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Segregation in Networks®

Giorgio Fagiolo! Marco Valente! Nicolaas J. Vriend?
November 22, 2005

Abstract

Schelling (1969, 1971a,b, 1978) considered a simple model with individual agents
who only care about the types of people living in their own local neighborhood. The
spatial structure was represented by a one- or two-dimensional lattice. Schelling
showed that an integrated society will generally unravel into a rather segregated
one even though no individual agent strictly prefers this. We make a first step to
generalize the spatial proximity model to a proximity model of segregation. That
is, we examine models with individual agents who interact ’locally’ in a range
of network structures with topological properties that are different from those of
regular lattices. Assuming mild preferences about with whom they interact, we
study best-response dynamics in random and regular non-directed graphs as well
as in small-world and scale-free networks. Our main result is that the system
attains levels of segregation that are in line with those reached in the lattice-based
spatial proximity model. In other words, mild proximity preferences can explain
segregation not just in regular spatial networks but also in more general social
networks. Furthermore, segregation levels do not dramatically vary across different
network structures. That is, Schelling’s original results seem to be robust also to
the structural properties of the network.
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1 Introduction

Segregation has been for some time one of the most important socio-political and public
economic issues in the USA, and has increasingly become one also in many Western-
European countries. As segregation has increasingly been recognized as one of the most
important public policy issues in countries such as the UK, the Netherlands, France, and
Germany, various countries have started evaluating and questioning the effectiveness of
decades of integration policies (see, e.g., Baldwin and Rozenberg (2004), and Commissie
Blok (2004)). The widely accepted view is that these policies have essentially been failures
as integration simply did not happen. As Trevor Phillips, chairman of the Commission
for Racial Equality in the UK, puts it: “we are sleepwalking our way to segregation”
(Phillips, 2005). The main objective of this paper is to improve our understanding of this
issue.

The prevalent form of integration policy in countries such as the UK and the Nether-
lands has been one of promoting multiculturalism by focusing on the individual citizens’
preferences!. The idea was that by promoting openness and tolerance with respect to
diversity one would allow integration to take place.

Individual preferences are exactly what the spatial proximity model of Schelling (1969,
1971a,b, 1978) focuses on. Schelling considered a simple model with individual agents
who only care about the types of people living in their own local neighborhood. The
spatial structure was represented by a one- or two-dimensional lattice. Schelling showed
that an integrated society will generally unravel into a rather segregated one even though
no individual agent strictly prefers this. This segregation is due to the spontaneous
dynamics of the economic forces, with all individuals following their incentives to move
to the most attractive locations. In doing so, they create externalities for other people,
who will respond to their changed incentives, etc.

The preferences considered in the spatial proximity model are said to be mild, as

everybody would be happy in a perfectly integrated society?. Pancs and Vriend (2005)

IThis focus can be explained by the practical difficulties with other policy measures aimed at inte-
gration (see Pancs and Vriend (2005) for details).
2 As this occurs without any of the individuals involved explicitly designing this outcome, the sleep-



examined the robustness of the spatial proximity model. They showed that the model
can be further simplified (rendering the individual preferences even more salient as an
explanatory variable of segregation), and that these proximity preferences may be even
more extreme in favor of integration. This focus on mild individual preferences or prefer-
ences that even favor integration is not to say that institutional constraints or racism may
not hinder integration. But what the model shows is that even without such obstacles
one should perhaps expect segregation. It seems that any integration policy must be
based on a good understanding of these spontaneous dynamics.

The idea that people care about their spatial proximity can be justified by the fact
that this is where people mow their lawn, where their children play outside, where they
do their shopping, and where they park their car. The social environment is, however,
not limited to this spatial proximity. People also interact through networks of friends,
relatives, and colleagues, and through virtual communities on the internet. And they are
likely to have preferences with whom they do this, just as they have preferences about
their spatial proximity. Similarly, segregation need not necessarily occur at the spatial
(neighborhood) level. One might conceive people who are socially segregated despite
being spatially integrated?.

Therefore, in this paper we will make a first step to generalize the spatial proximity
model to a proximity model of segregation. That is, we will examine models with in-
dividual agents who interact ‘locally’ in a range of network structures with topological
properties that are different from those of regular lattices, while having mild preferences
about with whom they interact. We stick to standard assumptions as far as types and
preferences are concerned, and we study best-response dynamics. Apart from the socio-
political interest in this, this seems also intellectually interesting as, after all, a lattice
is just a special type of network, and we may want to know whether mild proximity
preferences can explain segregation also in more general types of networks.

