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Abstract

In this paper we present an original model of sequential problem choice within

scientific communities. Disciplinary knowledge is accumulated by solving problems

emerging in a growing tree-like web of research areas. Knowledge production is

sequential since the problems solved generate new problems that may be handled.

The model allows us to study how the reward system in science influences the

scientific community in stochastically selecting at each period its research agendas,

and the long term resulting disciplines. We present some evidence on a decrease in

the generation of new areas, a path dependency in specialization, and circumstances

under which collapsing dynamics arise.
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1 Introduction

Nelson (1959) and Arrow (1962) were the first to highlight that the specific characteristics

of knowledge considered as a public good result in a default in knowledge creation incentives.

Consequently, the level of private investment in knowledge creation is below its optimal level.

This very well known result appeared as a theoretical justification for public support of research

which may (non exclusively) be undertaken by funding a specific social institution, namely the

academia. In that respect, modern countries obviously support a network of public laboratories

and academic researchers. Even if some econometric works have indeed shown that the social

returns from public research could be quite high1, economists naturally have begun to wonder

about the microeconomic properties of the academic institution. To do so they relied on the

initial contributions of the Sociology of Science. According to the early work of its founder

R.K. Merton, the functioning of the academic institution, that he labels Open Science, relies

on four “institutional imperatives”, namely “universalism, communism, disinterestedness, and

organized skepticism” (Merton, 1942). As argued later, these norms generate a set of effective

rules which stress a specific reward system, in which priority is essential (Merton, 1957). The

incentive mechanism at play may be sketched as follows. Peers collectively establish the validity

and novelty of knowledge produced (peer review). The attribution of rewards is based on

recognition by peers of the “moral property” on the piece of knowledge produced which increases

the producer’s reputation within the community (“credit”). Using these notions, Dasgupta

and David (1994) have recently synthesized in an economic fashion the mechanisms at play

within academia. They highlighted that its functioning has two fundamental and original

economic properties. First of all, it avoids some of the asymmetric-informational problems

that might otherwise arise between funding agencies and scientists in public procurement of

advanced knowledge: scientists themselves are certainly the most able to carry out verification

and evaluation operations in the peer-review like procedures. Secondly, since it is precisely the

very action of disclosing knowledge which induces the reward (reputation or credit increase),

the reward system thus creates simultaneous incentives both for knowledge creation and for

its early disclosure and broad dissemination within the community. That is why this mode of

1For a recent and complete survey see Salter and Martin (2001).
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knowledge production has been said to have very interesting efficiency properties (Arrow, 1987)

and even to constitute a “first best solution” for the appropriability problem (Dasgupta and

David, 1994) as it solves the dilemma between knowledge creation incentives and knowledge

disclosure incentives (Stephan 1996)2.

Nevertheless, the mechanisms described above are only part of the story. As a matter of

fact, a very consubstantial feature of the Open Science organization, is the relative freedom

scientists have for defining and selecting their own research agendas. That is the reason why

one may say that Open Science is indeed a decentralized system of knowledge production. Thus,

one may wonder how the Open Science reward system influences scientists’ problem selection i.e.

selection of their research agendas. And that issue is far from being marginal from scientists’

points of views: not all problems are the same in their eyes. Though competition between

scientists is clearly important, associated with “winner-takes-all” rules and “waiting and racing

games” issues (Dasgupta and David, 1987; Reinganum, 1989), it is only second, while the first

and most important decision a scientist has to take is the choice of which research area he

or she will investigate, of his own research agenda (Dasgupta and Maskin, 1987). How the

reward system affects problem selection is also crucial for society because it certainly shapes

the pace of scientific knowledge production. In wondering about the economic properties of the

research agenda determination process within Open Science we are meeting the issue which is

usually referred to in the sociology of science as the “problem of problem choice” (Merton, 1957;

Zuckermann, 1978; Ziman, 1987)3. The only ‘economic-like’ contribution to that field is the one

of Merton and Merton (1989) who built an optimal control model in which researchers’ efforts

are dedicated to solving a given set of problems. This model aims to compare the decentralized

allocation of research efforts with the optimal one4. Nevertheless, their model is limited to

2Of course, many problems still arise and it is not possible to derive from this statement that the decentralized
allocation of research efforts induced by the specific reward system of science is per se optimal. This observation
leaves the room for an Imperfect Economics of Science to come (for a first investigation see Carayol, 2001).

3The history of this issue began with Peirce (1896) who provided the first formal model of the optimal
allocation of research between projects characterized by different levels of utility and risk. Merton (1957) first
noticed the importance of competition and the reward system on problem choice. Polanyi (1962) suggested that
science is a self-organized and indeed efficient institution for orienting the scientists’ attention and research efforts
in a decentralized manner. He suggested that scientists are guided by an “invisible hand for ideas” - that science
is a well designed social institution because it allows for an optimal allocation of research efforts.

4Unfortunately, this paper which was initially supposed to appear (and announced) in Rationality and Society
in 1989 has been withdrawn from publication at the time. The available version is still uncomplete and most
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situations in which the set of problems to be solved is fixed, the problems are independent5,

and the rewards for solving each of them are exogenously fixed and ex ante specified.

In this paper we present a dedicated model of the sequential determination of research

agendas and subsequent dynamic knowledge production within open science. The model is

designed to capture two features of the process of collective knowledge creation which are

essential for analyzing scientific knowledge production within academic communities. They are

the following:

i) the set of problems to be solved is not fixed: rather our aim is to account for the idea

that new problems are generated by previously created knowledge, that is by problems solved

in the past. This observation highlights the sequential nature of knowledge production;

ii) the rewards for solving problems are not exogenously specified: the allocation of

research efforts on a set of handleable problems at any given period of time is derived from

both the generic motivations of scientists and how they presently anticipate the recompenses

for solving each problem defined according to the specific reward system in science.

