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Abstract

This paper considers estimating general spatial autoregressive models using

the generalized method of moments (GMM). I propose nonparametric estimates

of the optimal instruments based on conditional second moment restrictions.

We show that these instruments are optimal over all possible instruments, es-

pecially over those usually suggested in a spatial context. We provide a consis-

tent nonparametric estimator of sample autocovariances function for irregularly

spaced spatial stochastic processes. We then derive a consistent estimator for

the asymptotic covariance matrix. Finally we investigate the asymptotic distri-

bution of the GMM estimator.
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1 Setup: overview and motivation

General forms of dependence are rarely allowed for in cross-sectional data, although

routinely permitted in time-series. A major reason is that time-series typically come

with a time label giving the data a natural ordering and a structure which is absent in

cross-sectional data. In practice, this makes estimation and inference given minimal

assumptions about dependence more di�cult with cross-sections than with time-

series.

Spatial dependence is de�ned as a special case of non-zero covariance structure

for cross-sectional observations at pairs of locations. Contrary to time-series models,

until quite recently, little attention has been paid to models for spatial data. The

problem follows from the fact that spatial processes are characterized by a system of

dependence which, by nature, involves multi-directional motion whereas the depen-

dence in time is uni-directional. This particular characteristic of spatial stochastic

processes precludes the simple transposition of time-series methodologies.

Examples of recent empirical studies that explicitly incorporate spatial depen-

dence concern, among others, the study of spatial patterns in household demand

(Case, 1991), the analysis of innovation decisions (Hautsch and Klotz, 1999), the

forecasting of cigarette demand using panel data (Baltagi and Li, 1999), real wages

reaction to local and aggregate unemployment rates over time (Ziliak et al., 1999)

and the estimation of a hedonic model for residential sales transactions (Bell and

Bockstael, 2000).

Two structures of spatial dependence mostly encountered in the literature (spatial

dependence across observations for the response variable and spatial autocorrelation

in error terms) are sources of econometric and statistical inference problems. As

outlined by Anselin (1988, p. 59), the asymptotic properties of the ordinary least

squares estimator for the model with spatial residual autocorrelation are more in line

with the time-series analogue than for the autoregressive model. Indeed, parameter

estimates will still be unbiased, but ine�cient due to the nondiagonal structure of the

covariance matrix of the error terms. In light of this, Kelejian and Prucha (1997) have

shown that, for a spatial error model, the attempt to use a two-stage least squares

procedure based on the Cochrane-Orcutt (1949) transformation leads to inconsistent

estimates. Kelejian and Prucha demonstrated that the response function associated

with the two-stage least squares procedure problem is not a separating function, that

is, Amemiya's (1985, p. 246) rank condition is violated. This raises identi�cation

issues for the spatial parameter.

In a regression context and from a methodological viewpoint, when a spatial lag

of the response variable is used as additional regressor, the spatial dynamics involved
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induce the problem of endogeneity. Indeed, contrary to time-series models where the

lagged dependent variable is uncorrelated with the error if there is no serial residual

correlation, this correlation occurs in the spatial context regardless of the properties

of the disturbance. As a result, the ordinary least squares (OLS) estimator will be

biased as well as inconsistent; see e.g., Azomahou and Lahatte (2000) for a detailed

proof. This inconsistency is mentioned in papers presenting alternative estimation

procedures and has motivated the application of maximum likelihood procedures.

In order to clarify estimation issues due to the incorporation of spatial dynamics

in a cross-sectional regression, let us consider for example the so-called general linear

spatial model, that is, a �rst order spatial autoregressive model with �rst order

spatial autoregressive disturbance

yn = �Wnyn +Xn� + �n;

�n = �Mn�n + un;
(1)

where yn is the n� 1 vector of observations on the dependent variable, Wn and Mn

are non-stochastic n�n spatial weighting matrices, that is to say,Wn andMn express

for each (row) observation those (columns) locations that belong to its neighborhood

set as non-zero elements. Clearly,Wn andMn are matrices of a graph (Berge, 1983).1

For the normalization of this model it is usually assumed that all diagonal elements

of Wn and Mn are zero. For stability purpose, it is further assumed that j�j < 1

and j�j < 1, � and � being the scalar autoregressive coe�cients. To achieve the

stability, one may also assume in general that the column and row sums of Wn and

Mn are uniformly bounded in absolute value, which ensures the stationarity of the

underlying spatial process. � is a k � 1 vector of regression parameters, �n is a

n� 1 vector of regression disturbances and un is an n� 1 vector of innovations. The

variables Wnyn and Mn�n are referred to as spatial lags. For generality, we allow

the elements of the matrices and vectors to depend on the number of observations n,

that is to form a triangular array. In the notation above, an index n denotes the size

of the sample. This notation allows us to �x ideas on elements of the model which

depend on n.

1To illustrate these considerations, let us consider a spatial process fZ(t) :2 Tg where T � R
d

is an index set of a countable collection of regularly or irregularly scattered spatial sites and these

sites are supplemented with a neighborhood structure. Such a neighborhood structure is generally

modeled either by a connectivity matrix (sayWn, whereWn is a n�nmatrix, with elements wij = 1

if sites i and j are juxtaposed, wij = 0 if not; n is the number of sites) or by a graph-theoretic

formalism (the sites become vertices, which are connected with edges for contiguous objects). Such

spatial processes are called lattices. The most important application of lattice models is statistical

modeling of spatial images, which is widespread in astronomical image processing. See, e.g., Cressie

(1991) for further discussions.
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The structure of (1) is such that it contains both a spatial lag of the response

variable as additional regressor and a disturbance term that is spatially autoregres-

sive. Let us use the notations An = I � �Wn and Bn = I � �Mn. If we assume

un to be normally distributed with mean zero and �nite variance, the log-likelihood

function of (1) for the joint vector of observations yn is computed as

L(:; �) = �n
2
� ln 2� � 1

2
� ln j
nj+ ln jBnj+ ln jAnj � 1

2
� 0n�n; (2)

with

� 0n�n = (Anyn �Xn�)
0B0n


�1
n Bn(Anyn �Xn�) (3)

de�ned as a sum of squares of appropriately transformed disturbances, where � =

(�; �0; �; �2u)
0
and 
 := E(unu

0
n) is a diagonal error covariance matrix with un =

Bn�n. The core of the log-likelihood expression (2)-(3) is the quadratic form in the

disturbances, which may or may not lead to a well-behaved optimization problem.

Indeed, the determinants j
nj, jAnj and jBnj can cause problems in this respect.

Two issues are linked to the maximum likelihood procedure (2)-(3): the compactness

of the parameter space and computational issues in large samples. We consider them

in turn.

