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1 Introduction

The focus on spatial dependence has occurred in a range of �elds in economics, not

only in urban, real estate and regional economics, where the importance of location and

spatial interaction is fundamental, but also in public economics, agricultural and envi-

ronmental economics, and industrial organization. Recent studies concern among others

the interplay between infrastrucure, investment and development (Seitz and Conrad,

1997, Seitz, 2000), the study of responses of real wages to local and aggregate unem-

ployment rates over time (Ziliak et al., 1999) and the estimation of a hedonic model for

residential sales transactions (Bell and Bockstael, 1999).

From a consumer analysis side, the presence of variables and errors which are funda-

mentally spatial in character is natural. The formation of preferences, through observa-

tion and replication of neighbors' behavior (habit formation), may lead to the presence

of a spatially correlated dependent variable. At the same time, the availability of substi-

tute goods, the dissemination of information, and soil and climate conditions may all be

unobservable variables which are potentially spatially correlated and which contribute

to spatial correlation in demand errors.

This paper presents and estimates empirically a lattice model using household panel

data on water consumption.1 Speci�cally, it is argued that a spatial model of dependence

between observations can be useful to model dependence among economic agents. Each

agent's observation is modelled as a realization of a random process at a point in an

Euclidean space: a random �eld.2 The distance between two agents in this space may

re�ect their proximity or similarity with respect to individuals' observables as well as

unobservables, a notion of "economic distance" or "social distance".

Arguments for constructing dependence structure based on the economic distance

between agents have been suggested in several studies. For instance, Hautsch and Klotz

(1999) argued that geographic distance becomes less and less important while individ-

uals and �rms pay more and more attention to those being in the same comparable

situation. Then, the occurrence of spatial correlation is not restricted to geographical

spaces: observations can be thought of as being located in an abstract space, with some

socioeconomic characteristics (such as per capita income or percentage of the population

in a given racial or ethnic group etc.) being the dimensions. Those observations are then

1To illustrate lattices let us consider a spatial process fZ� : � 2 Sg where S � R
d is an index set of

a countable collection of regularly or irregularly scattered spatial sites and these sites are supplemented

with a neighborhood structure. Neighborhood structure is generally modeled either by a connectivity

matrix (say Wn, where Wn is a n � n matrix, with elements wij = 1 if sites i and j are juxtaposed,

wij = 0 if not; n is the number of sites) or by a graph-theoretic formalism (the sites become vertices,

which are connected with edges for contiguous objects). Such spatial processes are called lattices. See,

e.g., Cressie (1991) for a taxonomy of spatial data structures.
2See also e.g., Case (1991) and Driscoll and Kraay (1998) for applications of random �elds.
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said to be similar. This approach has been used successfully, among others, by Case,

Rosen, and Hines (1993). Another example is the study of Conley and Ligon (1995) on

growth regression, where the measurement of economic distance used to compute spa-

tial standard errors is a measurement of transportation cost of physical capital between

countries. It should be noted that the economic distance measurement is particularly

useful in case data are collected at an individual level (households) or micro-level data

for which geographic distance (in a physical sense) cannot be computed.

In this study, we combine the economic distance framework and the empirical com-

plexity that follows from the use of generalized method of moments (GMM) in estimat-

ing lattice models. The joint distribution of random variables at a set of points is a

function of the economic distances between them. This modelling strategy allows for a

simple characterization of considerable interdependence among agents. It incorporates

a more complex dependence across individuals than models with group-speci�c e�ects,

e.g., Moulton (1990), or with scalar indexed dependence, e.g., Domowitz and White

(1984). However, it requires that the econometrician has information regarding this

economic distance.

As demonstrated theoretically in Conley (1999), GMM estimators remain consistent

with such dependency but their asymptotic distribution theory and subsequently, co-

variance matrix estimation procedure and e�cient GMM estimators are di�erent from

the time-series situation. The approach adopted here is to estimate variance matrices

using nonparametric methods that allow for spatial dependence. The time-series ana-

logue is that followed by, e.g., Newey and West (1987), Andrews (1991), White (1984),

or Domowitz and White (1984). Covariance matrix estimation is presented in the situ-

ation when the economic distances between observations are measured exactly. In that

case, a class of consistent positive semide�nite (p.s.d.) estimators of the asymptotic

variance matrix is introduced.

The empirical purpose of the study consists in estimating spatial patterns in the

residential demand for drinking water using households' micro-level data. The data has

been collected bi-annually from 1994 to 1997 over one thousand of people. The presence

of spatial dependence in the analysis of water demand is usually attached to availability

of water resources as well as habit formation. In this context, the speci�cation used may

be viewed as a model of endogenously changing tastes, which permits to check for social

interdependence by testing the extent to which households look to a reference group

when making water consumption decisions. It may also be thought of as indicating

the magnitude and the direction of interactions between consumers with respect to the

availability of water resources. For instance, Priscoli (1999) reported that a river basin

and watershed has among the most persistent examples of how the functional and spatial

necessities of water can form consumers' preferences. Indeed, the spatial and functional
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characteristics of a river basin in�uenced human settlement and interaction long before

the idea of the river basin started to be formalized into legal and administrative terms.

As mentioned above, the construction of a neighborhood structure is based on the

notion of economic distance. Here, we use households' income. Although such an

indicator should be considered carefully, for the sample concerned, this is the best

indicator we have at hand to measure the similarity between households.3 Moreover,

when using data on individuals, we cannot de�ne a physical distance in a geographical

sense between them. As a result, the impact of allowing for spatial dependence will

bear upon inference, not parameter estimates. The spatial problem will then be to

correct for the standard errors of parameter coe�cients for spatial correlation based

on location. Thus, we will focus both parameter estimates and compare the standard

errors for various variance estimators.

For the sample concerned, we �nd that accounting for spatial dependence implies

higher standard errors for all parameter estimates so as to strongly modify patterns of

signi�cance. We also observe the following �nding. One of the main features in the

data is that of di�erentiated cold and hot water meters by household. Such a �ne water

consumption recording should prompt households to save water. Estimation results

indicate that this is not so.

The remainder of the paper is organized as follows. Section 2 provides the theoretical

background. We give an overview of the model and present the estimation strategy. The

speci�cation is a statistical model of spatial dependence where agents live on a lattice.

The large sample results for GMM estimators and variance matrix estimators using

spatially dependent data are stated. Section 3 presents the data. Since the data are

new and have necessitated an important collection work, we give a detailed description

of the salient features following from the sampling procedure as well as descriptive

statistics. Section 4 presents the empirical implementation and discusses estimation

results. The policy implications are also discussed. Concluding remarks are given in

Section 5.

2 Theoretical framework

The speci�cation is a modi�ed version of the model developed by Conley (1999). We

�rst state the data structure underlying the model. Then, we present the estimation

procedure based on GMM estimators. Finally, we discuss the issue related to the esti-

mation of the asymptotic variance matrix.

3As pointed out by Anselin and Bera (1998), the use of socioeconomic indicators to measure economic

distance may pose problems for poorly chosen economic determinants.
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2.1 Model and data generation process

The starting point of the analysis is a population of individuals (for example households)

which is assumed to reside in a Euclidean space, with each individual i located at a point

si. The investigator's sample consists of realizations of agents' random variables at a

collection of locations fsig inside a sample region. The latter is assumed to be a sequence

of �nite closed, convex regions f��g which increases in area as � !1. The population

of potentially observable locations forms a lattice with irregular spacing denoted H.

The sample consists then of H \ �� . In order to increase the sample size as � ! 1,

�� is assumed to grow uniformly in at least two non-opposing directions.4 Attached to

each position s is a vector Xs of random variables.

In a given sample, the econometrician's data consists of two parts. The �rst contains

the realization of Xsi at all points si within the set �� , i.e. fXsi : si 2 ��g. The number
of points N� in �� is a random variable. The second part of the data is a N� � N�

symmetric matrix D, with dij denoting an element of D, that is, the distance between

points si and sj.

The population at hand is assumed to reside at integer coordinate locations with

known economic distances. Then, the positions si of individuals in the sample can be

inferred from the interpoint distances up to a normalization of location and orientation.

