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Abstract

Network formation is often said to be driven by social capital considerations. A
typical pattern observed in the empirical data on strategic alliances is that of small
world networks: dense subgroups of firms interconnected by (few) clique-spanning
ties. The typical argument is that there is social capital value both to being embedded
in a dense cluster, and to bridging disconnected clusters. In this paper we develop
and analyze a simple model of joint innovation where we are able to reproduce these
features, based solely on the assumption that successful partnering demands some
intermediate amount of similarity between the partners.
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1 Introduction

In this paper we are interested in strategic alliance networks. Two firms form an R&D

alliance with the goal of innovating, and the expected profitability of this alliance depends

on the very nature of joint innovation. We develop a simple model of joint innovation

to which firms respond, forming partnerships, and thereby creating an industry alliance

network. We show that when firms make partnership choices based solely on the nature

of innovation, the emerging network displays all the properties characteristic of observed

strategic alliance networks. The networks that arise in the model are small worlds with

skewed link distributions. This is the case in spite of the fact that in the model firms pay

no attention to issues of social capital while making alliance decisions.

1.1 Alliance Networks

Networks of strategic alliances have been studied in many industries.1 Several properties

seem to be very common: the networks are sparse; they tend to be small worlds; and the

link distributions are skewed to the right. Sparseness is easily explained by the fact that

links are costly to create and maintain. Skewness is explainable through the fact that in

most industries firm size distribution is skewed. If links have costs, it is likely that a larger

firm has more resources with which to create or maintain links than does a smaller firm.

So the distribution of links should reflect the distribution of firm size.

The small world properties of alliance networks have been more challenging to explain.

Typically the explanation invokes social capital.

Clustering arises from the tendency of firms to partner with past partners and with

partners of partners. The former creates inertia; the latter closes triangles in the network.

The reasons given for these tendencies come from a form of social control. Partnering is

risky, and information is a good way to reduce that risk. If a firm forms a link with a past

partner, that link is said to be “relationally embedded”; a link with partners of partners

is “structurally embedded”. In both cases embeddedness is a source of information about

potential partners; in the first case from our history together; in the second from our com-

1See for instance the studies of Powell et al. (2005) on the biotech industry, Baum et al. (2003) on
bank syndicates, Riccaboni and Pammolli (2002) on the life sciences and ICT industry, Ahuja (2000) on
the international chemicals industry.
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mon partners. The information value of structurally embedded links serves as an incentive

for firms to create closed triangles in their local networks. Structural embeddedness is also

valuable as a source of social control. If a firm behaves badly towards one of its partners,

that behaviour will be reported to, and presumably punished by the local community. If

the local community is dense (which is the case when links are structurally embedded) this

is an effective way of creating incentives to behave well. The social capital of embeddedness

(see Coleman, 1988) works to create cliques of densely connected agents at the local level.2

But small worlds are not only cliquish, they also have enough clique-spanning ties

that the average length of the shortest path between two firms is low. To explain clique-

spanning ties, a different sort of social capital is invoked (Burt, 1992). A firm with links

outside its local neighbourhood is in a position to access information originating in distant

parts of the network. It might also be in a position to act as an information broker between

different parts of the network. Both provide incentives for firms to look for partners that

are not embedded in their local networks, and not to be themselves embedded in dense

local networks. But of course, as more and more firms engage in these strategies, the value

of the strategy falls. Thus we might expect to see some, but not too many firms forming

clique-spanning ties.3

1.2 Innovation

Joint innovation involves two agents combining forces to create new knowledge. If the

agents are identical, there is little value in combining forces — they can only duplicate

each others thoughts and actions. If the agents are extremely different, they will have

difficulties exploiting each other’s competences. Thus we might expect that when a firm

evaluates potential partners it would find desirable firms that are somewhat similar but

not too similar.

2The value of that form of social capital is empirically observed by Dyer and Nobeoka (2000) in the
automobile industry; Gulati and Gargiulo (1999) in several industries; Powell et al. (1996) in the biotech-
nology sector; Rowley et al. (2000) in the steel and semiconductor industries. See also the findings and
detailed discussions on the value of embeddedness in Walker et al. (1997).

3The value of structural holes is examined in Ahuja (2000) in the context of the international chemical
industry (structural holes have a negative impact on industry performance, whereas indirect and direct
ties have a positive impact on firm innovative performance); Gargiulo and Bennassi (2000) in a study of
Italian IT firm, find that a trade-off emerges, which is associated with the safety conferred by cohesive ties
— social capital — and the flexibility conferred by ties that connect different parts of a network; Baum et
al. (2003) in the Canadian merchant banking industry.
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There are many ways in which firms can be similar or dissimilar: in terms of product

portfolios; production technologies; organizational structures; organizational culture; com-

petences generally and so on. For our purpose we can focus on whether or not firms are

similar in their knowledge portfolios. Several studies have examined this question empiri-

cally.4

If we consider that firms are located in some underlying knowledge space, the general

conclusion of these studies is that when firms ally (or merge) the success of their venture

is an inverted-U in the distance in that space.5

This is the result on which we base our model of innovation. We show that when this

is what drives success in joint innovation, the networks the results from strategic alliance

formation can be small worlds with a skewed link distribution.

2 The model

Consider a finite population of firms located in a single, highly innovative industry. We

assume that innovation is necessary for survival and growth, so the immediate goal of every

firm is to accumulate knowledge. We model knowledge as a set W of discrete facts or ideas,

each of which a firm either knows or does not know. The knowledge endowment of any firm

i can be represented by a binary vector vi of length #W , in which vz
i = 1 indicates that

the firm knows fact z. The knowledge of a firm changes over time as the firm innovates.

Innovation can take place in isolation, or in a partnership between two firms. Be-

cause our main concern is with joint innovation, we have a simple, reduced form model of

autarchic innovation: autarchic innovations arrive at a rate λ, independently of a firm’s

alliance activities. When two firms form an alliance to innovate, the probability of success

depends on how well their knowledge stocks complement each other. Following the empiri-

cal literature, we model this as an inverted-U relationship in the distance between the two

firms in knowledge space. We measure distance by “overlap” — that is, the number of facts

4See for example Ahuja and Katila (2001), Gulati and Gargiulo (1999), Mowery et al. (1998, 1996),
or Schoenmakers and Duysters (2006). In this volume, Reagans and McEvily use “expertise overlap” as
a control variable, and find that it is strongly significant for formation both of knowledge transfer and
knowledge seeking links. They include only a linear effect, though, so we cannot tell whether it is possible
to have “too much” overlap from their results.

