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Abstract 
 
Let f, h1………hp be C2 functions on n. Consider the problem of optimizing f on the 
constraint set {x∈ n /  hj(x) ≥ 0 for j from 1 to p}. We show that if p ≥ n and if the number 
of binding constraints is equal to n, the theorem of Kuhn-Tucker is a sufficient condition 
theorem regardless of the nature of the functions f and h. 
 

 
Résumé  
 
Soient f, h1………hp des fonctions C2 définies sur n. Considérons le problème qui consiste 
à optimiser f sur l’ensemble {x∈ n /  hj(x) ≥ 0  pour j de 1 à p}. On suppose p ≥ n et on 
s’intéresse au cas où le nombre de contraintes serrées est égal à n. On montre dans ce cas 
que le théorème de Kuhn Tucker devient un théorème de conditions suffisantes, quelle que 
soit la nature des fonctions f et h. 
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1. Introduction 
 
Let f, h1………hp be C2 functions on n. Consider the problem of maximizing f on the 
constraint set  {x∈ n /  hj(x) ≥ 0 for j from 1 to p}. Consider a critical point x*, i.e. a point 
that meets the first-order conditions of the theorem of Kuhn Tucker. 
 
Theorem 1: Theorem of Kuhn Tucker 
Let E be the set of binding constraints at x*, and suppose that the rank at x* of the Jacobian 
matrix of binding constraints, rank (DhE(x*)), is equal to |E|. Then, if x* is local maximum, 
there exists a vector λ*= (λ1*,…,λp*) such that: 
λj* ≥ 0      for j from 1 to p  (1) 
λj*hj(x*)= 0     for j from 1 to p  (2) 

Df(x*) + � λ
=

p

1j

*
j Dhj (x*) = 0    (3) 

 
To check if x* is a local maximum, one can turn to the second-order conditions: 
Consider the bordered Hessian H(x*): 
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Theorem 2: Second-order conditions  (see for example [1] ) 
For |E| <n, if the last n-|E| leading principal minors of H(x*) alternate in sign, the sign of 
the determinant of the largest matrix being the same as the sign of (-1)n, then x* is a local 
maximum. 
 
This theorem does not, at least not explicitly, treat the case |E|=n. As a matter of fact, 
theorem 2 checks the concavity of the objective function in the neighbourhood of x*, where 
the objective function is a function of n-|E| variables, the remaining |E| variables being 
implicit functions of the n-|E| other ones (by use of the implicit function theorem and the 
fact that |E| constraints are binding). Yet there are many (at least economic) non convex 
problems such that the number of binding constraints is exactly the number of variables. 
That is why we propose the extension of the second-order conditions to the case |E|=n. 
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2. Kuhn Tucker: a sufficient condition theorem in non convex problems 
 
Kuhn-Tucker: a sufficient conditions theorem if  |E|=n 
When the number of binding constraints is equal to the number of variables, then a point x* 
that meets the conditions of the theorem of Kuhn Tucker  is a local maximum, regardless of 
the nature of the functions f  and hj, j from 1 to p. 
 
Proof: 
 
It is straightforward that maximizing f on the constraint set {x∈ n /  hj(x) ≥ 0 for j from 1 
to p} -(problem 1)- is equivalent to solving problem 2, which includes an additional 
variable y , y∈ . 
 
Problem  1      Problem 2 
Max f(x)           Max           f(x) –y2 

x∈ n       x∈ n y∈  
u.c.  hj(x) ≥ 0 j from 1 to p    u.c.  hj(x) ≥ 0 j from 1 to  p    
      
If x* is a local maximum of problem 1, (x*, y*=0) is a local maximum of problem 2, and 
vice versa. Moreover, if x* in problem 1 meets the conditions of the theorem of Kuhn-
Tucker, then (x*, 0) meets the conditions of the theorem of Kuhn and Tucker in problem 2 
and vice versa (the Kuhn Tucker multipliers, the binding constraints, the Jacobian matrix of 
binding constraints being the same in both problems for x* and (x*,0)). 
Let us suppose that |E|=n, and, w.l.o.g., that the n binding constraints are the constraints hj, j 
from 1 to n. Given that the number of variables in problem 2, (n+1), is higher than the 
number of binding constraints (n), we can apply the second-order conditions theorem to 
problem 2. 
Given that L(x,y)= L(x) –y2,  where L(x,y ) is the Kuhn Tucker Lagrangian function of 
problem 2 and L(x) is the Kuhn Tucker Lagrangian function of problem 1, we get: 
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The only principal minor to calculate is detH(x*,0). 
One gets:  
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detH(x*,0) = -2
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Given that rank (DhE(x*)) = n, each vector ( *)x("L*);...,x("L
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Given that rank(DhE(x*))=n, it follows that: 