A method of �nding coordinates of points in an Euclidean space given their interpoint

distances is among others the well known Multidimensional Scaling (MDS).5 Because

the econometric theory here does not depend on these two normalizations, locations are

then observed.

The data generating process has two components. The �rst part is a sampling

process that determines which individuals and hence which locations si are observed.

The values of attributes of individual i are determined by Xs. Following Clark (1973),

the observable Xsi on the lattice H, is said to be subordinated to Xs and the process

generating H is called the directing process. We consider these concepts in turn.

Let Z2 = f(i; t)ji = 1; � � � ; N ; t = 1; � � � ; Tg be the two-dimensional lattice of

integers with i and t denoting respectively the individual and the time subscript. The

value of random variables at each location si is determined by a `� 1 random �eld Xs

with the index s 2 Z2. The Xs is assumed to be stationary, i.e. the joint distribution

of Xs for any collection of indices s is invariant to a shift in the indices. Xs is also

assumed to be mixing. The mixing condition will be de�ned later. The directing process

determining H can be described by a regular lattice indexed random �eld Ws that is

equal to one if location s is sampled and zero otherwise, with expectation E(Ws) = �

4This assumption is made to ensure that indexing by a dependence vector is not super�uous.
5See e.g., Maital (1978) and DeSarbo, Kim, and Fong (1999) for examples of application and further

details on the MDS.
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and is assumed to be stationary and mixing.

The directing process Ws can be viewed as arising from both the distribution of the

population on the lattice and the actual survey sampling scheme used in collecting the

data. For example, if the population of agents were uniformly distributed on the plane

and the sample was an independent sample of agents thenWs would be an i.i.d. dummy

variable. If, however, the population was concentrated in certain parts of the plane and

agents were sampled independently then Ws would exhibit positive spatial correlation.

However, spatial correlation in Ws could also arise from cluster sampling of an evenly

distributed population. Thus it is not possible to distinguish sampling schemes from

population distributions given locations alone.

Conley (1999) considers the following mixing condition. Let F� be the �-algebra

generated by a given random �eld  sm with sm 2 �, where � is a compact set, and j�j
is the number of sm 2 �. Let �(�1;�2) denote the minimum Euclidean distance from

an element of �1 to an element of �2. The mixing coe�cient is de�ned as

�k;l(n) = sup
(F12F�1 ;F22F�2 )

fjP (F1 \ F2)� P (F1)P (F2)jg; (1)

j�1j � k; j�2j � l; �(�1;�2) � n:

The de�nition of mixing for Xs and Ws requires �k;l(n) for each process to converge to

zero as n!1 at a rate which will be speci�ed below.

2.2 Estimation strategy

The pattern of dependence is that where the distance between agents' positions, cor-

responding to their economic distances, characterizes the dependence between their

random �elds. If two agents' locations si and sj are close, then their Xsi and Xsj may

be very highly correlated. As the distance between si and sj increases, the random vari-

ables Xsi and Xsj become closer to being independent in the sense made precise above.

In the following, we provide conditions for the consistency and asymptotic normality of

the GMM estimator when the Xsi are dependent, as well as tractable p.s.d. covariance

matrix estimators.

We assume that economic theory has produced a moment condition involving Xsi

which can be used to estimate a parameter vector of interest, �0 identi�ed as the unique

solution of the moment condition:

Eg(Xsi ; �0) = 0; (2)

where E is an expectation operator with respect to the true distribution of Xsi ; g :

R
`�B ! R

� ; �0 is a k�1 vector of the true unknown parameters to be estimated and �

is in the interior of B, a compact subset of Rk ; � is assumed greater than or equal to k,
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so there are � � k over-identifying restrictions. A GMM estimator �̂� of �0 is obtained

as

�̂� = arg min
�2B

"
1

N�

N�X
i=1

g(Xsi ; �)

#0
S�

"
1

N�

N�X
i=1

g(Xsi ; �)

#
; (3)

where S�
a.s.! S0, a positive semide�nite weighting matrix. If S� is a consistent estima-

tor of the inverse of the asymptotic covariance matrix of the moment conditions, we

obtain e�cient GMM estimates of �0, see, e.g., Hansen (1982). Let us consider now the

asymptotic properties of �̂� .

A set of su�cient conditions for consistency is analogous to the set of conditions

assumed by Hansen (1982) in the time-series case. The only di�erence between the

current spatial model and the time-series case is that a pointwise law of large numbers

for random �elds rather than one for time series is used.

Assumption 1 (A1:i) �� grows uniformly in two non-opposing directions as � !1;

(A1:ii) S� converges in probability towards S0, a positive-de�nite matrix; (A1:iii) Xs

and Ws are mixing; g(:; �0) is Borel measurable for all � 2 B and g(X; :) is continuous

on B for all x 2 R` , and �rst moment continuous on B.

Proposition 1 (Conley, 1999) Given conditions (A1:i)-(A1:iii), �̂� ! �0 in proba-

bility as � !1.

The asymptotic distribution of �̂� follows from the mean value expansion of g(Xsi; �̂� )

around �0. We assume that for each component of g(:), there exists ��i such that

gi(�̂� ) = gi(�0) +
@

@�0�
g(��i)(�̂� � �0); (4)

where ��i has elements between �̂� and �0. The mean value expansion yields the expres-

sion:

p
N� (�̂� � �0) =�

8<
:
"

1

N�

N�X
i=1

@

@�̂0�
g(Xsi ; �̂� )

#0
S�

"
1

N�

N�X
i=1

@

@�̂0�
g(Xsi ; �̂� )

#9=
;
�1

�
"

1

N�

N�X
i=1

@

@�̂0�
g(Xsi ; �̂� )

#0
S�

1p
N�

N�X
i=1

g(Xsi ; �0):

(5)

The conditions for consistent estimation of the �rst portion in the right-hand side of

the expression (5) that converges in probability, are essentially the same as in the time-

series case. Regularity conditions for the second portion of that has an asymptotic

distribution, that is

1p
N�

N�X
i=1

g(Xsi ; �0); (6)
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are slightly di�erent from the time-series case. A central limit theorem due to Bolthausen

(1982) for stationary mixing random �elds on regular lattices can be used. The expres-

sions for limit theorems used in Conley (1999) are simpli�ed by de�ning a process that

is observed at all points within the sample region �� so that there are no missing

observations. Let a new process Ys(�) take on the following value at a point s:

Ys(�) =

8<
:g(Xs; �) if Ws = 1;

0 otherwise:
(7)

Observe that partial sums of Ys(�) equal partial sums of g(Xs; �). Expressing (1=
p
N� )PN�

i=1 g(Xsi; �0) in terms of Ys(�0) yields:

1p
N�

N�X
i=1

g(Xsi ; �0) =

p
j�� jp
N�

1p
j�� j

X
s2��

Ys(�0); (8)

where the notation j�� j refers to the number of integer lattice locations falling within

�� . A limit distribution for (6) is obtained by applying Bolthausen's central limit theo-

rem to (1=
p
j�� j)

P
s2��

Ys(�0) and showing that
p
j�� j=

p
N� converges in probability

(Bolthausen, 1982). Additional moment and mixing conditions required to obtain a

limiting distribution for �̂� are the following.

Assumption 2 (A2:i)
P1

m=1m�k;l(m) <1 for k+ l � 4; (A2:ii) �1;1(m) = o(m�2);

(A2:iii) for some Æ > 0, E(kg(Xs; �0k)2+Æ and
P1

m=1m�1;l(m)Æ=(2+Æ) < 1; (A2:iv)

(@=@�)g(Xsi ; �) is Borel measurable for all � 2 B, continuous on B for all X 2 R` , and
�rst moment continuous; E[(@=@�0)g(Xsi ; �0)] exists and has full rank; (A2:v) de�ning

V =
P

s2Z2 EY0(�0); Ys(�0)
0, V is a non-singular matrix.

Xs andWs are assumed to satisfy the mixing and moment conditions (A2 : i)�(A2 : iii).

Conditions (A2 : iv) and (A2 : v) ensure that the expected derivatives are consistently

estimated and expectations of derivatives and variance matrices have full rank. These

conditions imply the following claim.