5Distance is measured differently in different studies, though often based on patent data. The inverted-U
relationship seems to hold nonetheless.
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which both firms know.6 We assume a fixed cost of alliance formation, so two firms will

form an alliance if (and only if) the overlap of their knowledge stocks is not “too far” from

the optimal overlap. Innovation success implies the discovery of a fact new to the innovator,

or in the case of joint innovation, new to both of the innovation partners. The new fact is

incorporated into the knowledge stocks of (each of) the innovator(s). Every period firms

evaluate all possible alliances and form exactly those that have positive expected value, and

within those alliances attempt to innovate. At the end of each period, all alliances dissolve;

and in the subsequent period the process repeats, firms having possibly added knowledge

to their portfolios. The network thus evolves; co-evolving with the changing knowledge

portfolios of the firms, but the network structure itself at any point in time is determined

entirely by the knowledge held by firms and by the nature of joint innovation.

We have made the very simple assumption that firms form alliances purely on the basis

of whether or not the knowledge portfolios of the prospective partners are complementary.

Based only on this assumption we are able to derive several structural properties of the

strategic alliance network. The network responds in predictable ways to changes in the

amount of knowledge firms hold on average, to the size of the optimal overlap, and to how

strictly the optimal overlap must be met.

2.1 Innovation and equilibrium

In this section we derive a description of the equilibrium network, as determined by our

assumptions on joint innovation.

2.1.1 Innovation

Initially each firm knows each idea with probability p0. This probability is independent

both of knowing other facts, and of the state of knowledge of other firms. Innovation is

defined as the discovery of a previously unknown (to the innovators) fact, and has, without

loss of generality, a value of 1.7

6In fact “overlap” is a negative measure of distance, but given the symmetry in the inverted-U, the
intuition and arguments are unaffected. Overlap also implies similarity, and we argued above that both
similarity and complementarity were necessary for successful alliances. But complementarity is guaranteed
to exist, except in the exceptional case where the two partners have exactly the same knowledge stocks
(which happens with very small probability, approximately pw, where p is the probability that a firm knows
any particular fact).

7Implicitly we are assuming that a fact new to a firm and a fact new to the world have the same value.
It could be argued that in a second stage in which firms use the knowledge they have discovered to create

4



Define vij = {z : vz
i = vz

j = 1} as the intersection, or overlap, of the knowledge portfolios

of i and j, and define yij = #vij to be the size of the overlap, or the number of facts known to

both i and j. If the partnership ij forms, both i and j pay a fixed cost c, and the partnership

innovates with probability f(yij), independently of the other alliances formed by i and j.8

The function f(y) is the inverted-U discussed above, so f(y) is positive, symmetric about

the unique optimal value, y = δ, with c < f(δ) � 1, increasing (decreasing) monotonically

on the left (right) of δ. If the partnership ij innovates, it discovers a new fact z which both

partners receive, implying that their post-innovation knowledge portfolios become vi + {z}

and vj + {z}.

As stated above, an innovation can only take place in a location in the knowledge vector

where the innovator(s) is(are) currently ignorant. Thus some innovations will be “new to

the innovator” but not new to the world: the innovation takes place within the knowledge

frontier. We also allow the frontier to expand, that is, innovations can take place beyond

the frontier. The innovation takes place at location z, 1 ≤ z ≤ w + ∆, where ∆ measures

the extent to which an innovation can extend the frontier. If the innovation is within the

frontier, i’s innovation has no effect on the knowledge stocks of other firms. However, if i’s

innovation expands the frontier, we assume that this makes redundant older knowledge. We

make the assumption that if an innovation takes place at location z, w+1 ≤ z ≤ w+∆, then

the first z − w knowledge elements become obsolete. The frontier is thus pushed forward

by the discovery of ideas beyond w. As innovation consists in drawing the location of an

“empty” slot uniformly at random in {1, . . . , w + ∆}, the frontier expansion is more likely

competitive advantage, facts “new to the world” are more valuable than facts “new to me”, but here we
only focus on the immediate production of knowledge. A second implicit assumption is that firms are
indifferent about which facts they discover. To include the more realistic idea that firms get more value
from one fact than another, would demand both a detailed specification of how firms turn facts into profits
and how facts interact in that process, and a detailed specification of how firms turn existing knowledge
into new knowledge. These are of course possible in principle, and material for an extension of the model,
but the complication they would add at this point would distract significantly from the main message.

8There is a second order effect that we ignore. If i has a partnership with j, the partnership ij can
innovate in any location in L = W − vi − vj . If i now considers k as a potential partner, any innovations
that ik might make in L would be duplicates, and therefore of less value than innovations that take place
outside L. Thus the evaluation of k as a partner should involve this second order effect, and in general,
the evaluation of a portfolio of partners should include these interactions. We ignore this here and in
what follows, since in the numerical experiment below success probabilities are small enough that these
second order effects will have very little effect on decisions. In the experiment below, a firm innovates on
average once per period, thus the risk of duplicate innovations is very remote. Including this effect would
on average lower the expected value of an alliance, and so decrease the degree of the network.
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to be caused by more knowledgeable firms, and the innovative potential of the industry is

never exhausted.

We can characterize this in the following way. In principle there are a countably infinite

number of facts in the world. At any time t there is a relevant set, which we denote

Wt = {wt, . . . , wt}, with wt − wt = w for any t. This relevant set evolves: if at t an

innovation takes place within the frontier (or no innovation takes place), Wt+1 = Wt. If an

innovation takes place at z > wt then wt+1 = z and wt+1 = z − w.

2.1.2 Equilibrium

In any period, the independent alliance formation results in a network g. Define the

neighbourhood of firm i as N g
i = {j 6= i : ij ∈ g}, that is, the set of the agents to whom i is

directly connected. The degree of a firm is the size of its neighbourhood, which we denote

ng
i = #N g

i .

The value of forming a link lies purely in its potential to produce an innovation. In

this model, inter-firm links are only useful for creating knowledge. Unlike, for example,

the communication model of Jackson and Wolinsky (1996), links here are not conduits

for knowledge spillovers from other (distant) firms, nor do they perform any other task

(control, information brokerage, etc.). Thus the value of a link is simply the expected

value of the potential innovation less the costs of the link. So given a network g, we can

write the value to firm i of its links as

πg
i =

∑
j∈Ng

i

f(yij)− cng
i . (1)

Every firm faces the same problem when evaluating potential links, and a link only forms

if both partners agree. Thus a network g is stable if and only if every existing alliance is

beneficial to both partners, and the creation of a (currently) non-existent link would reduce

the net profits of at least one of the partners. In the present model, the simple form of

firms’ profits implies that both existing and non existing links have their potential value

determined in exactly the same way, the value of ij being f(yij)− c to both i and j. As a

consequence, the stable network g is simply {ij : f (yij) ≥ c}.
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****************
Include Figure 1 here.

