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Abstract

In this paper, we make an exploratory use of numerical techniques (genetic algorithms and Monte

Carlo simulations) to compute efficient and emergent networks in a spatialized version of the con-

nections model of Jackson and Wolinski (1996). This approach allows us to observe and discuss the

coordination failures that arise in a strategic network formation context with link-mediated positive

externalities to connections and geographically based connection costs. Our results highlight that,

depending on the strength of the externalities, emergent and efficient networks may share several

structural properties. Nevertheless, emergent networks have too few local and distant connections

and are also too less “coordinated” around some central agents than they should.

Keywords: Strategic Network Formation; Efficiency; Stability; Coordination; Small Worlds; Ge-
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1 Introduction

In the last decade, networks structure characterization has been the object of a high and growing

interest in various fields. Much effort have been dedicated to understand the topology of real networks.

More recently, some studies concentrate on the dynamic processes that determine such topologies. In

economics, some authors, recognizing that both individual and collective behaviors and performances

are grounded in networks, focus on the micro-behaviors that drive network formation. In the ACE

literature, the emergent properties of networks have been studied by Kirman and Vriend (2001) and

Tesfatsion (1997) who model the formation of trade networks among strategically interacting buyers

and sellers. These agents choose their partners adaptively, on the base of their past experiences with

these partners 1,2. The aim of such computational approaches is to study complex dynamic systems

of interacting agents.

A more theoretical and analytical economic literature on network formation builds upon the sem-

inal contributions of Aumann and Myerson (1988) and of Jackson and Wolinski (1996). Two main

questions are central in this literature (Jackson, 2004): Which networks are likely to form when

agents choose their connections in order to maximize given individual payoffs structures? And how

efficient are networks that emerge from self-interested agents’ choices? The first stylized economic

model that tackles those two questions is the so-called connections model introduced by Jackson

and Wolinski (1996). The very simple and realistic specification of the individual payoffs allows the

authors to obtain systematic analytical results on graphs efficiency and partial on networks stability.

This allows them to show that often efficient networks are unstable. More recently two articles have

extended this model in order to study the dynamics of network emergence (see Watts (2001) for de-

terministic dynamics and Jackson and Watts (2002) for stochastic dynamics). In those contributions,

the analytical computation of (possibly numerous) emerging networks becomes difficult to handle.

More generally, this literature faces important difficulties to generate and discuss non trivial network

configurations. Indeed, network structures they analyze are very simple (complete network, empty

network, complete star) and have little in common with real social or economic networks. Some

frequent features of real social networks are short average distance between agents, high clustering

(i.e. there is a high probability that two agents to be neighbors if they have neighbors in common)

and heterogenous neighborhood sizes among agents (Watts and Strogatz, 1998; Albert and Barabási,

1999). These properties altogether characterize the so-called Small World phenomenon3.

Very recently, Carayol and Roux (2003) and Jackson and Rogers (2005) propose variations of the

connections model by giving different forms of geographic locations to individuals and introducing

complexities in individual payoff functions through spatial costs of direct link formation4. Their aim

is to find the minimal specifications that lead to emerging networks that are much richer and that tend

to correspond to those empirically observed social networks. In their spatialized connections model,

Carayol and Roux (2003) obtain, in a dynamic setting and for a wide set of parameters, endogenous

networks that exhibit the Small World properties (i.e. highly clustered connection structures and

1For a survey on ACE models studying network formation, one can refer to Tesfatsion (2003).
2A similar approach is also used by Dupoët and Yıldızoğlu (2005) for studying the emergence of a particular type

of network: communities of practice.
3Evidences concern for instance networks of firm board members (Davis and Greve, 1996), or networks of scientific

papers co-authorship (Barabási et al., 2001; Newman, 2001).
4Johnson and Gilles (2000) first introduced such spatialized connections model with linear geographical distance.
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short average path length). We call emergent networks these connection structures since they

endogenously result from the connection establishment mechanism assumed in this setup5. Carayol

and Roux also observe that, for certain values of the parameters, emergent networks are globally and

locally too weakly connected since the agents don’t want to individually support the costs of social

welfare improvement. Nevertheless, their results are limited and partial since, even for a relatively

small set of agents, it becomes very difficult to compute network efficiency both analytically and

numerically6. Indeed, one cannot appreciate the extent to which emerging networks are efficient and

whether they are structurally different from the optimal networks. Carayol, Roux and Yıldızoğlu

(2005) propose to use Genetic Algorithm (GA) techniques to compute efficient networks. They

test and calibrate this technique on two simple models among which the connections model7 (for

which the efficient networks are fully known) and show that the proposed method is quite robust for

computing the efficient networks in these models.

