimum is attained by

eliminating the public good interactions betweersgitals through the optimal control of both the



distribution and the production of transplant irgppby the agency. The data suggest that more th&n on
half of Spain’s donor rate differential with oth@untries proceeds from an adequate management of
this public good problem by its national transplamganization. Improving the coordination of
hospitals’ production of transplants seems thecal and most efficient way for improving national
donor rates. The other major way consists of lowgerilonation refusal rates through adequate

exhortation policies and an adequate managemaedaration interviews.

Appendix

A-1: Hospital's production possibility frontier

Lemma 1: There exists a functiof such that, for an)(;,t)D[O,cq] xR,,, the set of technically
accessible output combinations of hospital [ is:

(% ¥ DORS: x< d(t BB( @ ¥ E X 7Xand £ ), where(g,)™" denotes the
inverse of increasing partial function” - g*(t,v?% B+ y°). Function F is defined over sets
{(x, 2 D ORI xR,,: x< g(t BB+ ¥); z< § t,% B,9;, &0}, and C* in the (non-empty)

intersection of these convex domains Wi, . It is decreasing and concave %, decreasing irz

y
and increasing in . Its partial derivatives read: 0,F = —gzgx ,
29
0,F = ! 059" 0,9 +0,9” |, and 0,F = 0,0" 0,9” where the partial derivatives d¥
2 9,0°+0,9°(0,0" ° =) 9,90 ¢ ’

g, g’ and g* are respectively evaluated @t,z,1), (t,v*,s), (t,B-v*,9 and(t,(9:)"(z),9
such thats= B+(¢)™(2) andx = g*(t,V, 9.

Proof Let G":(t,V,2z) > d(t, V,B+(§)"(,2), rO{x y . FunctionG*, being increasing irv*

in R%, xR, (see Assumption 1), then admits a partial inverskative to this variable, that is, there

exists a function h* such that g*(t,h*(x,z,1),B+(g)*(2)= x for all



(%, 2, D0{(x 2 ,D0R,, xR, xR,,: x< d(;t BB 9, = & 4V B, ¥, %0} This domain
of h*is convex and has a non-empty intersection i@th by Assumption 1. The implicit function
theorem moreover implies that* is C? in the intersection of its domain witiR®, , with:
d,h*=1/0,9*, 0,h*=-0.,9*/(0,9"(0,9°+0.09)) and 0,h*=-0,9*/0,9%, where the partial
derivatives ofh*, g* and g* are respectively evaluated ét,z,t), (t,h*(%,z,t), B+ (g )" (2)
and (t,(92)™(z), B+ (&) ™(2). And h* is: increasing and convex iR as inverse of increasing
concave partial functions* - g*(t,v*, B+ (¢)™*( 2)); increasing inz and decreasing ify by the
derivatives calculated above and Assumption 1. Wey mlet F be defined by:
F(x,z,1)= G (t,B- K(x 21,2 if x>0; F(x,z,{)=CG(t,B z) if x =0. One verifies

immediately thatF is concave, decreasing ) and in z , increasing int, . Its restriction toR?, is

d,9” 1 0.9" 2,9"
C?, and 0. F=—=2L 9 F= 82 0,9 +0.9" |, and 9.F =—2=-0.9” where the
1 azgx 2 azgz+a3gz[azgx 29 3gJ 3 azgx 29

X

partial derivatives of F, g* and g’ are respectively evaluated at(x,z,t),

(t.h"(%.z,1), B+ ()" () and (t,B-h*(x, 7. 1), B+ ()" (2).m
A-2: Autarkic equilibrium, social optimum

The proofs of this subsection are simple applicegiof standard techniques of convex optimization

(Arrow and Enthoven (1961)).