****************

The equilibrium network structure is determined by the interaction of c with f(y).

The effect of c is clear: if c > f(δ), no partnership forms and the network is empty;

if c < min(f(0), f(w) then the network is complete; but for intermediate values of c

(min{f(0); f(w)} < c < f(δ)), all partnerships between firms having overlap yij such

that f(yij) ≥ c form. In each case , we observe a unique equilibrium network.

This can be seen relatively easily graphically, by recalling that f(y) is an inverted-U.

Define ρ ≥ 0 by f (δ ± ρ) = c. Two firms i and j, with an overlap less than ρ find it

profitable to form an alliance since f(yij) < c. Figure 1 above illustrates this result and

Proposition 1 below states it.

Proposition 1 For any c ≥ 0, there exists a unique equilibrium network g. When c > f(δ)

the empty network is (uniquely) stable; when c < min{f(0); f(w)} the complete network is

stable; when min{f(0); f(w)} < c < f(δ) the stable network is g = {ij : |yij − δ| ≤ ρ}.

2.2 Digression on a special case

Consider for the moment a special case of this model, in which the inverted-U is actually

a spike: joint innovation is possible if and only if partners’ knowledge vectors overlap in

exactly δ positions. In addition, assume that firms knowledge vectors are independent both

internally and with respect to those of other firms. In other words, firm i knows fact k

with some fixed probability p, where p is independent of what other facts the firm knows

and what other firms know. In this case, p is both the probability that a firm knows some

particular fact, and a measure of the prevalence of knowledge in the industry — if p is

small, the typical firm is ignorant of many potentially relevant facts; if p is large, most

firms know most things.

Cowan and Jonard (2008) examine this model analytically, asking about the degree

distribution and clustering of the emergent network. Here we simply show their results

graphically. Figure 2 shows the degree distribution (left panel) and expected degree (right

panel). (In each case there are 100 firms in the industry and 100 potentially relevant facts.)

7



The left panel shows the link distribution for different values of p, with δ fixed at 15. What

we see in general is that the distributions are skewed to the right (note that this is a log-

linear plot), having long tails, but that typically these tails are not as heavy as a power

law. For values of p near 0.36 the distribution is not monotonic, having a strictly positive

mode. The right panel shows expected degree as a function of p, for 4 values of δ. We

observe that for every value of δ, the expected degree rises and then falls with p. When p

is small, firms have trouble finding firms with the right overlap. For example if p is very

small, almost every firm will have fewer than δ pieces of knowledge, and thus will not be

able to participate in any alliance. When p is smaller, firms will have close to δ pieces of

knowledge so (in the case easiest to see), if a firm has exactly δ pieces, it can only partner

with a firm that knows the same pieces, and possibly more. At the other extreme, when p

is large, firms know too much, and typically any pair of firms matches in too many places

to have a partnership.

****************
Include Figure 2 here.

****************

Even in the restricted model it is not possible to calculate clustering coefficients directly.

An indication of whether or not a network will be clustered though, can be obtained by

examining the ratio of two probabilities: the probability that a link ij forms conditional

on its being a triangle closing link (that is, Pr{ij|ik and jk exist}) to the unconditional

probability that ij forms. Figure 3 shows this ratio as a function of p for 4 values of δ

(again there are 100 firms and 100 facts). What we observe is that except when p ≈
√

δ/w

this ratio is very large, and no matter the value of p, always greater than one. This implies

that the networks will always be clustered, and for large regions of the parameter space

even extremely clustered.

****************
Include Figure 3 here.

****************

These results show, or suggest that in this special case, the alliance networks that

emerge will have skewed link distributions, and are likely to display small world properties.

By generating numerically many networks, and covering the parameter space, Cowan and
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Jonard show that this is indeed the case. When δ is extremely large or small, there is

almost no alliance activity (it is too hard to find partners); when p ≈
√

δ/w the network

is almost complete (it is too easy to find partners), but for other values of p, the network

is in fact a small world with a skewed link distribution, corresponding nicely to what is

observed empirically.

Finally, an interesting question has to do with “who is partnering”; in particular,

whether it is firms with a lot or a little knowledge that form partnerships. Again this

is possible to answer analytically in the special case, and we show the result in Figure 4.

What we observe is that when the industry average knowledge levels are low relative to

the optimal overlap, firms that are knowledge-rich form many partnerships; when industry

knowledge levels are high, firms that are knowledge-poor are the ones that partner.

****************
Include Figure 4 here.

****************

This discussion concerned a special case of the model. We return now to the full model

as described. It is complex enough that it cannot be treated analytically, but numerical

analysis of the model yields results that are both consistent with the analysis of the special

case, and interesting empirically.

2.3 Computational experiment

A challenge with numerical simulation generally is to disentangle general effects from

artefacts due to, for example, idiosyncracies in the initial conditions that have been as-

signed. In the model described above, however, this is not an issue, as the model repre-

sents a stationary Markov process. Standard results from Markov process theory imply

that initial conditions are unimportant — in the long run the system has a unique steady

state, regardless of where it starts. We must be careful with the expression “steady state”,

though, as this does not imply that the system stops moving, but rather that the proportion

of time the system spends at each point of the state space settles down to an unchanging

value.

To expand slightly: Each firm has a binary knowledge vector vi of fixed length w.

The state space of each firm is the set of all possible values of that vector, Vi. Since for

9



every firm vi ∈ Vi, the state space of our system of firms is the product of firms’ state

spaces: V = ×jVj. Any time a firm innovates, knowledge vectors change, and the system

moves from one state (v1, . . . , vn) to another state (v′
1, . . . , v

′
n) in the system state space

V . (We move to a point where the innovating firm has one more piece of knowledge, and

possibly where other firms have less knowledge, if the innovation has changed the frontier.)

The transition from one point to another in this space is random, but with well-defined

transition probabilities. Further, these probabilities do not depend on which period we are

in; nor do they depend on where the system was at any point in the past other than where

it was yesteday. Thus the system is a (finite) first-order stationary Markov chain.

If we ignore the unreachable states (examples of which: no firm knows any fact; no firm

knows the frontier fact) it is easy to show that if we choose any two states of the system

(v1, . . . , vn) and (v′
1, . . . , v

′
n), there is some (possibly several) finite sequence(s) of joint and

autarchic innovations that will take us from one to the other.9 This is the definition

of an irreducible Markov chain. As a consequence the system has a unique stationary

distribution. A convenient implication is that the expected value of any statistic of interest

is arbitrarily well approximated by its time average. For instance, the expected number of

ideas held by agents in the stationary distribution can be estimated by the time average

of the number of ideas held. For this reason, numerical (Monte Carlo) simulation can be

efficiently applied to study the complex dynamic system representing the industry.