To simplify the discussion, let us consider only the case ln jBnj = ln jI � �Mnj,
which turns out to be the log of the determinant for the likelihood in a spatial

error speci�cation. For this likelihood function to be de�ned, � must be such that

(I � �Mn) is positive de�nite. Singular points occur when the determinant of the

Jacobian jI � �Mnj equals zero, or equivalently, when j�I �Mnj = 0, with � = 1=�.

Since this expression de�nes � as an eigenvalue for Mn, the problem in relation (2)-

(3) is unde�ned at every value of � such that 1=� equals an eigenvalue of Mn. Hence

we observe that the values of � that make (2)-(3) unde�ned are directly related to

the eigenvalues of Mn and these eigenvalues will change with the addition of new

observations. As a result, with no further restrictions, the problem is characterized

by a noncontinuous parameter space. Moreover, in the case of the frequently used

row-standardized weighting matrix, the singular points in the parameter space could

be computed and avoided. However, their existence complicates proofs of consistency

theorems as the parameter space is not generically compact.

Despite this issue, assume that the log-likelihood function can be solved numer-

ically. Brute force computation of the estimator involves the repeated evaluation

of the determinant of the n � n matrix (I � �Mn), which is of course cumbersome

for large samples. A way to estimate � consists for example in using a grid-search

algorithm after concentrating the log-likelihood function with respect to �. Then,

feasible generalized least squares estimates of � and �2u can be obtained conditioned
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on the estimated value of �. Again, large samples matter since the Jacobian is an

n � n matrix, the determinant of which must be repeatedly evaluated in searching

over the ML estimate of �.

To minimize this computational burden, Ord (1975) suggested to approximate

the troublesome term ln jI � �Mnj as
Pn

i=1 ln(j1 � ��ij), where �i denotes the i-th
eigenvalue ofMn. SinceMn is a known matrix, this approach has the advantage that

the eigenvalues ofMn have to be computed only once (at the outset of the numerical

optimization procedure used in �nding the ML estimates) and not repeatedly at each

numerical iteration. However, this still leaves the task of �nding the eigenvalues of

Mn. In many cases, it will be practically impossible to compute those eigenvalues

accurately. Since spatial weighting matrices are not typically symmetric, an accurate

calculation of the ML estimator may not be feasible in many cases even for moderate

sample sizes. This shortcoming is of consequence because ML procedures are often

challenging when the sample size is large.2 Furthermore, the ML procedure requires

distributional assumptions that the investigator may not wish to specify.

To overcome these di�culties, the spatial weighting matrix is generally row stan-

dardized. That is, Mn is transformed so that the elements in each row sum to unity.

As a result and assuming that all diagonal elements ofMn are zero, all eigenvalues of

Mn will be less than or equal to one, implying that no positive roots of jI��Mnj = 0

will be found between 0 and 1, and no negative roots will be found between 0 and

�1=j�minj, see, e.g., Kelejian and Robinson (1995) for proofs. Given the maximum

and minimum eigenvalues for the row standardized weighting matrices, the statisti-

cal problem will always be well de�ned over the range [�1=j�minj; 1]. Unfortunately,
there is not necessarily a good reason to row-standardize relying on the underlying

economic story, although there is a great temptation to interpret � as an autocorre-

lation coe�cient; see e.g., Kelejian and Robinson (1995) for a discussion.

All these issues motivate the recent development of alternative estimators initi-

ated by Kelejian and Prucha (1998, 1999). These estimators are based on generalized

method of moments and generalized spatial two-stage least squares procedures with

instrumental variables, and have the advantage of being computationally simple even

in the case of extremely large samples. However, we can outline some limits.3

The �rst is related to the mechanism of selection of the instruments. Indeed, as we

2The precision of numerical procedures required to calculate eigenvalues decreases rapidly as

the size of the spatial weighting increases. Kelejian and Prucha (1999a) found that eigenvalues of

nonsymmetric (e.g. row-standardized) spatial weighting matrices of dimensions over 400 could not

be reliably computed.
3From a theoretical side, Conley (1999) developed a GMM-based approach to deal consistently

with lattice models by correcting for spatial correlations in the error terms due to locations.
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have seen, in a �rst step of their estimation procedure Kelejian and Prucha consider as

instruments a full column rank (p � k+1) matrix, say Hn, that is composed of a sub-

set of the linearly independent columns of (Xn;WnXn;W
2
nXn; � � � ;MnXn;MnWnXn;

MnW
2
nXn; � � � ; ) where the subset contains at least the linearly independent columns

of (Xn;MnXn). They note that in practice, that subset might be the linearly in-

dependent columns of (Xn;WnXn; W
2
nXn;MnXn;MnWnXn;MnW

2
nXn), or if the

number of regressors is large, just those of (Xn;WnXn; MnXn;MnWnXn).

Ideally, the instruments should be strongly related to the original variable, and

asymptotically uncorrelated with the error terms, although there is no general rule

to achieve this. While asymptotically the number of instruments does not matter,

in �nite samples, practical limits will result from problems with multicolinearity and

concerns about degrees of freedom. The requirement of asymptotic uncorrelatedness

between instruments and the error term is harder to assess. In the simple case

considered by Kelejian and Prucha (1999a) where the instruments may consist of

�tted values, the lack of correlation can be shown analytically. However, it should be

noted that the subset of instruments considered involves powers of spatial weighting

matrices. In the case of row-standardized weighting matrix, a well known result is

that elements of powers will tend to zero when the power increases. Anselin (1980)

already suggested instruments of the same nature. Even if using a spatially lagged

predicted value of a regression of the dependent variable on the non-spatial regressors

as instruments is acceptable, spatial lags of the explanatory variables in the model

may lead to problems with multicolinearity. In all cases, these instruments are not

optimal, as we will show later.

Another problem is that of the assumptions (namely assumption 7b Kelejian and

Prucha (1998)) that rule out models in which all of the parameters corresponding

to the exogeneous regressors � including the intercept parameter if an intercept is

present � are zero.4 Note that in such situation, the mean of the response variable

is zero and hence, this case may be of limited interest in practice. Moreover, if the

spatial weighting matrix is row standardized, the concerned assumption will fail if

the only nonzero element of the vector of parameters to be estimated corresponds to

the constant term. The reason is that the resulting matrix will no longer have full

column rank as hypothesized in the assumption. Thus, the assumption requires that

the generation of the vector of observations on the response variable involves at least

4This assumption says that the instruments matrix Hn satisfy plimn!1H
0
nZn = QHZ and

plimn!1H
0
nMnZn = QHMZ , where QHZ and QHMZ are �nite and have full column rank, Zn =

(Xn;Wnyn), Xn being a n by k matrix of regressors, Wn and Mn are spatial weighting matrices

and yn denotes the regressand; furthermore, QHZ � �QHMZ = plimn!1H
0
n(I � �Mn)Zn has full

column rank where j�j < 1.
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one nonconstant regressor. One implication of this is that if the spatial weighting

spatial matrix in the regression model is row standardized, the null hypothesis that

all slopes are zero cannot be tested.