The paper is organized as follows. In Section 2 we present the model. Section 3

walking metaphor may seem appropriate.
3This appeared to be the case with some of the recent terror suspects in the Netherlands and the
UK.



discusses in more detail the classes of networks that we consider in our analysis. The
various indices used to measure segregation in social networks are introduced in Section
4. Section 5 contains our analysis of the model, including a sensitivity analysis of the

parameter setup. Finally, Section 6 concludes.

2 The Model

Consider a society composed of N agents who can locate themselves in one of the M >
N > 3 available locations. Each location can contain at most one agent. Locations can
be connected or not. We model locations and connections through a non-directed graph
(NDG) G composed of M nodes and a collection of non-directed edges linking any pair of
nodes. Edges are described by the (symmetric) M x M sociomatrix W = {wyy,}, where
wpe, = 0VE = 1,..., M and wy, = wp, = 1 if and only if there is an edge connecting
nodes k and h, and zero otherwise. We define the “neighborhood” Vj (or the “interaction

group”) of a node k as the set of nodes that node k is linked to:

Vk:{hEIM:wkh:whkzl}, (1)

where Iy = {1,..., M'}.

We suppose that each node is empty (i.e., it does not contain an agent) with proba-
bility 6 € (0, 1), while it is occupied with probability 1 — 6. Therefore, on average, there
are N = (1 —6)M agents in the society. Each agent can be one of two types, say —1 and
+1. Time is discrete, and time ticks are labeled by t =0, 1,2, ....

Agents have standard, binary, Schelling-type preferences: they are happy if and only
if the relative frequency of agents of their own type is greater or equal than 0.50 in their
neighborhood. More formally, if node i is occupied by an agent of type s € {—1,4+1} at

time ¢:

1 if xu(s) >0.5
Uip = Uit () = , (2)
0 otherwise



where u; = uy(s) is the utility of agent i (of type s) at time ¢ and zy(s) is the current
relative frequency of agents (i.e., filled nodes) of type s in V;%.

The initial state of the system is characterized by: (i) an instance of the network
structure, i.e., a graph Go = {Ip, Wy} (more on that below); (ii) an allocation of agents
and types across the M available nodes. The initial allocation of agents and types across
the M nodes is drawn uniform randomly. Thus, at t = 0, each node i € I, will be either
empty or occupied. If it is occupied, this will be either a —1 or a +1 agent, each with
probability 0.5. Thus, in the society there will be, on average, N/2 agents of type —1
and N/2 agents of type +1.

The dynamics is as follows. At each ¢ > 0, an agent is drawn at random (and
independently) from Iy = {1,..,N}. This agent checks every available node in the
network (i, i.e., his current node plus all empty nodes, and computes the utility that he
could earn at each of these nodes. The agent chooses the node that provides the highest
achievable utility level. Agents resolve ties by randomizing among all nodes providing
the same maximal utility level.

Notice that we assume no inertia in the agents’ choices. That is, the agents’ current
locations do not bias their choices (e.g., because of moving costs). We also assume that
agents can move to any empty node in the network, i.e., there are no information or
moving constraints or costs. In Section 5.3 we will study the effect of removing these

assumptions.

3 Network Structures

To investigate the scope of proximity preferences explaining segregation, we do not con-
strain the graph G to be a lattice-type of network. Instead, we explore a number of
classes of NDGs characterized by very different structural and topological properties.
This allows us to investigate how segregation levels, emerging out of the best-response

dynamics described above, may depend on the type of network. We study six classes

4In line with Pancs and Vriend (2005), we assume that the utility associated to an empty neighbor-
hood is zero.



of NDGs: two-dimensional lattices with Von-Neumann neighborhoods (2D-VN), two-
dimensional lattices with Moore neighborhoods (2D-M), regular NDGs (REG), and ran-
dom (RAND), small-world (SW) and scale-free (SF') NDGs. We now discuss each of

these network structures in more detail.