In order to take these two features into account we propose a model using graph theoretical

principles: we assume that disciplines (a term by which we simply mean the accumulated

knowledge of a scientific discipline) are designed as a web of research areas (i.e. a graph, the

nodes of which are designating research areas)6. The research areas are the unitary level of

scientific knowledge organization. Each one is simply defined by its location in the graph and

its level of improvement, that is the number of problems that have been solved within that area

(which can also be understood as the past accumulation of knowledge there). For the sake

of simplicity, this web is assumed to be a tree-like graph. Thus we retain the classical, even

if somewhat misleading, representation of scientific knowledge as a tree of knowledge7. Even

if this simplification is far from being perfect, it makes it possible to clearly organize areas

results are still unavailable.
5There is no externality: the solution of one problem does not influence the solving of another problem.
6The initial idea of scientific knowledge as a web of “theories” is to be found in Kuhn (1962). Even if very

different in its conception, see also Weitzman (1998) for one of the first contributions ‘discretizing’ knowledge.
7See Machlup (1982) for a history of this notion which dates back to Lull, Bacon and Comte. Some first

elements can also be found in Cournot (1861) where the idea of a branching evolution of knowledge in the
sciences and industry is introduced. See also Ziman (1984) for a rationale about its applicability to the usual
scientific classification systems.
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according to their level of specialization, through their geodesic distance to the root which is

assumed to be the locus of the most general knowledge. The set of already existing research

areas (nodes) and possible ones, their structure and their respective levels of improvement,

altogether constitute the present state of the discipline. According to the sequential character

of knowledge production highlighted in i), the state of the system is assumed to directly give

the set of attainable problems at each period: solving the next problem to hand on the existing

research areas or exploring new research areas. The latter is modeled by introducing the

opportunity that any already improved research area leads to the potential creation of a new

research area (which one could view as a new leaf of the tree) by solving its first problem.

Thus the remaining issue, stated in ii), becomes - in the context of our model - how agents

strategically allocate their research efforts over the set of handleable problems. Their choices

are obviously mainly a function of the net expected reward for solving each. In science, the

rewarding process is reputation based: scientists seek after “credit”. It is known that such

symbolic rewards are positively correlated with monetary ones (Stephan, 1996). To get such

rewards scientists should attract other scientists attention by producing what Cohen et al.

(1998) call “foundational knowledge”. Thanks to the new computing techniques and availabil-

ity of large scientific database, citations are now often used as a common weighting parameter

of the importance of scientific contributions8. In addition to publications, scientists’ CVs are

increasingly mentioning the number of citations they received9. All this suggests that scientists

clearly try to anticipate such expected returns of their marginal research efforts while choosing

their research agendas. It opens the door to considering scientists, while choosing their research

agendas, as ‘credit seekers’. In order to capture that, we introduce a specific reward function

determining how agents associate at a given moment in time an expected reward to each attain-

able problem. Incentives to performing research on research areas are assumed to be a function

of three variables that have been highlighted by the empirical literature on problem choice in

science10. The first variable indicates how much the research associated with a given problem

8However, citation counts should be taken carefully especially if one wishes to compare the quality of papers
appearing in different fields.

9This kind of reward is crucial, because it is encouraging scientists to spend more time and support higher
risks that important but difficult problems induce, just because they are anticipating that their results will be
widely used and cited, then that they may consequently be highly rewarded for their efforts.
10See Debackere and Rappa (1994), and Rappa and Debackere (1993) for systematic explorations of problem
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is pioneering which is obtained by computing the number of problems already solved so far

in the research areas considered. The second variable is the level of specialization of research

derived by computing the research areas’ distance to the most general area (the root). The

third variable relates to the audience of research areas. It is to be understood as the expected

volume of further research that may refer to a scientific contribution appearing in a given area.

Since scientific papers tend to cite papers belonging to the same or to connected areas, we will

assume that the audience of a research area is linearly increasing with the size of the associated

sub-field. Our tree-like representation allows us to simply define the size of an area sub-field as

the size of its associated sub-tree11.

Lastly, what we needed is an instantaneous aggregation procedure, so as to infer collective

outcomes from individual choices (Kirman, 1992): we introduce a simple probabilistic rule

which gives the instantaneous allocation of efforts over the research areas given the relative

incentives, which in turn generate the effective ‘arrival’ of knowledge at each period of time.

This rule is also designed to capture the idea that the concentration of competitive pressure

on the most rewarding areas may also influence the dynamics12. Altogether, one obtains a

stochastic process that inter-temporally aggregates scientists’ efforts and leads to the growth of

the discipline (the tree). This original process is denoted by
©
T t |t = 1, ..., τ ª . Since it is based

on dynamic growing trees, this process has some common features with the Bienaymé-Galton-

Watson branching process in applied mathematics (Kulkarni, 1995), the growing literature on

tree indexed processes in Probability (Lyons and Peres, 2001) and the avalanches literature

in Physics (for an application to economics, see Plouraboue et al., 1998)13. Since this is a

process leading to complex dynamics, its properties are analyzed using standard Monte Carlo

experiments. Our main results are that the process exhibits path dependency (David, 1985)

choice by recording, over a long period, scientists’ entry choices in an emerging field and by surveying their
motivations.
11Here lies one important justifications for the tree structure: focusing on incentives (problem choice) the

tree-like structure captures most of the dynamics principles governing research effort allocations and thus the
growth of knowledge. We are indebted to a referee for having strongly encouraged us to clarify this point.
12This idea has been introduced in Merton (1957) and Merton and Lewis (1971), surveyed by Zuckerman

(1978) and some way discussed in the model of Dasgupta and Maskin (1987).
13The process of research agenda determination within science, since it is marked by sequential interdependent

decisions as today’s decisions to investigate a given research area will obviously be influenced by former decisions,
has clearly something in common with the information cascades litterature (Bikhandani et al, 1991; Barnejee,
1990).
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especially with regard to the level of specialization of knowledge: disciplines that are more

specialized have a higher chance to become even more specialized. We also find that there is

a decline in the generation of new research areas over time which, as we will show, can be

compensated by increasing the rewards for performing pioneering research. We also study how

the outcoming disciplines are shaped through tuning the various typical incentives of the Open

Science rewarding process. Finally, an extension of the model enables us to show that a high

intertemporal correlation of choices leads the creation behavior to collapse through a phase

transition-like phenomenon.

