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1. Introduction

One of the main challenges, both of macro-economics and econometrics, is to
provide micro-economic foundations for its analysis of aggregate demand. It is
well known however that the sole restrictions induced by individual optimization
on aggregate excess demands are essentially continuity, zero-homogeneity, Wal-
ras’ identity and a boundary condition — this is the celebrated Sonnenschein-
Mantel-Debreu theorem, see, e.g., [12]. Therefore, if one abstracts the boundary
condition, the vector …eld induced, say on the unit sphere of normalized prices, by
aggregate demand is locally arbitrary. As a consequence, the set of equilibrium
prices of an exchange economy is, in general, not unique, and, in fact, essentially
arbitrary (cf. [27]). More recently, these results have been extended to excess
demand functions in economies with incomplete markets ([6]) and to demand
functions both with complete and incomplete markets ([9], [10], [7], and more
recently [30]). The main economic lesson of this is essentially negative: indi-
vidual optimization does not su¢ciently restrict the aggregate demand, at least
locally, to get sound properties such as the ‘Law of Demand’, gross substitutabil-
ity, and thereby uniqueness and stability. Consequently, so goes the story, general
equilibrium theory is often viewed as unable to make any observable, predictive
statement while one of its favorite exercises — comparative statics — relies on
especially vulnerable grounds. As was suggestively expressed by [23], one has to
confess that “the emperor has no clothes”.2

The decisive contribution of Hildenbrand ([19]) brought some hope by showing
that certain restrictions on the distribution of income can induce macro-economic
properties such as the “Law of Demand”, even if these properties are not satis-
…ed at the micro-economic level.3 Though, as underlined by the author, these
restrictions — in particular the fact that the income distribution was assumed
to be downward slopping and the collinearity of initial endowments to generate
uniqueness and stability under the Walras’ tatonnement of the price equilibrium
in exchange economies — are not very realistic, this contribution induced a shift
of viewpoint.4 Hence, an important issue became: What are the properties of the
mean demand induced by a large, heterogenous population of possibly irrational
and/or irregular households ? Grandmont ([14]) gave a …rst, illuminating answer
to this question by proving that, within a parametric model of demand functions,
su¢ciently dispersed demand functions may generate the diagonal dominance of
the Jacobian of market demand. Quah ([31]) extended Grandmont’s formalism
to allow for the possibility of atoms, and considered situations involving a weaker
heterogeneity assumption on individual demand functions. He replaced the as-
sumption that incomes do not depend upon prices by the requirement that the
distributions of individual demand functions and income are independent, and
eventually derived the uniqueness and stability under the Walras’ tatonnement
of the price equilibrium in exchange and production economies — without any
collinearity of initial endowments. Finally, [24] extended this approach to a non-
parametric setting. The main common idea behind these various frameworks is
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to show that enough heterogeneity of behavior can explain the insensitivity of the
market budget share function to changes in prices and/or income. For this pur-
pose, one considers some well-de…ned metric on, say,

¡
W; º

¢
, the probability space

of household budget share functions, and one analyses some distance-preserving
transformations T on the space W. The probability measure º is then said to sat-
isfy a “high degree” of heterogeneity if the probability of all sets A and T(A) ½ W
is extremely close, whenever T is not too far from the identity mapping. The main
piece of good news is then that a “highly heterogenous” population of consumers
e¤ectively admits a market budget share function approximately insensitive to
changes in prices and/or income.5

The main message of the present paper is the following : Given some condi-
tions over the space W, it is possible, without any individual rationality assump-
tion, to prove that there exist “uniform” distributions over the space W such
that the aggregate budget share function is exactly constant. In other words, for
a perfectly heterogenous population, the market takes on exact Cobb-Douglas
properties, although no individual behaviour satis…es even the weakest form of
rationality or regularity. When framed in a general equilibrium setting, this result
implies the uniqueness and global stability of the equilibrium price.

At …rst glance, it may seem that this is a rather technical issue. Recent de-
bates on behavioral heterogeneity show, on the contrary, that such a result has a
clear-cut economic relevance. There are, indeed, two alternative views regarding
the precise nature of “behavioral heterogeneity” in Grandmont’s model and its
successors. According to one view, approximate Cobb-Douglas behavior holds
on average in such models because, at any price vector, all but a small fraction
of the households do not deviate signi…cantly from Cobb-Douglas behavior. An-
other view is that Cobb-Douglas behavior arises on the average because agents
respond heterogenously to price changes, some by increasing the budget share on
a good, others by reducing it, so that average shares remain approximately the
same.6 From an economic standpoint, however, the second phenomenon seems
much more appealing than the …rst, as the …rst one means that Cobb-Douglas
behavior on the average is a foregone conclusion induced by the built-in hypoth-
esis that almost every individual is Cobb-Douglas. Is it possible to show, within
his framework, that Grandmont’s striking conclusion results solely from some
“balancing e¤ect”? The answer, unfortunately, must be ‘no’, as shown by [3] and
[17]. The trouble, indeed, is that, if one pushes Grandmont’s argument to its
extreme logical consequences, then one is led to a situation that does not look
like a heterogenous population — quite on the contrary !

This point may be illustrated as follows. Suppose you parameterize the space
of budget share functions of your population by some number in R. (This will be
the case, for instance, if one considers homothetic transformations à la Quah ([31])
acting on demand functions as follows: If f is some generating demand function,
each agent in the economy has a demand function f®, for some ® 2 R — where
f®(p; x) := e®f(p; e¡®x), when p is a price vector and x an income level.) Assume,
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furthermore, that the transformations with respect to which you want to test the
‘heterogeneity’ of the population you face can be reduced to some collection of
translations of the parameter ® 2 R. Claiming that the population is “highly
heterogenous” amounts to assuming that the distribution tends to be invariant
with respect to this collection of translations, which means, that in the limit, the
distribution of agents should converge to some ‘uniform’ probability distribution
on R. Since, however, there is no such probability distribution on the real line,
this implies that the measure towards which the distribution of characteristics
converges is a measure, on the completed real line R = R [ f+1g [ f¡1g,
whose support reduces to f+1;¡1g). In particular, any compact subset of R
is asymptotically of measure zero.