1. Two-dimensional boundary-less lattices with Von-Neumann neighbor-
hoods (2D-VN). The two lattice-type of networks are considered to benchmark
our analysis against the standard Schelling model. The difference between these
two classes of lattices lies in the metrics employed to compute the distance among
any two nodes. Neighborhoods are accordingly defined as containing all nodes that
lie within a certain integer interaction radius » > 1. In the 2D-VN lattice, the
“Manhattan” metrics is used and neighborhoods of radius r > 1 have a “diamond”

shape. That is, if any node h has coordinates (z,yp), the distance is defined as:

O(k, k') = |op — 2| + lyk — Yl (3)

where k and k' are any two nodes. We avoid singularities in the lattice by placing

nodes on a torus. A node’s neighborhood is thus defined as:

Viiry={h=1,..,M :6(k,h) <r}, (4)

where r is the neighborhood radius. Notice that the degree d;. of any node k, i.e.,

the number of inward (and outward) links to (and from) k, is:

di(r) = |Vi(r)| = 2r(r +1). (5)

See Figure 1, panel (a), for an example of the shape of Vi(r) for r = 1 in the
case of 2D-VN. Notice that the links actually in place in a 2D-VN lattice with
r > 1 differ from those present in the lattice (with » = 1). In fact, any agent
is connected through additional direct links with all agents placed 2,...,r steps

away. For example, if » = 2, the agent placed in the node (z,y) is not only linked
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(a) 2D-VN: r=1 (b) 2D-M: r=1

Figure 1: An Example of Neighborhood Shapes with 2-Dimensional Von-Neumann (2D-VN) and Moore
(2D-M) lattices for r =1

with the agents placed in (x — 1,y), (z + 1,y), (x,y — 1), (z,y + 1) (whose links with
(x,y) are present in the lattice), but also with agents placed two steps away in the

underlying lattice.

2. Two-dimensional boundary-less lattices with Moore neighborhoods (2D-
M). In this case, the lattice is endowed with the “spherical” metrics, which entails

“box-shaped” neighborhoods:

5(k, k') = max{|zx — i, |ys — i} (6)

where k& and &’ are any two nodes. Again, we avoid singularities in the lattice by

placing nodes on a torus. Here, the degree d; of any node £ is:

di,(r) = |Vi(r)| = 4r(r + 1), (7)

where Vi (r) is defined as in (4). Notice that given any interaction radius r > 1,
2D-M lattices have neighborhoods twice as large as those of 2D-VN lattices. An
alternative way to put this (for the case r = 1) is to say that the 2D-VN lattices
have only lateral (horizontal and vertical) links, whereas the 2D-M lattices have all
diagonal links in place as well. An example of the shape of Vj(r) for r = 1 in the
case of 2D-M graphs is reported in Figure 1, panel (b), where such additional links

for the agent concerned are shown with dashed lines.

As happens with 2D-VN lattices, also here for r > 1 there are additional links in

7



place. For example, for r = 2, also agents that would be two steps away from each

other in the 2D- M lattice with » = 1 are directly linked.

. Regular NDG (REG). Two-dimensional lattices are regular NDGs, i.e., NDGs
where all nodes hold the same number of edges (i.e., have the same degree). Lat-
tices, however, possess further spatial homogeneity and symmetry properties, such
as invariance to roto-translation, i.e., all neighborhoods are invariant up to a trans-
lation in space and/or a rotation around their center. Therefore, the third class of
NDG we explore is the one of regular NDGs, which are simply defined as NDGs
where all nodes have the same degree d, but do not necessarily satisfy the addi-
tional spatial homogeneity and symmetry properties that lattices do. At time t = 0,
we choose at random a regular NDG of degree d using the algorithm proposed by
Steger and Wormald (1999). Under this routine, regular graphs of degree d are

(approximately) generated uniformly at random.

. Random NDG (RAND). We, then, discard the hypothesis of regularity, by
considering the class of random NDGs. Given an average degree equal to (M —
1)p, we generate the graph by allowing each edge to be in place, independently of
all other edges, with a probability p. Therefore, unlike in regular NDGs, nodes
will generally have different degrees. In fact, the degree distribution is symmetric,

appears to be quite dispersed over the support {0,...,M — 1}, and has average
degree d = (M — 1)p.

. Small-World NDG (SW). Next, we consider two additional NDG classes that,
due to their close relationships with empirically observed social and economic net-
works (for an introduction, see, e.g., Barabasi (2003)), have received an increasing
attention over the last decade. First, we study small-world NDGs (SW). The main
features of SW networks (Watts, 1999, 2003) are that they tend to have a small
“path- length” (i.e., average distance between any two nodes) and a large “clustering
coefficient” (i.e., likelihood that any two neighbors of an agents are also neighbors

of each other). To generate a small-world NDG, we start from a two- dimensional



boundary-less lattice with Von-Neumann neighborhoods as in 1. above, for a certain
value of r. Then, each edge (h, k) is independently rewired to a randomly chosen
node, say k', outside V},(r) with some probability 8 € (0,1). In case of rewiring,
the edge (h, k) is deleted and replaced by the new edge (h,k’). If 3 is close to one
and M is very large, this procedure yields a random NDG. Otherwise, the degree
distribution will be symmetric, centered around 2r(r + 1) but less dispersed than

the one associated to a random NDG. In the results presented, we employ 8 = 0.5°.