2.4 Parameters effects

The characteristics of the industry network and the knowledge production process are

affected by 5 parameters, which can essentially be discussed in terms either of their effect on

the profitability of allying (δ and ρ), or in terms of their effect on the dynamics of innovation

(∆ and λ). The fifth parameter, p0, will be seen to have only a transient influence.

First, joint innovation is profitable in expected terms (and so the alliance is worth

creating for both partners) if and only if the partners’ overlap lies in [δ − ρ, δ + ρ] . This

interval depends on δ and ρ, which control the position and width of the inverted U.

9This can be seen by construction. Find a firm, i, in (v′
1, . . . , v

′
n) that knows the frontier fact. From

(v1, . . . , vn) have firm i alone innovate at w + ∆ until all other firms vectors are empty. Then have each
firm innovate autarchically in the locations where it has knowledge under state (v′

1, . . . , v
′
n). Each of these

events has positive probability, so the transition from (v1, . . . , vn) to (v′
1, . . . , v

′
n) has positive probability.
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δ controls the optimal overlap when combining knowledge endowments. Suppose i and

j hold ai and aj ideas, and suppose further these ideas are uniformly distributed over the

possible w locations for the two firms. Then the number of hits between i and j is binomially

distributed with parameters w and aiaj/w
2. The expected size of i and j’s intersection is

aiaj/w, and thus the likelihood of them allying peaks when δ = aiaj/w. At the outset,

all firms hold each idea independently with probability p0. Thus partnering and structural

similarity will peak when δ = wp2
0, or equivalently p0 =

√
δ/w (see also the discussion

in Section 2.2). As time passes, firms knowledge endowments change, and the ratio of

what they know to the total relevant knowledge changes, (which is roughly equivalent to

changing p), which will affect their networking decisions and innovative success.

ρ controls the width of the inverted U, i.e. the extent to which deviating from the

optimal distance is acceptable for joint innovation. Having ρ close to 0 implies very little

networking, as the condition for establishing an alliance is very tight. Larger values of ρ

sustain partnering, possibly to an artificially important extent.

Second, innovation itself, whether joint or autarchic, depends on ∆, which scales the

magnitude of innovative jumps, and λ, which scales innovation rates, i.e. the pace of

technical progress.

∆ is the largest possible innovative step taken from the current frontier at any point

in time. It exerts a central influence on the processes of knowledge accumulation and

networking. Accumulated knowledge dictates how easily a firm can find partners, in turn

partnering affects the speed of knowledge accumulation, which again affects the firm’s

standing in terms of future partnering. The effects of increasing ∆ are easily understood.

All else equal, a larger ∆ increases the probability of the next innovation being beyond the

current frontier, which increases the probability that every firm’s endowment falls. So at

any point in time we would expect on average a smaller number of ideas held by the firms

when ∆ is larger.

Consider a single firm i. Suppose it innovates. This can happen either within the

frontier or beyond the frontier. If it holds a total of at = a elements at time t, there are

w−a+∆ possible locations at which it can innovate, of which w−a are within the frontier.

Thus the probability it innovates inside the frontier is (w−a)/(w−a+∆). If this happens

11



then the variation in the firm’s knowledge stock is one: at+1 = a + 1. With probability

∆/(w − a + ∆) the firm innovates outside the frontier. In this case, the location of the

innovation is l, w+1 ≤ l ≤ w+∆, and the first l−w locations are dropped and replaced by

zeroes. Assuming that the a facts it knows are uniformly distributed over the w locations,10

in expected value the first l − w locations hold (l − w) · a/w pieces of knowledge. As the

expected value of l is (2w+∆+1)/2, the expected change in the knowledge stock is simply

1− (∆ + 1) /2 ·a/w. Thus if a firm innovates, the expected variation of its knowledge stock

is
w − a

w − a + ∆
+

∆

w − a + ∆
×

(
1− a (∆ + 1)

2w

)
.

In a world of homogeneous firms, if there is an innovation the probability that firm i

makes it is simply 1/n. If a different firm, j, makes it, i’s knowledge stock is unaffected

unless j innovates beyond the frontier, which it does with probability ∆/(w− a + ∆).11 In

this case, in expected value, i’s knowledge stock varies by −a (∆ + 1) /2w.

Thus following any innovation, the expected change in i’s knowledge stock from period

t to period t + 1 is

1

n

1

w − a + ∆

[
w − a + ∆

(
1− a (∆ + 1)

2w

)]
− n− 1

n

∆

w − a + ∆

a (∆ + 1)

2w
.

Defining a stationary number of ideas as a value of a such that the expected change is zero

yields

a∗ =
2w (w + ∆)

2w + ∆2n + n∆
, (2)

It is immediately seen that a∗ is falling with ∆, and decreasing with n. Both effects are

intuitive: a larger upper bound to innovative jumps means a more rapid obsolescence of

ideas, and thus on average an emptier idea set; similarly, more innovations made by more

other firms in the industry means fewer ideas entering my vector relative to the number

10At first glance this assumption seems incorrect, since after an innovation that takes place at w + z,
expanding the frontier, all of i’s knowledge is held in the first w − z places. However, the position of i’s
knowledge in the long run is determined by when he innovates relative to when other firms have frontier
expanding innovations. All firms are equally likely to innovate in each period, and so there is no pattern.
i’s knowledge, on average, will be spread evenly over the w positions.

11The assumption of homogeneous firms seems strong. In section 3.3.1 below we show that in terms of
the number of facts held by a firm, there is in fact little variation, so this assumption is not as strong as
it seems at first glance.
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of ideas exiting my vector, and so on average an emptier idea set. We will see in Section

?? that the stationary value a∗ is a fairly good approximation of the real behaviour of the

system. From the above calculation we can also immediately derive a few straigthforward

implications. The stationary number of ideas will interact with δ the optimal overlap

required for innovation. Suppose the variance of the distribution of the number of ideas

across firms is small, so that every firm holds roughly the same number of ideas a∗. If a∗

is much less or much more than
√

wδ it will be very unlikely that networking is active. By

contrast, if the stationary number of ideas is close to
√

wδ, networking will be more intense

(see also the discussion in Section 2.2).12

A second aspect of innovation is encapsulated in λ, the arrival rate of innovations. This

parameter controls the probability (independent across firms and partnerships) of each

innovative attempt yielding the discovery of a new idea. The larger λ, the more rapid the

pace of innovation and the obsolescence of previous ideas. However, the stationarity of

industry behaviour (in the sens of it being a stationary Markov process) is unaffected by

the specific value of λ, and so the only real impact of λ on the system is that changes in

knowledge stocks and thus alliance networks from one period to the next are of greater

magnitude. As a results, industry statistics would behave much less smoothly over time

with larger λ than with smaller.