However particular and simple-minded this example might be, it shows the
essence of what is going on. Due to this concentration phenomenon, the approx-
imate insensitivity of market budget share, obtained for a highly heterogenous
population, can hardly be interpreted: Does it emerge from highly heterogenous
reactions of households or, on the contrary, from the insensitivity of almost all
(approximately identical) households? In fact the two cases emerge in Grand-
mont’s formalism depending on the boundary behavior of the generating demand
function. If this behavior is such that the associated budget share function ad-
mits limits on the boudaries of the price-income space, then as brought out by [3]
and [17] the “uniform” probability puts all its mass on Cobb-Douglas behaviors.7

Furthermore, [4] and [25] point out that [24] encounters essentially the same
stumbling block.

In this paper, since exact insensitivity of the market budget share function
is obtained, short of everybody being Cobb-Douglas, some agents must increase
their share and others must decrease it. In other words, the insensitivity of the
budget share function we shall obtain in the aggregate is not explained by any
(even approximate!) insensitivity property at the micro-economic level but rather
by a perfect “complementary” or “balancing e¤ect”8. Moreover, we show that,
given any family of individual budget shares, there exists a distribution which has
the following much stronger property: every non-empty, open subset of the family
is of positive measure. This insures that our ‘uniform’ measure cannot take its
support in, say, a subset of people who would, by chance, react heterogenously,
while neglecting the rest of the population. A …rst step in this direction was made
by [25]. The author introduces a new class of distance preserving transformations
that ensures that the concentration phenomenon cannot emerge in any orbit
induced by a given budget share function. However, since any orbit might have
a measure zero, this result does not prevent the concentration phenomenon over
the whole space W. Finally, we provide su¢cient conditions guaranteeing that
our ‘uniform’ probability distribution is unique.

Of course, to assume that the distribution of characteristics of a given popula-
tion is uniform (in the precise sense given to this term in this paper) is probably
heroic. It should be understood as an “ideal limit-case”, like the continuum hy-
pothesis in [1]. Our contention is that it proves that behavioral heterogeneity
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makes sense, even in the limit. On the other hand, by analogy with the core
equivalence, the ‘large’ case should prove to be the limit of the …nite setting.
But this is exactly the way our proof goes. Indeed, rather than reducing the
problem to a …xed-point theorem, we explicitly construct a sequence of probabil-
ities with …nite support converging to the ‘uniform’ measure, and for which the
aggregate budget share function is approximately insensitive.9 Hence, the insen-
sitivity property holds approximately for a …nite population su¢ciently close to,
but distinct from, the perfectly heterogenous one (see our Corollary 1, which is
the main …nding of this paper).

In a somewhat similar context, [13]10 prove that aggregation has a smooth-
ing e¤ect on the demand behavior in a fashion that looks very much like ours.
Interpreting a price as a linear operator on the commodity space, they de…ne an
action of the group of normalized prices on individual preferences; the notion of
“price-dispersed preferences” is then de…ned by requiring that the distribution on
the functional space of smooth utilities be absolutely continuous with respect to
the Haar measure on the group. By comparison, the framework employed in this
paper ensures that the aggregate budget share function is constant ; this trivially
implies that the market demand is di¤erentiable, but it also says much more.11

The price to pay, however, is that we cannot content ourselves with the absolute
continuity with respect to some ‘uniform’ distribution: we need the distribution
of households’ characteristics itself to be (approximately) ‘uniform’ in a certain
sense.

In the next section, we set the framework and state our results. We shall
be careful when relating our hypotheses to the usual understanding of a “large”,
“dispersed” and “heterogenous” population. That section concludes with an ex-
ample. Finally, section 3 contains the proofs.

2. Towards insensitive aggregate budget shares
2.1. The problem
Consider12 an economy with L ¸ 1 commodities. Each household is charac-

terized by a demand function f :

f : RL++ £ R++ ! RL+; (1)

which associates to each pair (p; x) of prices and income, a point in the con-
sumption set. As convincingly argued by [24], it is more convenient to work with
the corresponding budget share function w : RL++ £ R++ ! [0; °]L where ° > 0,
de…ned by:

8(p; x) w(p; x) =
p f (p; x)

x
: (2)

There is obviously a one-to-one and onto relationship between the mapping f and
its associated budget share function w.



6 Behavioral Heterogeneity

We consider a subpopulation of households with identical income. Households
diverge in their budget share functions, hence in their characteristics a¤ecting
demand independently of prices and income. Let denote by W the space of budget
share functions of the economy at hand, endowed with the sup-norm jj ¢ jj1. The
joint distribution of households’ characteristics induces a distribution º of budget
share functions on W . The assumption that all households have the same income
is common to all the previous literature, and could be relaxed. Indeed, one easily
sees that the properties obtained below for the aggregate budget share of a given
subpopulation are preserved through aggregation. Hence, subsequent analysis
could apply to suitable sub-economies populated by individuals with identical
incomes.

The aggregation problem consists in asking whether there exists certain re-
strictions on W and a Borel probability distribution º such that certain properties
(e.g., the Law of Demand) are ful…lled by the aggregate budget share function

(p; x) 7!W (p; x) :=

Z

W
w(p; x)º(dw): (3)

In other words, we want to take the space W itself as given, provided it belongs
to a convenient class of functional spaces, and to prove that an adequate choice
of the distribution of households’ characteristics, which can be interpreted as
representing a perfectly heterogenous population, can induce per se economically
sound properties on the macro-economic level. In this sense, we view the approach
taken in this paper as quite distinct from the one adopted, e.g., by [5]. There,
it is argued, loosely speaking, that, given a budget share function it is always
possible to construct a complementary one such that their sum satis…es the Law
of Demand.