6. Scale-Free NDG (SF). Finally, we consider scale-free NDGs (SF'). A scale-free
NDG has a skewed, power-law degree distribution, with few nodes holding a large
number of edges (i.e., the hubs of the network) and many nodes with few edges.
To build a SF graph, we employ a standard “preferential attachment” procedure
(Barabési and Albert, 1999), starting with M, nodes linked through a 2D-VN lattice
with » = 1 (and thus an initial degree d = 4). One node at a time is added until
a size M is reached. In any step, the additional node is allowed to form 4 links.
Each new link is formed by choosing one of the existing nodes with a probability
proportional to its current degree. The larger the initial number of nodes, the
smaller is the degree heterogeneity (the less skewed the degree distribution). The
underlying assumption of this setup is that any node can hold at no cost any
arbitrarily large number of nodes (as M increases). When a SF network is in place,
there is a small set of agents that hold a large number of links, while all the others
hold a small number of links. Thus, the degree distribution is skewed to the right,
with a relatively small average and a fat right tail. As expected, the average degree
of a SF network generated from an initial node size M, tends to have always the
same average degree. Moreover, this average degree is not monotonically increasing

in My. In fact, our analysis shows that the following (approximate) relation holds:

d ~ 0.00003 - M — 0.0062 - M + 0.3485 - My + 3.1916. (8)

5See Watts and Strogatz (1998) All our results are not altered if one tunes 3 in the range of small-
world graphs.



Hence, D grows for My < 39 and decreases for My > 40.

Given a certain class within this range of networks, we need to specify the system-
and network-specific parameters. System parameters are M (number of nodes) and 6
(average percentage of empty nodes). Network specific parameters characterize — given
the class of networks to be implemented — the set of possible networks from which the

one actually in place will be drawn (see Table 1).

Parameters
Network | System | Network-specific | Node degree
2D-VN r d=2r(r+1)
2D-M r d=4r(r+1)
REG (M, 0) d d
RAND p d=(M—1)p
SW r d=2r(r+1)
SF M See (8)

Table 1: Network Classes and System Parameters: M: Number of Nodes; 6 average percentage of empty
nodes; d: Graph Average Degree; r: Interaction Radius; p: Link Probability; My: Initial Number of
Nodes in a preferential-attachment graph formation mechanism.

Table 1 also shows how the node degrees depend on the chosen network-specific pa-
rameter values. When we compare segregation levels in networks from different classes,
we will keep the system parameters and the average node degree constant across the
networks considered. We achieve this by tuning the network-specific parameters. Thus,
the values for the radius r in the 2D-VN and 2D-M lattices, the probability p in the
random graphs, the radius r in the starting lattice for the small world networks, and M,
in the scale-free networks are all chosen such that the ensuing (average) node degrees d
match those considered for the other network classes. In other words, implicitly the only
network-specific parameter to be considered is the (average) node degree d.

In the lattice-case (i.e., 2D-VN and 2D-M), the initial graph is automatically defined
once one specifies the interaction radius r (and consequently the degree d). In all other
cases, given a choice for the network class and for the network-specific parameters of that
class (e.g., the degree d in a regular graph), each time we draw Gy (uniform) randomly
from the set of all possible graphs belonging to that class and with the given network-

specific parameters (e.g., all regular graphs with degree d).