Finally, the initial amount of knowledge in the industry is controlled by p0, the proba-

bility of any firm holding any idea at the industry birth independently from other ideas and

firms. A larger p0 implies on average a higher number of ideas held by the firms early in

history. This parameter however only has a transient effect. Indeed, as argued in Section

2.3, the industry is a stationary Markov process and such processes are initial-conditions

independent. However, how fast a particular firm and as a consequence the industry as a

whole will approach (and then fluctuate around) the stationary knowledge stock identified

above will be affected by p0, through the effect of the latter on the intensity of networking

and thus on the number of innovations per period.

12The above calculation is an approximation of what happens in the more complex situation in which
firms partner and jointly innovate, but the general intuitions are correct, as will be seen below. We have
also made the implicit assumption that firms are homogeneous in terms of where innovation takes place in
their idea sets, so a∗ should be seen as the expected value of the stationary number of ideas rather than
the stationary value itself.
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2.5 Settings

We consider a population of n = 100 firms and a relevant knowledge base of w = 100

ideas. At the outset individual knowledge endowments are randomly drawn over {0, 1} with

initial probability p0 = 1/2, independently for every element in each firm’s idea set. The

autarchic innovation rate λ is set to 5% (20 periods is the expected waiting time between

two consecutive innovations for a given firm or partnership). For the inverted-U we use

f (y) =
1

λρ2

(
−y2 + 2δy − δ2 + 2ρ2

)
, ρ > 0. (3)

At the optimal overlap f (δ) = 2/λ (twice the innovation rate of internal R&D) and c = 1/λ.

Let f (δ − ρ) = f (δ + ρ) = c, using ρ to control the width of the inverted U. As alliances

form if f(y) ≥ c, the base width of the inverted-U (2ρ) and c play equivalent roles: a larger

c is equivalent to a smaller ρ, both reducing the number of partnerships that can form. The

equilibrium network in each period is thus simply g = {ij : f(yij) ≥ c} = {ij : |yij−δ| ≤ ρ}.

Finally set ρ to 10, so that 10% of the knowledge base is the largest acceptable deviation

from the optimal amount of overlap.

Each period firms form pairs (or stay alone), attempt to innovate, possibly discover

new knowledge which makes old ideas obsolete, and part company. In the first stage of

the analysis, our interest will be static: given the state of firms’ knowledge, what are the

characteristics of the network that forms? Then we will turn to a longer term perspective.

Preliminary experiments have suggested that the system reaches its stationary regime after

roughly speaking 500 periods. So we will focus on the periods 500 to 800, collecting averages

of the statistics each period. We will also look at time series, to understand the type of

cyclical behaviour displayed by network structure.

There remain two independent parameters, δ and ∆, which we vary from 0 to 60 and

1 to 10 respectively. For each point in the parameter space, we generate one history of

length 800 periods and retain first period results and fluctuations around the stationary

values from the periods posterior to 500.
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****************
Include Figure 5 here.

****************

3 Results

In this section we begin by examining the static, first period industry in which knowledge

is identically and independently distributed across firms. Then we turn to the long run

behaviour of the industry, both examining cyclical patterns in time series and analyzing

the stationary distribution of several statistics of the system.

3.1 First period outcome

The first period results are summarized in the two figures below. The intuitions gathered

from the restricted, special case (Section 2.2) suggest that small worlds, as defined by the

conjunction of high clustering and low average path lengths, are likely to be present in some

parts of the parameter space. To confirm this conjecture numerically, we have created a

large number of networks and computed several network statistics. Sticking to w = 100

and n = 100, we generate 1,000 equilibrium networks for different values of p0 and with

δ = 20.

To abstract from issues of isolated firms, when discussing clustering and characteristic

path length we focus on the largest component, i.e. the largest subset of the industry

such that any two firms in it are linked by a path. Clustering coefficient and average

distance have to be rescaled by a random “counterpart” in order to distinguish the presence

of structure from mere randomness. The approximations used in the literature for path

length and clustering of random graphs13 are only reasonable for very large populations.

Our smaller networks demand a specially tailored normalization. For each network we wish

to rescale, we record density and then generate 1,000 random networks with exactly that

density. Taking the average clustering and path length over that sample, we use these as

the random counterpart with which to normalize our statistics. The small world ratio is

then simply the ratio of rescaled clustering over rescaled distance. In addition we show the
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****************
Include Figure 6 here.

****************

skewness of the link distribution and the correlation between knowledge levels and degree.

Figure 5 illustrates the special role of p0 =
√

δ/w, which is equal to
√

20/100 = 0.447

in the case at hand. At this level of initial endowment, the likelihood of partnering is

maximized, and so is the value where the largest component size and average degree are

maximized. Moving away from
√

δ/w in either direction implies a decline in these two

measures. Note that skewness (asymmetry in the degree distribution) and the SW ratio

behave in the opposite way: an almost complete graph is uninteresting in terms of skewness

(everyone has approximately n − 1 connections) and structure. Rather, it is when initial

endowments move away from
√

δ/w that sparser networks can form, with a potential for

richer architectures. Specifically, around 0.2 and 0.65 the equilibrium graphs displays the

largest amounts of asymmetry and clustering. These are the regions where our model

produces results that resemble the networks observed empirically.

Figure 6 shows four curves: rescaled clustering, rescaled distance, the proportion of

joint discoveries is provided and the correlation between knowledge and degree. The first

two simply decompose the ratio, shown in Figure 5. Not surprisingly the proportion of

innovations that are made in an alliance as opposed to being made by firms acting indi-

vidually tracks degree faithfully. The more alliances there are, the more innovations will

be made jointly. Finally we can see that the correlation between knowledge and degree

changes sign as p0 crosses the
√

δ/w threshold. Left of that value firms hold on average

too few ideas, so a more successful firm is one with more ideas than average. Right of that

value firms hold on average too much knowledge, thus firms that are successful in finding

partners are those with fewer than average ideas.

3.2 Fluctuations in the stationary regime

In this section we observe the fluctuations of the system in its stationary regime. Again

(as stated in Section 2.3), stationary refers to the fact that the system spends a fixed

proportion of time (encapsulated in the stationary distribution) in each possible state . It

13If n̄ is average degree, the standard approximations are n̄/ (n− 1) for the clustering coefficient and
ln(n)/ ln(n̄) for the characteristic path length.
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****************
Include Figure 7 here.