Proposition 2 (Conley, 1999) If conditions (A1 : i)� (A1 : iii) and (A2 : i)� (A2 :

v) are satis�ed, then

p
N� (�̂� � �0)

d! N
�
0;D0

0�
�1D0

�
; as � !1

where � = E(Ws) and

D0
0 =

�
E

�
@

@�00
g(Xsi ; �0)

�0
S0E

�
@

@�00
g(Xsi ; �0)

���1
E

�
@

@�00
g(Xsi ; �0)

�0
S0: (9)
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2.3 Covariance matrix estimation

The asymptotic covariance matrix is based on the moment conditions and is estimated

as


 = ��1V = �
X
s2Z2

EY0(�0)Ys(�0)
0: (10)

To describe how the estimation procedure works, it is convenient to refer to the two

coordinates in s directly. So let s = [m1;m2]. Also take the region �� to be a rectangle

so that m1 2 f1; 2; � � � ;M1g and m2 2 f1; 2; � � � ;M2g where the dependence of M1 and

M2 on � is suppressed to ease notation. The sum in (10) can be interpreted as a sum

of spatial autocovariances, analogous to the time-series case where the in�nite sum of

an autocovariance function is the asymptotic variance matrix of sample averages. A

spectral representation of covariance stationary processes on the plane is also available,

allowing the interpretation of the covariance matrix in (10) as a spectral density at

frequency zero.

Familiar discrete time-series spectral density estimation techniques generalize to

random �elds on integer lattices.6 Smoothed periodograms can also be used to estimate

two-dimensional spectra; see, e.g., Priestley (1989) for details on this topic. For the

special cases where Ym1;m2
(�0) is Gaussian or is a linear process, smoothed periodogram

spectral density estimators have been proven to be consistent by Rosenblatt (1978).

However, the above restrictions on Xs, g and Ws do not imply that Ym1;m2
(�0) is

Gaussian or linear. Furthermore, the fact that the parameter �0 is unknown and has to

be replaced by the estimate �̂� must be addressed.

Let us de�ne LM1
and LM2

as lag truncation points for M1 and M2 respectively.

The class of variance matrix estimators we consider is that formed by taking weighted

averages of spatial autocovariance terms with weights that are zero for points farther

than LM1
and LM2

apart in each direction. This class is analogous to time-series

spectral density estimators whose time domain weights equal zero after a cut-o� lag.

The Bartlett window estimator used by Newey and West (1987) and the truncated

estimator in White (1984) are two such time-series covariance matrix estimators.

Let us consider the following estimator V̂ of V , constructed as a weighted average

of products of Ym1;m2
terms:

V̂ =
1

M1M2

LM1X
j=0

LM2X
k=0

M1X
m1=j+1

M2X
m2=k+1

KM1M2
(j; k)[Ym1 ;m2

(�0)Ym1�j;m2�k(�0)
0

+ Ym1�j;m2�k(�0)Ym1;m2
(�0)

0]

� 1

M1M2

M1X
m1=1

M2X
m2=1

Ym1;m2
(�0)Ym1 ;m2

(�0)
0;

(11)

6See, e.g., Yaglom (1987) for an extensive discussion of spectral representations of random �elds.
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for an array of weights KM1M2
(j; k) that are uniformly bounded and are such that

KM1M2
(0; 0) = 1 and KM1N2

(j; k) ! 1 as M1 ! 1 and M2 ! 1. The subtraction

of the second term is simply to remedy double counting of the j = 0 and k = 0 term

in the �rst sum. With known economic distances such an array is simple to construct,

a truncated weighting array with weights equal to one for j < LM1
, k < LM2

is one

example.7 As detailed below, a careful choice of weighting arrays will produce covariance

matrix estimates that are necessarily p.s.d.

If �0 were known, then we could use (N�=j�� j)�1 = (N�=(M1M2))
�1 to estimate

��1 and estimate 
 by (N�=(M1M2))
�1V̂ . This estimator is of course not feasible

because Ym1;m2
(�0) is not observed as �0 is unknown. The simple solution is to plug in

the estimator �̂� , for �0 yielding the feasible estimator of 
:


̂� =
1

N�

LM1X
j=0

LM2X
k=0

M1X
m1=j+1

M2X
m2=k+1

KM1M2
(j; k)[Ym1 ;m2

(�̂� )Ym1�j;m2�k(�̂� )
0

+ Ym1�j;m2�k(�̂� )Ym1 ;m2
(�̂� )

0
]

� 1

N�

M1X
m1=1

M2X
m2=1

Ym1;m2
(�̂� )Ym1;m2

(�̂� )
0
:

(12)

A set of su�cient conditions for consistent estimation of 
 are:

Assumption 3 (A3:i) The KM1M2
(j; k) are uniformly bounded, and KM1M2

(j; k) ! 1

as � ! 1 that is (M1;M2) ! 1; LM2
= o(M

�1=3
2 ) and LM1

= o(M
�1=3
1 ); (A3:ii)

for some Æ > 0, E(kg(Xs; �0k)4+Æ < 1 and for both the Xs and Ws processes the

mixing coe�cient �1;1(m1)
Æ=(2+Æ) = o(m�4

1 ); (A3:iii) E supB kYm1;m2
(�)k2 < 1 and

E supB k(@=@�)[Ym1;m2
(�)]k2 <1.

These conditions include restrictions on the weighting array in condition (A3 : i); a

strengthening of moment and mixing assumptions in (A3 : ii), and in (A3 : iii), a set

of conditions on g and its derivatives to ensure consistency despite using �̂� in place of

�0.

Proposition 3 (Conley, 1999) Given conditions (A1 : i)� (A1 : iii), (A2 : i)� (A2 :

v), and (A3 : i)� (A3 : iii), 
̂� converges to 
 in probability as � !1.

7As pointed out by Conley (1999), precise distance information is not needed to obtain a consistent

covariance matrix estimate. If distance information were only known up to broad categories then a

weighting array KM1M2
(j; k) that was constant over the distances within a category would be feasible

with this imprecise distance information. This estimator will not always be p.s.d., unfortunately, since

the spectral window corresponding to the step function space domain window (its Fourier transform)

will be negative in some regions.
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The weights KM1M2
(j; k) can be chosen so as to guarantee p.s.d. point estimates. One

way to construct such weights involves using a spectral representation of the stationary

process Ym1;m2
(�0) that is analogous to those for time series. V is proportional to the

spectral density matrix at frequency zero of the process Ym1;m2
(�0) and the estimator

V̂ can be expressed as a weighted periodogram spectral density estimator. The peri-

odogram is p.s.d., so if the weights KM1M2
(j; k) correspond to a non-negative spectral

window then the estimate will be p.s.d. Weights satisfying these conditions can be easily

made by the product of usual time domain weights.

Consider for example the two-dimensional weight function that is a Bartlett window

in each dimension:

KM1M2
(j; k) =

8<
:
�
1� jjj

LM1

��
1� jkj

LM2

�
for jjj < LM1

; jkj < LM2
;

0 otherwise:
(13)

Its Fourier transform is non-negative, so with these weights 
̂� will be p.s.d.

3 Data and variables

In this section, we describe and illustrate in detail the main features of the data. Others

considerations are given in the Appendix.

The data we use in this study are the only ones collected from the French network

of residential drinking water distribution. They are provided by the "O�ce Public des

Habitations à Loyers Modérés (OPHLM)" (the public agency for council �ats) of the

municipality of Sarreguemines.8 Data were recorded from 1994 to 1997. Except for the

�rst semester of 1995 when they are quarterly, all other observations have been collected

half-yearly. The sample represents an unbalanced panel of about 1000 households.

In general, two types of documents were used to collect the information we needed.

The �rst document summarizes indications related to water meters, indices of water

consumption and the actual dwelling area measured in m2. The number of the water

meter identi�es a given �at. At this stage, the main information is provided by the

consumption indices. Indeed, consumption values, expressed in cubic meter (m3) are

derived directly from the di�erence between two consecutive indices. When a household

leaves a residence, the meter is switched back to zero before a new entrance.

The second type of document we exploited is termed "lodging identi�cation sheets".

In this document, households are asked to describe their situation, e.g. their income,

their employment situation, the demographic structure of the family, their marital sta-

tus, etc. Unfortunately, we do not have any information on their appliances. Some

8The municipality of Sarreguemines is located in the Moselle department of in the North-East of

France.
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of these indicators (typically household characteristics) are used to construct dummy

regressors. We now consider the main features of the sampling scheme.