The celebrated “Law of Demand” can be expressed in terms of the aggregate
budget share function:

8p; q 2 RL
++; (p¡ q) ¢

³
p¡1 W (p; x)¡ q¡1 W (q; x)

´
� 0: (4)

What kind of behavior can be expected from the aggregate budget share
function of a large, heterogenous population ? The most demanding property
is certainly the insensitivity of the map W with respect to changes in prices
and/or income. This property (which is the Cobb-Douglas functions’ benchmark)
induces, indeed, most of the properties one could dream of: the Law of Demand
(since the above inequality clearly holds when W is constant), but also the gross
substitutability property, and eventually the uniqueness and global stability (for
the Walrasian tâtonnement) of the equilibrium of a pure exchange economy.

2.2. The results

In order to formally de…ne heterogeneity of households with respect to a ‘per-
turbation’ of the price-income vector, several transformations on the functional
space W have been proposed in the literature. One can use, for example, as [14]
and [24], the a¢ne transformations, T¢, de…ned by:
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8w 2 W;8¢ 2 RL+1
++ ;8(p; x) 2 RL++ £ R++ T¢[w](p; x) = w(¢  (p; x)): (5)

Notice that [31] restricts himself to a smaller class of transformations, called
homothetic transformations. Denote by T the class of a¢ne transformations T¢.
This class veri…es the two following conditions:

A) The map w 7! T¢[w] is an isometry over W.
B) Every function W : RL

++ £ R++ ! RL+, which is invariant with respect to
every transformation T¢ 2 T , is constant over RL+1

++ .
It is important to observe that T is just one of many possible classes of trans-

formations which satisfy these two conditions, and our theory applies to any such
class. However, what makes a¢ne transformations special is its preservation of
the possible rationality properties. It is staightforward to check that if a function
w de…ned on RL

++£R++ satis…es the weak axiom, then so will its transformation
T¢[w], and if w is generated by the utility function u(¢), then its transformation
is generated by the utility function u¢ = u(¢¡1  ¢). This shows incidentally
that it is possible, if one wishes so, to formulate all the assumptions put on the
record in this paper on the (more fundamental ?) level of individual preferences,
rather than on demand functions.

We shall make the following assumption (which characterizes the space W on
which our result applies):

Assumption 1:
(i) The space W of admissible budget share functions is a subset of the set of

all functions from RL++ £ R++ to [0; °]L where ° > 0.

(ii) The normed subspace
¡
W; jj ¢ jj1

¢
is compact.

(iii) W is large enough to verify:

8T¢ 2 T ;8w 2 W; T¢[w] 2 W:

Compactness is the topological analogue of …niteness, and was already as-
sumed by [13, p. 17], Mcom. It can be thought of as arising from the continuity
of some mapping that associates to each individual in, say, the real interval [0; 1]
her budget share function. In other words, in a parametric setting, all we need
is that the parameter set describing the set of feasible budget share functions
be compact (see examples infra). Assumption (iii) corresponds to Assumption
1(2) in [24]. It requires the set of budget share functions to be large enough in
order to remain stable by perturbations on prices and/or income. In particular,
it prevents the set W from being …nite, and we think of it as playing a role similar
to the atomless hypothesis for “large” economies (see [18]).

We shall formalize a perfectly heterogenous population (in terms of households
reactions to changes in prices and income) by an invariant measure with respect
to every transformation T¢ 2 T . The following theorem establishes that this
measure exists.
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Theorem 1 Under Assumption 1, there exists a (Borel-) probability measure ¸
on W such that the aggregate budget share function W is constant over RL++ £
R++.

Note that for a constant function W over RL
++ £ R++, one has: 8p; q 2 RL++;

(p¡ q) ¢
³
p¡1 W (p; x)¡ q¡1W (q; x)

´
= ¡

LX

l=1

(pl ¡ ql)2
plql

Wl(p; x) � 0: (6)

Hence, from (4) we deduce that the Law of Demand holds in the aggregate. It is
important to observe that, in contrast with [14] and [24], the Law of Demand is
deduced here from the insensitivity property without any strong desirability re-
quirement of any commodity. In particular, for any commodity, nothing requires
the market budget share to be strictly positive for all prices. The following corol-
lary extends Theorem 1 to a …nite population not too far away from a perfectly
heterogenous population.

Corollary 1 Suppose that Assumption 1 is in force. For any " > 0, there exists
a probability distribution with …nite support º such that, for any ¢ >> 0 and any
l 2 f1; : : : ; Lg:

j
Z

W
wl(¢ (p; x))º(dw)¡

Z

W
wl(p; x)º(dw)j � " (p; x) 2 RL

++ £ R++ (7)

If we further introduce the desirability requirement that for any given compact
price set K, W(p) > 0, 8p 2 K, then we can deduce from Corollary 1 that the
Law of Demand holds in K.13 It is important to observe that, in contrast with
[14] and [24], the latter assumption is not required for all prices but only for prices
in K .

This approximate insensitivity of the market share should not be confused
with the approximate results available in the literature. There, indeed, atomless
economies are shown to have approximately insensitive market shares, and noth-
ing is said about their …nite approximations. Here, every …nite economy which
is approximately heterogenous exhibits an approximately constant market share,
and converges, as the number of agents grows to in…nity, towards a large economy
that turns out to be perfectly heterogenous.