****************

should not be understood as convergence to a single absorbing fixed state. Thus there will

always be fluctuations for any statistic of interest. In addition, the time average of the

fluctuations of a given statistic is an unbiased estimator of the expectation of that statistic

computed with the stationary distribution. Thus we can proceed in two ways. In this

section we freeze δ and ∆, (at δ = 35 and ∆ = 2) and ask how the system changes over

the longer time horizon, once it has reached its stationary distribution. In the next section

we ask about how average behaviour (over time) responds to the two parameter δ and ∆.

This we do by running the model for a large range of the two parameters and looking at

averages of the interesting statistics (degree, clustering and so on) over the last 300 periods.

The left panel of Figure 7 displays the behaviour of the average number of ideas held

and average degree over time. Both time series display ample fluctuations, with the average

degree oscillating between 2 and 15, while the average number of ideas evolves between 10

and 12. The two statistics are negatively correlated, as illustrated by a scatter-plot of ideas

versus degree provided. in the right panel of Figure 7. So the industry displays a variety

of patterns, marked with outbursts and collapses in network activity (for a discussion

of a simple model generating comparable patterns see Marsili et al., 2004). A batch of

innovations by several firms will impoverish the industry in general by making obsolete

much pre-existing knowledge. This will trigger a decline in networking (as a∗ has moved

away from
√

wδ) and the slow accumulation of knowledge through internal R&D until the

point where networking increases again, which creates the possibility for the next collapse

through a lucky sequence of innovations.

****************
Include Figure 8 here.

****************

Additional aspects of network structure are shown in Figure 8. In the left panel, the

clustering coefficient shows strong oscillations between 0.3 and 1, with larger values of

clustering being more prevalent. In parallel, average distance fluctuates between 1 and 2.

The general situation is strongly small world-ish, with the small world ratio of rescaled
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clustering over rescaled path length being systematically large in the right panel in Figure

8.

We conclude this section with some elements on the occurrence of repeated ties. Figure

9 depicts the evolution of the proportion, at time point t in time, of ties existing at t which

were in place at t − 1. Thus this proportion is a measure of the extent of turmoil at the

micro-level, which direct observation of aggregate variables cannot capture: typically a

constant number of edges in a graph does not imply that edges are held by the same firms

over time.

The time series in Figure 9 (again) display significant fluctuations: periods of stability

in the network (in which all of today’s ties are repeats) can be followed by more disruptive

periods where the network reorganizes. Again these changes are triggered by particular

sequences of innovation, in which repeated ties tend to be associated with unlucky inno-

vative attempts, while successful innovations in the knowledge space tend also to create

innovations in network (re-)organization.

****************
Include Figure 9 here.

****************

3.3 Long run average behaviour

In this section time averages are computed to obtain a more compact representation of

the relationship between our two independent parameters δ and ∆, and various industry

statistics. We begin with a check of our intuitions and calculations regarding the existence

of a stationary number of ideas with limited fluctuations around it.

3.3.1 Knowledge

Figure 10 displays the characteristic features of knowledge accumulation: the average num-

ber of ideas and the stationary prediction derived in Section 2.4. To construct the box-plots

below, we have pooled all the observations for the average number of ideas across time and

all δ-values. The middle of the box-plot is the sample median, the box top (bottom) is the

75th (25th) percentile and the whisker top (bottom) is the 90th (10th) percentile. The sta-

tionary value a∗ turns out to be a very reliable upper bound to the average number of ideas
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held by the firms for any ∆ value, and displays the same sensitivity to changes in ∆ as the

computed average. The median number of ideas however is always significantly lower than

a∗. The reason is that the calculation of a∗ does not take into account the effects of alliance,

namely joint innovation. We have derived a∗ under the (strong) assumption of exclusively

autarchic independent innovation. Adding joint innovation will result always, though to a

varying extent, in more rapid technological change, that is, more rapid obsolescence and

thus fewer relevant ideas held on average.

Regarding firms’ heterogeneity, the coefficient of variation in number of ideas across

firms (not shown here) is always small (below 1.5, for a maximum possible value of
√

99 =

9.9 with n = 100 firms) so that the average number of ideas held is representative of the

behaviour of the population of firms.

****************
Include Figure 10 here.

****************

3.3.2 Network

The 6-panel graph below displays for each network statistic the time average of the final

300 periods. As discussed in Section 2.3 above, this is a good representation of the general

behaviour of the system.

Average degree within the largest component indicates differentiated levels of network

activity across the (δ, ∆) space. There is a region of intense partnering: a very dense graph

(almost complete) obtains when δ ≤ 10 and ∆ ≥ 2. When ∆ > 2 the average number

of ideas held by firms is very small. Thus partnering is only possible if the demands of

knowledge overlap are very weak. The width of the inverted-U is 20 (δ ± 10) so when

δ ≤ 10 even zero overlap results in a profitable alliance. As δ increases from 10, though,

the probability of finding a partner falls very rapidly, especially for larger ∆ values. For

lower values of ∆, the average number of ideas becomes relatively large, and networking is

sustainable at larger values of δ.14 Consequently, the case ∆ = 1 is markedly different from

14From Section 2.2 above, when the inverted-U is a spike of zero width, networking peaks when p ≈√
δ/w. ∆ determines the average steady state knowledge quantity a∗, which can be seen as a∗ = p ∗ w.

Thus we can calculate directly the value for δ for which networking should peak for different values of ∆.
A list of (∆, δ) ordered pairs illustrates: (1, 25), (2, 7), (3, 2), (4, 1), (5, 0). The reason we see any networking
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****************
Include Figure 11 here.

****************

all other ∆ values, with an interior peak in networking (around δ = 20), and partnering

existing for the whole range of δ values. The logic of these patterns arise entirely from two

properties of the model: As ∆ increases, the average number of ideas held falls, relatively

quickly; and for a given average knowledge level (provided it is not too low), the probability

of finding a partner (all else equal) rises and falls with δ. This all follows from Section 2.2

above.

We can observe a frontier between a region of autarchy, in the upper right, and network-

ing firms in the lower left. The system has interesting behaviour along the border between

these two regions (the contour line 1, in the average degree panel). In this boundary region

all indicators (rescaled path length and clustering, small world ratio of rescaled clustering

over rescaled path length, skewness) point to the presence of skewed small worlds. Finally,

in this zone of small worlds, the correlation between knowledge and degree is positive,

showing the value to a firm of holding more ideas.

From the discussions in Section 2.2 (spike restriction) and Section 3.1 (period 0), the

results reported here tell us that similarity-driven joint innovation still produces small

world type of networks when embedded in a larger model of the creation (discovery) and

destruction (obsolescence) of ideas. Over some parts of the parameter space an almost

complete or an empty, and thus relatively uninteresting graph forms. However there are

also regions where the emerging structure is sparser, leaving room for a richer organization

of ties. There, clustered groups tend to form and persist, disbanding after a particular

sequence of innovations, before such new groups form again.