10



4 Measuring Segregation in Social Networks

A number of indices have been suggested in the literature to measure segregation when the
agents are located on generic NDGs (see, e.g., Freeman, 1972; Mitchell, 1978; Freeman,
1978; Fershtman, 1997; Echenique and Fryer, 2005, and references therein). We mainly
employ two indices. The first one is Freeman’s segregation index (FSI) (Freeman, 1972,
1978), see the Appendix for details. The rationale underlying the computation of the
FSI is that if a given agent-attribute (in our case the type +1 or —1) does not matter for
social relationships (i.e., for the link structure as described by Gy), then the links among
the agents should be distributed randomly with respect to that attribute. Therefore,
suppose we observe a given allocation of agent types across the M nodes, connected
through the NDG Gq. Let us, then, split the agents in two groups according to their type
and, for each type, let us count the number of cross-group links (i.e., the number of links
connecting any pair of agents of different types), as well the number of within-group links
(i.e., the number of links connecting any pair of agents of the same type). This gives us
a 2 x 2 contingency table whose generic entry l,, gives us the number of links between
type-x and type-y agents in GGg. Similarly, one can compute the expected contingency
table for a random allocation of agent types on GGy. The difference between the number of
cross-group ties expected by chance and the number of observed ties (divided by expected
ones) gives us the FSI. The index ranges between —1 and 1, with the highest segregation
level obtained when there are no cross-group links in place.

Second, we compute the more sophisticated (but less intuitive) “spectral” segregation
index (SSI) for social networks recently proposed by Echenique and Fryer (2005). The
index has two remarkable properties: (i) it disaggregates at the level of individuals and
types (that is, one can compute the extent to which each single individual — or a given
type — is segregated in the society); (ii) the level of segregation of any individual increases
linearly with the level of segregation of his neighbors. Notice that the FSI does not possess
this “linearity” feature. In fact, the F'SI counts indiscriminately any within- and cross-
group link among any two agents belonging to a cluster of connected agents of the same

type. The SSI, on the other hand, takes into account the fact that agents located close to
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the fringe of such a cluster are less segregated that those near its center. More formally,
the SSI associated to a given type s € {—1,+1} is defined as the largest eigenvalue of
the sub-matrix obtained from the sociomatrix W, by considering only the rows and the
columns associated to the nodes whose current type is s. In our analysis, we report the
average SSI, computed over the two types s € {—1,+1} and suitably rescaled to have an

index ranging in the unit interval (see the Appendix for details)®.

5 Analysis of the Model

In this section, we present an analysis of our model for a society of M = 100 nodes.
Initially, we set the average percentage of empty nodes 6 = 0.3, and for any given network
class we choose the network-specific parameters. Section 5.2 presents a sensitivity analysis
across the parameter space as described in Table 1. Our analysis will take the form of a
Monte Carlo (MC) analysis. The procedure is as follows.

For each choice of network class and network-specific parameters we generate a number
of independent runs. For each run, where necessary, we randomly select a specific instance
of the network class, and we generate an initial allocation of agents and types across
the network uniformly at random. We, then, let the best-response dynamics run, and
collect system statistics when either segregation measures or the configuration of types
across the M nodes have reached a steady-state”. This typically happens well before
T = 50000 time-steps with probability one. We independently repeat this exercise 1000
times, computing the Monte Carlo (MC) average and standard deviation for the relevant
measures. Since across-run variability turns out to be very small (across-run standard

deviations are of an order of magnitude of 107°) and MC distributions appear to be

6We also check our results against a number of alternative segregation indices, such as those proposed
in Fershtman (1997) and Freeman (1978), and some of those originally developed in the lattice-case
(see Pancs and Vriend, 2005). In particular, we compute the miz deviation index (MD), defined as
the absolute deviation between a 50-50 neighborhood and the current frequency of like agents in the
neighborhood, averaged over all agents. Our results are not qualitatively altered if one considers these
additional segregation measures.

"Notice that whenever the system does not seem to converge to a stable configuration of types across
the M nodes, a cyclical behavior is typically observed with agents who keep switching among a small
sets of locations. In these cases, segregation levels do converge to stable levels well before the system
begins cycling.
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Figure 2: Average Freeman’s Segregation Index Figure 3: Average Freeman’s Segregation Index
(FSI) v. Network Classes. Average Degree d = 4. (FSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, 8 = 0.3. MC Sample Size Parameters: M = 100, § = 0.3. MC Sample Size
= 1000. = 1000.

symmetric, we report below MC averages of segregation measures only.

5.1 Some Benchmark Results

The main question we are interested in here is whether mild proximity preferences can
explain segregation also in more general network structures, e.g., when the underlying
network is not necessarily a proxy of geographic space but it rather has structural prop-
erties that make it resemble more a social network. Secondly, we also want to know
whether segregation levels emerging in non-lattice NDG vary across different families of
networks, and if so, how.

To begin answering these questions, we compare MC averages of the FSI and SSI in
the benchmark case § = 0.3 where agents are placed in one of our six different classes of
NDGs (see Table 1). Initially, we restrict our attention to network-specific parameters
implying NDGs with (average) degree d € {4,8}. This allows us to compare non-lattice
NDGs directly with either a 2D-VN lattice or a 2D-M lattice with » = 1 (and thus d = 4
or d =38).