In the present paper, we make an exploratory use of such technique to compute the efficient

networks in the spatialized connections model. This allows us to compare for the first time the (GA)

efficient networks to the emergent networks in this model. Thus we can fully discuss the coordination

failures that may arise in the network formation context. Our aim is to provide a general method

for exploring the efficient and equilibrium networks. The results of this exploration should be very

useful to any ACE model that contains a network formation component. The modeler can get some

precious insights on the possible results of his/her model and on the consequences of the different

assumptions on network formation. In our context, we show for example that the emergent networks

are less dense than the ones that maximizes social wealth. This clearly corresponds to the economic

intuition: because agents benefit from indirect connections, there are positive indirect externalities to

bond formation. Therefore agents naturally build less links than they should. Moreover the emergent

networks are found to be less “coordinated” than they should. Indeed the supplement of connections

observed in the efficient networks is preferentially attributed to one or several agents who have central

positions in the networks. These connections allow a more efficient distribution of wealth among all

agents. Emergent networks do not share such structural property because agents do not want to

play a central and costly position. Agents would benefit from mutualizing the costs for increasing

the connectivity of one (or several) of them so as to enhance the quality of the indirect connections

in the network. Our results underline the difficulties of coordination in strategic network formation

and the necessity of public policies (when they are possible) in order to sustain the emergence of

central agents in networks.

The paper is structured as follows. The next section begins with some basic definitions on

network formation literature and presents the variant of the connections model developed in Carayol

and Roux (2003) and their approach for computing emergent networks in a dynamic setting. Section

3 synthetically presents the Genetic Algorithms approach developed in Carayol, Roux and Yıldızoğlu

(2005) and its performance in determining efficient networks. Section 4 compares the emergent and

5This concept should not be confused with the concept of emergence used in the Complex Adaptive System literature,

as well as in the ACE approach.
6Even for a relatively small numbers of players, the number of possible networks becomes very large. Johnson and

Gilles (2000) observe that the number of possible networks for n agents is
�c(n,2)

k=1 c(c(n, 2), k) + 1 where, for every

k 5 n, c(n, k) := n!/ (k!(n − k)!) . For example, when n = 8, the number of possible networks exceeds 250 million.
7The other one is the co-author model of Jackson and Wolinsky (1996).
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the efficient networks. Finally, Section 5 concludes.

2 Network formation: the model

In this section, we begin by introducing the notation and the basic notions for studying networks and

their efficiency. We limit our attention to the case of non-directed graphs, where bonds are symmetric

and built on mutual consent, as it occurs in many real social networks. Then, we introduce the

dynamic pertubated process that leads to network formation. Finally, we present the model.

2.1 Basic notions on graphs

We consider a fixed and finite set of n agents, N = {1, 2, ..., n} with n ≥ 3. Let i and j be two

members of this set. Agents are represented by the nodes of a non-directed graph, which’s edges

represent the links between them. The graph constitutes the relational network between the agents.

A link between two distinct agents i and j ∈ N is denoted ij. A graph g is a list of unordered

pairs of connected and distinct agents. Formally, {ij} ∈ g means that the link ij exists in g. We

define the complete graph gN = {ij | i, j ∈ N} as the set of all subsets of N of size 2, where all

players are connected to all others. Let g ⊆ gN be an arbitrary collection of links on N . We define

G =
{
g ⊆ gN

}
as the finite set of all possible graphs between the n agents.

Then for any g, we define N(g) = {i | ∃j : ij ∈ g}, the set of agents who have at least one link in

the network g. We also define Ni(g) as the set of neighbors agent i has, that is: Ni(g) = {j | ij ∈ g} .

The cardinal of that set ηi(g) = #Ni(g) is called the degree of node i. The total number of links in

the graph g is η(g) = #g = 1
2

∑
i∈N ηi(g).

A path connecting i to j in a non empty graph g ∈ G, is a sequence of edges between distinct

agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. The length of a path is the number

of edges it contains. Let i←→g j be the set of paths connecting i and j on the graph g. The set of

shortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, we have k ∈ i←→g j and

#k = minh∈i←→gj #h. We define the geodesic distance between two agents i and j as the number of

links of the shortest path between them: d(i, j) = dg(i, j) = #k, with k ∈ i←̃→gj. When there is no

path between i and j, their geodesic distance is conventionally infinite: d(i, j) =∞. A graph g ⊆ gN

is said to be connected if there exists a path between any two vertices of g.

An external metrics can also be introduced, representing for example the geographic position of

agents (Johnson and Gilles, 2000). Such external metrics defines a new distance operator denoted

d′(i, j). Following Carayol and Roux (2003), we consider further that agents are located on a circle

(or a ring). Without loss of generality, agents are ordered according to their index, such that i

is the immediate geographic neighbor of agent i + 1 and agent i − 1 but agent 1 and agent n

who are neighbors. As a consequence, the geographic distance between any two agents is given by

d′(i, j) = min {|i− j| ; n− |i− j|} .

Several typical graphs can be described. Let i 6= j ∈ N . First of all, the empty graph, denoted g∅,

is such that it does not contain any links. The ring g
◦

is a regular network of order k = 1, in which

all agents are connected and only connected with their two closest geographic neighbors. Finally, a

(complete) star, denoted g?, is such that #g? = n − 1 and there exists an agent i ∈ N such that if

jk ∈ g?, then either j = i or k = i. Agent i is called the center of the star. It should be noted that
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there are n possible stars, since every node can be the center.