Notice that we nowhere assume that the budget share functions are continuous
or homogeneous or that each individual budget constraint is satis…ed.14 Nor need
the weak axiom of revealed preferences (WARP) be satis…ed at any level15 or the
aggregate budget share function W be di¤erentiable. This shows that extreme
diversi…cation of possibly extremely irregular and irrational characteristics may,
on its own, generate an extremely regular mean outcome.
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Is a measure like ¸ always immune against the criticism addressed by [3] and
[4], [17] and [25] to the Grandmont-Quah-Kneip approach ? To make this point,
it will su¢ce to show that any non-empty open subset of W is non-negligible.16

For this purpose, the following additional assumption will …t the bill:

Assumption 2

For any pair (v; w) 2 W; 9 ¢ 2 RL++ = w = T¢[v]:

Assumption 2 means that we restrict ourselves to the type of heterogeneity
generated by the transformations T¢: it is possible to go from one’s budget share
function to another by composing transformations T¢. This requirement implies,
as in [14], that all the individual budget share functions can be generated from
a unique, fundamental one (the generator) by the class of transformations. We
stress that this hypothesis is not needed for Theorem 1 to hold, hence to get the
insensitivity of the aggregate budget share function. On the other hand, notice
that, if the generator is distinct from a Cobb-Douglas function, so are all the
individual budget share functions of the economy.

Proposition 1
Under Assumptions 1 and 2, the measure ¸ veri…es:

¸(O) > 0 8O non-empty, open subset of W:

By forbidding the concentration of the measure ¸ over any strict closed subset
of W , Assumptions 1 and 2 truly impose the behavioral heterogeneity we are
looking for in this paper .

Proposition 1 prompts the question as to whether there is a unique way for the
space of budget share functions W to be perfectly heterogenously distributed. The
next result provides su¢cient conditions on W for the measure ¸ to be unique.
One could view it alternatively as 1) showing that ‘behavioral heterogeneity’
is de…ned in a non-ambiguous way; 2) suggesting that being heterogenous is a
rather exceptional property for a population. In this context, it should be noted,
however, that most of the micro-economic foundations of macro-economics we
have in mind when dealing with the aggregation problem, as well as most of the
econometric inquiries, do not need the population to be perfectly heterogenous.
It usually su¢ces that it be su¢ciently close to a ‘uniform’ distribution such as
the one exhibited in the two preceding results. On the other hand, even in the
atomless, perfectly heterogenous case, the measure ¸ is unique given some class T
of transformations T¢. Changing this class would also change ¸, so that the next
result only shows a conditional uniqueness. With this in mind, 1) is probably the
most relevant standpoint.
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Assumption 3

(i) For any pair T¢; T¢0 , if T¢[w] = T¢0 [w] 8w, then ¢ = ¢0.

(ii) For any sequence (¢n)n in
¡
RL
++

¢N, and any continuous map f : W ! W,
if T¢n[w] converges to f (w) uniformly on W, then 9 ¢ >> 0, such that f(w) =
T¢[w]; 8w 2 W.

Assumption 3 (i) suggests, roughly, that, for any price-income vector (p; x),
whatever being the direction in which it is perturbed, there exist two consumers
who react di¤erently to this perturbation. It de…nitely rules out the degener-
ate case where all the individuals are Cobb-Douglas (in this case, indeed, there
is no hope for getting uniqueness, since any probability measure would do the
job). Assumption 3 (ii) is a technical, closedness requirement strengthening the
compactness hypothesis 1(ii).

Theorem 2 Under Assumptions 1 to 3, the ‘uniform’ probability distribution ¸
alluded to in Theorem 1 is unique.

Is it possible to construct an example of non-trivial family of budget share
functions, in such a way that the theory developed in this paper applies ? The
following example answers positively to this question.

Example 1.
In the spirit of Grandmont’s ([14]) seminal construction, our population is the

collection of functions fw®g®2RL+1 with w® de…ned by:

w®(p; x) = Te® [w](p; x) := w
¡
e®1p1; e

®
2p2; :::; e

®L+1x): (8)

for all (p; x) 2 RL
++£ R++, where w is a continuous function over RL

++£ R++,
and is called the generator. Notice that here, in contrast to [14], the distribution
of the parameters ® in the population is not assumed to admit a density function
and a fortiori a ‡at density function.

The di¢culty is that, as already pointed out, to ensure the compactness of W,
the parameter set has to be compact. Hence, one has to introduce an assumption
that “compacti…es” the parameter set RL+1. This assumption will be that w is
completely described by its behavior over some compact subset of RL++ £ R++.
For this purpose, we introduce a second function ~w from RL+1 into RL

+, de…ned
by

~w(t1; t2; :::; tL+1) = w(e
t1; :::; etL+1) (9)

where t = (t1; t2; :::; tL+1) 2 RL+1, and let us begin with the simplest case,
where heterogeneity of the households’ share functions is required only with re-
spect to one argument of the budget share function. This is the case, if for
example, following [31], heterogeneity is to be required with respect to changes
in income only. It implies that we can restrict ourselves to the subset of a¢ne
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transformations such that ®i = 0 for i � L. We are thus concerned with the be-
havior of w over the space of positive income, R++. We simply make a periodicity
requirement:

~w(t+ nc) = ~w(t); (10)

for some c > 0. Under this assumption, the behavior of ~w over R is entirely
captured by its behavior over some compact interval [k; k + c], where k 2 R.
Moreover, its extreme points k and k + c can be identi…ed since ~w assumes the
same value for both. Hence, ~w can be equivalently described by its behavior
over the (compact) circle R=cZ. What kind of transformations are we going to
use ? Obviously, some of them are now useless: we can content ourselves with
translations of size less than c. Now, it is easy to see, using Ascoli’s theorem, that
the family of such transformed budget share functions will be relatively compact
for the uniform topology. Taking its uniform closure yields compactness. Thus,
according to Theorem 1, we can conclude that the economy just described admits
a probability measure with respect to which it is perfectly heterogeneous. In
order to see that our Assumption 2 is also satis…ed, just observe that the set of
translation parameters ¢ itself is compact. Hence, if w belongs to the closure of
W, it must be the limit of some sequence T¢n[ ~w]. It su¢ces to take the limit
¢¤ of some subsequence of (¢n)n to see that w = T¢¤[ ~w]. Hence, Proposition 1
holds. Finally, Assumption 3 is immediately satis…ed if one adopts as space of
translations the quotiented space R=cZ. As a consequence, Theorem 2 is veri…ed.