The second limit concerns the moment conditions of the estimation procedure.

Let �n;i, ��n;i and ���n;i denote respectively the i-th elements of �n, ��n =Mn�n and ���n =

M2
n�n. Similarly, let un;i and �un;i be the i-th elements of un and �un =Mnun. Then,

the spatial error speci�cation implies the three moments of interest E(u0nun=n) = �2u,

E(�u0n�un=n) = �2un
�1tr(W 0

nWn) and E(�u
0
nun=n) = 0. These moments lead to a three-

equation system

=n[�; �
2; �2u]

0
= }n; (4)

with

=n =
1

n

2
64

2E(�0n ��n) �E(��0n ��n) n

2E(���0n��n) �E(���0n���n) tr(W 0
nWn)

E(�0n���n + ��0n��n) �E(��0n���n) 0

3
75 ;

and

}n = n�1[E(�0n�n); E(��
0
n��n); E(�

0
n��n)]

0
;

Kelejian and Prucha (1999a) suggested two estimators of � and �2u. Essentially, these

estimators are based on estimated values of =n and }n. Let us denote the sample

analogue of (4) by

�}n = �=n� + en; � = (�; �2; �2u)
0
; (5)

where en can be viewed as a vector of i.i.d. regression residuals. The simplest of

the two estimators of � and �2u is given by the �rst and third elements of the OLS

estimator ~�n for � obtained by regressing �}n against �=n. Since �=n is a square matrix,

~�n = �=�1n �}n: (6)

It should be noticed that ~�n is based on an overparametrization, in that it does not

use the information that the second element of � is the square of the �rst. The

second set of estimators of � and �2u considered by Kelejian and Prucha, say, ~~�n and

~~�2u, is more e�cient, and is de�ned as the nonlinear least squares estimator:

�̂ = arg min
�2�

( �}n � �=n�)
0
( �}n � �=n�): (7)

Since the construction of �̂ follows from the moment conditions (4), the estimator

(7) is termed by the authors as a generalized moment estimator. The standard error

of the spatial parameter � following from (7) or (6) is di�cult to derive and is not

provided in Kelejian and Prucha (1999a) for the following reasons.
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First of all, note that the observations of the nonlinear or the ordinary least

squares regression that determine the GMM estimates for � and �2u are sample av-

erages, and thus the degrees of freedom considerations appropriate for a linear or

nonlinear regression model, where the observations correspond to single data points

do not apply here. The reasons for not deriving standard error for � are several: (i)

this derivation is "challenging"; (ii) for the model, � can be viewed as a nuisance

parameter with regard to the distribution of the estimators for � and � (the parame-

ters corresponding to the exogeneous regressors and the spatial lag respectively), and

thus all one needed was to establish the consistency of estimators: the parameters �

and � are typically the ones of primary interest; (iii) while having the distribution

of the estimator for � would allow for a direct test for spatial autocorrelation, the

presence of spatial autocorrelation can be tested with, say, the Moran I test.5 How-

ever, it is a serious shortcoming to be unable to make statistical inference directly

from parameter estimates. Now let us review in detail some arguments.

Before going into more details, it should be noted that the primary interest of

Kelejian and Prucha (1998, 1999) was to obtain a computationally simple consistent

estimator for �, and thus for the disturbance variance covariance matrix, which could

then be utilized in a feasible generalized least squares procedure for the regression

coe�cients. Since all they needed for the feasible and the true GLS estimator to have

the same asymptotic distribution was consistency of �̂, the asymptotic distribution of

the estimator for � was not important, as it does not a�ect the limiting distribution

of the feasible GLS estimator.

The di�culties in deriving the limiting distribution can already be seen by looking

at the OLS form of the GMM estimator. To derive the asymptotic distribution we

would have to establish the limiting distribution of n1=2 �=0n �}n. Recall that �=n and

�}n are respectively the sample analogue of =n and }n. Assuming for a moment

that the true disturbances un are known, the elements of this vector are products of

quadratic forms in the original error terms. Thus this is not the usual situation one

encounters in running OLS on observations that correspond to a single time period.

The distribution is derivable, but requires an appropriate Central Limit Theorem.

In that respect the CLT for quadratic forms where the elements can depend on the

sample size given in Kelejian and Prucha (1999b) may be useful.

Furthermore, in comparing the procedure of Kelejian and Prucha with ML it

seems fair to note that at this point there is no formal result available concerning

the asymptotic distribution of the ML estimator for the regression parameters and

�. Of course, one would expect the usual expressions for the variance covariance

5See, e.g., Moran (1948) for details on the Moran I statistics.
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matrix of the ML estimator also to apply here under reasonable assumptions, but so

far that has not been demonstrated formally.

In view of these issues, this study addresses several concerns. Firstly, we pro-

pose moment conditions based on the Cochrane-Orcutt (1949) type transformation

of the general spatial model. These moments allow us to de�ne a more general

heteroskedastic form. The conditional moments restrictions use second moment in-

formation which may improve the e�ciency of the estimators. Secondly, following

Newey (1986), we construct optimal nonparametric instruments based on nearest

neighbor procedures. We show that these instruments are optimal over all possible

instruments, especially over those usually suggested in a spatial context. Since we

are working with dependent observations, it is suitable to include this dependence

in the estimation of the asymptotic covariance matrix of parameters. We provide a

consistent nonparametric estimator of sample autocovariance functions for an irreg-

ularly spaced spatial stochastic process, and we show that this estimator converges

in probability. We then derive an estimator for the asymptotic covariance matrix,

and we prove that this estimator is consistent in norm L2. Finally we investigate the

asymptotic distribution of the GMM estimator.

The study is organized as follows. Section 2 introduces the model and describes

the conditional second moment restrictions. The model is based on a Cochrane-

Orcutt type transformation of the mixed regressive spatial autoregressive speci�ca-

tion with heteroskedasticity of a general form. Section 3 presents the estimators and

gives conditions for its consistency. Section 4 provides concluding remarks.

2 Conditional spatial autoregressive model

We consider the same structure as equation (1). Let zn = (xn;Wnyn) and Æ = (�0; �)0

be the vector of parameters in the �rst equation of (1). Then, relation (1) can be

rewritten more compactly as

yn = znÆ + �n;

�n = �Mn�n + un:
(8)

If we assume that E(un) = 0, E(unu
0
n) = �2u, then we have E(�n�

0
n) = �2u(I � �Mn)

�1

(I � �M 0
n)
�1, implying a form of spatial heteroskedasticity related to spatial error

models.6 Applying a Cochrane-Orcutt type transformation to this model, that is

6The invertibility of forms I � �Wn can be ensured by several conditions. For example, if all

eigenvalues of Wn are less than or equal to one in absolute value, j�j < 1 implies that all eigenvalues

of �Wn are strictly below one in absolute value, which ensures that (I � �Wn)
�1 =

P1
i=0 �

iW i
n.
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�rst replacing �n by (I � �Mn)
�1un in the �rst part of (8), then premultiplying the

resulting relation by (I � �Mn) yields,

yn = f(�xn; 0) + un; (9)

with

f(�xn; 0) = �Mnyn + (zn � �Mnzn)Æ;

where  = (Æ0; �)0, �xn = (Mnyn; zn;Mnzn). Now set �zn = (yn; �xn) and suppose that

there is a known skedastic function h(�xn; ; �) of  with an additional parameter �

such that

E(unj�xn) = 0; E(u2nj�xn) = h(�xn; ; �): (10)

Let us denote by '(�zn; �0) an s � 1 residual vector of functions with � = (0; �)0 =

(�0; �; �; �)0 being a q � 1 vector of parameters. The skedastic function h(�xn; ; �)

could be used to construct a weighted least squares estimator for the parameters.