2.2 Value and efficiency of networks

Traditionally in economics, efficiency refers to a state from which no agent’s payoffs can be improved

without deteriorating the payoff of at least one other agent. In the context of network efficiency,

this property, which corresponds to the Pareto efficiency, means that a network is efficient when it

does not exist another network that leads to a higher payoff for at least one individual, without

deteriorating the payoff of other agents. Since the pioneering work of Jackson and Wolinski (1996),

a ‘strongest’ notion of efficiency is preferred in the economic literature on networks formation.

Let πi (g) be the net individual payoff that the agent i receives from maintaining his position in

the network g, with πi :
{
g | g ⊆ gN

}
→ <. The network social value, denoted π (·) , can be computed

by simply summing individual payoffs. The total value of a graph g, with π(∅) = 0 is thus given by:

π (g) =
∑

i∈Nπi (g) . (1)

A network is then said to be efficient if it maximizes this sum. The formal definition follows.

Definition 1 A network g ⊆ gN is said to be efficient if it maximizes the value function π(g) on the

set of all possible graphs
{
g | g ⊆ gN

}
i.e. π(g) ≥ π(g′) for all g′ ⊆ gN .

It should be noticed that several networks can lead to the same maximal total value. For example,

if we consider strictly homogenous agents, any isomorphic graph of an efficient network is also efficient.

2.3 Network formation: pairwise stability and dynamics

We turn now toward the stability of graphs. Jackson and Wolinski (1996) introduce the notion of

pairwise stability which departs from the Nash equilibrium since the process of network formation is

both cooperative and non cooperative. In such a process, the formation of a link between two agents

requires the consent of both of them, but not its deletion, which can unilaterally emanate from one

of them. The formal definition of this notion is the following.

Definition 2 A network g ⊆ gN is said to be pairwise stable if:

i) for all ij ∈ g, πi(g) ≥ πi(g − ij) and πj(g) ≥ πj(g − ij), and

ii) for all ij /∈ g, if πi(g + ij) > πi(g) then πj(g + ij) < πj(g).

In the present paper we are interested in the dynamic network formation presented in Jackson and

Watts (2002) which is consistent and encompasses the stability notion presented above. It roughly

corresponds to the following scheme. At each period, two agents i, j ∈ N are randomly chosen

with the same probability pt
ij = pt > 0. They can decide to form, maintain or break links. Let’s

assume that agents are myopic: they take their decisions on the basis of the immediate impact of

links on their current payoffs. If these agents are already connected, they consider whether they may

unilaterally severe the link or bilaterally keep it. If they are not directly connected, they consider

whether they should add this connection or stay disconnected. Formally, the dynamic process can

be described as follows:
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i) if ij ∈ gt, the link is saved if and only if πi(gt) ≥ πi(gt − ij) and πj(gt) ≥ πj(gt − ij),

ii) if ij /∈ gt, a link is created if and only if πi(gt + ij) ≥ πi(gt) and πj(gt + ij) ≥ πj(gt) with a

strict inequality for at least one of the two agents.

Following Jackson and Watts (2002), we then introduce small random perturbations ε which

invert agents’ right decisions in creating, maintaining or deleting links. These perturbations may be

understood as mistakes or as mutations. For small but non null values of ε, it can be shown that the

discrete-time Markov chain becomes irreductible and aperiodic and has thus a unique corresponding

stationary distribution (µε). Such perturbed stochastic processes are said to be ergodic. Intuitively

ergodicity implies that it is possible to transit directly or indirectly between any chosen pair of states

in a potentially very long period of time. It allows the long run state of the system to become

independent of its initial conditions.

Usually, the modeler let ε → 0 (once the long run is reached) in order to restrict the number of

states selected in the long run. State z is said to be a stochastically stable state (Young, 1993) if

it has a non null probability of occurrence in the stationary distribution: limε→0 µε(z) > 0. In the

network formation context, Jackson and Watts (2002) show that stochastically stable networks are

either pairwise stable or part of a closed cycle8 (of the unperturbed process). In practice the precise

computation of the stochastically stable networks requires the identification of all the recurrent classes

of the unperturbed process (Young, 1998) which, in the network context, are likely to be extremely

numerous. Therefore we propose a slightly different regime for the perturbation process. We let the

error term decrease in time according to the following simple rule:

εt =

{
ε if t < T

1/t otherwise
, (2)

with ε > 0 the initial noise and T some finite time. This rule ensures that the noise does affect the

dynamics while it decreases down to zero when time increases with limt→∞ εt = 0. It also preserves the

ergodicity property of the system. Notice that this property is interesting since it renders numerical

experiments more tractable in order to examine with good confidence the long run behavior of the

system (Vega-Redondo, 2005). Therefore we use Monte Carlo experiments to approximate the unique

limiting stationary distribution (of networks) of the perturbed dynamic process presented above. The

experiments are stopped at t = 10, 000, date after which the process is proven to have almost surely

stabilized on a given pairwise stable state9. If not, the process still goes until it reaches one. Our

emergent networks10 hence correspond to the support of this limiting stationary distribution.