This fairly simple example is analogous to, and can be compared with, the
cases 2 and 3 in [33]. There, the population is described by a density function of
the parameters ®L+1 de…ned on R. In this formalism, a heterogenous population
is described by a ‡at density function over R. As the density function becomes
‡atter, however, it has to be spreading to the left or to the right. This means that
the values of ®L+1 that predominate are those that are very small or very high. As
already underlined by [17], this means that insensitivity at the aggregate might
emerge because it is already satis…ed at the individual level. Ruling out this trivial
situation implies that for a …xed p, w(p; x) must have no limit as income goes to
zero or in…nity. This is also the case in our example just described. The di¤erence
between our approach and the one exempli…ed in [33], and followed by all the
previous literature is that we can assert the existence of a perfectly heterogeneous
probability measure, while in the already mentioned previous work, the exhibited
distribution only induces some approximately heterogeneous measure. Moreover,
thanks to our Corollary 1, we can assert that a perfectly heterogenous population
can be approximated by a …nite one, that is almost perfectly heterogenous. No
such conclusion can be drawn from [33], as well as from the previous literature.

In order to extend the previous example to more sophisticated situations where
~w depend upon more than one parameter, it su¢ces to consider the following
periodicity requirement:

~w(t+ nci) = ~w(t) 8i = 1; :::; L+1; (11)
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where n 2 Z, ci = ½iei 2 RL+1++ with ½i 2 R++ and ei = (0; :::; 1; 0:::) denotes
the ith element of the canonical basis of RL+1 8i. Denote by C the compact
set ft 2 RL+1 = ti 2 [0; ½i] 8i = 1; :::; L + 1g and by K the compact set
f(p; x) 2 RL++ £ R++ = (p1; :::; pL; x) = (et1; :::; etL; ex); t 2 Cg. Again, the
function ~w is entirely described by its behavior over C where, in addition, pieces
of the boundary @C can be identi…ed by taking the suitable quotients. Details
are left to the reader. As outlined by [33], for many purposes (in particular for
uniqueness and global stability of the price equilibrium) what we are interested
in is the behavior of market demand on a compact set, K, of prices and income.
Hence, it is enough to require that the household described by ® has a budget
share function which coincides with w® only on K. In this case, the periodicity
requirement of this example is not restrictive at all as long as K is chosen such
that K ½ K. In particular, our example does not require any “periodicity” of
the generator over K, but only outside this relevant compact set. Furthermore,
every function w® in the population is of bounded variations over K.

Needless to say, several alternative examples could be constructed with various
reparametrizations of the a¢ne transformations.

Example 2.
If one is ready to give up the restriction to the class of a¢ne transformations

(which have the property to preserve the WARP), then several alternative exam-
ples can be easily constructed by using any class of transformations T¢ ful…lling
conditions A) and B). Here is the sketch of one possible construction, using rota-
tions. To simplify the presentation we consider an economy with two commodities
and we focus on heterogeneity of the households’ share functions with respect to
the price vector. All households possess the same income level, x > 0. The set
of prices (p1; p2) can be identi…ed with the non negative orthant of the complex
plan:

C+ := fzp = p1 + ip2 2 C : (p1; p2) 2 R2
+g: (12)

Moreover prices are normalized so that the price space can be identi…ed to
U+ := U \C+, where U := fz 2 C : jzj = 1g. This normalization can be justi…ed
by the assumption that households are not victims of money illusion (hence their
budget share functions are homogeneous of degree zero in (p; x)). The population
is the collection of functions fw¢g¢2U with w¢ de…ned by:

w¢(p; x) = T¢[w](p; x) := w
¡
¢zp; x); (13)

where ¢ 2 U is some unitary complex number (hence essentially acts as a rota-
tion), while w is a continuous function over C+£R++, the generator. We assume
that w satis…es the following property over U: for all n 2 Z, one has

w(ein
¦
2 zp; x) = w(zp; x): (14)

In other words, any budget share function in the population is constant over
the boundary of the price space, i.e.
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w¢(0; 1; x) = w¢(1; 0; x): (15)

We can therefore consider the equivalence relation

z » z0 , 9n 2 Z = z0 = inz: (16)

The quotiented space U+= » (which can be identi…ed to the price space) is
denoted ¦. It is not di¢cult to prove, along the same lines as in the previous
example, that the population just de…ned (with the price space identi…ed to ¦)
satis…es Assumptions 1 to 3. In this example, the only rationality required at
the household level over the set of strictly positive prices is the continuity of the
share function and the absence of money illusion. In particular, no periodicity
assumption is required. The only restrictive assumption regards the boundary
behavior of the household share function. Furthermore, if one is interested in the
behavior of market demand on a compact set of prices, K, it is enough to require
that the household described by ¢ has a budget share function which coincides
with w¢ only on K. In this case, the latter requirement is harmless.

Remarks.

² According to the angle of attack adopted in this paper, three ingredients
drive the insensitivity of aggregate budget share: (1) one needs a “large” popu-
lation (this is Assumption 1(iii)), (2) whose characteristics are in a compact set
(Assumptions 1(ii)) and (3) are uniformly distributed (this is the G-invariance
of ¸). For this uniformity requirement to describe a perfectly heterogenous pop-
ulation of households, we need the “speci…c type of heterogeneity” requirement
(Assumption 2, Proposition 1). Finally, for it to be unambiguously de…ned, we
need an additional assumption (Assumption 3(i)).