4 Conclusion

Our model of joint innovation lies at the heart of the alliance formation process. It

has the feature of being “tunable” in terms of the degree to which the knowledge frontier

at all for values of ∆ above 4 has to do with the width of the inverted-U, and only for ∆ = 1 will we observe
the rise and fall of networking as δ increases, that we would expect from the special case calculations.
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can advance in response to a single innovation (our parameter ∆). One thing we observe

here is that in an industry in which there is large innovative potential (large ∆) rapid

progress in terms of the frontier implies that knowledge is made obsolete more quickly, and

so at any point in time the average firm knows fewer of the relevant facts. (Recall that we

have assumed that at the industry level there is a constant number of relevant facts, w.)

This suggests greater differentiation among firms when the innovative potential is large. In

addition, firms that are successful in pushing the frontier will have more relevant knowledge

than other firms, and so will have two competitive advantages: they will possess the most

recent discoveries, and they will be more knowledgeable generally. In industries with smaller

innovative potential (as measured by size of potential jumps beyond the frontier) frontier

firms will lose the second advantage, as the average firm knows a higher proportion of

the relevant facts. Firms are more similar, and the differentiating feature generally is how

recently a firm has pushed the frontier in a way that makes other knowledge obsolete.

A second observation regarding innovative potential is that over the life-cycle of an

industry we might expect innovative potential to fall. Because our model is stationary, the

results we have produced regarding how the model behaves in different parts of the states

space can be used to make conjectures about how an industry network might change over

time. If the industry transits through its life-cycle relatively slowly, then as parameters

change due to its aging, it will fairly quickly respond and move to a new steady state.

Thus in essence, as an industry ages it will move through the parameter space of Figure

11. Focussing on the declining innovative potential, as an industry ages ∆ will fall—we

move vertically down the panels in Figure 11. As is well known, entry and exit form an

important part of the patterns we observe over time, so the top left panel of the figure is

likely to be misleading, due to its heavy dependence on the number of firms being constant.

The others, however are less dependent on the number of firms. If it is generally the case

that innovative potential falls over the life of an industry, then we can see, by tracing

vertically down the panels of Figure 11 that we can expect clustering to rise and then fall

as an industry ages (middle left panel). By contrast, average distances do not respond

strongly to ∆. These jointly suggest that a young industry will not look like a small world,

a middle-aged one will, and an old one probably will, but in a less strong fashion (bottom
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left panel of Figure 11). Finally, the skewness of the link distribution also rises and falls as

time passes. Because many things apart from innovative potential change over the course

of a life-cycle this is certainly not the whole story, but it could be suggestive of patterns

that might emerge empirically.

In this paper we have argued that the nature of joint innovation alone is enough to

produce industry networks that share many properties of empirically observed strategic

alliance networks. When choosing alliance partners, firms clearly take many things into

consideration. The empirical literature, however, has focussed very heavily on issues of

social capital, and has paid much less attention to the fact that partnering firms must also

have a “ cognitive fit”. In this way our model is complementary to the work of Reagans

and McEvily in this volume. They use knowledge overlap as a (linear) control in examining

formation of knowledge transfer and knowledge seeking links within an organization. Their

main interest is in network positioning effects, but this control is highly significant in their

results. One interesting extension to their work would be to ask whether expertise overlap

can “do more work” in explaining link formation with a richer (non-linear) specification.

Our model does present a strong contrast to two other papers in this volume, van Liere

et al, and Amburgey et al. In both of those papers alliance formation is constrained by

network distance — in effect firms cannot see very far along the network, and so partner

choice is constrained to firms that are close by in network space (typically friends of friends).

This is consistent with the idea that many alliances are formed through referrals by common

third party ties. In our model, every firm has strong knowledge about every other firm in

the industry, both that it exists, and precise details about its knowledge portfolio. This is

clearly a strong assumption. But this assumption means that a firm can chose as a partner

any other firm in the industry, not just those firms already close in network space. In a

sense, this makes our results that much stronger: with no considerations of network distance

constraining firms to form links within a small neighbourhood, we still see the emergence

of clustered networks. While not denying the importance of social capital considerations,

we show here that cognitive fit can be a very strong influence on the types of networks that

form.
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Figure 1: Costs and benefits of an alliance as a function of distance in knowledge space.
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3.1 First period outcome

The first period results are summarized in the two figures below. The intuitions gathered
from the restricted, special case (Section 2.2) suggest that small worlds, as defined by the
conjunction of high clustering and low average path lengths, are likely to be present in some
parts of the parameter space. To confirm this conjecture numerically, we have created a
large number of networks and computed several network statistics. Sticking to w = 100
and n = 100, we generate 1,000 equilibrium networks for different values of p0 and with
δ = 20.
To abstract from issues of isolated firms, we focus on the largest component, i.e. the

largest subset of the industry such that any two firms in it are linked by a path, when
discussing clustering and characteristic path length. Clustering coefficient and average
distance have to be rescaled by a random “counterpart” in order to distinguish the pres-
ence of structure from mere randomness. The literature often uses an “equivalent random
graph” with identical density. Denoting n̄ =

P
i∈N n

g
i /n the average degree, the standard

approximations are n̄/ (n− 1) for the clustering coefficient and ln(n)/ ln(n̄) for the char-
acteristic path length. Though these approximations are (reasonably) accurate for large
n and non-extreme n̄, the size of the networks studied here (at most 100 nodes in the
largest component) makes it preferable to use a specially tailored normalization. For each
network we wish to rescale, we record density and then generate 1,000 random networks
with exactly that density. Taking the average clustering and path length over that sample,
we use these as the random couterpart. The small world ratio is then simply the ratio of
rescaled clustering over rescaled distance. In addition we show the skewness of the link
distribution and the correlation between knowledge levels and degree.

100

80

60

40

20

0

1.00.80.60.40.2 p0

600

500

400

300

200

100

0

 Largest component (left axis)
 Average degree (left axis)
 Small world ratio (left axis)
 Skewness (right axis)

Figure 4: Network characteristics in the first period.

Figure 4 illustrates the special role of p0 =
p

δ/w, which is equal to
p
20/100 = 0.447

12

Figure 5: Network characteristics in the first period.

in the case at hand. At this level of initial endowment, the likelyhood of partnering is
maximized, which yields the largest component size and average degree to peak. Moving
away from

p
δ/w in either direction triggers adecline in these two measres. Note that

skewness (asymmetry in the degree distribution) and the SW ratio behave in the opposite
way: an almost complete graph is uninteresting in terms of skewness (everyone has ap-
proximately n− 1 connections) and structure. Rather, it is when initial endowments move
away from

p
δ/w that sparser networks can form, with a potential for richer architectures.