3.1 Water consumption

The OPHLM of Sarreguemines manages several blocks of �ats for which it also provides

drinking water. These residences may be one, two or more-room �ats or separate

houses. Since 1994, the OPHLM of Sarreguemines has adopted a new method for

continuous recording of households' consumption of water. This method is based on

the "remote reading technology" that makes it possible for example to separate the cold

water consumption from the hot water consumption. Residences built since 1994 have

been then systematically provided with individual water meters, whereas those built

before 1994 are gradually �tted out. The total population of households concerned by

these individual meters is about 70% of the total residences managed by the agency.

Water consumption from other residences is also available but only at an aggregate

level. Those residences are not included in our sample. Among households having these

meters at their disposal, about 40% are provided with two meters at least. Each of

these meters records information (real water consumption, water leaks, etc.) for each

type (cold or hot) of water consumption.

Thus, some households have di�erentiated water meters. Others have only one

water �ow meter gathering at the same time the hot water consumption and the cold

water consumption. That is explained in the following way. On the one hand, the

households whose hot water supply is ensured by a collective production of hot water

have at least two meters. In this case, the water invoice is also di�erentiated and the

price elements (the price of m3 and the share of the subscription) of each type of water

appear clearly on the invoice. For these households, one has the di�erentiated values

for cold water and hot water consumption. On the other hand, the households whose

hot water supply is ensured by an individual heating device do not have di�erentiated

meters. These households have one water �ow meter covering at the same time the

hot water and the cold water consumption. For example, they are households with

individual boilers who thus heat their own water. In this case, we do not have the

di�erentiated values of consumption. In such a situation, the water bill does not mention

the hot water elements. For several reasons which will become clear later, the current

study is concerned only with the total consumption of water, i.e., the sum of cold water

and hot water. Also, we will de�ne a dummy variable in order to check the impact of

di�erentiated water meters on demand.

The technique of remote reading facilitates the exploitation of these meters and

makes it possible to receive su�ciently precise information to study the demand for

water. The objective of the OPHLM is to save water by decreasing households' con-
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sumption. The method implemented to achieve this is, on the one hand, the installation

of individual meters which allow the individualization of water bills and, on the other

hand, remote monitoring which makes it possible to detect leaks and over-consumption,

and thus to detect possible problems.

For each block of �ats with households equipped with individual meters, there is

also an aggregate measurement of water consumption. This aggregate measure is carried

out with another unique meter which is di�erent from the individuals meters. We will

explain the relevance of this aggregate measurement later. For the moment, it should

be noted that the water consumption readings from the overall meters (aggregate mea-

surement) are carried out by the "Compagnie Générale des Eaux" (CGE), whereas the

readings of consumption on the individual meters are carried out by the "Société Lo-

ralsace de Contrôle et de Gestion (SLCG)". As we will see below, this double counting,

made on behalf of the OPHLM of Sarreguemines, makes it possible to calculate an in-

dicator called "network connection coe�cient" that relates aggregate readings and the

sum of individual readings.

The standard of living of the selected population varies slightly. Among them, some

households have a very low disposable income and are often in arrears with their water

bills. We do not know the proportion of households in this situation. However, Table 1

reports the history of the delayed payment of bills. We notice that the maximum arrears

does not exceed one month. See also the Appendix for details concerning problems raised

by the price of water.

Insert Table 1 here

The OPHLM of Sarreguemines has two documents which summarize the water con-

sumption of the households: water invoices of the CGE and the readings of the SLCG.

The water invoices contain aggregate information on water consumption, total water

expenditure and pricing. Meter reading established by the SLCG carries individual

information about consumption and the characteristics of the apartments. Previously,

the tenants paid for water in proportion to their dwelling area. Now they pay for their

consumption of water. This can encourage them to limit their consumption and to have

repaired water leakage quickly. Indeed, it was noticed that the immediate consequence

of the installation of individual water meters was an important decrease of the water

consumption in the two years which followed.

The system of remote reading provides automatically, every hour, the statement of

the meters. It is enough in a given period to �nd one hour during which consumption

is nil to be certain that there is no leakage. Conversely, a water �ow meter recording

continuously is an indicator of water leakage. The meters can detect very low �ows: 10

liters per hour with a precision of more or less 5%. This is enough to measure the �ow
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of a thin �lament of water (16 liters per hour) or of a �ushing system which leaks (25

liters per hour).

The meter reading that the SLCG transmits to the OPHLM summarizes in a large

table the consumption of water in cubic meter for a six month period. The organization

of the data is hierarchical going from the largest (group of buildings) to the smallest

(apartments). In a �rst part of the table, each tenant is identi�ed by a number referring

to the apartment which he or she occupies. The following information is given: the

building, the number of the staircase and the number of the �oor. The tenant of an

apartment is identi�ed from the date of arrival and departure. He or she also provides

information about the �at (F2 for two rooms, F3 for three rooms, etc., are thus coded).

Information regarding meters are also noted. The equipment in water meters varies from

one building to another. It is sometimes restricted to only one cold water meter, but

often comprises four meters: a hot water meter and a cold water meter in the kitchen,

and the same equipment in the bathroom. The meters are identi�ed by a number.

The second part of the table establishes the indices of consumption. For each meter,

we observe biannual indices, except the year 1995 for which we have quarterly indices.

Water volumes are obtained by substractiion between two consecutive indices.

For some residences, the OPHLM initiated collective water heating in spite of the in-

crease in hot water consumption which resulted. There are about 80 residences equipped

with individual boilers. Previously, the tenants, anxious to reduce the amount of the

hot water invoices that they paid to "Gaz de France", did not heat their home su�-

ciently (and in some cases not at all). This caused damp patches and the appearance of

mold in the dwellings. Consequently, the OPHLM adopted a collective heating system,

which resulted in an increase of hot water consumption. Indeed, from this moment, the

hot water bills are included in the charges of the dwelling and are no longer perceived

on the basis of invoices as previously established by "Gaz de France".9

So far we have outlined that there also exists an aggregate measurement of water

consumption from a di�erent meter to the individual ones. It is important to note that

for a given block of �ats, the sum of individual consumptions never equals the value

provided by the aggregate consumption meter. The aggregate consumption always

exceeds the sum of individual ones. This is due to extra-consumption: for example

the water used by equipment common to a building. From these two measurements

of water consumption, the Agency computes a coe�cient termed "network connection

coe�cient" which serves as an overvaluation factor of household consumption. This

9It is not a question of the perception of the invoices in the subjective sense of the agents, but of

the perception of an amount of money. However, one may think that the new mode of payment of the

hot water invoices induced some subjectivity by consumers, who are not any more directly in touch

with their hot water expenses. This expenditure remains nevertheless identi�able for the consumers

who wish to obtain this information.
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indicator ensures the link between the collective invoices of CGE and the individual

ones of the SLCG. For example, in 1997, the "network connection coe�cient" for a

given building was 1.053. Then the water consumption of all households living in this

building will be overvalued by 5.3% in the water bills. This is not always easily accepted

by consumers.

3.2 Income

The data concerning households' income come from a census carried out by the OPHLM

from Sarreguemines for the years 1994, 1995 and 1996. Each household was invited to

provide two documents: a "lodging identi�cation sheet" and a copy of their tax record.

They include the following elements:

� An exhaustive census of the tenants asking for each of them: name, date of birth,

sex, mention of a possible handicap and rate of disability which would result from

it, family tie with the holder of the lease, nationality, profession, employer, and

�nally monthly income and family bene�ts.

� Further information concerns the holder of the lease: his social identi�cation

number and marital status.

� Details of other sources of income such as maintenance, housing allowance, per-

sonalized help with housing, services coming from the "Caisse d'Allocations Fa-

miliales" such as the "Revenu Minimum d'Insersion", family allowances and "al-

location parent isolé").

The tax record and the lodging identi�cation sheet do not refer to the same year. We

will see the resulting problems. The information recovered is the tenant's annual income

plus that of the spouse and, if relevant, that of the children. It should be noted that

not all tax cuts correspond to a decrease of income. Some are to be regarded as choices

of consumption, others as arbitrations between consumption and saving.