In order to incorporate the heteroskedasticity information in estimating the model

where only the conditional �rst and second moments are restricted, we add the con-

ditional variance residual as an additional conditional moment restriction specifying

'(�zn; �0) =

"
yn � f(�xn; )

fyn � f(�xn; )g2 � h(�xn; ; �)

#
: (11)

Remark 1 We verify easily that (11) is a moment condition. Indeed, denote the

�rst block of (11) as '11 = un and the second block as '12 = u2n � h(�). Given

the assumptions of the model we have E('11j�xn) = E(unj�xn) = 0 and E('12j�xn) =
E(u2nj�xn) � h(�xn; ; �) = 0. The conditional second moment restrictions model con-

sidered here is one where the true distribution of data satis�es

E ['(�zn; �0)j�xn] = (0; 0)0; (12)

where �0 denotes the true value of the parameters.

The conditional moment restriction (12) implies that '(�zn; �0) is uncorrelated

with functions of �xn, which yields an in�nity of unconditional moment restrictions

E[A(�xn)'(�zn; �0)] = (0; 0)0. Such restrictions can be used to estimate �0 by setting

the sample cross-product of '(�zn; �0) with functions of �xn close to zero. As pointed

The claim that all eigenvalues of Wn are less than or equal to one in absolute value, givenWn is row

standardized, follows from Ger�sgorin's theorem. See, e.g., Horn and Johnson (1985, pp. 296�344)

for details on this purpose.
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out by Newey (1986), the additional conditional moment restriction that may be

exploited by instrumental variables estimators using residuals (11) will result in esti-

mators that are at least as asymptotically e�cient as the heteroskedasticity corrected

least squares estimator, and more e�cient in some cases. To state this estimator re-

sulting from the use of (11), let A(�xn) denote an r � s matrix of functions of �xn,

with r > q. Then E[A(�xn)'(�zn; �0)] = (0; 0)0, which suggests a GMM estimator or a

nonlinear IV estimator. This estimator is obtained by minimizing a quadratic form

in the sample moments. Let Sn
a.s.! S0 be an r� r positive de�nite symmetric matrix

and  (�) =
Pn

i=1A(�xn;i)'(�zn;i; �)=n. The GMM estimator is then:

�̂ = arg min
�2�

 (�)0Sn (�): (13)

To discuss the asymptotic e�ciency of �̂, one needs to compute its asymptotic

covariance matrix. In the case of independent and identically distributed (i.i.d.)

observations, this is straightforward. With dependent data, as is the case here,

the task is more cumbersome. The expression of the asymptotic covariance matrix

will look the same as that for i.i.d. observations, but must include sample spatial

autocovariances.

First, apply the usual mean-value expansion argument to the �rst-order condi-

tions
@

@�0
 (�̂)

0
Sn (�̂) = 0;

for �̂. Then suppose that a uniform law of large numbers leads to @ (�̂)=@�0
p!

E[A(�xn)@'(�z; �)=@�
0] =: �n for any �̂

p! �0. Furthermore, assume f�zn;igni=1 to

be spatially dependent observations. A corollary of the Lindeberg-Feller central

limit theorem for triangular arrays (see, e.g., Billingsley (1979, p. 319)) then givesp
n (�0)

d! N (0; Vn), where

Vn = E

�
A(�xn)

@

@�0
'(�z; �)

@

@�0
'(�z; �)0A(�xn)

0

�
:

Expanding  (�̂) around �0, solving for
p
n(�̂��0), replacing the estimated average by

probability limits and applying the continuous mapping theorem (see, e.g., Ser�ing

(1980, p. 24)) yields the asymptotic normal distribution and asymptotic covariance

matrix:

n(�̂ � �0) = �(�0nS0�n)�1�0nS0
p
n (�0) + op(1);

and p
n(�̂ � �0)

d! N
�
0; (�0nS0�n)

�1
�0nS0VnS0�n(�

0
nS0�n)

�1
�
: (14)

The above asymptotic covariance matrix depends on both S0 and A(�xn). As shown

by Hansen (1982), the optimal choice of S0 that minimizes the asymptotic variance
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is S0 = V �1n . This can be computed using Ŝ0 = V̂ �1n as a consistent estimator V̂n of

Vn.

As we have pointed out earlier, Vn might account for the dependence between

observations and include autocovariances between A(�xn)'(�zn; �0). One result of this

chapter proposes in the next section a nonparametric estimation to �t the sample

autocovariances. We show that this estimator is consistent.

Our second focus is the optimal asymptotic variance minimizer selection of in-

struments A(�xn). The material used here is in direct line of Newey (1986). To

describe this choice, let

D(�xn; �0) = E

�
@

@�0
'(�zn; �0)j�xn

�
; (15)

and


(�xn�0) = E
�
'(�zn; �0)'(�zn; �0)

0j�xn
�
: (16)

From (9), (11) and (15), the components of D(�xn; �0) are computed as

E

�
@

@�0
f(�xn; )

�
= E

�
@

@�
f(�xn; )

�
= zn(I � �Mn);

E

�
@

@�
f(�xn; )

�
= E [Mn(yn � znÆ)] = 0;

E

�
@

@�
f(�xn; )

�
= 0;

where the expectations are taken with respect to �xn. We obtain

D(�xn; �0) =

"
zn(I � �Mn) 0 zn(I � �Mn) 0
@
@�0h(�xn; ; �)

@
@�h(�xn; ; �)

@
@�h(�xn; ; �)

@
@�h(�xn; ; �)

#
: (17)

The asymptotic covariance matrix of �̂ is then

� = [A(�xn)D(�xn)]
�1E

�
A(�xn)
(�xn)A(�xn)

0
� �
D(�xn)

0A(�xn)
0
��1

; (18)

where �0 is omitted in notations in order to ease presentation (we also omit it in

the sequel when there is no confusion). Amemiya (1977) showed that the optimal

instruments are

A�(�xn) = FD(�xn)
0
(�xn)

�1; (19)

where F is a nonsingular matrix of constants which can be chosen to be equal to the

identity matrix; see Chamberlain (1987) for a proof of the IV formulation used here.