Proof of Theorem :1The existence ofx,y ,7,V,t) is a simple consequence of the continuity of
hospital’s utility function, maximized in non-empty compact set
(%Y zVvOOR:(X y.2< 1,9, &€, zand W, *w A [ (see Assumptions 1 and 2).
The solutions are> 0 by Assumptions 1 and 2 @u(0) utility suppose a> 0 production(x, y;) of
final care services by Assumption 2, which impliesurn a>0 vector (z,Vv,{) of intermediary

graft production and inputs by Assumption 1). Tinequeness of the optimal final production of care



services(X, Yy ) follows from the strict quasi-concavity of utilifiunction in RZ, and convexity of
opportunity set {(x, ¥, z, Y, DOR.:( X ¥ 2< ¢V, &, zand ‘'w %, A | (the latter
implied by the concavity of production functiong", r{x Yy, 2 ). “Unconstrained” program
max{u(x, ¥): (X, Y,z v, )2 0,(x,,y, 2 ¢t V), £, zand v *# *« | being identical for
all i, so is the solutio{x,y,z,V,t). If (X,Y,z,y,t) verifies rationing constraint <« with

a strict inequality, that is, if Z <« , then it solves “constrained” program
max{u(x, ¥): (X, Y,z vy )= 0,(X, ¥, 2< ¢t V), € E@ ,and*w, *w * <B} as a simple
consequence of definitions. The Kuhn and Tuckest-firder conditions (f.o.c.) for the constrained

program characterizéx',y ,Z,V,t) by Arrow and Enthoven (1961: Theorems 1 arfd Zhey read

9,9’
0,9"

as follows: (i) v +v' +vy" =B; (i) (X,y,2)=ot,V); (i) g;u: (evaluated at
u
2

(X,¥,2,y,t)); (iv) and there existsy,OR, such that y.(@-Zz)=0. Since Z <« by
assumption, we must havye =0 in the Kuhn and Tucker conditions, that js, is determinate and
=0 in the f.o.c., and interprets then as the hospitmlmarginal utility of potential graft resources.
The same applies to any hospital such thatw, >¢ . Finally, hospital's budget constraints are
binding at autarkic equilibrium as a simple consame of Assumption 1-(vi) and increasing utility,

that is, these assumptions straightforwardly intpt any ceteris paribus increase in hospital’ggetud

increases its maximal utility level in associatéagkic opportunity se

Proof of Theorem 2 The social opportunity set{(xyzv)OR":>  t<> 7
Z< W, ZmN V' +y < nBand (x, y,zx dt,v)foralliis non-empty (it contains 0), compact (by

continuity of g) and convex (by concavity aff ). It has a non-empty intersection wilk/" by our

assumptions relative to the productivity of hodfsteechnology (see Assumption 1, notably part$, (iv

% These theorems of Arrow and Enthoven apply herespite of the non-differentiability of objectivench
constraint functions on the lower boundary of tldemains (the boundary conditions of Assumption2 and
3), because these functions admit quasi-concavereiiftiable extensions with same solutions of tfeg@am.
The same remark applies to our use of the firseiocdnditions of Mas-Colell (1985): D.3.3 in Lem@idelow:

the objective and constraint functions of the pangadmitC' extensions with same solutions of the program.



(v) and (vi)). The continuity of social utility fution (X,y) - W(U X, Y),.... U X, Y¥)) therefore
implies the existence of a social optim(ny ,z,V,t), which must be>0 by Assumption 1 and
the boundary conditions of Assumption 2 and 3. @pmal production of final care servic€s ,y )

is unique by the strict quasi-concavity @f, y) - W(U %, ¥),..., { X, ¥)) in R?} and convexity of
the social opportunity set. The Kuhn and Tuckestforder conditions are necessary and sufficieat at
>0 solution of convex programmax{W(u(x, ¥),...u %, ¥N:(xyzvE OZiDN iEZiDN 2z

z< a)';ziDN V' +y < nBand (x,y,zx dt,v)forall i by Arrow and Enthoven (1961: Theorems
1 and 2). Strictly increasing utility and productitunctions in the positive orthant readily imphat
constraintsziDN t. sZiDN z and (x,Y¥,2)< dt, v)are binding, with positive associate multipliers,
in the f.o.c.. Strictly increasing utility and Asaption 1-(vi) moreover imply that aggregate budget
constraintziDN v +v < nB is also binding, with a positive associate muigiplat social optimum.
These remarks and some calculations yield theviitigp system of characterizing f.o.c., where partial

derivatives are evaluated at the optimum:EDN t :ZiDNi ; (i) ZiDN v +v” = nB; (iii) for all

y
(y.2)= ot ) and 242991 Gy) and there exists A(5, DR,, xR" such that
o,u 9,9
W

OW.o,ud, g =4, 4=+ ~.(0,u.0,9" +0,ud,g")<A, and J.(@-Z)=0 for all i,

0,9° +0,9
where A is the multiplier associated with constra@im t < zim z . Finally, the characterization of

scarcity in the last part of Theorem 2 is a simpdasequence of definitions and the characterizing

f.o.c. abovenm

A-3: Agents’ behaviour at clear-sighted equilibrium

Lemma 2: Agency'’s transfer policy: The agency’s transfer correspondence at the sestagd of the

clear-sighted game identifies with a continuouscfiom ¢°:{zOR":0< z<«} — R" such that