2.4 The spatialized “Connections Model”

In the Connections model introduced by Jackson and Wolinski (1996), links represent individuals’

relationships (for example, friendships). In such a context, agents benefit from their direct and

indirect connections, through the relational network of their partners. But, the communication is not

perfect: the positive externality deteriorates with the relational distance of the connection. Formally,

8A closed cycle is a set of networks that may be reached from any one of them without errors and that cannot lead

to any other network.
9See Carayol and Roux (2003) for more precise time series analysis of the network formation process.

10This concept should not be confused with the concept of emergence used in the Complex Adaptive System literature,

as well as in the ACE approach.
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there is a decay parameter which represents the quality of links used for information flows. Moreover,

agents bear costs for maintaining direct connections. As a consequence, agents try to maximize the

value generated from direct and indirect connections, avoiding superfluous connections. This simple

specification of the individual payoffs allows the authors to obtain systematic analytical results on

graphs’ efficiency and partial results on networks’ stability. Nevertheless, the efficient and stable

network structures they discuss are very simple (complete network, empty network, complete star)

and not very realistic.

In order to obtain emerging networks which tend to correspond to the empirically observed social

or economic networks, Carayol and Roux (2003) propose a variation of the connections model of

Jackson and Wolinski (1996), by giving geographic locations to individuals and introducing complex-

ities in individual payoff functions through spatial costs for direct links formation. Let’s assume that

agents are located on a circle (or a ring). The net profit received by any agent i is now given by the

following expression11:

πi (gt) =
∑

j∈N\i

δd(i,j) − c
∑

j:ij∈gt

d′ (i, j) , (3)

where d(i, j) is the geodesic distance between i and j. δ ∈ ]0; 1[ is the decay parameter and δd(i,j)

gives the payoffs resulting from the (direct or indirect) connection between i and j. It is a decreasing

function of the geodesic distance since δ is less than unity. Notice that if there is no path between i

and j, then d(i, j) =∞ and thus δd(i,j) = 0. The second part of the right-hand side of the equation

describes the costs of direct links. c ∈ ]0; 1[ is a parameter which gives the costs that agents have

to bear for each of their direct connection. d′(i, j) gives the geographic distance between any two

agents on the external metrics (a circle) we consider. Thus costs increase linearly with the geographic

distance separating neighboring agents.

3 Efficient networks: the Genetic Algorithms approach

Searching for efficient network structures is in general a difficult analytical task. But, once the pay-

off structure is well defined in relation with the connection structure, one is tempted to explore this

question using more heuristic strategies. As a matter of fact, the connection structure of the network

can be expressed as a matrix of bits (1 for connection or 0 for absence of connection) and the pay-off

structure can assign a value to each of such matrices. The search for efficient networks can hence

be seen as an optimization problem in the connection-matrix space, i.e. the space of all possible

networks. This optimization problem yields analytical solutions only for simple pay-off structures.

We examine here a numerical tool for optimization: genetic algorithms (GA) that have proved their

efficacy in optimization problems where the potential solutions can be represented as binary strings.

Our networks can effectively be quite easily represented as binary strings.

11Johnson and Gilles (2000), relying on Debreu’s (1969) hypothesis according to which closely located players incur

lower costs to sustain communications, first introduced spatial costs for direct link formation with a linear geographical

distance. We thus obtain the same payoffs specification as theirs with a circle as an external metrics instead of a line.
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3.1 Representing networks as binary strings

Our problem is to find the network g which maximizes social value π as given by the equation 1 over

the set of all possible networks G. In order to use the GA for this optimization problem, we need to

represent our networks as binary strings (sequences of bits – 1 or 0).

Consider first that any network with n agents (whether directed or not, eventually with self-

connections) can, without loss of generality, be represented by a connection matrix of size n × n

of binary elements. Given that all networks we consider are undirected (i is connected to j iff j

is also connected to i) and that self-connections are excluded, the upper triangular part of this

connection matrix, excluding the diagonal, provides complete information on the network structure.

As a consequence, the vector composed by all the connection bits of this upper triangular part in

some conventionally chosen order sums up the network structure. Thus for a network of n agents,

this vector is a binary string of length l =
(
n2 − n

)
/2.

¿From the point of view of a genetic algorithm, undirected networks can hence be formally

represented as chromosomes defined as sequences of binary elements: A = (a1, a2, ..., al) with ai ∈

{0, 1} ,∀i ∈ {1, 2, ..., l}.

In the example below with n = 3 agents, the undirected network g = {13, 23} is fully characterized

by the chromosome A = (0, 1, 1) , which’s length is l =
(
32 − 3

)
/2 = 3.

 1

3

21

3

2

g = {13, 23} →

1

2

3

1 2 3


0 0 1

0 0 1

1 1 0


→ A = (0, 1, 1)

Once we represent it, we can compute the value of a connection matrix (its fitness) using the

equation 1 and utilize the Genetic Algorithms to search for matrices with the highest value.