For this choice of instruments, (18) reduces to

��A� =
�
E
h
D(�xn)

0
(�xn)
�1D(�xn)

i��1
: (20)

12



A fact that is stated below is that the instruments de�ned by (19) are optimal over

all possible instruments and as a result, over those frequently used in the studies

on spatial econometrics. The reason is that (19) produces optimal instruments with

respect to the criterion of the smallest asymptotic variance within the class of IV

estimators. Before stating this result, let us make the following remarks.

Remark 2 Generally the optimal instruments A�(�xn) are not feasible as they depend

on unknown parameters. An estimator Â�(�xn) of A�(�xn) can then be used instead

with Ŝ0 = (
Pn

i=1 Â
�(�xn;i)Â

�(�xn;i)
0
=n)

�1
. The resulting IV estimator is

�̂ = arg min
�2�

� (�)
0
Ŝ�10

� (�); (21)

with � (�) =
Pn

i=1 '(�zn;i; �)Â
�(�xn;i)=n.

Remark 3 If yn is continuous, it seems reasonable to make the following assump-

tions on the third and fourth moment: E(u3nj�xn) = 0 and E(u4nj�xn) = �0h(�xn; 0; �0)
2.

Two points should then be stressed. First, the question whether additional moment re-

strictions can improve the estimators e�ciency is answered by comparing the asymp-

totic variance of the heteroskedasticity corrected least squares estimator

�
E

�
fE(u2nj�xn)g�1

@

@0
f(�xn; )

@

@0
f(�xn; )

0
���1

;

with the block of the bound of (20) corresponding to . As noticed by Newey (1986),

the two are equal if E(u3nj�xn) = 0 and  does not enter the variance function. In other

words, the conditional moment bound will in general be lower than the asymptotic

variance of the optimally weighted least squares if either E(u3nj�xn) 6= 0 or  does

enter the variance function.

Remark 4 Secondly, the fourth moment speci�cation is more general than assuming

the error to be normally distributed as it allows for a free parameter �0 that quanti�es

the degree of kurtosis.7 If we have consistent estimates ̂ and �̂ for  and �, �0 can

be estimated by the sample variance of fyn � f(�xn; ̂)g2=h(�xn; ̂; �̂). The estimated

optimal instruments can then be formed as Â�(�xn) = D̂(�xn)
0

̂(�xn)

�1
with D̂(�xn) =

D̂(�xn�̂) and


̂(�xn) =

"
h(�xn; ̂; �̂) 0

0 �̂h(�xn; ̂; �̂)
2

#
(22)

7Note however that this general speci�cation comes with the strong assumption that the free

parameter �0 is constant.

13



The zero o�-diagonal block in (22) follows from the fact that cov[(un; u
2
n)j�xn] =

E[(unu
2
n)j�xn] = 0. To establish our �rst proposition, we make use of the following

assumptions.

Assumption 1 There exists a set of instruments H�
n(�xn) formed as the orthogonal

projection onto the space spanned by the columns of Hn subset of (Xn;WnXn;W
2
nXn;

� � � ; MnXn;MnWnXn;MnW
2
nXn; � � � ).

Assumption 2 There exists an asymptotic covariance matrix ��H�n associated with

the instruments H�
n verifying usual regularity conditions such that the estimator has

the following asymptotic distribution

p
n(~� � �0)

d! N
�
0;��H�n

�
; (23)

with

��H�n = (G0nPnGn)
�1
G0nPnVnPnGn(G

0
nPnGn)

�1
;

where

Gn = E

�
H�
n(�xn)

@

@�
'(�zn; �0)j�

�
;

and

Vn = E
�
H�
n(�xn)'(�zn; �0)'(�zn; �0)

0H�
n(�xn)

0
�
:

Assumption 1 is a general formulation of instruments typically suggested in spatial

literature; see e.g. Kelejian and Prucha (1999a) and Anselin and Bera (1998). As

discussed in the introduction, these instruments consist mainly in spatial lags of ex-

planatory variables and a powers of spatial weighting matrices. This assumption is

not strong in that we do not need the matrix of instruments to have full column rank

(at the expense of working with generalized inverses). Indeed, to the matrix of instru-

ments, we will associate an asymptotic covariance matrix of parameter estimators.

So, we only need the asymptotic covariance matrix to be invertible. Assumption

2 is a standard one which states the regularity conditions under which there exists

an asymptotic covariance matrix ��H�n for a consistent ~� of �0, based on instruments

de�ned by H�
n(�xn) such that the distribution in (23) holds. These two assumptions

allow us to compare the asymptotic covariance matrices ��H�n and ��A�n .

Proposition 1 Given Assumptions 1 and 2 and the maintained assumptions of the

model, ��A�n << ��H�n .

Proof. See the appendix.
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Proposition 1 states that the mechanism of selection of the instruments leads to

the best choice of possible instruments. This result is of two practical interests.

First, in the spatial context, we do not need to compute more than one spatial

lag of the explanatory or/and dependent variables to be used as instruments. In

the case where Wn = Mn one might compute at most the second power of the

spatial weighting matrix. The problem of higher order spatial weighting matrices,

the elements of which may tend towards zero is then avoided. The second practical

interest of this result is that, it provides optimal patterns for instruments. We now

state the convergence of various estimators used in the analysis.

3 Estimators

In the previous section we saw that to make e�cient inferences about the population

parameter value �0 (such as to compute con�dence intervals or test statistics), it

is useful to have a consistent asymptotic covariance estimator. Since we are work-

ing with spatial autoregressive processes, spatial dependence may be accounted for,

and the middle matrix Vn in relation (14) might include autocovariances between

A(�xn)'(�zn; �0) for di�erent spatial units. This slightly complicates the analysis.

3.1 Nonparametric estimation of spatial autocovariances

Contrary to time-series, there is typically no natural order for arranging a spatial

sample, due to its multi-directional motion. The spatial autocovariance function

cannot then be approximated from the sample analogue as is the case for time-series.

We will outline the reason later. At this stage we have two possibilities. First, we can

suppose that the underlying data generating process follows from regularly scattered

spatial sites. However, in practice spatial data rarely exhibit such a characteristic.

Instead, we consider the case of irregularly scattered spatial data which seems more

natural.

Let s 2 R
d be a generic data location in a d-dimensional Euclidean space and

fU(s); s 2 D � R
dg be a spatial stationary process with zero mean and �nite vari-

ance. One wishes to have a consistent estimation of the associated autocovariance

function Cn(�). In the sequel, index n will be omitted to ease presentation when it

is not necessary.