The paper is organized as follows. The model is developed in the next section. The third

section is dedicated to the study of the generic properties of the process, while the fourth section

studies parameters effects on the dynamics and discuss the characteristics of the outcoming

disciplines. The fifth section introduces intertemporal correlation and analyzes its consequences.

The last section concludes.

2 The model

We first define the disciplines, seen as more or less improved research areas organized as

nodes in a tree-like web. Next we discuss and show how these disciplines generate a set of

problems that can be handled given the present state of knowledge. Thirdly we introduce

an expected reward function which provides the incentives associated with solving each of

the available problems. Finally we present the probabilistic function implementing scientists’

choices at each period and thus the advances of scientific knowledge.

2.1 Scientific disciplines

At each period t of the discrete time, let a scientific discipline be described as an undirected

graph Gt. A graph is formally defined as a double set: Gt ≡ ©V t, Et
ª
, where V t is the set of

the nodes (i) (vertices) of the graph and Et is the set of the edges (ij) of the graph. Any edge

(ij) ∈ Et is a link between the two nodes (i) and (j) belonging to the set of nodes: (i) , (j) ∈ V t.

9



We represent scientific disciplines as ‘knowledge trees’ where nodes designate different but

interdependent research areas. Substantially, the root corresponds to the most general research

area, while ‘lower’ nodes correspond to more specialized areas of knowledge. Since we consider

trees, the extra properties follow:

- the graph is connected, i.e. there is a path relating each pair of nodes of the graph :

∀ (i) and (j) ∈ V t, ∃ a path {(i, l) , (l, u) ...., (k, j)} ⊂ Et;

- the graph is minimally connected: there is only one path between any two nodes of

the graph (there is no cycle in the graph). As a consequence, we have a direct correspondence

between the cardinal of V t and the cardinal of Et : card
©
Et
ª
= card

©
V t
ª− 1.

Moreover, a tree is also a planar graph: it can always be represented on a plan without

any crossing between edges. Since there is one and only one path between any two nodes, a

tree has also an unambiguous geodesic distance which is a counting function of the number

of edges of the path connecting two nodes. Thus d (i, j), the distance between the nodes (i)

and (j) , is given by: d (i, j) ≡ card{(i, l) , (l, y) ...., (k, j)}. The root of the graph is a specific
node denoted (1). The distance to the root d (i, 1) can simply be denoted di. Thus d1 = 0.

The root is assumed to represent the research area with the highest possible level of generality.

The distance to the root then expresses the level of specialization of each research area. Let

Gt
j =

n
V t
j , E

t
j

o
denote the sub-tree of Gt (Gt

j ⊂ Gt) the root of which is node (j). Gt
j is

said to be a sub-field of the discipline Gt associated to area (j). Thus, we have by definition

Gt
1 = Gt. The size of the sub-discipline Gt

j is given by stj , the number of research areas of G
t
j :

stj ≡ card
n
V t
j

o
.

The tree structure (having also specified that (1) is the root of the tree) allows us to clearly

define the following ‘father’ operator, fGt (·) : V t∗ → V t, where V t∗ is the set of nodes of the

graph but the root: V t∗ = V t ª (1) 14, which gives the ‘father’ of any of the nodes of V t∗.

Formally we have (i) = fGt (j) if and only if both (ij) ∈ Et and di = dj + 1. The inverse

function: f−1Gt (·) : V t → V t∗, tells us that (j) is in the childhood of (i) if (j) ∈ Ct
i = f−1V t (i).

Finally, let define the vector Φt =
¡
φti
¢
i∈V t which assigns to each node of the graph (i) ∈ V t,

14The symbol ª simply indicates that the node considered is removed from the set. By ⊕, it is meant that the
element is added to the set.
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a non null integer
¡
φti
¢ ∈ N∗,∀i ∈ V t denoting the robustness of knowledge (or its improvement

level) attained within the research area (i) (thus Φt ∈ (N∗)card{V t}). It is defined as the number
of problems solved in the research area considered.

Together, the set of nodes, the set of edges, and the improvement levels define the state

of the discipline (the system) at each period, i.e. the knowledge accumulated so far and its

structure. It is denoted by T t ≡ ¡V t, Et,Φt
¢

2.2 Available research agendas and problems generation

Let us now define the set of attainable problems given the present development of the

discipline, i.e. the set of potential research agendas that the present state of the system allows

to tackle. As it has been said before, one cannot reasonably assume that the set of problems is

fixed and ex ante specified, but rather generated and even shaped by the advance of knowledge.

In order to capture that feature, we consider that scientists can either i) improve knowledge in

some already existing research area, or ii) create a new research area from an already existing

one. In other words, the problems that may be solved are either the next problem to hand in

already improved research areas or the first problem to be solved of a research area connected

to any already improved one.

In this last respect, we further consider that a new ‘virtual’ node is associated with each

existing one: that is, we consider that scientists are able to create a new and more specialized

research area ‘from’ any existing one. Let W t be this set of nodes that can be created at period

t: each (j) in W t is simply a leaf from each node (i) ∈ V t, the improvement level of which is

still null: ∀ (j) ∈W t : φtj = 0. Obviously, we have: card
©
V t
ª
=card

©
W t
ª
and V t ∩W t = ∅.