3.2 Genetic Algorithms: How do they work?

Genetic algorithms (GA) are numerical optimization techniques developed by John Holland (see for

example Holland (2001), which has initially been published in 1975). GA transpose to other problems

the strategies that the biological evolution has successfully used for exploring complex fitness land-

scapes. The search for an optimum by a GA corresponds to the evolution of a population of candidate

solutions through selection, crossover (combination) and mutation (random experiments). The GA

have been used for solving a very large set of problems directly, or indirectly as a component of a
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classifier system. Goldberg (1991) gives quite an exhaustive account of the characteristics of the GA

and of their applications. For applications of the GA as a learning algorithm, see Yıldızoğlu (2002).
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Figure 1: A simple example of genetic algorithm

The canonical genetic algorithm makes evolve a population of binary strings (chromosomes com-

posed of 1 and 0). The size of the population m is given. It is the source of one of the strengths of the

GA: implicit parallelism (the exploration of the solution space using several candidates in parallel).

The population of chromosomes at step t (a generation) is denoted P (t) = {Aj}t with #P (t) = m,

and ∀t = 1, 2...T with T the given total number of generations. Notice that T is the other source of

the strengths of the GA. The algorithm (randomly) generates an initial population P (0) of candidate

chromosomes which are evaluated at each period using the fitness (value) function. They are used

for composing a new population at the next period P (t + 1). For illustrative purposes, Figure 1

gives a deliberately trivial example of optimization by GA. Each chromosome has a probability of

being selected that is increasing in its fitness. The members included in the new population are

recombined using a crossover mechanism (see Figure 2). The crossover operation introduces con-

trolled innovations in the population since it combines the candidates already selected in order to

invent new candidates with a potentially better fitness. Moreover, the mutation operator randomly

modifies the candidates and introduces some random experimenting in order to more extensively

explore the state space and escape local optima. Typically, the probability of mutation is rather

low in comparison with the probability of crossover because otherwise the disruption introduced by

excessive mutations can destruct the hill-climbing capacity of the population. Finally, an elitism

operator can be used which ensures that the best individual of a population will be carried to the

next generation12.

12See Dawid (1999) and Michalewicz (1996) for general properties of genetic algorithms.
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Figure 2: A simple example of crossover operation

4 Emergent and efficient networks: coordination failures in net-

work formation

We present our research protocol in the next subsection. The second subsection exposes the first

results on efficient networks and the last one compares the emergent networks to GA efficient net-

works.

4.1 Simulation protocol : Numerical settings, indicators and controls

The research protocol combines the techniques first used and presented in Carayol and Roux (2003) for

generating emergent networks with Monte Carlo experiments and in Carayol, Roux and Yıldızoğlu

(2005) for computing efficient networks with GA. Standard indicators are used for characterizing

their structures and thus comparing them. In order to allow unbiased comparisons (since the density

of the computed networks can introduce a bias), we correct these indicators using measures from

comparable (control) random networks.

4.1.1 Numerical settings

Our numerical experiments all correspond to n = 20 agents. For simplification purposes, we consider

that the unit cost in the payoff function (3) is fixed as c =
2

n
(0.1 in our case). For the generation

of both the GA–efficient networks and the emergent networks, all experiments are performed with

randomly drawn values of δ over the value space ]0, 1[.

The first series of experiments relate to the computation of the GA–efficient networks. The Java

JGAP13 library is used to implement the GA based on binary chromosomes. The GA that we use is

elitist and its probabilities of crossover and mutation are both computed by JGAP14. Carayol, Roux

and Yıldızoğlu (2005) test the relevance of the GA as a search algorithm for efficient networks in the

two stylized models for which the efficient networks are known. It establishes the robustness of the

GA using an extensive set of Monte Carlo simulations. When n = 20, we know that the GA performs

correctly with a population of chromosomes of size m = 500 evolving over T = 500 generations. We

will use these numerical values in the present paper. A fixed number (500) of random draws of δ are

performed in order to reasonably cover the parameter space (]0, 1[). In this article, we slightly adapt

the simulation protocol in order to increase the robustness of our results. For each configuration, we

now fully run three times the GA in order to obtain three final candidate networks among which we

keep the one that generates the highest social value as the GA–efficient network.

The second series of numerical experiments are designed to search the emerging networks (the

networks which are on the unique limiting stationary distribution of the perturbed dynamic process

13http://jgap.sourceforge.net/
14Probability of crossover is 0.5 and the probability of mutation is 1/15.
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of Jackson and Watts, 2002) developed in Section 2. We run 1, 000 experiments with randomly drawn

values of δ ∈ ]0, 1[. All experiments are stopped at t = 10, 000, date after which the process is proven

to have almost surely stabilized on a given pairwise stable state.

4.1.2 Indicators

Several indicators are used in order to provide a synthetic characterization of the structural properties

of networks.

Density of network. We compute the density of the network as follows:

η̂(g) = η(g)/n. (4)

This indicator hence corresponds to the average degree in the network.

Average distance. (or Average Path Length) We compute the average distance of (directly or

indirectly) connected agents. It is given by

d (g) =

∑
i

∑
j 6=i d (i, j)× 1 {i↔g j 6= ∅}

# {ij |i 6= j, i↔g j 6= ∅}
, (5)

with # {·} denoting the cardinal of the set defined into brackets and 1 {·} , the indicator function

that is equal to unity if the condition is verified and zero otherwise.