The �rst category covers renovation and repairs carried out in the residence of the

taxpayer or gifts to "charities". In the second category all the contingency contracts

(complementary insurances, old-age insurances) are to be found as well as saving plans.

Paid alimonies on the other hand correspond to income reductions and are considered

as such. In general, the income data raises several problems. The principal reservation

relates obviously to the reliability of the statement of income. The tax records are

established on the basis of income tax returns. All the tenants do not provide their tax

record. Some lose it, others do not wish that one knows in a precise way their income

and state that they are tax free.
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Several di�culties were encountered when studying the identi�cation sheets. Indeed,

very often, the information they comprise does not �t the taxation record. One of the

reasons is the two-year delay between the identi�cation sheet and the tax record. The

population of the OPHLM is in general young and mobile and moves frequently. The

tenants sometimes provide income tax returns corresponding to a time when they did

not yet occupy their apartment. Moreover, the situation of the same individual can vary

rapidly. From one census to another, one of the parents can lose his (her) employment,

be entitled or not to social bene�ts, and as happens also sometimes, �nd another job. For

this same individual, the wages are thus prone to strong variations from one census to

another. So, in order to obtain an income variable for our empirical analysis, we gather

all income information available together, i.e. the sum of the non-salaried income and

the salaried income.

3.3 Households' characteristics

Households' characteristics are mainly computed from the lodging identi�cation sheets.

As noticed previously, in this document households are asked to describe their situation

including their income and source, their employment situation, the demographic struc-

ture of the family, their marital status, their date birth etc. We use this information

to de�ne some characteristics such as: age variables, profession of each person in the

family, total number of persons and number of children in the household, marital status

of parents, nationality etc.

On the one hand, for each household we have the family connections between the

members of the family, the profession of each person, their nationality, etc. when the

information is mentioned. On the other hand, the data on the phenomenon under

study, i.e. the demand for water, is provided at the household level. So, we have to

aggregate some of these characteristics to create usable variables. For example, the

basic data appears with the profession of each person in the family. For this very

micro-level information, we have enumerated about a hundred of professions. In this

case, we have used the o�cial nomenclature of socio-professional classi�cation to de�ne

seven categories of profession. See INSEE (1994) for the o�cial nomenclature. We

have also aggregated the nationality information to de�ne four nationality classes. The

individual date of birth and the family connections are combined to count the total

number of children in a family as well as the number of children under eighteen and

over eighteen. See Appendix (Table 10) for a de�nition of all variables.

Insert Table 2 here

Insert Table 4 here
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Insert Table 5 here

A summary of descriptive statistics is given in Tables 2, 4 and 5. National statistics

indicate an average water consumption tendency around 120 cubic meters per household

and per year. These �gures vary from one household to another. When we compare

these indicators with those computed from our sample, we notice that the average

consumption is of the same magnitude. Nevertheless minima are surprising. Indeed, for

the total water consumption, except for 1994.2 and 1996.1, all periods are associated

with a minimum of 1 cubic meter. At each period, about ten households are concerned

with these low values that do not result from measurement errors. This may be due to

the fact that only integer values of consumption are accounted for by the OPHLM. But

we do not have any explanation for these low values other than perhaps a long period

of absence of a single family. We also observe from Table 5 that French people, married

people and categories of profession CSP-5 to CSP-8 are the most represented in the

sample. Again see Appendix (Table 10) for a complete de�nition of variables included

the categories of professions.

4 Estimation results and discussion

In this section, we �rst describe the empirical procedures as well as estimation �gures.

Then, we discuss these results.

4.1 Empirical implementation

The data has two main characteristics which make it possible to apply the theoretical

framework sketched in Section 2. We have an unbalanced panel of households supple-

mented by a group structure. The group structure is represented by blocks of �ats;

about seventy are considered. In terms of the model described in the theoretical frame-

work, �� can be viewed as the geographic area of residences. The hypothesis that ��

grows to increase the sample size as � ! 1 corresponds both to gradually equipping

buildings constructed before 1994 with individual water meters as well as to constructing

new blocks of �ats from 1994, which then, are automatically equipped with individual

water meters. The two alternatives allow us to increase the sample size. Moreover, the

sampling process is such that we know in which block of �ats each household is located,

and what �oor they are on.

The directing process can be considered as corresponding to the distribution of the

population which is concentrated in certain parts of a plane: several households in a

given block of �ats. Moreover, there is a cluster sampling in that for each block of �ats,

we are interested only in households equipped with individual water meters. All these
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reasons motivate the use of a spatial framework. With this information at hand, we

�rst organize the data so as to form a lattice; then we compute the economic distance

between households as follows.

Since panel data is two dimensional by nature (one dimension pertaining to the

individual and the other to time), we take advantage of this and of the group structure

of the sample (block of �ats) to reorganize the data as follows. Firstly, take the time

dimension t = 1; � � � ; T . To each wave, associate the same number of individuals in a

given group. Then repeat this calculation until obtaining a remainder number of indi-

viduals, say, �N less than T . Remember that here, T = 7. To complete the organization,

withdraw �N from the sample. Indeed, unless you are lucky, all the individuals which

are present in the original panel will not be retrieved in the reorganized sample. Conse-

quently, a few observations ( �N < T ) will be eliminated. This is not a serious drawback

however because the individual dimension of a panel is usually larger than the time

dimension. It is known that for N > T , the asymptotic is usually based on N . We

then think that the elimination of a few observations will not modify this asymptotic.

It should be noticed from the reorganized sample that the two dimensions of the panel

are preserved. At the end, we have a lattice, the two dimensions of which can be viewed

as the associated coordinates.

The next step was to compute the economic distance between households. The

measurement we have used here is households income. The construction of the metric

is based on the multidimensional scaling algorithm of Mardia et al. (1979, pp. 394-423).

See the Appendix for a brief description of this algorithm. See also e.g., Maital (1978)

for alternative algorithms. To give an intuition of the procedure, let us say that the

general notion of distance underlying the multidimensional scaling may not correspond

directly to a Euclidean coordinate system. This procedure allows us to take any set of

distances between points and use the multidimensional scaling algorithm to obtain a set

of coordinates in a Euclidean space whose interpoint distances approximate the original

distance between points. Once we have a set of point coordinates we can proceed with

estimations.

Two types of estimation are conducted.10 First we estimate a panel data model

using �xed e�ects and random e�ects speci�cations. Then, we carry out estimations on

the lattice model.

First, we use the group structure of the data to test for individual correlation in

standard error estimates without modelling spatial dependence explicitly. Such an ap-

proach can give an idea about the presence of spatial patterns. Table 6 shows results of

10STATA and GAUSS procedures to implement the calculations of this paper are available from the

author upon request. Due to restrictions on the dissemination of the data, their use requires permissions

from the OPHLM of Sarreguemines.
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an estimation from pooled OLS with robust estimator of variance.11 The �rst part of

the table presents pooled OLS estimates without accounting for group structures. The

second part shows pooled estimates with group clusters in standard errors. That is, we

specify that observations are independent across groups but not necessarily independent

within groups. Observe the di�erence in the two robust standard error estimates. It

seems that there is a cluster e�ect which may also be indicative of the existence of spa-

tial e�ects. Some variables remain signi�cant on the two estimates, such as the dummy

of having a di�erentiated water meter for the cold and the hot water consumption, the

number of people in a family. For the professional dummies, only CSP-7 (i.e., retired;

see the Appendix (Table 10) to remember the de�nition of professions) remains signif-

icant whereas for the nationality dummies, only one (African) becomes insigni�cant.

Note however that the number of signi�cant variables decreases strongly, fourteen in

the non-cluster case, and only eight in the cluster case.

Insert Table 6 here

Observe that there is no price variable in the estimation. Again, see the Appendix

for issues concerning the price of water. There are several reasons for this. At �rst,

too many ambiguities characterize its determination. We are unable to obtain from

the OPHLM of Sarreguemines a current water price. Secondly, from the information

in Table 3, and assuming that the �xed parts are really considered by households as

a component of the price of water, one may be tempted to compute an average price

since the marginal price will be the same for all households. But, in this case, the only

variation in the average price will come from variations in consumption. Finally, the

OPHLM does not consider the �xed part as a component of the price of water as we

have pointed out in the description of data. Consequently, we do not include any price

information in the estimation.