Let us now define the set Ot such as: Ot = V t ∪W t. It is the set of opportunities, that

is the set of research areas that contain a handleable problem at date t (whether the research

areas have already been improved or not). We also need to define the graph that covers the

opportunities, that is Λt ≡ ©Ot, F t
ª
such that its set of edges F t is the union of the set edges

Et (of graph Gt) and of the set of edges say It that is binding each node of V t to one distinct

node of W t : F t ≡ Et∪It. The definition of the tree-like graph Λt, having (1) as its root, allows
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us to rigorously define the set W t, which is formally such that both i) ∀ (j) ∈ W t,∃ one and
only one (i) ∈ V t, such that (i) = fΛt (j) ; and ii) ∀ (i) ∈ V t, ∃ one and only one (j) ∈W t such

that (j) = f−1Λt (i) .

We assume that the state of the system simply evolves by selecting one node among the

set of opportunities at each period. The selected node at period t is denoted by
¡
ot
¢ ∈ Ot.

Formally, when a node is selected, the two following events transform the state of the system:

i)

if
¡
ot
¢
= (i) ∈ V t then V t+1 = V t;W t+1 =W t

if
¡
ot
¢
= (l) ∈W t then

V t+1 = V t ⊕ (l) ;W t+1 =W t ª (l)⊕ (k)⊕ (h)
Et+1 = Et+1 ⊕ (ul) ; It+1 = It ª (ul)⊕ (lk)⊕ (uh)

(1a)

ii) φt+1ot = φtot + 1 (1b)

(1a) says that if the chosen research area is an already improved one ((i) ∈ V t), the set of

nodes and potential ones are left unchanged. If the chosen node is a new one ((l) ∈ W t) it is

then added to the set of already improved nodes, while it is withdrawn from the set of potential

ones. In the meantime, two new elements are added to that set. The first one (k) is the new

research area that may now be attained because of the initial improvement of (l): (k) = f−1Ot (l).

The second one, (h) , replaces (l) within the set of potential areas. Formally, if node (u) was

such that (u) = fOt (l) , then (h) is such that: (h) ∈ Ct+1
u = f−1Ot (u) with (h) 6= (l) . This feature

of the model, traduces an implicit assumption of the model, namely that there is no scarcity

in potential research areas. Each new investigation solving a problem generates new questions

both inside its research area and in new areas.

(1b) says that the level of improvement of the chosen research area is improved by one

unitary increment. One can thus verify that the level of improvement of each node is equal to

the sum of all the problems solved in the past within that research area: φti =
P

τ=1,...,t Γ(i, o
τ )

with Γ (·, ·) defined such that: Γ(x, y) = 1 if x = y and 0 otherwise.

An example of such a process is represented in Figure 1 when starting with only one node

at period 1 (the root). The numbers on each node are the levels of improvement φti (number
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of problems solved there), and the dotted lines represent possible areas that may be created

i.e. virtual nodes. When one denotes each node by an integer which is increased by a unitary

increment at each arrival, then the evolution of the tree described in Figure 1 can be formally

written as in Table 1.

       1                       1

                            1

   1     2

    1

    2

    1   1    1

   1

   1   1     1

   1

     2

    2

t       1  2     3           4           5   6

Figure 1. An example for the evolution of a knowledge tree over the first 6 periods of time.

t Vt Et Φt W t Ot ot

1 {1} ∅ (1) {2} {1, 2} {2}
2 {1, 2} {(1, 2)} (1, 1) {3, 4} {1, 2, 3, 4} {3}
3 {1, 2, 3} {(1, 2) , (1, 3)} (1, 1, 1) {4, 5, 6} {1, 2, 3, 4, 5, 6} {1}
4 {1, 2, 3} {(1, 2) , (1, 3)} (2, 1, 1) {4, 5, 6} {1, 2, 3, 4, 5, 6} {4}
5 {1, 2, 3, 4} {(1, 2) , (1, 3) (3, 4)} (2, 1, 1, 1) {5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8} {2}
6 {1, 2, 3, 4} {(1, 2) , (1, 3) (3, 4)} (2, 2, 1, 1) {5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8} −

Table 1. The evolution of the tree like graph described in Figure 1.

2.3 Incentives and motivations for problem choice

We now tackle the question of the incentives that may lead researchers to select projects

among the available ones, that is the way the reward system in science defines an implicit payoff

function for problem choice at each period. For that purpose we introduce a reward function

ω (·, ·, ·) that associates a given expected reward ωto to each possible problem (o) ∈ Ot at any

given period of time t. This expected reward is assumed to be given by:

13



ωto = ω
¡
φto, do, s

t
o

¢
(2)

φto has been defined as the level of robustness of the research area, i.e. the sum of past

accumulation of knowledge on (o) . When (o) corresponds to a new research area, then still no

knowledge has been accumulated and thus φto = 0. do which is the distance to the root (let us

recall that do ≡ d (o, 1)) indicates the level of specialization of the research area considered (o).

When do is low, the research area is general while if do is high, (o) tends to be specialized15. sto

is the size of the sub-discipline Gt
o associated with the research area (o) . If (o) is a new research

area then obviously, sto = 0. s
t
o is a proxy for the “audience” associated with research areas (o) .

We propose a simple Cobb Douglas specification for (2) as follows:

ωto =
¡
1 + φto

¢γ
(1 + do)

λ ¡1 + sto
¢δ

(3)

where
¡
1 + φto

¢γ (with γ such that γ < 0) stands for a measure of the relative rewarding of

problems in academic publications depending on their novelty. The higher φto the less original

the next problem solved there and therefore the lower the associated reputation gain (because

γ < 0). The reward of the nth contribution to a given research area is only a fraction of the first

tuned by γ: when γ is small,
¡
1 + φto

¢γ tends to highly decrease when φto increases (especially

when φto is still small). On the contrary, when γ is close to 0, the decreasing slope is lower.