Average Clustering. (or Average Cliquishness as it is often referred to in the physics of networks

literature) The average clustering indicates to what extent the neighborhoods of connected

agents overlap. It is given by

c (g) =
1

n

∑

i∈N

∑

jl

1 {j, l ∈ Ni(g); j 6= l; j ∈ Nl(g)}

# {lj |j 6= l; j, l ∈ Ni(g)}
. (6)

It is the frequency with which agents’ neighbors are also neighbors together.

Next, we intend to know more on the distribution of neighborhoods size in the population.

Global asymmetry. It is computed using the difference between the largest neighborhood size and

the lowest one in the network:

r(g) = max
i∈N

ηi(g)−min
j∈N

ηj(g). (7)

This indicator measures the global asymmetry of neighborhood sizes in the network.

Last we are also interested in the extent of neighborhood asymmetry between directly connected

agents.

Local asymmetry. It is computed as the sum over all direct connections of the absolute value of

the difference between neighborhood sizes. That is:

u(g) =
1

η(g)

∑

ij∈g

|ηi(g)− ηj(g)| . (8)

This indicator gives the propensity of the highly connected agents to be linked to agents that

have few connections. It can be understood as a measure of non assortativity of connections

as regard agents’ neighborhood sizes.
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4.1.3 Controls for density

The last four indicators presented above are affected by the density of the network (the first indicator)

that is likely to vary with both δ and the generating process (GA or stochastic stability). Therefore,

these indicators are somehow biased and we must find an efficient control for density. We propose

to build, for each generated network, control random graphs which have exactly the same number

of agents and connections (thus the same density). Such networks are simply built by allocating

the given number of edges to randomly chosen pairs of agents15. For each given number of edges

and agents, the four above mentioned indicators are then numerically computed for 1, 000 of such

randomly drawn networks. The average of the observations is used as the control value. For instance,

instead of looking at r (g) , where g is a given selected stable network, we will look at the ratio

r (g) /r
(
grd

)
, where r

(
grd

)
is the average global asymmetry of neighborhood sizes over a set of

1, 000 random networks that have exactly the same density as g. Each of the indicators is corrected

using the corresponding ratio.

This method allows us (i) to analyze the structural properties of efficient networks given their

density; (ii) to compare efficient and emergent networks for the different values of δ while controlling

for their density. The results are given in the following sections.

4.2 The structural properties of GA–efficient networks

We find that the GA–efficient networks are globally only 6% longer than random graphs, and in an

intermediary region of δ values (δ ∈ [0.5, 0.7]), they are even 3% shorter (see the ratio d(g)/d (grd)

in Table 1). This is noticeably low since, in random graphs, the average distance between any two

indirectly connected agents is already known to be very “short”. In the meantime, on the global

level (see the last column of Table 1), the clustering ratio of the efficient networks is close to 2,

which means that efficient networks are nearly twice clustered (94% more) than their controls (the

random networks). The conjunction of these two characteristics qualifies the efficient networks as

Small Worlds in the sense of Watts and Strogatz (1998), a property that many real networks do

share.

Proposition 1 When δ is neither close to 0 nor close to 1, efficient networks have an average

distance (path length) similar to the one of the control random networks while they are significantly

more clustered than these random networks. In this sense they correspond to Small Worlds.

As regard the two other indicators, an interesting contrast arises. The efficient networks have

9% less global asymmetry of neighborhoods than their control random graphs, while they have 45%

more local asymmetry of neighborhoods. This indicates that, though the global asymmetry is quite

similar (slightly lower) to a case where the connections would be simply allocated at random, agents

with fewer links have a significantly higher chance to be directly connected to agents who have many

connections.

Proposition 2 Efficient networks tend to provide central positions to some agents in a similar extent

as random networks, but, in the first case, these central agents are more likely to be connected to

agents with few links.

15In the random graphs literature, such networks are known as random graphs of the kind of Erdös and Rény (1960).
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Ratios g \ δ 0.1− 0.5 0.5− 0.7 0.7− 0.85 0.85− 0.95 0.95− 1 0.1− 1

d(g) GA efficient 1.19 (0.17) 0.97 (0.00) 0.94 (0.00) 0.90 (0.00) 1.21 (0.14) 1.06 (0.09)

d(grd) Emergent 1.51 (0.29) 1.01 (0.00) 1.01 (0.00) 1.10 (0.01) 1.86 (0.06) 1.23 (0.20)

c(g) GA efficient 2.23 (1.64) 1.54 (0.03) 1.70 (0.09) 2.03 (0.54) 0.37 (0.35) 1.94 (0.91)

c(grd) Emergent 1.60 (1.86) 1.34 (0.01) 1.13 (0.09) 0.55 (0.28) 0.00 (0.00) 1.25 (1.07)

r(g) GA efficient 0.64 (0.09) 0.75 (0.04) 1.09 (0.07) 2.10 (0.50) 2.10 (0.32) 0.91 (0.31)

r(grd) Emergent 0.24 (0.03) 0.40 (0.00) 0.50 (0.02) 0.54 (0.01) 0.58 (0.04) 0.37 (0.04)

u(g) GA efficient 1.01 (0.24) 0.98 (0.12) 1.60 (0.36) 4.10 (6.87) 2.81 (1.43) 1.45 (1.80)

u(grd) Emergent 0.36 (0.07) 0.39 (0.01) 0.48 (0.02) 0.60 (0.02) 0.71 (0.10) 0.43 (0.06)

Table 1: Average values (and variance in parentheses) of the various indexes computed on GA–

efficient networks and emergent networks relative to their control random networks drawn for various

regions of δ. The region for which δ < 0.1 is never taken into considerations because both efficient

and emergent networks are empty and thus most indexes are not computable.