#°(0)=0 and ¢°(2) >0 for all z>0. Its restriction to{zZOR":0 < z< «} solves, for any giverr,



the following system of first-order conditions ifix,t): (i) zimti :Zmﬁ; (i) for all i,

alu()g’F(x’Z"t))z—alF(xi,z,‘p); (i) and there exists AOR,, such that, for alli,
d,u(x, F(x, 7, 1)

OW(U X, F(%, 2 D)oo U3, X0 2,000, €% Ro%,2 00, K% 7 EA.
Proof: Sets of alternative#\(t,«y) and A,(2) being non-empty, compact and convex for all non-
negative (t,z) such that z<w, and the agency’'s utility function being contingpiyprogram
max{W(u( %, y),....u(%, ¥):(x y.,z,vO A &) forall jandd A )k has one solution
(x,y,t) at least, for any fixed non-negativez<w. That s, correspondence
#°:{zOR":0< zs} -~ R" is well-defined (i.e. has non-empty values ovsrdomain). Its values
are compact by continuity of wu, and convex by convexity of
{(xy:(% Yy, z WO A,tw) forall jand O A (2)]and quasi-concavity af.

A (0)={0} by definitions, and A0,4)={0,y,z,y)ORS : y<
9’(0,v, v+ vy + V), z< (0, V, V+ V+ V), @ and v, ¥ [ for all i by definitions and
Assumption 1-(iii). These facts and Assumptionsnt 2 imply that the set of solutions of the

agency’s program whez =0 coincides with the corresponding set of alterretiof the agency’s
program, that is, with se{(x y §: x=t=0and 0< y < ¢ (0,B,B) for alli, the agency’s and
hospitals’ utilities being thesr W(0) over this whole set. In particulag®(0) ={O} .

Suppose from now on that<z< w.

A(2 n R}, is non-empty wheneveez>0, that is, it is always possible for the agencyntake
positive transplant transfers to all hospitals wham some >0 quantity of transplant is availablee T
agency’s set of alternativgéx y v ) OR": (%, ¥, z WO A tw) forall jand 0 A(2)is convex
for all z, by the concavity of production functiors, r0{x y, 3 (see Assumption 1). The boundary
conditions of Assumptions 2 and 3 relative to tytifunctions, the strict quasi-concavity of theisbc
utility function in R*?, and Assumption 1 then readily imply that the #ohs of the agency’s

program ares> 0 vectors(x, y, Vv, t), which moreover imply a unique optimal productafrfinal care



services(x, y), wheneverz>0. From Lemma 1 and strictly increasing hospitatiity, such interior

solutions can be characterized, equivalently, as terior solutions to

maxW(u(x, F(%, 2, D). WX, Kx, 2,010 € 9t BB (g9)° (9).andlt ,@)}awhere

“interior” now means either that (x,y,t)>0 or, equivalently, that t>0 and
0<x <g*(t,B,B+ (g ) (7)) for all i . The necessary first-order conditions (f.o.c.)tfa latterC?

program read as follows (e.g. Mas-Colell (1985)3.B): (i) ZiDNti SZiDNz; (iiy for all i,

ou(x, F(x, 7, 1)) _
a,u(x, F(x,z, 1)

-0,F(x,z,f); (i) and there exists a=0 real number A such that

OW(UOX, FOX, 2, D)oy W3 FOX 2009, W% B2 905 KX 7 FA and
A w22 t)=0foralli.
Utility functions being strictly increasing in thgositive orthant (see Assumptions 2 and 3) and

function F being strictly increasing relative tp>0 in R®, (see Lemma 1), the third part of the f.o.c.