As Figures 2 - 5 show, segregation levels are rather similar in all network classes con-
sidered. Lattice-type networks seem to display a higher average FSI, but this effect is

weaker for the SSI. This means that once one takes into account “linearity” in segregation
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Figure 4: Average Spectral Segregation Index Figure 5: Average Spectral Segregation Index
(SSI) v. Network Classes. Average Degree d = 4. (SSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, 8 = 0.3. MC Sample Size Parameters: M = 100, § = 0.3. MC Sample Size
= 1000. = 1000.

(that is, an individual’s segregation level increases with that of his peers), little differ-
ence in segregation can be detected across different network structures®. The structural
properties of the network do not seem to engender a strong impact on segregation levels
attained in the long- run by the system.

To put the values of the segregation indices found into perspective, we make the fol-
lowing two observations. First, for each network class and combination of network-specific
parameters, we compare the values of the FSI and SSI obtained through best-response
dynamics with the distribution of values for these indices over the set of all possible allo-
cations of agents and types across M = 100 nodes (keeping § = 0.3 as above). We numeri-
cally generated proxies for these “theoretical” distributions by computing our segregation
indices over 100,000 random allocations of agents and types for each given network class
and network-specific parameters. Consider, for example, the FSI distributions (similar
results hold also for SSI). The resulting simulated “theoretical” distribution of the FSI
appears to be symmetric around 0. The corresponding MC distributions obtained by

running our model lie clearly to the right of the simulated “theoretical” distributions (see

8 According to standard statistical tests for the difference between two means, all reported values
are not statistically different. Notice, however, that one can make any pair of average segregation levels
statistically different by sufficiently increasing the MC sample size. Therefore, we do not report statistical
tests for the difference between any two average indices.
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Figure 6: FSI levels generated by the model (solid
line) v. FSI Simulated Theoretical Distribution
(dashed line). Network: 2D-M lattice with r = 1
(d = 8). Parameters: M = 100, § = 0.3. Sample
Sizes: Model = 1000; Simulated Index Distribu-
tion = 100,000.
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Figure 7: FSI levels generated by the model (solid
line) v. FSI Simulated Theoretical Distribution
(dashed line). Network: Regular lattice with d =
8. Parameters: M = 100, # = 0.3. Sample Sizes:
Model = 1000; Simulated Index Distribution =
100,000.

Figures 6 and 7 for the case of the FSI in 2D-M and REG networks with degree d = 8)°.

Second, the average “mix deviation” index reaches — in both lattice and non-lattice
networks — levels that are similar to those obtained for lattices in Pancs and Vriend
(2005). For example, Pancs and Vriend (2005) find an average mix deviation level of 0.19
for a 2D-M lattice (without boundaries) for r = 1 and # = 0.2. In our 2D-M setup, we
find a similar mix-deviation level, i.e., 0.23. Furthermore, we find that for corresponding
parameter values (i.e., # = 0.2 and d = 8), the mix deviation reaches 0.21 in REG and in
RAND graphs, and drops to 0.18 in SF graphs. Finally, if we employ 2D-VN lattices or
SW graphs (with 7 = 1 and thus d = 4) the MD respectively attains values of 0.27 and

0.22 respectively.

5.2 Sensitivity Analysis: Empty Spaces and Connectivity

The findings of the last section show that proximity preferences can explain segregation
in a wide range of networks. In this section we turn to a sensitivity analysis of the model.
We are interested in assessing how, for each given class of networks, segregation levels
depend on the particular parametrization as far as the average percentage of the empty

nodes (A) and the connectivity of the network (measured by its average degree d) are

9All densities have been estimated using a normal kernel with a 0.20 bandwidth.
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concerned. Therefore, we consider a range of different values of # and d, and compute
MC averages of the FSI and SSI over 1000 independent runs for each combination of
parameter values. Figure 8 shows the SSI against average degree d for various fractions

of empty nodes 6, with each panel concerning one of the network classes considered!® !,
— Figure 8 about here —