The most connected agents reduce the distance between all agents and thus contribute to increas-

ing of social wealth. The need for such global coordination is considerably high when δ ≈ 0.9, where

complete stars tend to become efficient. The superiority of such networks in terms of social surplus

decreases sharply when delta becomes closer to 1, because the connections of various lengths tend to

provide the same wealth (the decay phenomenon becomes negligible).

Proposition 3 When δ ≈ 0.9, efficient networks provide central positions to a few agents (or even

to only one) in social networks, which tend to be a complete star.
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Figure 3: The density of GA–efficient networks and emergent networks for the various values of δ.
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4.3 Comparing emergent networks and efficient networks

The first series of results relate to networks density. Apart from the regions where δ is either close to

0 or close to 1, the density of selected stable networks is lower than the density of efficient networks

(see Figure 3). Agents generate less connections than they should as regard social surplus. This

clearly confirms the economic intuition that arises from the basic payoff function of the connections

model: there are positive externalities to link formation since his neighbors, and potentially all agents

to whom a given agent is directly and indirectly connected, may benefit from any new connections

that this agent would establish. Therefore, it is not surprising that selfish agents, who do not take

into account the social returns of link formation, establish too few connections.

Proposition 4 When δ is neither close to 0 nor close to 1, the density of emergent networks is lower

than the density of efficient networks; agents generate less connections than they should as regard

social surplus.

 

0,0

0,5

1,0

1,5

2,0

2,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

delta

A
ve

ra
ge

 p
at

h 
le

ng
th

  

GA Efficient / Random Emergent / Random

Figure 4: The average distance d(·) of GA–efficient networks and emergent networks for the various

values of δ relative to the average distance of their control random networks

The relational distances (see Figure 4) between agents in the network constitute key factors for

wealth generation since they directly intervene in the payoff function. We find that such distances

are in average significantly longer (controlling for density) in selected stable networks than in efficient

networks, when δ is either low16 or high (when δ . 0.45 or δ & 0.80 see Figure 4 and Table 1). In

these extreme regions of δ, agents do not generate (geographically) long distance costly shortcuts.

When δ is low, the rewards of such connections are too low as regard the costs. When δ is high,

the difference between rewards from (relational) shorter and longer connections become too low as

compared to the costs. It is only for intermediary regions of δ that agents are provided with nearly

16This indicator is not defined when δ is lower than 0.1, that is when the network is empty.
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sufficient incentives to bear the costs associated with long distance connections. In particular, for

δ ∈ [0.5, 0.7] the emergent networks are in average only 1% longer than control random graphs while

efficient networks are slightly shorter than their own control random graphs.

Proposition 5 While the average distance of emergent networks is globally longer than the one of

efficient networks, there is an intermediary region of δ ([0.5, 0.7]) for which the average distance of

emergent and efficient networks becomes very close to the average distance of their control random

graphs.
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Figure 5: The average cliquishness (clustering) c(·) of GA–efficient networks and emergent networks

for the various values of δ relative to the average distance of their control random networks.

What does the payoff function of the spacialized connection model imply in terms of clustering?

Except for extreme values of δ, there is no simple answer to this question. On the one hand,

the connections model provides positive externalities that are conveyed through the network: agents

benefit from other agents with whom they are indirectly connected. Such externalities are the highest

at distance 2. Thus agents have low incentives to form triangles (which increase clustering), that

is to connect to those agents whom they already benefit from. This is particularly true when δ is

far from 0.5 (that is when δ − δ2 decreases) holding constant the costs of link formation17.On the

other hand, such positive externalities also provide agents with incentives to form triangles in order

to benefit more from these agents whom they already benefit from just by reducing their relational

distances to them by one. Efficient networks are thus expected to be more clustered than emerging

ones since the social returns to overlapping connections (i.e. forming triangles) are higher than the

17For extreme values of δ (larger but close to 0.1 or close to 1), agents have very low incentive to form triangles since,

for such values, δ.becomes very close to δ2: the marginal benefits become very low as compared to the costs of forming

such links. Thus, in these two extreme configurations, the emergent network should be the ring with a clustering equal

to 0.
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associated private returns because agents do not consider the positive externalities they generate on

other players when forming such triangles.