  (-1)n+1 detH(x*,0) = 2
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So (x*,0) is a local maximum of problem 2, and x* is a local maximum of problem 1, 
regardless of the nature of the functions f and hi, j from 1 to p (provided they are C2). 
Therefore, for |E|= n, each point satisfying the Kuhn Tucker conditions is a local maximum. 
 
 
3. Illustration and minimization problems 
 
It is interesting to illustrate by a simple example why, if the number of binding constraints 
is lower than n, they are additional second-order conditions for a critical point x* satisfying 
the Kuhn Tucker’s conditions, whereas they are no additional conditions when |E|=n. 
 
Example: 
Max (x1-1)3-x2 
x1x2 

 u.c.   x2 ≥ 0 
         1 - x1/2 - x2 ≥ 0 
 
It is immediate that the objective function f(x) is neither concave nor convex on 2,  and 
that it is strictly convex (and therefore not concave) on the admissible set. 
The Kuhn Tucker conditions lead to two critical points. 
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The first point is A= ��
�

�
��
�

�

0
1 . Only the first constraint is binding; so one has to check if the 

second order conditions hold, i.e. if  (-1)2détH(A) is strictly positive. 

(-1)2 detH(A)= 

010
100
00)1x(6 *

1 −
 = 0 (because x*=1). Hence (-1)2 detH(A) is not strictly 

positive. In fact, A is not a local maximum, because the objective function is strictly convex 
at the right of x1*=1. This strict convexity implies that it is possible to find a vector u that 
points into the admissible set (the triangle (B,C,D)) such that the value of f(x) grows when 
x moves into this direction (see figure 1). 

The second critical point is B= ��
�

�
��
�

�

0
2 ;  both constraints are binding at B. Hence B is a local 

maximum because the number of binding constraints is equal to the number of variables. 
There is no additional condition to check: B is a local maximum despite the strict convexity 
of the objective function for x1 higher than 1. One easily observes in figure 1 that the only 
fact that both constraints are binding at B ensures that the moves that increase the value of 
the objective function (i.e. the moves toward the dotted hyperplane) are not admissible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The result established in section 3 also holds for minimization problems. 
 
Corollary: Let f, h1………hp be C2 functions on n. Consider the problem of minimizing f 
on the constraint set {x∈ n /  hj(x) ≥ 0 for j from 1 to p}. Consider a point x*, such that 
|E|=n, rank (DhE(x*))=n, and there exists a vector λ*= (λ1*,…,λp*) such that: 
λj* ≥ 0     for j from 1 to p  (1) 
λj*hj(x*)= 0    for j from 1 to p  (2) 

and  Df(x*) - � λ
=

p

1j

*
j Dhj (x*) = 0   (3)’. 

Then  x*  is a local minimum. 
 
The proof is the same as in section 2, by replacing (-2)  by 2, so that: 
 

Dg1(A) 

Df(A) Df(B) 
u x1 

x2 

B A 

Figure 1 
D 

C 

Level set 
{x/ f(x)=f(A)} 

Level set 
{x/ f(x)=f(B)} 

0 1 2 
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(-1)n detH(x*,0) = 2

2

xnxn
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*)x('h.*)x('h
...

*)x('h.*)x('h

n1

n1

> 0. Hence x* is a local minimum. 

The obtained results are useful for economists who often deal with problems such that the 
number of binding constraints is equal to the number of variables; it is interesting to know 
that, in that case, regardless of the nature of the functions f and hj, j from 1 to p, (provided 
they are C2), a point which satisfies the conditions of the theorem of Kuhn Tucker is a local 
optimum.  
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