readily implies thatd >0 and z :zim z , that is, the agency’s marginal utility of aggrega

iON 4
graft provision is >0 and aggregate graft produrcti® entirely transferred to hospitals at agency’s

optimum.
The non-convex program max{W(u( %, F(%, z, 1)),... X, H X, z, )& x
g*(t,B,B+ () *(2)), and 0 A (2)] being equivalent  to the convex program

max{W(u( %, y),....u(%x, ¥):(x y,.z,vd A & ) forall jand@ A ), the necessary f.o.c.

above are also necessary first-order conditions tloe latter. And the f.o.c. of program

maxW(u( %, ¥),....u( %, ¥)): (X y.,z,vO A tw ) forall jandd A )¥ are also sufficient
conditions for an interior solution of the lattey Brrow and Enthoven (1961: Theorem 1). They

characterize, therefore, the solutions wheneaeD.

Let us prove, to finish with, that® is single-valued and continuous o§@R": z< ) .

We already proved that ¢°0)={0}. Let z>0 and (x,y,t) solve

maxW (u(x, F(%, z, ). Wx, FOX, z,,0)):0 5 gGt BB (9) (90t (A ) We



established above that optimék,y) is unique, ¥x,y ), and thatt" > 0. Function F being
increasing in transferf is necessarily unique for all, as unique solution of equation in:

y, =F(X,2,1t). Therefore,¢° is single-valued ovefzOR?: z< ¢ . It identifies, in other words,
with a function £0R! :z< w} - R} over this domain.

Let sequencez®),, of elements of zOR]: z< @ converge toz . Suppose first that >0. Then

¢°(Z') >0 and there exists,, N such thatz* >0 and ¢°(z") >0 for all q= q,. Therefore,Z and

all z% such thatq>q, verify the system ofC* f.o.c. above.(¢°(z")) being a sequence of

a2¢, !
elements of compact s¢t1R": ZmN t <1} , has at least one limit point in that sett™ verifies the
f.o.c. atz by continuity of the latter. Therefore=¢°(z), and continuity in{zOR":0 < z< &} is
established. Suppose, finally, that=0. By definition of ¢°, ¢°(z°) is =0 and verifies inequalities

o<y #°(z")<). 7 forall g. Therefore . liquoqﬁo(zq) is well-defined, =0=¢°(0), and

continuity at 0 is establishad.

Lemma 3: Hospital's behaviour: Hospitali 's reaction correspondence at the first stage eftctbar-
sighted game is a well-defined, upper hemi-contiisucorrespondencg” : z0{ zOR": z< @ - R®
such that: ¢°(2) OR®, whenever z, =0; ¢°(z) ORZ, xR, xR%, xR, wheneverz, #0. Let
z0{zORT™ z<a@ be fixed, (X,Y,z,y)0g°() be such thatz >0, and suppose that
z - ¢°((7,, 7)) is C* in some interval open if0,«q] containingz . Then,(X,y ,Z,Y) verifies

the following system of first-order conditions: () y =F(X,z.8 (7, 2); (i)

(X, ¥.2)=d (7, 2), V) ; (i) %z_alp(giw ((7,.2))); (iv) and there exists

 OR, such thatd,u(x, ¥).-Q,F(x, 2.4 (7. 2N+0; Kixizd (Cz: M Cizy V=9
and J(«-2)=0. If function (x,2z) - W x, F( x, z8°((iZ . 2))) is, moreover, quasi-concave over

{(x,z) OR?:0< z<w}, then, the first-order conditions above charazéethe >0 elements of



PC(2), thatis,(X,¥ ,z,y)0¢° (D and is> 0 if and only if (X', ¥ , 2, V) verifies the f.o.c. and is
> 0.

Proof. Note first that setA(4°(2),«) being non-empty and compact for §#,«) =0 and utility
function u being continuous, programmax{u(x,y):(x, Y, z, VO A@°( 3w )} has one solution at
least for any fixedz,w) = 0. Therefore, correspondengg : RT™ - R® is well- defined.

Let z,=0. We established in Lemma 2 th@f(0)=0 and ¢°(z) >0 wheneverz>0. And we
supposed in Assumption 1 tha*(0,v)=0 for all v,. Therefore, hospitali’'s optimal graft
production z is positive, for then and only then is>au(0) utility level accessible for hospital by

Assumption 2. In other words, if other hospitalsitcitbute nothing, hospital is willing to contribute

something, in order to receive some positive tremffom the agency that allows fora 0 final
production(x, y) and>u(0) utility.