Thus when γ is close to 0, the first problems solved within a given research area tend to be

relatively as rewarded as the later ones, while when γ is much lower than 0, pioneers will be

much more rewarded than later contributors.

The second component of expression (3) , namely (1 + do)
λ , stands here for a measure

of the relative rewarding for producing knowledge in a given area depending on its general-

ity/specialization. This parameter is typically influenced by the role of experiments, but also

by the difficulty to perform valid research either because of its inherent complexity or because

access to high-level equipments is needed. Parameter λ is assumed to be positive (λ > 0), which

implies that the reward is always higher for specialized areas. This feature may appear counter-

intuitive at first glance. Nevertheless, the more general a research area, the more difficult it is

15 It is a specific and constant attribute of the research area considered, independent of the time period con-
sidered. Thus the time period superscripts have been removed.
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to perform research there and the lower the expected reward of a standardized unit of effort. λ

controls the relative preference/rewarding for specialized research areas.

The last component of the expected reward function
¡
1 + sto

¢δ measures the impact of the
audience of research areas on the expected rewards. When the associated sub-discipline is big,

i.e. is composed of a large number of research areas, then the research results that may appear

in such a research area are more likely to be frequently cited. The parameter δ (such as δ > 0)

expresses the relative importance of that factor in the reward system, that is the strength of

the citation system (or even the ‘vertical’ integration of the discipline). When δ → 0, the size of

the sub-tree of area (o) tends to have no more any effect on the expected rewards ωto. The more

δ increases, the more the audience
¡
1 + sto

¢δ becomes an important element of the rewards (sto
becomes critical).

2.4 Sequential discrete choices and the stochastic process

As we emphasized before, science has a specific incentive structure which influences the de-

termination process of research agenda by rational scientists and therefore collective outcomes.

Let us assume that the problem associated with each opportunity is selected and solved with

the following probability:

pto ≡ (ωto)
αP

j∈Ot(ωtj)
α (4)

with
P

o∈Ot pto = 1, ∀t and α (α > 0). α stands for the concentration of scientists’ attention

on the most rewarding areas for a given allocation of incentives over the handleable problems.

For instance, when α < 1, the less rewarding research areas tend to be selected ‘more fre-

quently’. On the contrary, when α > 1, the more rewarding areas tend to be selected more

than proportionally to their expected rewards, while less rewarding areas tend to be chosen less

than proportionally. As α → ∞ the node associated with the highest reward is almost surely

chosen, and the system becomes ‘quasi-deterministic’. On the contrary, when α → 0, each

possible opportunity is chosen with the same unique probability: pto → pt,∀t and (o) ∈ Ot.

Introducing equation (3) in equation (4) gives us the probability that any research area

(whether it is an existing one or a potentially created one) is improved at period t:
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Figure 2. Typical grown trees (200 periods).
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pto =

³
(1+φto)

α
(1+do)

α(1+sto)
δ
´α

P
j∈Ot

³
(1+φtj)

γ
(1+dj)

λ(1+stj)
δ
´α (5)

This closes the description of the stochastic process of knowledge generation within dis-

ciplines. Formally, we obtain a stochastic discrete time infinite space state process that we

denote by
©
T t |t = 1, ..., τ ª or conversely ©¡V t, Et,Φt

¢ |t = 1, ..., τ ª since it describes the evo-
lution through time of the two sets V t, and Et, and the vector Φt. Figure 2 shows three

dynamically grown trees that have resulted from different numerical experiments realized with

such a stochastic process.

Together, the parameters (λ, δ, γ, α) which appear in equation (5) are said to characterize

an academic community and its associated reward system. α stands for the problem choice

practice given the incentives. λ, δ, and γ give the relative weighting of the various types of

incentives whether this weighting comes from the motivations of the agents or from the effective

rewarding. In practice both may be very close since academic communities are, to a large extent,

self-organized in the sense that agents are both the rewarded and the rewarding agents.

3 Generic properties of the process

We now turn to an exploration of the generic properties of the system, that is the behavior

of the dynamic process through time and its limit behavior, while the characteristics of the

drawn trees depending on parameters values are described in the next section. As it has been

said above, the system
©
T t |t = 1, ..., τ ª is a quite complex one which naturally leads to complex

dynamics. To make that point clear, let us consider the following. From equation (5) , it can

easily be demonstrated that: ∀t,∀i ∈ Ot : ∂pi
∂di

> 0; ∂pi
∂si

> 0; ∂pi
∂φi

< 0; under the assumptions

made previously about the parameters value spaces (γ < 0, δ > 0;λ > 0 and with α > 0). This

implies that, all things equal, more specialized research areas, new research areas and research

areas with larger audience are more attractive to scientists’ choices. The problem is that these

variables are dynamically correlated because the specialization and the audience variables are

often opposite and because the robustness levels (φi) act as a ‘crowding out’ variable which

tends to re-allocate incentives through time over the population of research areas (while it also
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regulates partly the creation of new ones). In order to analyze the complex behavior of the

system, we mostly rely on Monte-Carlo simulation experiments. All experiments that will be

presented in the remaining of the paper start with a tree reduced to its root at period one

(V 1 = {(1)} ;E1 = ∅;Φ1 = (1)).

Among the various features of the system’s behavior that one may wish to consider, we are

particularly interested in the evolution of the two following ones: the generation of research

areas (vs. the improvement of existing ones), and the specialization of scientific knowledge

(that is how far from the root the problems solved are located). The two sub-sections below

tackle these issues successively.