² In this paper, the ‘uniform distribution’ describes a population of house-
holds that are heterogenous in terms of their reaction to changes in prices and
income. Note, however, that under the additional requirement that every indi-
vidual budget share function is homogeneous of degree zero in (p; x) and satis…es
the budget identity, one easily sees that Theorem 1 remains valid for the set of
transformations T¢ on the space W de…ned by perturbations of the price space
solely, i.e. for the class of a¢ne transformations,

8w 2 W;8¢ 2 RL++;8(p; x) 2 RL++ £ R++ T¢[w](p; x) = w(¢  p; x): (17)

² Suppose that income x at price p is de…ned by:

x := p ¢ ! (18)

where ! 2 RL+ is the initial endowment in commodities of any household in our
subpopulation. It is a routine matter to prove that, if the aggregate budget share
function is insensitive to changes in prices and income, as it follows from our
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Theorem 1, then market demand F satis…es the gross substitutability property.
Indeed, consider two price systems p and q such that ql > pl and qk = pk for
k 6= l. Denote by Fk(p; p ¢ !) the market demand for commodity k at the price
system p. The insensitivity property implies that

pkFk(p; p ¢ !)
p ¢ ! =

qkFk(q; p0 ¢ !)
q ¢ ! ; (19)

where by assumption p¢! < q ¢!. Hence, for any pair (p; q) 2 (RL
++)

2 if ql > pl
and qk = pk for k 6= l one has

Fk(q; q ¢ !) > Fk(p; p ¢ !): (20)

Thus, there is a unique equilibrium price, which is moreover globally stable
in any standard tâtonnement process. Similarly, it is easy to prove that, if the
aggregate budget share function is approximately insensitive to changes in prices
and income, as it follows from our Corollary 1, then, for any given compact price
set K and " small enough, market demand F satis…es the gross substitutability
property on K. As already said, under some standard, addititional assumption
which guarantees that no equilibrium price exists outside the compact set of
prices K, this again ensures uniqueness and global stability of the price equilib-
rium. Observe moreover, that nothing prevents from interpreting the collection
f1; :::; Lg of “commodities” as composed of consumption goods and securities,
possibly within an incomplete markets setting.

² In [21], the celebrated example of [2] is formaliwed by a “uniform” distri-
bution over the space of individual characteristics which induces the insensitivity
of the aggregate budget share function. The mathematical structure of this ex-
ample is essentially the following: Consider the set of budget share functions
W := §R(L+1)++ as an uncountable product over the unit-simplex § := fx 2 RL

+ :P
i xi = 1g. Equip this space with the product topology. Thanks to Tychonov’s

theorem, W is compact. Kolmogorov’s extension theorem insures furthermore
that the in…nite product of the Lebesgue measure ¸R(L+1)++ is well-de…ned. John [21]
proves that a population whose budget share functions are distributed according

to the “uniform” probability ¸R(L+1)++ has a market demand of the symmetric Cobb-
Douglas type. The strength of this example is that, like in the general theory
developed in this paper, no continuity assumption on the budget share functions
is required. Since R(L+1)++ is non-countable, however, the product topology is not
metrizable, so that Theorem 1 does not apply to this setting. Moreover, it is
di¢cult to think of any analogue of our Proposition 1 within John’s framework.

3. Proofs of the results

The arguments involved are simple, and more or less familiar in measure
theory. Here are nevertheless self-contained proofs.
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Some preliminary remarks: It is clear (see [23] for details) that each trans-
formation T¢ is distance-preserving on the space

¡W; d
¢
, one-to-one and onto.

Consider therefore the (Abelian) group G spanned by the transformations T¢. A
generic element g 2 G is de…ned by:17

g = T¢1 ± ::: ± T¢N
¢i >> 0;8i: (21)

By assumption 1 (ii), W is stable by any transformation T¢, thus, it must also
be stable by the operation of the group G. Moreover, G operates isometrically
on W. Otherwise stated:

8g 2 G;w; v 2 W; gw 2W and d(gw; gv) = d(w; v); (22)

where d denotes the distance induced by the sup-norm.

3.1. Proof of Theorem 1
Since W is pre-compact with respect to d, for any " > 0, there exists at least

one …nite subset R(") of W, such that, for any w 2 W, inffd(w; r) : r 2 R(")g �
": Let call R(") a "-network, and denote by N(") the minimal cardinality of such
"-networks.

Claim. Let " > 0, and R and R0 two "-networks of W, of minimal cardinality
N("). There exists a bijection Ã : R! R 0, such that:

d(w;Ã(w)) � 2" 8w 2 W: (23)

To prove this claim, take w 2 R, and consider the following set Aw ½ R0 of
elements of R0 which are “closely related” to w:

Aw =
©
v 2 R0 : B(w; ")\ B(v; ") 6= ;

ª
: (24)

Take, now, any subset I ½ R, and consider the set R00 obtained by replacing every
element from I by the family of its “close” points:

R00 :=
¡
R n I

¢
[

¡
[w2IAw

¢
: (25)

It is not di¢cult to see that R00 is still an "-network of W. Indeed, for any
x 2 W , there exists some w 2 R. If w =2 I, we are done. Otherwise, there must
also exist some v 2 R0 such that d(v; x) � ". Hence v 2 Aw, which implies that
v 2 R00.

Before going further, let us …rst recall the following well-known “wedding
lemma” (see, for example, [15]):19

Lemma 1 Let Y be a nonempty set, n some integer ¸ 1 and A1; :::; An be …nite
subsets of Y such that:

8I ½ f1; :::; ng; #
¡
[i2IAi

¢
¸ #I: (26)

Then, there exists a one-to-one mapping from I to
Q
iAi.
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In order to apply our wedding lemma, we need to verify:

#R � #R00 � #(R n I ) + #
¡
[w2IAw

¢
(27)

= #R ¡#I + #
¡
[w2IAw

¢
: (28)

This implies that #
¡
[w2IAw

¢
¸ #I . Hence, there exists some one-to-one

mapping Ã : R ! [w2RAw ½ R0 such that Ã(w) 2 Aw; 8w 2 R. Since #R =
#R0, Ã is also onto. The inequality announced in the claim follows from the
triangle inequality of the distance d.