Let z,0{z, OR™: 7. <w,} be fixed from there ong°((z,,7))>0 for any optimal graft
production  Z of P (2) by the paragraph above, so that program
max{u(x, y):(x,y,z VO A2°((,Z2 . ) )} can be rewritten equivalently as
max{u(x, F(x, 2.8° (7 2)):0< x 8¢@°((,z., 2., BB(;9"( » and &, 24}

by Lemma 1. Solutions in(x,y) are “interior”, that is,(x,F(x,Z,8°((z,, 2))))> 0, by the
boundary condition of Assumption 2. But we may haveorner solution inz , that is, an optimal
graft productionz equal to either 0 oy (Z =0 only if z, >0).

Suppose that optimal graft productian is positive, and thaz — ¢°((z,, z)) is C' in an interval
open in(O,cq] containingz . The necessary first-order conditions for solut{en z ) of the reduced

program above then read as follows (e.g. Mas-Cole(1985): D.1): (i)

o,u(x, F(x, 2.8° ((z..2)) _ _ . o . qi .
0%, FOx, 2.8° (2., 2))) 0,F(x,7.8°((7,, 2)); (i) and there existsg OR, such that

0,u(x, ¥).0,F(x, 2.8° (7 . DN+0; Roxz8 (2. MIF (.2, H)=¢ and J(@-7)=0.

Conversely, if(x,z) - W x, (X, z#8°((.Z ,,2))) is quasi-concave ovd( x, z) OR2:0< z< w},



if z - ¢°((z,,2) is C* in an interval open if0,«y] containingz >0, and if (x,Z ) >0 verifies
the f.o.c. above, thefx ,z) solves reduced programax{u(x,F(x,z.8°((z ,2))): z=w}, by
Arrow and Enthoven (1961: Theorem 1). Let us e#hbfinally, thatg® is upper hemi-continuous
(u.h.c) in{zORY: zs @ foralli.

Let (%), be a sequence of elements ofzOR[: z<sa converging to Z , and sequence

(%" 4,729 ¥y be such tha(x’, y*,7 2%, V)Og (Z) for all g and converge t§x,y ,Z ,y). We

want to prove that (X,¥,7Z,v)0¢°(z). Note that (X,y,Z,V)O A& (2).w)=
(%, ¥,z VWORS: (% ¥..2< @°( 2, ), ,E@, and”w A& [ by continuity of g and
#°. Let (%,¥,7,V) be any element oA (4°(Z),w) .

If X ory is=0,thenu(x,y)= WX, y)= Y0) by Assumption 2.

Suppose tha(%,¥)> 0. Note that, theng’(zZ)>0 and % < g*(¢°(Z), B B+(¢)™("2) by the
definition of A(#°(Z),«) and Assumption 1. We construct a sequeicé, ¥°, 7, V) that
converges to(X,¥,z,V) and is such tha(x,¥",7",¥)0 A@°( Z),&w) for all q. There exists
0, ON such thatg?(z) >0 and X < g*(¢°(Z"), B B+ ( ¢)'("2)) for all g= q,, by continuity ofg*,
¢’ and (g3)". If ¥ <F(%,2,8°(2)), then, by construction of (see the proof of Lemma 1), either
V+¥=Band ¥y <g'(g°(2),V,V+V+ V) or ¥+¥ < B; therefore, by continuity ofF, ¢’
and g, there existsq 0N such that, for allg=>q: ¥ < F(%,Z,¢°(#)), and either there exists
VI<y+Y solving  g¥ (@’ (Z), VLV +V+ V)= g(@°( 2, VTV TV+TY)  such  that
(@A), Y+ V-V V+V+V)>Ty, if ¥+¥ =B, or there exists v9  solving

g (@2 (), VI,V +V+ V)= g(@°( 2, VTV TV T and v solving

0¥ (P°(2), VOV V+ W)= g@°( 2,7V W V7Y such that @+ I< B, if %+ < B

We let then: (%%, ¥*,2") = (%,Vy,72), v9=v"9, ¥ be either=v*+¥ -y*9 (if v*+¥ =B) or