3.1 The inexorable decline of research areas generation

To analyze collective outcomes, it is useful to define some aggregate measures. Let us define

the creation index as the number of nodes created over the number of possible node creations

or else the number of periods, i.e.:

ςt ≡ 1
t card

©
V t
ª

(6)

Obviously, this index is such that 0 ≤ ςt ≤ 1, because there is at the most one creation per
period. ςt may also be called the exploration index because it capture the past ability of the

community to explore new scientific paths.

One has to see that there is a real trade-off between creation/exploration and robustness,

because any effort which is not dedicated to the creation of a research area is dedicated to the

improvement of an existing one. Thus the average improvement of research areas given by:

φ̄
t ≡ 1

card{V t}
P
(i)∈V t φti; is the inverse of the creation index: φ̄

t
= 1/ςt; just because we have:

∀t, P(i)∈V t φti = t.

Figure 3 presents ten identical runs of the dynamic process, recording at each period the

creation index ςt, the parameters being arbitrarily fixed. Many other numerical experiments

with different values of the parameters have been run, all showing that creation decreases with

time. We have also run experiments over very long periods showing that the creation index was
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still decreasing after 10, 000 periods. A unique but important exception arises when α = 0 that

is when the evolution probabilities are equal at each period. In such a situation, it can easily

be demonstrated that the creation probability is equal to 1/2 at any period.

0

0 ,1

0 ,2

0 ,3

0 ,4

0 ,5

1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 631 673 715 757 799 841 883 925 967

Figure 3. Time series of the creation index ςt over 1000 periods. 10 identical runs with:

δ = λ = −γ = 1, α = 4

This general result, is a simple but not so obvious consequence of the fact that knowledge

improvements are rewarded by the attention of other scientists, often measured (even if very

imperfectly) by counting citations received: the more a scientific discipline grows, the higher

the incentives for improving knowledge in existing research areas just because their audience

(sub-tree size) is relatively increasing as compared to incentives for exploring new paths.

3.2 General vs. specialized disciplines: a path-dependent outcome

Let us define the average generality of knowledge index, as the sum of the robustness levels

of all research areas, weighted by their level of generality (the inverse of the specialization level:

1/di), over the sum of all the robustness levels, as follows:

φ̃
t ≡

P
(i)∈V t(φ

t
i/di )P

(i)∈V t φ
t
i

(7)

This index gives the average generality of each problem solved so far, which we can say is

the average level of generality of knowledge within the discipline considered. Like the creation
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index, this index is such that: 0 ≤ φ̃
t ≤ 1, with φ̃

t
close to 1 (to 0) when problems solved have

been highly general (specialized).

Figure 4 presents 10 identical numerical runs of the process recording at each period the

evolution of the knowledge specialization through the index φ̃
t
, all parameters being fixed. It

startingly shows that this is decreasing through time. This feature is robust to modifications

of the parameters values. The explanation for such a result is quite obvious because, in the

model, it is precisely the past exploration behaviors at specialized levels that allow agents to

solve even more specialized problems.
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Figure 4. Time series for the specialization of knowledge φ̃
t
. Ten numerical experiments

realized over 1000 periods, with parameters fixed as follows: δ = λ = α = 1, γ = −1.

The other insight that time series may provide has to do with the path dependency prop-

erty, which in dynamic stochastic systems theory simply means that the transitory states of

the system (state variables) determine its limit behavior. Practically, if we find that there is

increasing differences between identical runs of the system (same initial states and same para-

meters values), thus path dependency is said to occur. If differences tend to diminish, the time

series tend towards a common and unique limit, thus the system is simply auto-regressive and

does not exhibit the path dependency property.

To know which phenomenon occurs, we computed and recorded the variation coefficient

(variance/mean) of the generality index φ̃
t
of ten identical runs of the process. As the parameter
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α is likely to be critical in such respect we have done the experiment for different values of α. In

order to see potential qualitative differences with the creation index, we computed the variation

coefficient for creation index ςt. The results obtained for both ςt and φ̃
t
are presented in the

graphs a and b of Figure 5.
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Figure 5. Evolution, over 1000 periods, of the variation coefficient of both the creation index

(graph a) and the generality index (graph b) from ten identical runs of the process, computed

for different values of α (α = 0, 1, ..., 6). Numerical experiments realized with fixed values of

the other parameters: δ = λ = −γ = 1.

As one can observe in comparing graphs a and b of Figure 5, one gets very contrasted results

between the path dependency of the system while focusing either on its creation behavior or

on its generality16. The variation coefficient of the creation index is clearly very small and

decreasing toward zero as time goes (whatever the value of its parameter α). Thus clearly, the

system does not exhibit a path dependency property when looking at the creation of research

areas. The opposite occurs when one looks at the generality index. Indeed, one can observe

in graph b that the variation coefficient of φ̃
t
increases with time, the slope being positively

influenced by parameter α. Thus the initial events - the first choices of where to solve problems

- can durably influence knowledge production. As a consequence, the dedication of scientific

disciplines toward applied or more general knowledge can be influenced not only by their en-

dogenous characteristics but also by the very history of disciplines and the path they toke at

16Recalling that both indexes are comprised between zero and one.
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their beginning. Early pioneers of new scientific disciplines are therefore responsible for shaping

them and giving them a more or less ‘applied’ turn.

4 Incentives, motivations and the outcoming disciplines: pa-
rameters effects study

A given combination of parameters values provides the exogenously defined relative weight-

ing of the various typical features of Open Science rewarding. As indicated above it is giving

both the specific motivations of the scientific community and the effective rewarding practices.

In the following we first conduct a dedicated analysis of parameters effects on the outcoming

disciplines through computing their two indexes defined in equations (6) and (7) after a given

long period of time. Next we discuss the generic features of the typical disciplines generated by

opposed values of parameters.

4.1 Parameters study

To get clearer results, we present several simulations according to the following protocol.