In order to prove the theorem, take any sequence ("n)n of positive real num-
bers converging to 0, and, for every n, an "n-network Rn, of minimal cardinality
N("n) = Nn. Let us denote by:

¸n :=
1

n

X

w2Rn
±w (29)

the uniform probability measure over Rn. For any element g 2 G, the …nite
network R0n := gRn is still an "-network of W. Indeed, if w 2 W and x 2 Rn
such that d(g¡1w; x) � ", one has:

d(w; gx) = d(g¡1w; x) � ": (30)

Take any bijection Ã as in the preceding claim, any function F 2 C0(W), and
denote:

®n := sup
©
jF (w)¡ F (v)j; w; v 2 W = d(w; v) � 2"n

ª
: (31)

We have:

Z

W
F (gw)¸n(dw) ¡

Z

W
F (w)¸n(dw) =

1

Nn

h X

w2Rn
F (gw) ¡

X

w2Rn
F (w)

i
(32)

=
1

Nn

h X

w2R0n
F (w) ¡

X

w2Rn
F (w)

i
=
1

Nn

h X

w2Rn
(F (Ã(w) ¡ F (w))

i
: (33)

It follows that:

j
Z

W
F (gw)¸n(dw) ¡

Z

W
F (w)¸n(dw)j=

1

Nn

X

w2Rn
jF (Ã(w)¡ F (w)j � ®n: (34)

Banach-Alaoglu’s theorem, again, implies that the sequence (¸n)n of probability
measures admits a subsequence that converges for the weak-¤ topology to some
probability measure, say, ¸. On the other hand, since W is ¾(L1; L1)-compact,
F is uniformly continuous, so that ®n ! 0 as n grows to in…nity. Moreover, the
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mapping w 7! F ± g(w) is ¾(L1; L1)-continuous. Hence, (34) yields, by passing
to the limit:

Z

W
F (gw)¸(dw) =

Z

W
F (w)¸(dw); 8g 2 G (35):

In order to conclude the proof of the Theorem, consider the application Fp;x :
w 7! w(p; x). Fp;x :

¡
W ; d

¢
! R is continuous. Thus, the preceding equality

yields:
Z

W
w(¢ (p; x))d¸ =

Z

W
wd¸; 8p; x;¢ (36)

¤
It should be noted that the measure ¸ is, in general, not the Haar measure

of any (locally compact) group. What theorem 2 does is essentially to provide
su¢cient conditions ensuring that ¸ can be viewed as the Haar measure on the
group G, and to take advantage from the uniqueness of this last measure.

3.2. Proof of Corollary 1

Since W is compact, the space of continuous functions on W is separable,
i.e., admits a countable and dense subset (fn)n. Hence, the weak¡¤ topology on
¢(W) can be metrized by, e.g., the distance induced by the countable collection
of semi-norms pf(¹) :=

R
W f (w)¹(dw):

d(¹; º) =
1X

i=1

1

2i
pfi(º ¡ ¹)

1 + pfi(º ¡ ¹) : (37)

With the notations introduced in the proof of Theorem 1:

j
R
W F (gw)¸n(dw) ¡

R
W F (w)¸n(dw)j � j

R
W F (gw)¸n(dw) ¡

R
W fi(gw)¸n(dw)j+

j
Z

W
fi(gw)¸n(dw)¡

Z

W
fi(w)¸n(dw)j+ j

Z

W
F (w)¸n(dw) ¡

Z

W
fi(w)¸n(dw)j:

(38)
For fi "3-close to F , if ®n = "

3
, this yields:

j
Z

W
F (gw)d¸n ¡

Z

W
F (w)d¸nj � ": (39)

Hence, it su¢ces to take º = ¸n for n large enough.
¤

3.3. Proof of Proposition 1

It su¢ces to show that, for any w 2 W and any " > 0, there exists a collection
(g1; :::; gn) 2 Gn such that

W = [ni=1B(giw; "): (40)
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This easily follows from the pre-compactness of W and assumption 2. In turn,
(40) implies that each open ball B(giw; ") must be non-negligible with respect to
¸. Indeed,

1 = ¸(W) � P
i ¸

¡
B(giw; ")

¢
=

P
i ¸

¡
giB(w; ")

¢

=
X

i

¸
¡
B(w; ")

¢
= n¸

¡
B(w; ")

¢
: (41)

The …rst equality comes from the fact that G operates isometrically; the second
from the G-invariance of ¸.

¤
3.4. Proof of Theorem 2

Thanks to assumption 3 (i), we can identify each element g 2 G with its
(continuous) canonically associated mapping on W, 'g : W ! W:

8w 2 W; 'g(w) = gw: (42)

On the other hand, let endow G with the following metric:

±(g; h) := sup
w2W

d(g(w); h(w)) g; h 2 G: (43)

It easily follows that the family of mappings 'g : w 7! gw; g 2 G is equi-
continuous. Indeed, for any " > 0, one has:

8w; v 2 W;8g 2 G; d(w; v) � ") d(g(w); g(v)) � ": (44)

Thanks to Ascoli’s theorem, (G; ±) is therefore relatively compact. But assump-
tion 3 (ii) says precisely that (G; ±) is closed. Hence, G is now a compact topo-
logical group. Consider the right-hand translation:

Rg(h) = hg g; h 2 G: (45)

One has:

±(Rg(h)¡Rg(h0)) = sup
w
d(hg(w); h0g(w)) = sup

w
d(h(w); h0(w)) (46)

because of assumption 2 and of the distance-preserving property of any g in G.
Thus, Rg(¢) is an isometry. We therefore can apply Theorem 1 on the group G
itself, viewed as operating on itself via Rg(¢). Thus, that there exists a probability
¹ on (G; d) verifying, for any continuous mapping F : (G; d) ! (G; d):