We see that segregation levels are decreasing with the average degree in every network
class, and for any value of 6. Very high segregation levels are attained by the system
when the society is poorly connected and there is a small percentage of empty nodes. As
the connectivity increases, segregation becomes somewhat less pronounced, but even in
very connected societies, segregation levels remain significantly higher than the expected

level for random allocations.
— Figure 9 about here —

Figure 8 also shows that the SSI decreases with the percentage of empty nodes. This
is, however, not true for the FSI. The FSI, unlike the SSI, declines for small values of 6 and
then remains fairly stable in each given network class. Figure 9 presents a comparison of
FSI and SSI against 0 for the case of small-world networks. This difference seems due to
the linearity taken into account by the SSI. That is, only if one measures segregation by
taking into account the structure of emerging clusters, does a higher percentage of empty
nodes negatively affect the measured segregation levels. This means that the larger the
degrees of freedom the agents have in their moving choices, the less the society ends up in
“thick” segregated clusters, where many agents are “far” from the fringe. When @ is very
large, the society tends to be segregated in less structured clusters, with many agents
located on the “border” between clusters of agents of the same type and an empty space.
That is why the FSI does not detect large drops of segregation levels even for large values

of 6.

0For the scale-free networks, we employed values for My € {9, 16, 25,36}, which implies approximate
average node degrees d € {5.82,7.36,8.50,9.11}.
1 Gimilar results are obtained also for the FSI.
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5.3 Sensitivity Analysis: Inertia and Local Moves

In the basic model presented in Section 2, agents choose pure best- responses. That is,
if an agent is drawn at time t to revise his current state, he constructs his choice set,
which includes his current location plus all vacant locations, and choose the best option
in this set, randomizing in case the best-response is not unique. Although our analysis
shows that mild proximity preferences alone are sufficient to explain segregation in a wide
range of general network structures, it may be interesting to analyze whether additional
constraints on the individual behavior lead to different segregation levels.

Therefore, we first examine the effect of introducing inertia in individual decisions.
Suppose that at time ¢t > 0 the s-type agent located in node 7 is drawn at random from
Iy = {1, ..., N}. With inertia, this agent stays put if there is no vacant location that he
would strictly prefer to his current location. The idea of inertia is based on the implicit
modelling assumption of some small costs of moving (smaller than the smallest possible
difference in satisfaction between any two locations, but otherwise arbitrarily small).
Notice that under the inertia rule, satisfied agents will never move.

Second, we restrict the choices of the individual agents to local-moves-only. With
local-moves-only the agents’ moves are restricted to the agents’ direct neighborhoods
only. Suppose the agent drawn, say the one located in node k, considers to move. He
checks every node that is currently empty in his interaction group Vi only, and then
behaves as in the basic model as far as his decision is concerned. This can be based either
on the additional assumption of moving costs that increase with the distance travelled
in the network such that they are greater than the greatest possible improvement in
utility derived from the neighborhood for any move beyond the current neighborhood,
or on some information costs preventing agents to observe anything that is outside their
current neighborhood. Notice that in both cases, the agents will tend to explore a smaller

number of options and the ensuing dynamics will be more ’sticky’.
— Figure 10 about here —
Figure 10 presents the average degree in four network classes (with 6 = 0.3) for three
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cases: (i) the basic model without inertia and allowing global moves, (ii) the model with
inertia and global moves, and (iii) the model with inertia and local-moves-only'?. As
expected, segregation levels decrease when one introduces subsequently the assumptions
of inertia and local-moves-only, especially in lattice-type of networks. In all other cases,

the effect is relatively small.

6 Conclusions

Considering six different classes of networks, we generalized the spatial proximity model
due to Schelling (1969, 1971a,b, 1978). For each network structure, we considered two
types of agents who occupy nodes in the network, with some nodes being empty. The
agents have preferences about the composition of their own neighborhood in the network,
and move to available vacant locations following myopic best-responses. We analyzed the
ensuing dynamics, performing also a sensitivity analysis of a range of parameter values
and setups. The main result of our analysis is an affirmative answer to the question
whether mild proximity preferences as such may suffice to explain segregation in a wide
range of network structures. In other words, our analysis confirms mild proximity pref-
erences as an important possible explanation of segregation not only in regular spatial
networks, but also in more general social networks.

An example of social interactions fitting this kind of model is a network of professional
relationships, i.e., interactions with colleagues, suppliers, customers, etc. Typically an
agent searching a job needs to find a vacancy (empty node), and when starting a new job
he ’inherits’ the links that come with his new position, while severing ties related to his
previous job. A similar pattern applies to positions in sports clubs or, say, orchestras.

Obviously, not all social interactions are adequately described by a given network
structure. Therefore, the next step of our research will be to study models of segregation
based on proximity preferences in which the network structure may evolve endogenously,
with individual agents forming new ties or severing existing ones according to their prox-

imity preferences in response to their environment.