De�nition 1 For a distance lag � 2 R
d , we de�ne the autocovariance function as

Cn(�) = cov [U(s+ �); U(s)] � E [U(s+ �)U(s)] : (24)
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De�nition 2 Let us de�ne the random variable Z(�) as

Z(�) = U(s+ �)U(s): (25)

The cloud of points denoted NU constructed from the n realizations u(s) of U(s)

allows us to de�ne a cloud of points denoted NZ associated with the n(n � 1)=2

realizations z(�) of Z(�) by setting

z(�) = u(s+ �)u(s): (26)

The di�culty here is that one has only one observation for a distance � between two

points of the sample. It is then not possible to construct an estimator of E[Z(�)js] as
an empirical mean of a large sample as is the case for time-series data. To overcome

this issue, we propose to �t the cloud of points NZ by a smooth function which will

be a consistent approximation of relation (24). The intuition is the following.

Assuming Cn(�) to be regular and the sample points to be uniformly distributed,

Cn(�) can be estimated by smoothing the scatter plot NZ by using the kernel method.

Intuitively, the smoothing function should provide a consistent nonparametric esti-

mation for Cn(�) which is then robust to spatial correlation of unknown form. Several

assumptions are needed to construct this estimator and to prove its consistency.

Assumption 3 fU(s); s 2 [a; b]g is a spatial stationary process with zero mean.

Furthermore, assume that there exists a spatial autocovariance function Cn(�) for

U(s) such that Cn(�) is C1.

Assumption 4 We de�ne the following sets:

(i) I = fi1; � � � ; ing is a set of n coordinates with ij having a uniform distribution

U[a;b],
(ii) � = f� = ji� i0j=(i; i0) 2 Ig with maxf0; � ��(n)g < i� i0 < �(n) + � , where

�(n) denotes the maximum distance or the maximum allowable error,

(iii) 	�
n = f(i; i0) 2 I � I= ji� i0j 2 B(�;�(n)); � 2 �g, where B(�;�(n)) is an open

ball, and n here indicates the number of coordinates,

(iv) limn!1�(n) = 0.

Assumption 5 There exists a function K de�ned onto [0;�(n)], positive, strictly

decreasing, with K(0) = 1 and K(�(n)) = 0.

Proposition 2 Given Assumptions 3�5, a consistent nonparametric estimator Ĉn(�)

of Cn(�) is such that

Ĉn(�) =
X

(i;i0)2	�
n

K
���ji� i0j � �

���U(i)U(i0) p�!
n!1

Cn(�): (27)
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Proof. See the appendix.

The estimator (27) is nonparametric in that the form of the spatial correlation be-

tween the U(s) at di�erent � does not need to be speci�ed. The interest of this

result is that it provides a consistent estimation of spatial covariance of unknown

form directly from the n data points. Note how this contrasts with a parametric

framework. Indeed, in such a situation, one might estimate n(n � 1)=2 parameters

from n data points. Since it is impossible to estimate parametrically such covariance

terms or correlations directly from n data points due to identi�cation issues, it is nec-

essary to impose su�cient constraints on the n by n spatial interaction matrix such

that a �nite number of parameters characterizing the correlation can be e�ciently

estimated.

3.2 Variance-covariance matrix estimation

Once we have Ĉn(�) at hand, a consistent estimator of Vn can be formed using for

example nearest neighbor procedures (k� nn). See e.g. Härdle (1990) for details on
the k�nn method. See also e.g. Newey (1990) for the choice of the weights and the

choice of the number of nearest neighbors k used here.

First of all note from (27) that Ĉn(�) is symmetric by construction. Now, for

positive integers m and k with m > k, let $mk be constants satisfying $mk � 0,

$mk = 0 and
Pk

m=1$mk = 1. The weights are de�ned as !ij for i 6= j with the

restriction of uniform boundedness. Then a consistent estimator V̂n of Vn is

V̂n = Ĉn(0) +
1

2

X
(i;j)2	�

n
j 6=i

! (jji� jj � � j) Ĉn(�); (28)

with Ĉn(0) denoting the variance at zero lags. We may expect that the estimator V̂n

formed by smoothing sample autocovariances with weights !(:) that approach one

as n!1, should be consistent. Note that even if the estimator (28) is obtained in

a similar fashion to that of Newey and West (1987), it is di�erent in two respects.

First, the dependence concerned here is spatial and not temporal, which leads to

the construction of the particular sample autocovariances estimator in (27). Second,

the problem of the bound on the number of sample autocovariances does not matter

since Ĉn(�) is nonparametrically estimated. The consistency of (28) is stated below.

Proposition 3 Given Assumptions 3�5
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8>><
>>:Ĉn(0) +

1

2

X
(i;j)2	�

n
j 6=i

! (jji� jj � � j) Ĉn(�)

9>>=
>>;� Vn

L2�!
n!1

0: (29)

Proof. See the appendix.

We now provide the nonparametric estimation of the optimal instruments and

the asymptotic distribution of �̂. This is achieved using nearest neighbor procedures

to estimate the conditional expectations that make up the optimal instruments and

then replace these estimates by the de�nition of the optimal instruments.

A nearest neighbor estimator of the conditional covariance 
(�xni) at �xni that

excludes the own observation is formed as


̂(�xn;i) =

nX
j=1

!ij'(�zn;j ; �̂)'(�zn;j ; �̂)
0
: (30)

For the speci�cation we are concerned with, i.e. relation (8), the functional form

is assumed to be known. As a result, some components of D(�xn; �) (especially the

�rst row-block) in (17) have known functional form. Assuming the heteroskedastic

function h(:) to be known, we can take advantage of this in computing a consistent

estimator D̂(�xn; �) of D(�xn; �). With these estimators at hand, one can combine

them to form an estimator of optimal instruments such as

Â�(�xn) = D̂(�xn)
0

̂(�xn)

�1
: (31)

An e�cient estimator of �0 can then be derived as described in relation (13). To

prove the asymptotic distribution of the GMM estimator, we impose some usual

regularity conditions.

Assumption 6 For a consistent estimator �̂ of � in (17), the row and column sums

of the element of D(�xn; �0) are uniformly bounded in absolute value.

Assumption 7 (i) The vector of parameters � is such that the true value �0 is an

element of the interior of � which is compact; (ii) there exists a neighborhood N
of �0 and �(�zn) such that almost surely, '(�zn; �) is continuous on �, C1 on N ,

sup�2� k'(�zn; �)k � �(�zn), sup�2� k@'(�zn; �)=@�k � �(�zn); (iii) for l = 1; � � � ; d,
there exists �l such that �l(�zn) � max k@l'(�zn; �)=@�lk satis�es E[�l(�zn)

�l ] <1.

Assumption 8 (i) E[A(�xn)A(�xn)
0] exists and is nonsingular, and there exists a

unique solution to E[A(�xn)'(�zn; �)] = 0 at � = �0; (ii) there is a function K : N ! R

such that K(n)=n! 0 and K(n)2=n!1.
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Proposition 4 Given Assumptions 6�8 and Propositions 2�4, for �̂ in equation (13)

p
n(�̂ � �0)

d! N
�
0;��A�n

�
; (32)

where  
1

n

nX
i=1

D̂(�xi)
0

̂(�xi)

�1
D̂(�xi)

!�1
= ��A�n + op(1):

Proof. See the appendix.