Z

G

F (hg)¹(dh) =

Z

G

F (h)¹(dh) g 2 G: (47)

Obviously, ¹ is the Haar measure associated with (G; d). Let …x ¸, a ‘uniform
distribution’, w 2 W, g 2 G and F 2 C0

¡
W ;W

¢
. One has:
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Z

W
F (w)¸(dw) =

Z

W
F (gw)¸(dw): (48)

Let us integrate both terms of the last equality with respect to ¹(dg). Since F is
continuous, hence bounded, Fubini’s theorem yields:

Z

W
F (w)¸(dw) =

Z

W
¸(dw)

hZ

G

F (gw)¹(dg)
i
: (49)

By assumption 2, for each w, there exists a h such that w = hv. Thus,
Z

G

F (gw)¹(dg) =

Z

G

F (ghv)¹(dg) =

Z

G

F (gv)¹(dg): (50)

It follows that:
Z

W
F (w)¸(dw) =

Z

W
¸(dw)

hZ

G

F (gw)¹(dg)
i
=

Z

G

F (gw)¹(dg): (51)

Hence the result follows from the uniqueness of the Haar measure (see [7,
chap. 7(1), Theorem 1, p.13]).

¤
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Footnotes
2. Interestingly enough, an analogous conclusion has been drawn, for com-

pletely di¤erent reasons, in strategic game theory. Indeed, even the most de-
manding re…nements of strategic stability lead to some intrinsically unavoidable
indeterminacy of equilibria (see [29])). On the other hand, the aggregation prob-
lem faced here is de…nitely not to be confused with the identi…cation issue, treated,
e.g., in [11]. In the former case, one tries to deduce from micro-economic assump-
tions some sound restrictions on the macro-economic level; in the latter, one
deduces the micro-economic characteristics of an economy from macro-economic
observations. [34] is an excellent survey on all these issues.

3. In a parallel perspective, [13] showed that “dispersed” (non-smooth) prefer-
ences can imply a smooth aggregate demand, while the famous Lyapunov-Richter
theorem says that convexity can be recovered from the non-atomicity of the mea-
sure space of agents.

4. Hildenbrand subsequently showed in [20] that an assumption over the dis-
tribution of individual demand vectors ensures the positive semide…niteness in
the aggregate of the income e¤ect matrix. The Law of Demand follows then from
the Slutsky decomposition of the Jacobian matrix of market demand. In this
approach, individual rationality was still required to give an account of the neg-
ative semide…niteness in the aggregate of the substitution e¤ect matrix. Notice
that [26] and [32] obtained the Law of Demand for more general income distribu-
tions. However, this was done at the cost of additional requirements on individual
behaviors (or on the aggregate substitution e¤ect matrix).

5. Some of the ideas related to heterogeneity have been also applied in [8]
to …nancial asset economies with heterogenous beliefs, showing the versatility of
this approach.

6. Note that two similar explanations of the Law of Demand were already
proposed by [16, p.64] for the excess demand function : Hicks underlines, in-
deed, that the Law of Demand emerges in the aggregate if either the income
e¤ect is negligible at the micro-economic level or income e¤ects cancel out when
aggregating over buyers and sellers.

7. In this case Grandmont’s formalism can be related to Hildenbrand and
Kneip’s ([21]) alternative formalization, see [33] for a discussion.

8. These terminologies follow respectively [5] and [25].

9. Note that this approximate insensitivity is su¢cient to get the Law of
Demand.

10. See also [35] and the references therein, especially [28].

11. On the other hand, our angle of attack is quite di¤erent: neither do we
need to rely on the existence proof of a Haar measure on some locally compact
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topological group in order to exhibit a ‘uniform’ distribution on agents’ character-
istics, nor do we restrict ourselves to individual preferences that are representable
by smooth utility functions or to homogeneous budget constraints.

12. Notations: For any pair of vectors x; y 2 RL, x ¢ y denotes the Euclidean
scalar product, and x  y = (x1y1; :::; xLyL) the tensor product. If p 2 RL++, p¡1

denotes the vector ( 1
p1
; :::; 1

pL
). For any bijective mapping T : X ! X and any

integer n, T n stands for T ± ::: ± T , the nth composition of T with itself. Any
Euclidean space is equipped with its Euclidean norm. B(x; ") is the open ball
of center x and of radius ". ±x is the Dirac mass with support fxg; #X is the
cardinality of the set X . For any topological space X; C0(X) [resp. L1(X)] is
the space of continuous functions [resp. equivalence classes of bounded functions]
f : X ! X.

13. This follows from the fact that 8p; q 2 RL
++,

(p¡q)¢
³
p¡1W (p; x)¡q¡1W (q; x)

´
� (p¡q)(p¡1¡q¡1)W (q)+(p¡q)(p¡1¡q¡1)":

14. The last property would typically result from the local non-satiation of
households’ preferences, and would imply that

PL
l=1w

i
l(p; x) = 1;8i; p; x: This is

required, e.g., in [14] and [31].
15. Observe that [14] and [24] do not need to assume the WARP at the

individual level, while [31] does require it, because his assumptions on behavioral
heterogeneity are weaker.

16. It is worth emphasizing that this property, while being su¢cient, is not
necessary to prove that an economy is heterogenous. The arguments provided in
[33], for instance, are su¢cient. Thus, the following property is a much stronger
by-product.

17. Notice that T¡¢ = T ¡1¢ ; 8¢.
18. The interpretation should be clear: Ai is the set of boyfriends of Ms.i; if a

certain collection of ladies I put their boyfriends in common, the number of men
they get is at least as high as #I. The conclusion of the lemma becomes then
obvious: the n ladies will be able to marry without practicing polyandry.