12These results do not qualitatively vary if one considers the SSI.
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Appendix

A Segregation Indices

In this appendix we formally define the segregation indices that we employ in our analysis.

e Freeman Segregation Index (FSI)

Consider a NDG G over M nodes described by the sociomatrix W. Nodes can be of
three types: +1, —1 or 0 (with 0 meaning that the node is empty). Let N4 and Np
the number of agents of types A = +1 and B = —1. Let us define the 2x2 mizing
matrix P where entry py, with a,b € {A, B} counts the number of links connecting

an a-type node with a b-type node. It is easy to see that:
P=FLEAFE,

where A is the N x N socio-matrix obtained from W by deleting rows/columns
associated to empty nodes, and E is the N -2 matrix (state indicator matrix) where
columns refer to the type {A, B} and rows to the node. Any row i can either be
(1,0) if node i is of type A or (0,1) if node i is of type B. Given the mizing matrix
of cross-group ties P, define the expected matrix of cross-group ties by E(P) using

the standard expected contingency matrix. Operationally, let

P =

PaA DPAB ]

PBa PBB

be the mizing matrix. Freeman (1972) asked how we could identify segregation in
a social network. Theoretically, he argues, if a given attribute (group label) does
not matter for social relations, then relations should be distributed randomly with
respect to the attribute. Thus, the difference between the number of cross-group
ties expected by chance and the number of observed ties (divided by expected ones)

measures segregation:

[E(pag) + E(ppa)] — [PaB + pBa

FSI =
E(pap) + E(ppa)
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To compute expected values, consider the row and column sums:

PA. = PAA T+ DPaB
PB. = DPBA 1+ DPBB
DA = DPaa+DBa
DB = DPAB T DPBB

D. = PaA+PaB +PBa+ DPBB
and let:
pa. X P.
E(pap) = ——F
p..
PB. X PD.A
E(ppa) = Bp—

Notice that in principle Freeman’s index should be computed as:
FSTI* = max{FSI,0}

because it measures whether there are less cross-group links than expected. As
Mitchell (1978) argues, there is no way to compute systematic integration. Freeman
(1978) then suggest to compute two different indices, one for segregation and one

for integration, namely:

[E(pas) + E(ppa)| — [pas + ppal

PSIT = E(pap) + E(ppa) — min{E(pap) + E(ppa)}

Since min{E(pap) + E(ppa)} = 0, this means that when measuring systematic
segregation we have F.SI* = F'SI. Similarly, the index to measure systematic

integration is:

[E(paB) + E(ppa)] — [paB + pBa

FII = E(pap) + E(ppa) — max{E(pap) + E(ppa)}’

where max{F(pagp) + E(ppa)} = Na-Np. We compute F'ST and FII for agents of
types A = —1 and B = +1. A larger value for any of the two indices means “more”

of what it measures.

Spectral Segregation Index (SSI)

The Spectral segregation index is computed as follows (see Echenique and Fryer,
2005, for additional details and applications). Consider the M x M socio-matrix W
and the current configuration of types across the M nodes. Define as A, the sym-

metric, square sub-matrix obtained from W by considering only the rows/columns
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associated to agents of type x € {—1,+1}. If there are K = N/2 agents of each
type (assuming N even), both A_; and A,y are K x K symmetric matrices. For
each type x € {—1,+41}, define the Spectral segregation index with SSI(x) as the
largest eigenvalue of A,. The entries of the eigenvector associated to SSI(x), suit-
ably scaled so that the average of the entries are equal to the eigenvalue SSI(x),

give the segregation levels of the individuals belonging to group x. Notice that:
dinin () < d(2) < SSI(2) < dpax (1),

where diin (), d(z) and diax () are, respectively, the minimum, average and max-
imum degree of the nodes associated to agents of type z in the sub-graph W com-
posed of nodes hosting an agent of type x. Therefore, to have an index ranging in

the unit interval, one can employ:

_ SSI(x) — dmin(7)
B dmax(x) - dmin(x) .

SSI*(x)

In our results, we typically get that SSI*(—1) and SSI*(+1) are very close in each
run and parametrization. This is because of symmetry between types in the initial
random allocation, with equal numbers of agents of each type. Therefore, we report

the average SSI index:

SSI*(—1) + SSI*(+1)

SSI = 5

as our spectral measure of segregation for the society as a whole.
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