=v>9 (if ¥ +¥ < B), and v*?=¥* for all = max{q,,q}; (X, ¥*, 2, V') be an arbitrary element



of A(p°(Z),w) for all g<max{qg,q}. If ¥ =F(X,7,4°(z)), we have thenv*+¥’ =B,

V' =(9)(z) and (X%,¥,2)= d¢°(2),v) by construction ofF (see Lemma 1), and we let:
=%, 2=7, ¥=F(%,2.4°(2), ¥ solve % = g"(#°(£). ¥, B+ (§)*(2), ¥ solve
§'=9"(¢°(2), V" B+ () (D), and 777 =(g5) (3) =V for all qzq; (X, 9.7, V') be an
arbitrary element of A(¢°(2"),w) for all g<g,. One verifies immediately that the sequence
converges to(%,¥%,%,y). We have u(x', y)= ux, V) for all g by construction, so that
u(x,y)=u¥%y) by continuity of u. Therefore (x,y ,Z,y)0¢#°(z), and the upper hemi-

continuity of ¢ is established.

A-4: Existence of clear-sighted equilibrium

The existence of a clear-sighted equilibrium is watranted, in general, under Assumptions 1, 2 and
3. The appropriate tool for establishing existeixc®ebreu’s social equilibrium existence theorem
(1952), applied to the Nash non-cooperative equilib of the first stage of the clear-sighted game.
The general condition for existence, implied bystttieorem, which may fail to hold in the case of
clear-sighted equilibrium is convex-valued reactionrespondences of hospitals. We show below that
an equilibrium exists in an acceptable subset eftider class of medical care systems considered in

this article.

Lemma 4:If (W, u, g,w) is convex, them)iC is convex-valued for all .

Proof. We established in the proof of Lemma 3 that ha$pii’s first-stage program
max{u(x, y):(x,y,z VO A2° (.7, 2)w )} was equivalent to program
max{u(x, F(%,z.8°((z » 2)):0< .= w} for any fixedz, 0{z, OR™: 7z, <w,}, and yielded

positive optimal graft production of hospital whenever z,, =0. The convexity assumption of



Definition 5 is therefore exactly sufficient for ehconvexity of ¢°(z) for all i and all

z{zOR": 2@} .m

Lemma 5: Let the medical care syste(W, u, g,w) be such thap® is convex-valued for ali. Then
there exists alear-sighted equilibrium ofW, u, g,w).

Proof. ¢° is a continuous functionzIR! z<w } R! by Lemma 2, andp® is an upper hemi-
continuous corresponden¢edR": z< @ — R® for all i by Lemma 3. Let the canonical projection
(x,¥%,2,Y) -~ z be denoted bypr,. ®°:z - (pg(@S(2),..., pPt@S(2)) is an upper hemi-
continuous, convex-valued correspondefeéIR": z€s @ ~{ ZIR) =& . Set{zOR": z< &
being non-empty compact and conveX has a fixed point ifzOR": z< @ by Kakutani's fixed
point theorem, that is, there existsd{ zOR": z< @ such thatz O®°(z). There exists, therefore,
astate(x,y,z,V,t) suchthat’ =¢°(Z) and(x,y ,z,y)0¢°(z) foralli. (X,y,z,V,t)is

an equilibrium of the clear-sighted game by cardions

The medical care systems of Examples 1 and 2 ameexo

A-5: Rotten kids and abundance

Proof of Theorem :4Part (i) of the Theorem is a simple consequerideemmas 4 and 5 (existence)
and of Lemmas 2 and 3 (positivity). The qualitathgpects of parts (i) and (iii) are supported Hgy t

discussion and the examples that follow Theorem gubsection 4-2-2. Part (iii) is complemented by

the following clear-cut statements, establishedWwelf all programs{u( %, K X, z, 2): z<w} have
a same solution(x’, Z), then: rationing constraints are either all idecdi and binding or all non-
binding at (x',Z) in programs{u x, H %, z 2): z<w}; (X.e,F(X,z,Z). e z 6 is a clear-

sighted equilibrium production combination, and aggs corresponding equilibrium transfer is



p°(Z.e)=2.¢; 0¢°(Z) is =e, if rationing constraints are all non-binding in @yrams
{ux, % z 2): zsw}, and« g, otherwise
Let (x',Z) be a solution ofu x, F( %, z 2): z< &}, the same for all, and letF(x',Z,z) be

denoted byy . The boundary condition of Assumption 2 impliestttproduction combination

(X,y¥,2) is >0. The characterizing first-order conditions forstiaximum read:ai: -0,F,

d,u
—gZE <1, and (1+ SZFJ.(@—Z*FO for all i, where partial derivatives are evaluated at the
3 3
optimum.