Specifically, around 0.2 and 0.65 the equilibrium graphs displays the largest amounts of
asymmetry and clustering.
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Figure 5: Network characteristics in the first period continued.

In Figure 5the details of rescaled clustering and rescaled distance are provided. In
addition, the proportion of joint discoveries is provided, tracking faithfully the pattern of
average degree. Finally we also observe that the correlation between knowledge and degree
changes sign as p0 crosses the

p
δ/w threshold. Left of that value firms hold on average

too few ideas, so a more successful firm is one with more ideas than average. Right of that
value firms hold on average too much knowledge, thus a successfully networking firm is
rather one with fezer ideas than the average.

3.2 Time paths

3.2.1 Knowledge

Cycles and oscillations
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Figure 6: Network characteristics in the first period continued.
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3.2 Fluctuations in the stationary regime–DONE COMPLETELY
THIS SECTION AND RETOUCHED THE NEXT

In this section we observe the fluctuations of the system in its stationary regime. Again (as
stated in Section 2.3), stationary refers to the fact that the system spends in each possible
state a fixed proportion of time (encapsulated in the stationary distribution). It should
not be understood as convergence to an absorbing fixed state (a system with absorbing
states would typically not possess a stationary distribution). Thus there will always be
fluctuations for any quantity of interest. In addition, the time average of the fluctuations
of a given statistic is an unbiased estimator of the expectation of that statistic computed
with the stationary distribution. Thus we can proceed in two steps, first looking in this
section at how for instance average degree evolves over time for given values of δ and ∆,
and then average the time series to estimate the true expected value of average degree for
that specific (δ,∆) pair (this we do in the next section). All the trajectories displayed in
this section are obtained fr δ = 35 and ∆ = 2.
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Figure 9: Average degree and number of ideas.

The left panel of Figure 9 displays the behaviour of the average number of ideas held
and average degree over time. Both time series display ample fluctuations, with the average
degree oscillating between 2 and 15, while the average number of ideas evolves between 10
and 12. The two statistics are negatively correlated, as illustrated by a scatter-plot of ideas
versus degree provided. in the right panel of Figure 9. So the industry displays a variety
of patterns, marked with outbursts and collapses in network activity (for a discussion
of a simple model generating comparable patterns see Marsili et al., 2004). A batch of
innovations by several firms will impoverish the industry in general by making obsolete
lots of pre-existing knowledge. This will trigger a decline in networking (as a∗ has moved
away from

√
wδ) and the slow accumulation of knowledge through internal R&D until the

point where networking increases again, which creates the possibility for the next collapse
through a lucky sequence of innovations.
Additional elements on the structure of the industry network are provided in Figure

10. In the left panel, the clustering coefficient shows strong oscillations between 0.3 and
1, with larger values of clustering being more prevalent while in parallel average distance
fluctuates between 1 and 2. The general situation is strongly small world-ish, with the
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Figure 7: Average degree and number of ideas.
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Figure 10: Average clustering and distance in the network, and the small world ratio.

small world ratio of rescaled clustering over rescaled path length being systematically large
in the right panel in Figure 10.
We conclude this section with some elements on the occurrence of repeated ties. Figure

11 depicts the evolution of the proportion, at time point t in time, of ties existing at t
which were in place at t− 1. Thus this proportion is a measure of the extent of turmoil at
the micro-level, which direct observation of say average degree does not fully capture as a
stable total number of edges can hide variations in the identity of who hold these edges.
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Figure 11: Stability at the micro-level measured by the proportion of repeats.

The time series in Figure 11 (again) display ample fluctuations: periods of stability
in the network (in which all of yesterday’s ties are repeated) can be followed by more
disruptive periods where the network reorganizes. Again these changes are triggered by
particular sequences of innovation, in which repeated ties tend to be associated with ulnucky
innovative attempts, while successful innovations in the knowledge space tend to create also
innovations in network (re-)organization.
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Figure 8: Average clustering and distance in the network, and the small world ratio.

1.2

1.0

0.8

0.6

0.4

800750700650600550500
Time

2.0

1.8

1.6

1.4

1.2

1.0

 Clustering coefficient
 Average distance

9
100

2

3

4

5

6

800750700650600550500
Time

 Log of small world ratio

Figure 10: Average clustering and distance in the network, and the small world ratio.

small world ratio of rescaled clustering over rescaled path length being systematically large
in the right panel in Figure 10.
We conclude this section with some elements on the occurrence of repeated ties. Figure

11 depicts the evolution of the proportion, at time point t in time, of ties existing at t
which were in place at t− 1. Thus this proportion is a measure of the extent of turmoil at
the micro-level, which direct observation of say average degree does not fully capture as a
stable total number of edges can hide variations in the identity of who hold these edges.
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Figure 11: Stability at the micro-level measured by the proportion of repeats.

The time series in Figure 11 (again) display ample fluctuations: periods of stability
in the network (in which all of yesterday’s ties are repeated) can be followed by more
disruptive periods where the network reorganizes. Again these changes are triggered by
particular sequences of innovation, in which repeated ties tend to be associated with ulnucky
innovative attempts, while successful innovations in the knowledge space tend to create also
innovations in network (re-)organization.
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Figure 9: Stability at the micro-level measured by the proportion of repeats.
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3.2.2 Network

Cycles and oscillations

3.3 Stationary behaviour

3.3.1 Knowledge

Figure 6 displays the characteristic features of knowledge accumulation: the average number
of ideas and the stationary prediction derived in Section 3.3. The coefficient of variation in
number of ideas across firms (not showed here) is always small (below 1.5, for a maximum
possile value of

√
99 = 9.9 with n = 100 firms) so that the average number of ideas held is

representative of the behaviour of the population of firms.
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Figure 6: Box-plots for the population average number of ideas pooled across all values of
δ and all final 300 periods and the stationary value a∗.

The stationary value a∗ turns out to be a very reliable upper bound to the average
number of ideas held by the firms for any ∆ value, and displays the same sensitivity to
changes in ∆ as the computed average.

3.3.2 Network

The 6-panel graph below displays for each network statistic the time average of the final
300 periods. Average degree within the largest component shows differenciated levels of
network activity across the (δ,∆) space. A very dense graph (almost complete) obtains
when δ ≤ 10 and ∆ ≥ 2. Partnering however remains present even with δ > 10, to an
extent which increases as ∆ falls. The case ∆ = 1 is markedly different from all other ∆
values, with an interior peak in networking (around δ = 20), and partnering existing for
the whole range of δ values. To understand the logic of the pattern, it is enough to consider

14

Figure 10: Box-plots for the population average number of ideas pooled across all values
of δ and all final 300 periods and the stationary value a∗.
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Figure 11: Network characteristics in the steady state.
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