Insert Table 7 here

In Table 7, we present �xed e�ects (OLS on the within regression) and random e�ects

estimates using GLS. That is we consider estimating an error component model of the

form yit = �+xit�+ �i+ "it, where �i is an individual speci�c e�ect; it di�ers between

units but, for any particular individual, its value is constant. "it is an idiosynchratic error

term with zero mean, and uncorrelated with xit and �i and homoskedastic. Whatever

the properties of �i and "it, if the relation is assumed to be true, it must also be true

that �yi = � + �xi� + �i + �"i, where �yi =
P

t yit=T , �xi =
P

t xit=T and �"i =
P

t "it=T .

Substracting yit� �yi provides the basis for the within regression, that is the �xed-e�ects

11Here, the term robust is taken in the sense of Huber/White/sandwich estimator of variance.

19



estimator. Variables for which no estimates are available in Table 7 are those which are

time invariant because of their elimination due to the above di�erence. The random

e�ect estimator follows from the hypothesis of random �i and uses the assumption of

no-correlation.12

Insert Table 8 here

Insert Table 9 here

In Table 8 we present OLS estimates and standard errors calculated in two di�erent

ways. First, the heteroskedasticity consistent standard errors are in the column labeled

White std.err. (HET). Then, standard errors computed using the estimator 
̂� de�ned

in (12) that allows for spatial dependence as well as heteroskedasticity are in the column

labelled SP (for spatial). In computing these spatial standard errors, we use the two-

dimensional Bartlett window de�ned in equation (13). We may expect that the same

qualitative results obtained here can be achieved with other kernels such as the truncated

or the spectral.13

The OLS estimator can be considered as a just-identi�ed GMM estimator. However,

the impact of allowing for dependence will likely be even greater in overidenti�ed systems

where estimated asymptotic variance matrices will determine weighting matrices and

hence parameter estimates and tests for overidentifying restrictions as well as standard

errors. This is done in GMM estimation allowing for spatial correlation. The results

are reported in Table 9. Again, we used the two-dimensional Bartlett window de�ned

in equation (13). For comparison, we have also reported estimates from two stages least

squares assuming spatial independence.

To check the validity of relation (2), that is the null H0 that the moment condition

underlying the GMM is veri�ed, we used the GMM criterion function test of overiden-

tifying conditions; see, e.g., Gouriéroux and Monfort (1991, pp. 619-631) for details.

From the estimated 
̂� and the assumptions of the model, the test statistic is

�n :=

"
1

N�

N�X
i=1

g(Xsi ; �̂� )

#0

̂�

"
1

N�

N�X
i=1

g(Xsi ; �̂� )

#
;

where �̂� is the vector of GMM estimates. Under the null, we have f�n � �2(1��)(��k)g.
The statistic is computed to be 6.898. As a result, given the associated degree of

freedom, there is no rejection of the null. Here again the standard errors for the spatial

GMM estimator are found to be higher than those from the non-spatial 2SLS.
12One advantage of the �xed e�ects model is that, since we are conditioning on �i, we do not need

to assume that they are independent of the regressors. However, the random e�ects model will yield

more e�cient estimates when it is appropriate. Mundlak (1978) and Chamberlain (1984) are classical

references on issues concerning the relationship between the �xed e�ects and the random e�ects models.
13See Andrews (1991) for several widely used windows.
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4.2 Discussion

The estimates in Table 8 and 9 provide evidence that allowing for spatial dependence

can be important for conducting inference. Overall, the magnitude of the di�erence

between spatial standard errors and HET standard errors are enough to change the

values of the t-tests for signi�cance and to impact the con�dence interval enough to

change the economic signi�cance of the estimated parameters.

Table 8 and 9 illustrate another important point. Usually it is assumed that spa-

tial dependence does not imply that standard errors will rise. Such results have been

found to be empirically valid. For example, Conley (1999) examined empirically whether

growth rates are related to measurements of human capital, political stability, �scal vari-

ables etc., using as economic distance the cost of transporting physical capital between

countries. Based on the same spatial methodology, he found that most of the stan-

dard error estimates corrected for spatial dependence are smaller than their non-spatial

counterparts. He argued that the asymptotic variances may be smaller with spatially

dependent data, just as asymptotic variances can be lower for dependent time-series.

Here we found something opposite. The correction of standard errors for parameter

coe�cients for possible spatial dependence based on location leads systematically to

higher standard errors.

In general, what can we learn through this study about household demand for drink-

ing water? First of all there is evidence of spatial dependence. As we have noticed

earlier, this result supports the idea that regionalized behavior in households' consump-

tion of drinking water matters in some French municipalities. Such a behavior may

also be linked to the availability of water resources. The spatial pattern here may also

be thought of as indicating the e�ect of no intra-individual variation in water prices.

Variations in this variable may depend on the distance between households.

We notice that the sign of the coe�cient of the income variable is always negative.

In general this coe�cient is signi�cant for estimates where spatial patterns are not taken

into account, whereas it is not signi�cant for spatial estimates. Maybe this is due to the

omission of a price indicator. Some characteristics also appear as determinant factors

of the demand. For example the average age of a household, the number of persons by

household and the dwelling area are signi�cant and the associated coe�cients carry the

expected sign. The signi�cance of profession and nationality dummies varies according

to estimations.

Previously, we emphasized that some households in our sample are equipped with

two water meters or more, whereas others have only one meter. In order to study the

e�ect of meter characteristics on the demand, we de�ned a dummy for having at least

two meters. The result is surprising. Indeed, whatever the estimation results are, the

dummy variable of water meter is highly signi�cant and positive, which means that the
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di�erentiation of water meters results in an increase of the demand. Remember that

the target of the OPHLM of Sarreguemines in equipping households in di�erentiated

individual water meters was to have them save water. Relying on our estimation results,

we can say that this objective is not necessarily attained. This result can be interpreted

tentatively as follows.

One may think that having a �ne recording of water consumption may reduce it.

This seems not to be the case: one explanation is that the values of each consumption

pattern (hot and cold consumption) that the system of remote reading will record, will

often be lower than the two combined. As a result, households will keep in mind the

di�erentiated �gures and will react to them rather than react to the aggregate �gure.

This may lead to a wrong perception of their actual water consumption. Thus, it would

be of interest to equip households with only one remote reading system which would

provide them with the two components of their consumption as well as an aggregate

�gure. It would be also of interest to clarify the pricing of water and to include it in

the remote reading system.

5 Conclusion

This study presents and estimates empirically a lattice model using households level

panel data on demand for water. The model allows us to make the most of infor-

mation on households' interdependence to characterize spatial dependence structures.

We use households' income to get such a measurement of economic distance between

them, though a measurement of their "similarities". Then, a MDS algorithm is used

to retrieve the coordinates of each household in a plane. These coordinates are used in

the estimation procedure to correct for spatial dependence in estimated standard errors

based on locations.

We showed empirically that accounting for such dependence impacts strongly the

standard error estimates for all parameters so as to modify levels of signi�cance. As a

result, the spatial dependence allows us to obtain consistent standard error estimates.

We have also noticed that the remote reading system that equips households does not

necessarily urge them to reduce their consumption.

A fundamental restriction placed on the structure of dependence is that it can be

characterized by a con�guration of points in an Euclidean space, presumably lower

than the sample size. Moreover, estimation is carried out under the assumption of

exact economic distance. That is there is no measurements error on the characteris-

tics of households which are used to compute the neighborhood relation. There are

many potential measurements of the economic distance between agents that are imper-

fect. When economic distances are measured with error, additional information may be
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needed on the distribution of measurement errors. Even if this complicates the estima-

tion procedure, it seems to be a promising direction for future empirical studies.
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Appendix A: Issues concerning the price of water

Water pricing is described in two documents: the tari�ng of CGE (overall water sale)

and the tari�ng of the OPHLM of Sarreguemines.

The invoices sent by CGE to the OPHLM of Sarreguemines are not individual

invoices but relate to buildings, even sets of buildings. They are calculated on real and

estimated water consumption. A new invoice model was adopted in 1994. It describes

in a clearer way than before the elements which compose the price of water. The �rst

part relates to the supply of water. It distinguishes between the "syndicate" tax and

what concerns the supplier (a two part tari�: a �xed part which does not depend on the

quantity and a marginal price). A second part re�ects the costs of collection or water

treatment. The third part gathers the taxes and royalties levied by the National Fund

for Water Conveyance (FNDAE), for the water agencies and the control of pollution.