What do we find? When δ ∈ [0.1, 0.2] , agents in emergent networks are only connected to their

two nearest geographic neighbors and clustering is null (see Figure 5). For a δ < 0.3, clustering of

both efficient and emergent networks rise up to 4 or 5 times their control random networks. We also

find (see Table 1) that for δ ∈ [0.5, 0.7], efficient networks are 54% more clustered than their control

random networks while the emergent networks are 34% more clustered than their own controls. When

δ increases (δ ∈ [0.7, 0.85]), efficient networks are still 70% more clustered while emergent ones are

13% more. When δ ∈ [0.85, 0.95], efficient networks are even more clustered while emergent ones are

now 45% less. Clustering of emergent networks falls down when δ becomes close to unity because

as evidenced above the private returns to such overlapping connections tend to zero. It should be

noticed that for δ ≈ 0.3, emergent networks are too much clustered. This is because agents are not

provided with sufficient incentives to form long distant connections for this low value of δ. (we have

seen above that agents do not generate costly shortcuts in such a case).

Proposition 6 For a large intermediary region of δ (0.2 . δ . 0.7), efficient and emerging networks

are both significantly more clustered than their control random networks. Globally, while controlling

for their density, efficient networks are more clustered than emergent networks. Nevertheless, in a

narrow region of δ (0.3 . δ . 0.35), emergent networks do not generate distant connections which

decrease the clustering ratio of efficient networks.
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Figure 6: The global asymetry of neighborhoods sizes (range) r(·) of GA–efficient networks and

emergent networks for the various values of δ relative to the average distance of their control random

networks.

We now consider the distribution of connections over agents in the efficient and the emergent

networks. The global asymmetry ratio of neighborhood sizes of efficient networks is 91% while
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the global asymmetry ratio of emergent networks is only 37% (Figure 6 and Table 1). Therefore,

efficient networks have a much more uneven distribution of connections than emergent networks.

Computations of local asymmetry (see Figure 7) of efficient and emergent networks supports the

idea that the emergent networks have a much too balanced distribution of connections over agents18.

This statement applies for a very large region of δ: for δ higher than 0.2 and at least slightly lower than

1. The simultaneity of both geographically embedded connections and some more central agents in

the network also explains why clustering is so high in efficient networks. When δ ≈ 0.9, the complete

stars tend to become the efficient networks and the asymmetry ratios of efficient networks become

very high. The absence of such stars in emergent networks stresses another coordination failure in

network formation: the emergent networks are much less coordinated around central agents that

contribute to increase the wealth in the population.

Proposition 7 Emergent networks have a too much balanced distribution of connections over agents.

Decentralized strategic interactions in network formation do not favor the emergence of central agents

which would improve social wealth.
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Figure 7: The local asymetry of neighborhoods sizes u(·) of GA–efficient networks and emergent

networks for the various values of δ relative to the average distance of their control random networks.

5 Conclusion

In this paper, we make a simultaneous use of two new approaches for computing emergent networks

(Monte Carlo experiments, Carayol and Roux, 2003) and efficient networks (Genetic Algorithms,

18The global asymmetry is in average 37% of the one of their control random networks. The local asymmetry is 43%

of the one of control random networks.
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Carayol, Roux and Yıldızoğlu, 2003) in strategic network formation models. It allows us to system-

atically compare the structural properties of emergent and efficient networks in a spatialized version

of the connections model which has proven to lead to emergent networks that resemble more to real

social networks (Small Words, see Carayol and Roux, 2003). Our results highlight that welfare al-

location within social networks introduces coordination failures that lead to inefficiency in networks

formation.

Our first result is that emergent networks are significantly less dense than the efficient networks:

agents generate fewer connections than they should as regard social surplus because the model ex-

hibits indirect positive externalities to bond formation. Selfish agents do not naturally build those

links for which the social returns overbalance the establishment costs, while the private returns do

not. Secondly, efficient networks are more clustered than emergent networks: the social returns to

triangular connections are again higher than the private returns. Thirdly, agents are in average

(socially) too distant from each other and, emergent networks lack some costly distant connections,

even if this problem is reduced when the decay parameter (that conditions positive networks exter-

nalities) takes intermediary values. Lastly, emergent networks are globally and locally not enough

“coordinated”: emergent networks do not exhibit enough asymmetries between agents (the distribu-

tion of links among agents is too balanced). This should be contrasted with the efficient networks,

where supplementary connections are preferentially attributed to a few agents who thus gain central

positions in the network. Emergent networks do not share this structural property because no agent

wants to bear the costs associated with such a central position, even if increasing the connectivity of

some (initially identical) agents enhances the quality of many indirect social connections.

Agents would socially benefit from the compensation of some of them for internalizing networks

externalities. This would increase the local density of the network and ensure the establishment of

more costly (geographically) long distance connections that are particularly important in reducing

relational distance between agents. Agents would also be better off if some agents (or only one of

them, depending on the decay parameter) were selected and subsidized to play central roles. Global

policies could aim at subsidizing these central agents, while local policies could aim at reducing the

costs of some long distance connections. Decentralized bargaining that would lead to side payments

among agents could also contribute to achieve such a goal if agents can subsidize connections between

other agents to whom they are not directly connected (Bloch and Jackson, 2005).
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