Remark 5 Observe that by Assumption 8, the estimator in equation (21) is an IV

estimator with Ŝ0 = (
Pn

i=1 Â
�
n;iÂ

�
n;i=n)

�1 p! S0 = (E[A�A�0])
�1

. So m̂0(�)Ŝ0m̂(�)

converges uniformly in probability toward m0(�)S0m(�) which is continuous and has

a unique solution at � = �0.

Propositions 3 and 4 state the consistency of the nonparametric estimation sam-

ple autocovariances and the asymptotic distribution of parameter estimates, respec-

tively. These estimators are conceptually simple in that they rely on well known

econometric literature. In this sense, their rationale is obvious. Also, they are rel-

atively simple to implement and can be used for empirical purpose, even in large

samples.

4 Conclusion

In this paper, we suggest e�cient estimation procedures of the general spatial au-

toregressive model based on optimal nonparametric instruments. The structure of

the model is such that the conditional restrictions use second moment information

that allows a general form of heteroskedasticity. To incorporate the dependence

between observations at di�erent locations in space, we �rst propose a consistent

nonparametric estimation of sample autocovariance terms for irregularly scattered

spatial processes. This is achieved using nearest neighbor procedures to estimate the

conditional expectations that make up the optimal instruments, and then replace

these estimates into the de�nition of the optimal instruments.

Two main directions of future work appear promising. First, it should be noted

that our interest was in establishing a simple way to compute a consistent estimator

for sample autocovariances as de�ned in (27). It should be of interest to extend the

study to the asymptotic properties of this estimator. Secondly, the �nite sample

properties of estimators in both Propositions 3 and 4 remain to be derived via for

example Monte Carlo experiments.

19



Acknowledgements

This paper is taken from Théophile Azomahou Ph.D. thesis (European Ph.D.) at

Université Louis Pasteur of Strasbourg. Part of the study was written when his was

visiting the Center for Operations Research and Econometrics (CORE), Université

Catholique de Louvain-La-Neuve. We are grateful to François Laisney for his detailed

constructive criticisms and continued encouragement in developing this work. We

also wish to thank the Econometrics seminar participants at Université Louis Pasteur

of Strasbourg. We would especially like to thank Ingmar Prucha for clari�cation of

some aspects of his study co-authored with Harry Kelejian. Discussions with Gaël

Giraud are gratefully acknowledged. We are responsible for any remaining mistakes.

Appendix proofs

Proof of Proposition 1

The proof is based on the comparison of the asymptotic covariance matrices ��A�n and

��H�n . It is shown that ��H�n ���A�n is minimized by A�n in the sense of the comparison

of positive semi-de�nite matrices over all possible H�
n. Furthermore, note that since

��A�n does not depend on F , it su�ces to show the result for F = I in relation (19).

Let #H�n = G0PH�
n'(�zn; �0) and #A�n = A�n'(�zn; �0). In all expectations for-

mulae we will use iterated expectations. Then we have E[#H�n#A�n
0] = E[G0PH�

n

'(�zn; �0)'(�zn; �0)
0A�n

0] = G0PE[H�
n
A

�
n
0]. From relation (19), D = 
A�n

0 and E[#H�n
#A�n

0] = G0PE[H�
nD]. From Assumption 2 it follows that E[#H�n#A�n

0] = G0PE[H�
n

@'(�zn; �0)=@�] = G0PG. One can also easily verify that E[#H�n#A�n
0] = E[#A�n#H�n

0].

Now, observe that

E[#H�n#H�n
0] = E[G0PH�

n'(�zn; �0)'(�zn; �0)
0H�

n
0P 0G] = G0PV PG

and

E[#A�n#A�n
0]
�1

=
�
E(E[D0
�1'(�zn; �0)'(�zn; �0)

0
�1D])
��1

; (33)

and from relation (20), is ��A�n . Then we can rewrite

��H�n � ��A�n = (G0PG)
�1
G0PV PG(G0PG)

�1 � ��A�n ; (34)

as

(E[#H�n#A�n
0])
�1
E[#H�n#H�n

0](E[#A�n#H�n
0])
�1 � (E[#A�n#A�n

0])
�1
:

Finally, setting

� =
�
E[#H�n#A�n

0]
��1 n

#H�n �E[#H�n#A�n
0](E[#A�n#A�n

0])
�1
#A�n

o
;

20



we obtain

��H�n � ��A�n = E(�� 0); (35)

which is positive semi-de�nite. This proves that ��A�n is a lower bound for the asymp-

totic variance of all IV estimators considered. �

Proof of Proposition 2

By Assumption 4 we have �(n)! 0. Also, de�ne

lim
n!1

	�
n = f(i; i0) 2 I � I=

��i� i0
�� = �; � 2 �g � 	�

1; (36)

where we recall that � = f� = ji� i0j=(i; i0) 2 Ig. Since i� i0 = � + Æi 2 B(�;�(n)),

where Æi is a small variation (an increment), it follows that limn!1 jÆij � limn!1

�(n) = 0. That is, as given in Assumption 5, by de�nition of function K(:),

limn!1K(Æi) = 1. It then follows that

lim
n!1

Ĉ(�) =
X

(i;i0)2	�
1

U(i)U(i0): (37)

To complete the proof, it remains to be shown that one can select �(n) such that

the expectation of the cardinality of 	�
1 converges toward in�nity for n!1. The

conclusion will follow from the law of large numbers. Let ��
n = B(�;�(n))\�, that

is, the set of sample distances between � and � ��(n). Since points coordinates are

uniformly distributed, so are the associated distances. As a result, the expectation

of #��
n is given by

E (#��
n) = #�

� (B(�;�(n)))

� ([a; b])
; (38)

where �(:) denotes Lebesgue's measure and # is the cardinality symbol. The cardi-

nality of #� is computed as

#� =

�
n

2

�
=

n!

2!(n� 2)!
=
n(n� 1)

2
: (39)

Now observe that �(B(�;�(n))) is the size of B(�;�(n)), that is 2�(n), and �([a; b])

denotes the length of [a; b], that is b� a. Then, we obtain

E (#��
n) =

n(n� 1)

2

2�(n)

b� a
: (40)

Finally, one can choose for example �(n) = 1=
p
n which implies that

#	�
1 = lim

n!1
E (#��

n) = +1: � (41)
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Proof of Proposition 3

For notational convenience, we will suppress the set under the sum symbol. For i = i0

we have � = 0. Then Cn(0) =
P
K(0)U(i)U(i0). By Assumption 5, K(0) = 1. Then

Cn(0) =
P

i U
2(i). One deduces that Vn =

P
i U

2+
P

(i;j) !ij(:)(
P

(i;i0)K(:)U(i)U(i0)).