First, set α = 1. Then each time one of the three parameters (δ, λ, γ) is fixed while the

two others vary. For each couple of values of the two tuned parameters, we compute the

values of the indices obtained after 1000 periods. From now on, we write ς◦ for ς1000 and φ̃
◦

for φ̃
1000

. Every single point in the graphs presented here (Figure 5) then corresponds to the

values of one index computed for a singular grown tree (thus 400 trees were generated for each

simulation experiment). These 2 × 2 simulation process is used because it allows us to assess
the robustness of the parameter modification effects for various values of the other parameters.

For controling purposes, the same experiments have been reproduced for different values of the

fixed parameters. Moreover, the whole experiment has been reproduced with different values

of α. As a first global result, we found that when α increases the slopes in the indexes due

to modifications of the other parameters become steeper. Thus the effects discussed below are

valid under different values of the community’s sensitivity to the academic incentives tuned

through parameter α.
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Figure 5. Creation index ς◦ (left: graphs a, b, and c) and generality index φ̃
◦
(right: graphs

d, e and f). Graphs a and d: λ and γ vary, δ = 1. Graphs b and e: δ and γ vary, λ = 1.

Graphs c and f: δ and λ vary, γ = −1. In all experiments, results are observed after 1000
periods and with α = 1.

Table 2 summarizes the main results obtained.
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δ γ λ

ς◦ & & −→
φ̃
◦ % % &

Table 2. Effects of the parameters ( δ, γ, λ) on the indexes ( ς◦, φ̃
◦
). A positive effect is

denoted by %, a negative by &, and no effects by −→.

Both a higher δ and a γ closer to 017 decrease creation: looking for citation rents, academic

scientists tend to prefer improving knowledge within existing areas rather than exploring new

ones, both when the size of the audience (an important sub-tree) counts much and when rewards

for performing pioneering research are lower. Higher δ tends to favor research performed at a

high level of generality because of the following: research areas which are more general are often

(but not systematically) the ones that have the strongest audiences, i.e. research performed

there is likely to be cited by research performed in more specialized but connected areas.

Thus, general areas become naturally more attractive on average. In a similar fashion, since

γ regulates the incentives to dedicate research efforts toward more or less improved research

areas, when it increases it diminishes the creation of research areas and prevents the discipline

from achieving an important level of specialization. That naturally comes from the fact that

the model assumes specialization to result from successive downward exploration. Thus some

pretty general disciplines may in fact be ‘under-developed’ trees, therefrom lower specialization

may be, in certain circumstances, just a consequence of a lack of exploration behaviors. Finally,

higher λ increases the attractivity of more specialized research areas, and therefore the average

distance to the root.

4.2 How motivations and incentives lead to various outcoming disciplines

We have just seen how the features of the outcoming disciplines are influenced by each

parameter. We now take the opposite point of view, by taking polar forms of the discipline-

trees and wonder how they may be generated? Furthermore: What is their probability of

17Recalling that γ is negative, thus “γ increases” is similar to “γ becomes closer to zero”.

24



occurrence because of reinforcing (or opposed) effects of the parameters? And finally, are these

forms likely to be stable over time considering the generic properties of the process highlighted

in the previous section?

Let us first define the four polar forms of disciplines coming from opposite values of the two

indexes: the ‘star’ form is obtained when the discipline is both highly general and research areas

are highly improved (high φ̃
◦
, low ς◦), a ‘well’ form is said to arise when the discipline is highly

specialized and counts only few research areas (low φ̃
◦
, low ς◦), the ‘flake’ form comes from

many creations at a quite general level (high φ̃
◦
, high ς◦), and the ‘rake’ form stands for both

high specialization and many creations (low φ̃
◦
, high ς◦). These configurations are exposed in

Table 3 below.

high φ̃
◦

low φ̃
◦

low ς◦ ‘Star’ ‘Well’

high ς◦ ‘Flake’ ‘Rake’

Table 3. The polar forms of the scientific disciplines.

We have seen that δ and γ play systematically in an opposite manner. Thus, in the one

hand, they can counterbalance each other, in the sense that the parameter values which lead to

specialized (general) disciplines are also the same that prevent their areas to be much improved

(numerous). That makes both the ‘star’ and the ‘rake’ forms quite unlikely to emerge since the

specific traits of each form are generated by opposed values of the parameters. On the other

hand, they may also reinforce one another. That leads to the idea that the ‘flake’ and the ‘well’

forms are quite probable ones: the factors that orient the disciplines towards being specialized

(general) tend also to orient the research efforts toward being less (more) exploratory.

Nevertheles, as we have seen before, the creation of new research areas is likely to diminish

through time: thus the ‘flake’ forms might be seen as a transitory state of the ‘star’ that may

emerge in the long run: once the community has generated a certain number of research areas,

the relative incentives for improving research areas may overbalance the exploration ones, and
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thus, among the existing areas, the general ones which have a larger audience, become more

attractive. As a matter of fact, the ‘star’ form has much in common with a disciplines such

as Physics, which is an old and fully integrated discipline, which has explored many specific

and applied areas and where the most theoretical and general discoveries may benefit to a large

audience dispersed in many specialized research areas.

On the opposite corner, the ‘well’ form seems to be a quite interesting and robust typical

shape of scientific disciplines since specialization is a path dependent outcome and exploration

tends to decrease. Such disciplines emerge because of weak incentives for performing pioneering

research and weak rewarding of research due to its relative audience. The latter may come from

scientific communities that would not (or weakly) take citations into account in the evaluation

process as compared to publication counts. In such circumstances, the attention of scientists

may follow one single (or few) line of investigation, while excluding many research opportunities

in a quite ‘autistic’ fashion. Thus, one obtains a major ‘science well’ as illustrated in Figure 6.