Among these elements, one can see the total expenditure which incorporates all the

elements that compose the pricing and that is concerned with the CGE, i.e. the price

of the cubic meter and the �xed part.

The main di�culty encountered in the use of tari� information is that the network

of meters changed over time. It is thus sometimes di�cult to know to which building a

meter refers. The aggregations are not the same from one year to another, which makes

the comparisons di�cult. Curiously, the addresses indicated on the invoices are not

always reliable. For example, a building supposed to be located in "rue des Rossignols"
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is in fact located in "rue des Fauvettes". Or when the information about this building

is missing from "rue des Rossignols" and another appears in "rue des Hirondelles",

they may be the same building. We might therefore consider the numbering of the

meters, which remains constant. In addition, individual data consists in indications of

consumption, whereas the price of water appears only in the invoices, which represent

collective consumption. As a result, an increase in the price of water will result only in

an increase of the collective charges. The consumer will not be aware that he is saving

when repairing, for example, a tap which leaks.

The water invoices of the OPHLM are all calculated on real consumption. This

tari�ng scheme has changed during the years. We distinguish a variable part (the price

of a cubic meter or the marginal price) according to whether it concerns cold water

or hot water and a �xed part corresponding to the cost of the reading, the network

maintenance etc. The �xed part remains identical for the counting of cold water and

hot water. Curiously, the �xed part is not considered by the OPHLM as a component

of the price of water, even if it is clearly identi�ed as such in the charges, the details

of which is not provided to the tenants. Table 3 gives some relative information on the

price of water we have succeeded in identifying.

Insert Table 3 here

In general, due to the lack of precision and many ambiguities, we are not able to derive a

price of water other than a marginal price, i.e., the price of the cubic meter as computed

by the OPHLM of Sarreguemines. However, this price is the same for all the households

in a given period and varies very little during a this period of time.

Appendix B: Variables used in the estimation

Insert Table 10 here

Appendix C: Multidimensional scaling algorithm

Multidimensional scaling (MDS) is concerned with the problem of constructing a con�g-

uration of n points in Euclidean space using information about the distances between the

n objects. The interpoint distances themselves may be subject to error. The distances

need not be based on Euclidean distances, and can represent many types of dissimilar-

ities between objects. Also in some cases, one may start not with dissimilarities but

with a set of similarities between objects.

De�nition 1 A reasonable measure of similarity, s(A;B), should have the following

properties:
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i) s(A;B) = s(B;A),

ii) s(A;B) > 0,

iii) s(A;B) increases as the similarity between A and B increases.

De�nition 2 A distance matrix D is called Euclidean if there exists a con�guration of

points in some Euclidean space whose interpoint distances are given by D; that is, if for

some p, there exists points (x1; � � � ; xn) 2 Rp such that

d2rs = (xr � xs)
0(xr � xs):

Theorem 14.2.1 in Mardia (1979, p. 397) enables us to tell whether D is Euclidean, and

if so, how to �nd a corresponding con�guration of points.

Suppose we have given a distance matrix D which we hope can approximately rep-

resent the interpoint distances of a con�guration in a Euclidean space of low dimension

k; usually k = 1; 2; ::. The matrix D may or may not be Euclidean; however, even if D

is Euclidean, the dimension of the space in which it can be represented will usually be

too large to be of practical interest. Choose the con�guration in Rk , the coordinates of

which are determined by the �rst k eigenvectors of B, where

B = HAH; A = (ars); ars = �1

2
d2rs;

and H = I � n�1ee0, e = (1; � � � ; 1). If the �rst k eigenvalues of B are "large" and

positive and the other eigenvalues are near 0 (positive or negative), then hopefully, the

interpoint distances of this con�guration will closely approximate D. This con�guration

is called the classical solution to the MDS problem in k dimensions. It is a metric

solution.

For computational purposes we shall summarize the calculations involved:

1. From D construct the matrix A = (�1=2)d2rs.

2. Obtain the matrix B with elements brs = ars � �ar: � �a:s + �a:: where

�ar: =
1

n

nX
s=1

�ars; �a:s =
1

n

nX
r=1

�ars; �a:: =
1

n2

nX
r;s=1

�ars:

3. Find the k largest eigenvalues �1 >; � � � ; > �k of B (k chosen ahead of time),

with corresponding eigenvectors X = (x(1); � � � ; x(k)) which are normalized by

x0(i)x(i) = �i, i = 1; � � � ; k. (We are supposing here that the �rst k eigenvalues are

all positive.)

4. The required coordinates of the points Pr are xr = (xr1; � � � ; xrp)0, r = 1; � � � ; k,
the rows of X.
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List of Tables to be inserted

Table 1: History of delayed payment of water bills

Period

Features 1994 1995 1996 1997

Proportion of unpaid bills 5.69% 6.65% 6.86% 5.78%

Number of days 21 24 25 21
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Table 2: Descriptive statistics of water consumption*

Total water consumption in m3 Hot water consumption in m3**

Period mean std. min. max. obs. mean std. min. max. obs.

1994.2 70.038 49.230 2 527 913 23.886 18.170 1 126 460

1995.1 33.415 22.910 1 166 809 12.775 10.338 1 85 495

1995.2 29.322 21.331 1 277 800 10.299 8.591 1 80 471

1995.3 61.603 43.923 1 413 870 20.198 16.902 1 165 503

1996.1 66.159 43.988 4 384 689 22.861 18.633 1 200 504

1996.2 61.636 40.228 1 349 704 19.926 15.943 1 143 503

1997.1 64.143 39.796 1 318 695 21.517 15.588 1 133 520

1997.2 61.156 39.343 1 361 698 18.798 14.702 1 133 570

Cold water consumption in m3** Dummy of water meter***

mean std. min. max. obs. mean std. min. max. obs.

1994.2 51.917 32.691 2 243 460 0.504 0.500 0 1 913

1995.1 22.492 15.331 1 111 495 0.516 0.499 0 1 960

1995.2 21.477 17.052 1 259 471 0.495 0.500 0 1 953

1995.3 48.598 33.126 1 252 503 0.492 0.500 0 1 1024

1996.1 46.777 31.246 2 265 504 0.494 0.500 0 1 1022

1996.2 44.457 28.056 1 206 503 0.476 0.499 0 1 1061

1997.1 46.275 28.463 3 233 520 0.503 0.500 0 1 1040

1997.2 46.935 30.234 1 228 570 0.265 0.441 0 1 2161

* The number of observations varies due to the unbalanced nature of the panel.

** The statistics are computed for households for which the two records exists.

*** 1=at least two water meters, 0 otherwise.

Table 3: Some indications on elements of the price of water

Period

Component of the price 1994 1995 1996 1997

Variable part (cold water) in FF/m3 11.48 12.58 13.04 13.2

Variable part (hot water) in FF/m3 37.4 37.03 39.8 40.43

Fixed part FF/semester 148 148 147.5 101.5

Source: Values constructed from information of the OPHLM of Sarreguemines.
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Table 5: Table of frequency count of characteristics

1994 1995 1996

Variable freq. percent. freq. percent. freq. percent.

Nationality

Africa 135 7.88 151 6.44 104 6.40

Others 52 3.03 52 2.22 36 2.22

Europe 23 1.34 33 1.41 18 1.11

France 1504 87.75 2109 89.94 1466 90.27

Total 1714 100.00 2345 100.00 1624 100.00

Marital status

Married 294 48.36 343 43.20 236 43.87

Single 79 12.99 121 15.24 73 13.57

Cohabitation 40 6.58 80 10.08 51 9.48

Widowed 97 15.95 116 14.61 76 14.13

Divorced 73 12.01 99 12.47 76 14.13

Separated 25 4.11 35 4.41 26 4.83

Total 608 100.00 794 100.00 538 100.00

Profession*

CSP-2 38 4.84 63 6.60 42 6.52

CSP-3 46 5.86 44 4.61 27 4.19

CSP-4 51 6.50 51 5.35 26 4.04

CSP-5 103 13.12 146 15.30 105 16.30

CSP-6 204 25.99 259 27.15 177 27.48

CSP-7 205 26.11 212 22.22 163 25.31

CSP-8 138 17.58 179 18.76 104 16.15

Total 785 100.00 954 100.00 644 100.00

* CSP-2: Craftsmen, trademen and company head; CSP-3: managers and high intellec-

tual professions; CSP-4: intermediate professions; CSP-5: employees; CSP-6: workers;

CSP-7: retired; CSP-8: not gainfully employed.
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Table 6: Pooled OLS estimates (Dependent variable: residential demand for water

measured in cubic meters)

Pooled OLS Pooled OLS

(without cluster) (with cluster)

Variable coef. std.err. t-stat. coef.* std.err. t-stat.