To show that V̂n converges in probability toward Vn, let us apply Chebychev's in-

equality, that is for every � > 0,

P
h
kV̂n � Vnk > �

i
� EkV̂n � Vnk2

�2
: (42)

The job turns out to prove that EkV̂n � Vnk2 = op(1). To show this, decompose V̂n

and Vn as V̂n;1 = Ĉn(0), V̂n;2 = Ĉn(�), Vn;1 = Cn(0) and Vn;2 = Cn(�). Then we

have V̂n � Vn

 = V̂n;1 + V̂n;2 � (Vn;1 + Vn;2)
 ;

=
(V̂n;1 � Vn;1) + (V̂n;2 � Vn;2)

 : (43)

Using the triangular inequality we obtainV̂n � Vn

 � V̂n;1 � Vn;1

+ V̂n;2 � Vn;2

 : (44)

Note that V̂n;1
p! Vn;1 since Cn(0) is a constant limit for Ĉn(0). From Proposition

2 we known that V̂n;2
p! Vn;2. From the last part of (43) and using Minkoswski

inequality we have

 
nX
i=1

kV̂n;i � Vn;ik2=n
!1=2

=

 
nX
i=1

k(V̂n;1i � Vn;i1) + (V̂n;2i � Vn;i2)k2=n
!1=2

�
 

nX
i=1

kV̂n;1i � Vn;1ik2=n
!1=2

+

 
nX
i=1

kV̂n;2i � Vn;2ik2=n
!1=2

= op(1) + op(1) = op(1):

The conclusion follows as we have shown that each term of the inequality converges

in norm L2 as n!1. �

Proof of Proposition 4

The proof of Proposition 4 makes use of the two following intermediate lemmata.
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Lemma 1
Pn

i=1 k[Â�(�xn;i)�A�(�xn;i)]�(�zn;i)k2=n = op(1):

Proof :

Let Â�n;i = Â�(�xn;i), A
�
n;i = A�(�xn;i) and �n;i = �(�zn;i). By Assumption 7 (iii),

E[�1(�zn)
2] <1. Then, using respectively, the triangular inequality, the fact for any

regular matrices A and B, kABk � kAkkBk, the Cauchy-Schwarz and the Markov

inequalities, we obtain
nX
i=1

(Â�n;i �A�n;i)�(�zn)=n

 �
nX
i=1

Â�n;i �A�i

 k�(�zn)k =n;
�

nX
i=1

Â�n;i �A�i

 �n;1i=n;
�
 

nX
i=1

Â�n;i �A�n;i

2=n
!1=2 nX

i=1

�2n;1i=n

!1=2

;

= op(1)Op(1) = op(1):

The �rst two inequalities follow from the triangular inequality and the third follows

from the Cauchy-Schwarz inequality. The fact that (
Pn

i=1 �
2
n;1i=n)

1=2
is bounded in

probability, i.e. is Op(1), is ensured by the Markov inequality.8 The conclusion of

the Lemma follows as the product of terms Op(1) and op(1) in the same probability

space is op(1). �

Lemma 2
Pn

i=1fÂ�(�xn;i)�A�(�xn;i)g'(�zn;i; �)
p
n = op(1):

Proof :

We keep the notations of Lemma 1. Let m̂(�) =
Pn

i=1 Â
�
n;i'(�zn;i; �)=n;m(�) =Pn

i=1A
�
n;i'(�zn;i; �)=n; m̂�(�) = @m̂(�)=@�, and m�(�) = @m(�)=@�. Applying an

analogue step to that of Lemma 1 we obtain

sup
�2�

km̂(�)�m(�)k � sup
�2�

 
nX
i=1

Â�n;i �A�n;i

 =n
! 

nX
i=1

�2n;i=n

!
;

� sup
�2�

 
nX
i=1

Â�n;i �A�n;i

2=n
!1=2 nX

i=1

�2n;i=n

!1=2

;

= op(1)Op(1) = op(1):

Furthermore, by the law of large numbers sup�2� km(�)�E[m(�)]k p! 0. So by the

triangular inequality, sup�2� km̂(�)�E[m(�)]k p! 0. Applying a similar reasoning to

8Let us recall the Markov inequality. If X is a random variable and if E(jXjr) < 1 for r > 0

not necessarily an integer, then P (jXj � �) < E(jXjr)=�2.
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the derivativesm�(�) ofm(�) and by Assumption 7, sup�2N km̂�(�)�E[m�(�)]k p! 0.

Using the continuous mapping theorem and Lindeberg-Levy theorems for '(�zn; �)

we have

nX
i=1

Â�(�xn;i)'(�zn;i; �)
p
n =

nX
i=1

(Â�n;i �A�n;i)'(�zn;i; �)
p
n

+
nX
i=1

A�(�xn;i)'(�zn;i; �)
p
n;

= op(1) +

nX
i=1

A�(�xn;i)'(�zn;i; �)
p
n

d! N (0;��A�n): �

We are now able to prove Proposition 4. Recall that Â�n;i = D̂0n;i
̂
�1
n;i. Then,Pn

i=1 kÂ�n;i �A�n;ik
2
=n =

Pn
i=1 kD̂0n;i
�1n;i �Dn;i


�1
n;ik

2
=n. Suppose that Assump-

tions 6�8 are satis�ed. Let C denotes a generic constant that can takes di�erent

values in di�erent appearances. Following Newey (1990), note that the estimates

of the optimal instruments take the form Â�n;i = D̂0n;i
̂
�1
n;i = (T̂n;i + Ĝn;i)

0

̂�1n;i,

where T̂n;i is a matrix of trend terms, and Ĝn;i is a matrix consisting of the non-

parametric estimates of the trend residuals. By Lemma A.1 in Newey (1990),Pn
i=1 kĜn;i �Gn;ik2=n = op(1) and

Pn
i=1 kT̂n;i � Tn;ik2=n = op(1). Then, by Lemma

1 and using the Markov inequality, we obtain

nX
i=1

Â�n;i �A�n;i

2=n � nX
i=1

C

�(T̂n;i � Tn;i)
̂
�1
2 + (Ĝn;i �Gn;i)
̂

�1
2� =n

� Ck
̂�1k2
nX
i=1

�(T̂n;i � Tn;i)
2 + (Ĝn;i �Gn;i)

2� =n
= Op(1)op(1) = op(1):

We may conclude that
Pn

i=1 kÂ�n;iD̂n;i �A�n;iDn;ik=n = op(1). Again, by the law of

large numbers
Pn

i=1A
�
n;iDn;i=n =

Pn
i=1D

0
n;i


�1
n;iDn;i=n

p! ��A�n
�1. The asymptotic

distribution in Proposition 4 follows by Lemma 2. �
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