Identical (X', y ) imply that marginal social utilitied W(u( X, y),..., (X, ¥)) are identical for ali

by the anonymity property of Assumption 3. Identidx’,Zz) imply that hospitals have same
0F,((X',Z,2). The f.o.c. of Corollary 1 then imply thdi'.e,,y.€, z. ) is a socially optimal
production combination ofW, u, F,w).

d,F(x,2)

If some rationing constraint is binding &, Z ) in programs above, that is, #a F.2) <1 and
SF(X,z

z =« for somei, then, clearly, all rationing constraints are lmgdand identical, so that, in
particular, all hospitals have the same endowmert,. In other words, rationing constraints are
either all identical and binding or all non-bindiag(x',Z ) in programs{u %, F( X, 7z, 2): z< w} .
Function F being C* wherever it is defined ilR?, , and then such thax,F >0, the implicit function
theorem implies the existence of open neighbourbdbdandV of Z in R,, and of aC' function
¢:U -V such that ¢(zZ)=2z, and, for all sOU, y =F(X,s¢(9) and
oyw(s)=-(0F(X,s@(9)/0 E( X, s¢( P). The fo.c. of Lemma 2 then imply that the agescy’
second-stage optimal transfer policy identifies hwiunction (z,...,z,) - @ (%),...¢¢ (7)) over
{zOU": z<£ @ OaOR,, such thatz= a ¢ } (since all hospitals have samg€,(x ,z,¢(z)) for all z

in the latter set). In particulag®(z’) = Z ; and d¢°(Z) is =e, if rationing constraints are all non-



binding in programqu %, K X, z 2): z<w}, and < e, otherwise, that is, if rationing constraints
are all binding and identical in these programse Tlo.c. of Lemma 3 and the quasi-concavity
properties of (x,z) - W X, A X, Zz#°(,Z ,.2)) (implied by the convexity of(W,u, F,w)) then
imply that (x',Z) solves max{u(x, F(%,z.8°((Z ,.2)): z=w} for all i (see Lemma 3), and
therefore that (x'.e,y.e, z.g) is a clear-sighted equilibrium production combioat of

(W,u, F,w)), and thatz .e is the corresponding optimal transfer of the aganc

A-6: Monitored equilibrium

Proof of Theorem:3.et (X,y,z,V,t) be a monitored equilibrium. Assumptions 1, 2 araha the
definition of monitored equilibrium clearly imphhat (x',y ,z,V,t)> 0. Hospital i 's monitored
opportunity set A (L) ={(x v, Vs W) ORS

X < gt v,V + V+ V), y< @1, V, v+ V+ V), and W, V< Bis compact, convex, and has
a non-empty intersection wittR? . The Kuhn and Tucker first-order conditions areréfiore
necessary and sufficient for convex progranax{u(x,y):(x,y,¥,v)O A (,%, 9} at interior
equilibrium solution(x, ¥ , ", ¥ ) by Arrow and Enthoven (1961: Theorems 1 and 2¢yTiead: (i)

0u(X,¥) 0, G (LY ¥+ + )

o Vo . .. xx kN oK\
vio+vt =B (i) (x,¥%,2)=dit,Vv); and (i) LUK, Y) 0,0 (L V.V +V+ )

equivalently, by Lemma 1. (i) v*+Vv =B; (i) vy =F(X,72,1); and  (iii)

0u(X,y) _ .
—————==0,F(x.,2,1).
ou(xX,y) xoah

Suppose thafx’,y ,z,V,’t) is not a social optimum and let us derive a calittion. There exists
then, by Theorem 2, a social optimum (X,y,z V1) such that

WX, W) UKL ¥D)> WO X ), @ X7 Y). But then(x, y, v, V) Og™ (V, 1) if v+v' =B

for all i, by the characterizing f.o.c. of Theorem 2 ancafagraph above. This may be supposed



without loss of generality fo(x, y, z v t) by the hypothesis of Theorem 8. Bi#, v*, )0 A’ (w), as

an immediate consequence of the definition of aaseptimum. Therefordx ,y ,z,Vv,t) is not a

monitored equilibrium, the wished contradictisn.
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