Figure 6. A ‘science well’.
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5 Extension: Intertemporal correlation of choices

In this section we introduce a new feature of the dynamic process, namely an intertemporal

correlation of choices which stipulates that present choices are directly influenced by previous

ones. Two main rationales motivate that trait. The first one has much in common with

what leads scientists to say that a given research areas is ‘hot’. A ‘hot’ research area is often

one where discoveries recently occurred. It has been showed in survey-like studies of problem

choice, that such factor is one of the main reasons that motivates researchers to investigate

scientific domains (Rappa and Debackere, 1993). That is probably because academic agents

may rationally take recent discoveries as a signal that there is still much to be done there.

Moreover, there is also some anecdotal evidence that support the idea that such ‘hot’ areas

tend to highly attract researchers’ attention even if they are not precisely specialize in that

area. Thus there is more reputation to be gained in such areas audience the audience of which

is temporary increased going beyond the classical boundaries between sub-fields. The other

justification for introducing an intertemporal correlation is due to cognitive specialization of

knowledge production. Knowledge can be considered as having a local character (Stiglitz, 1987)

in the sense that agents do specialize in specific areas of a discipline. Thus cognitive mobility

is costly, and reallocation of efforts may be quite costly for agents, especially when they have

invested much and when the time to go before retirement is getting shorter (Stephan, 1996).

Thus the problem choices become globally sticky that is the reallocation of efforts due to recent

modifications in incentives is lowered. In the following we introduce definitions and subsequent

improvements of the process before presenting the results.

5.1 Definitions

Let the vector Ψt ⊂ Nm denote the memory of the system at period t. This vector records

the research areas where the m (∈ N) last problems were solved, that is during the m last

periods. Thus this parameter gives the length of the window for the systems memory. The

memory vector is formally defined as: Ψt = {(oτ )}τ=t−m−1,...,t−1, recalling that (oτ ) denotes
the research area where a problem has been solved at period τ . This leads to a state of the

system which is now completely defined by T t =
¡
N t, Et,Φt,Ψt

¢
.
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Let us now denote the hotness of any research area (o) at period t by ψt
o, which is defined

as the number of past evolutions that affected it during the last m periods. That is:

ψt
o =

1
m

P
oτ∈Ψt Γ(oτ , o) (8)

with Γ(·, ·) defined in Section 2. Thus, one may label a cold research area as an area

which has had no problem solved during the m last periods, i.e. when ψt
o = 0. Similarly, a

sub-discipline Gt
i is said to be cold when

P
o∈V t

i
ψt
o = 0.

Now let the incentives for problem choice be modified by the new variable introduced,

through the following slight modification of the expected reward function given in equation (3):

ωto = (1 + so)
δ ¡1 + dto

¢λ ¡
1 + φto

¢γ ¡
1 + ψt

o

¢β
(9)

The parameter β (β > 0) tells how much agents’ choices are influenced by the hotness

character of research areas

5.2 A phase transition phenomenon

In order to study the effects of areas hotness
¡
ψt
o

¢
on the system’s behavior, we let its

associated parameter β vary. A series of numerical experiments has been realized for fixed

values of the other parameters. Some results of such simulations are presented in graphs a and

b of Figure 9. Therein, one may observe that the creation index decreases sharply down to zero

when β increases. Moreover, the generality index appears to increase sharply for a critical value

of β in a phase transition-like phenomena having a threshold at βc ' 3.
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Figure 9ab. The max/min/mean values of indexes ς◦ (graph a) and φ̃
◦
(graph b) obtained

for different values of β. Other parameters: α = δ = λ = −γ = 1,m = 10.

28



This properties were reproduced for very different values of the parameters. We also studied

the possible influence of the memory size parameter (m) and found no evidence of any influence

on the dynamics.

5 Conclusion

In this paper we have presented an original model of knowledge production within scientific

disciplines. It is a graph theoretical model in which knowledge production is sequential. The

main question tackled in the paper is how the specific incentives provided by the academic

reward system influence researchers’ problem choice and thus shape the stochastic process of

knowledge generation within scientific disciplines. Let us sum up the main results obtained.

We first found that the process exhibits a sustained decline in the generation of new areas.

This phenomenon is caused by the specific reward system in science which leads researchers to

seek for others’ attention. When the discipline grows, the relative rewarding of problems located

in already developed fields increases: because their audience becomes larger, contributions to

such domains are more likely to be cited. This is not to be seen as a fortiori negative: since

more knowledge are likely to be produced in larger domains, present contributions there are

likely to benefit to many late improvements. That is directly connected to the fact that the

citation system traces and rewards knowledge spillovers. Nevertheless, this first result suggests

that the rewards for performing pioneering research should be increased when the discipline

grows in order to asymptotically sustain research areas generation. We next found that the

stochastic process exhibits path dependency with regard to the specialization of disciplines.

More specialized disciplines tend to become even more specialized through time. We found

that this property is enhanced when the concentration of scientists’ attention on the most

rewarding areas is stronger.

In addition to these first series of results, parameter studies allowed us to highlight the

possible occurrence of a quite ‘autistic’ dynamics leading to a ‘well’ form of discipline having

left many research opportunities unexplored. We found that increasing the relative rewarding of

pioneering research is again a key leverage parameter because, under such circumstances, it also
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(unexpectedly) renders general problems more attractive. We argued that, such a situation is

more likely when the relative rewarding through recording citations is outweighed by publication

counts. Thus, reinforcing the former mechanism may partly prevent from getting such ‘science

well’. Lastly, as empirical evidence suggested, we studied how an intertemporal correlation of

choices may affect the dynamics. We found that the system collapses when such an effect is

high. This suggests that scientific communities should be prevented from being too sticky in

connection with problem choice and should preserve the collective ability to reallocate efforts

over problems.
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