Intercept -31.29 5.03 -6.21 � 11.24 -2.78

Total income -0.42 0.16 -2.54 � 0.31 -1.37

Dummy of water meter 8.99 1.16 7.75 � 2.37 3.78

Average age 0.02 0.06 0.35 � 0.11 0.19

Number of Persons 14.92 0.60 24.64 � 1.23 12.08

Marital status 0.48 0.51 0.95 � 1.22 0.10

Dummy of sex -4.89 1.74 -2.80 � 3.88 -1.26

Dwelling area (m2) 0.39 0.05 7.27 � 0.14 2.82

Professions (dummies)

CSP-2 -6.65 3.21 -2.07 � 5.97 -1.11

CSP-3 -7.33 4.12 -1.77 � 6.64 -1.10

CSP-4 -2.21 3.72 -0.59 � 7.54 -0.29

CSP-5 -5.97 2.35 -2.54 � 4.38 -1.36

CSP-6 -4.92 2.42 -2.03 � 4.25 -1.16

CSP-7 -9.13 2.46 -3.71 � 4.09 -2.23

CSP-8 -3.58 2.69 -1.33 � 4.55 -0.78

Nationality (dummies)

Africa 10.43 3.97 2.62 � 8.07 1.28

Europe 41.52 6.11 6.79 � 13.23 3.14

France 28.94 2.77 10.42 � 5.11 5.66

Others 29.29 6.23 4.70 � 14.06 2.08

Number of clusters 70

Number of observations 2609

* (�) Same coe�cient estimates.
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Table 7: Fixed and random e�ects estimates (Dependent variable: residential demand

for water measured in cubic meters)

Fixed e�ects* Random e�ects

(Within estimator) (GLS estimator)

Variable coef. std.err. t-stat. coef. std.err. t-stat.

Intercept � � � -0.28 16.910 -0.02

Total income -0.18 0.23 -0.78 -0.64 0.19 -3.33

Dummy of water meter 10.88 2.72 4.01 9.08 2.10 4.32

Average age -3.33 0.35 -9.57 -0.33 0.11 -2.91

Number of persons 9.71 1.13 8.59 12.75 0.82 15.60

Marital status � � � 1.02 0.90 1.13

Dummy of sex � � � -2.91 3.62 -0.80

Dwelling area (m2) � � � 0.55 0.10 5.44

Professions (dummies)

CSP-2 � � � -5.65 4.74 -1.19

CSP-3 � � � -3.06 5.68 -0.54

CSP-4 � � � -4.48 7.47 -0.60

CSP-5 � � � -5.10 3.29 -1.55

CSP-6 � � � -5.31 2.64 -2.01

CSP-7 � � � -4.47 3.13 -1.43

CSP-8 � � � -2.38 2.38 -1.01

Nationality (dummies)

Africa � � � -5.37 14.55 -0.37

Europe � � � 17.35 15.43 1.12

France � � � 8.20 13.72 0.59

Others � � � 3.96 18.87 0.21

* (�) The within transformation wipes out time invariant parameters.
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Table 8: OLS estimates of the lattice model (Dependent variable: residential demand

for water measured in cubic meters)

Variable coef. std. HET* t-stat HET std. SP** t-stat SP

Intercept -11.29 4.77 -2.36 8.68 1.30

Total income -0.43 0.17 -2.52 0.24 -1.79

Dummy of water meter 8.31 1.40 5.93 1.86 4.49

Average age -0.16 0.05 -3.20 0.07 -2.28

Number of persons 13.21 0.51 25.90 0.81 16.51

Marital status 0.88 0.45 2.00 0.78 1.12

Dummy of sex 0.05 1.53 0.03 2.66 0.01

Dwelling area (m2) 0.65 0.04 16.00 0.10 6.40

Professions (dummies)

CSP-2 -8.71 3.33 -2.62 4.77 -1.82

CSP-3 -9.37 4.52 -2.07 5.74 -1.63

CSP-4 -5.29 4.83 -1.09 5.66 -0.93

CSP-5 -6.23 2.65 -2.35 3.45 -1.80

CSP-6 -6.63 2.45 -2.70 3.51 -1.89

CSP-7 -3.98 2.56 -1.55 3.22 -1.23

CSP-8 -2.47 2.47 -1.00 3.88 -0.63

Nationality (dummies)

Africa -13.52 3.41 -3.96 4.97 -2.72

Europe 17.47 4.43 3.94 10.28 1.69

France 5.02 2.26 2.22 3.22 1.55

Others 4.55 6.81 0.66 9.12 0.49

Number of observations 3276

*HET means White heteroskedastic robust standard error estimates.

**SP means standard error estimates corrected for spatial correlation.
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Table 9: 2SLS and GMM estimates of the lattice model (Dependent variable: residential

demand for water measured in cubic meters)

Spatial 2LS Spatial GMM

Variable coef. std.err. t-stat. coef. std.err. t-stat.

Intercept -13.09 4.75 -2.75 -18.69 9.84 -1.90

Total income -0.46 0.17 -2.59 -0.42 0.25 -1.65

Dummy of water meter 7.64 1.39 5.49 7.80 2.04 3.82

Average age -0.18 0.05 -3.43 -0.19 0.08 -2.25

Number of persons 13.13 0.51 25.74 13.36 0.87 15.25

Marital status 0.65 0.44 1.47 1.23 0.83 1.48

Dummy of sex -0.57 1.52 -0.37 0.16 2.74 0.05

Dwelling area (m2) 0.65 0.04 14.75 0.67 0.11 5.87

Professions (dummies)

CSP-2 -8.36 3.32 -2.51 -8.42 5.60 -1.50

CSP-3 -8.13 4.51 -1.80 -6.66 8.59 -0.78

CSP-4 -4.93 4.83 -1.02 -4.69 6.08 -0.77

CSP-5 -5.85 2.64 -2.21 -5.24 3.61 -1.44

CSP-6 -6.00 2.45 -2.44 -6.69 3.63 -1.84

CSP-7 -4.48 2.56 -1.75 -3.89 3.60 -1.08

CSP-8 -2.26 2.47 -0.91 -3.38 3.86 -0.87

Nationality (dummies)

Africa -12.62 3.41 -3.70 -10.82 5.29 -2.04

Europe 17.21 4.43 3.88 13.60 10.62 1.28

France 5.79 2.25 2.57 6.36 3.45 1.84

Others 5.74 6.81 0.84 11.96 23.76 0.50

�
2
5%
(d.o.f. = 4) 6.89

Number of observations 3276
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Table 10: List of variables

Variable De�nition

Water consumption Bi-annual consumption of drinking water by household, in m3

Total income Sum of the wage income and non wage income, in 1000 FF

Dwelling area Actual dwelling area, in m2

# Persons/house Number of persons by household

Average age Average age of the family

Dummy of water meter 1=at least two water meters, 0 otherwise

Dummies of profession

CSP-1 Farmers and owners: they are not represented in the sample

CSP-2 Craftsmen, trademen and company head

CSP-3 Managers and high intellectual professions

CSP-4 Intermediate professions

CSP-5 Employees

CSP-6 Workers

CSP-7 Retired

CSP-8 Not gainfully employed

Dummies of nationality

Africa 1=African; 0 otherwise

Europe 1=European; 0 otherwise

France 1=French; 0 otherwise

Others 1=others nationalities, 0=otherwise

Factor of marital status

Marital status 1=married; 2=single; 3=cohabitation;

4=widowed; 5=divorced; 6=separated
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