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Abstract
In Bikhchandani, Hirshleifer, and Welch’s (1992) specific model, it is showed

that conformist behaviors can emerge due to information externalities. In this
note we establish that this result, based on ‘informational cascades’, heavily
depends on the choice of a particular tie-breaking convention. Relaxing this
assumption allows for other equilibria to exist, in which informational cascades
are not necessarily observed. Our findings also have implications for the analysis
of experimental data on informational cascades. In this respect, we argue that
further experiments should be based on other experimental designs.
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Résumé

Bikhchandani, Hirshleifer, et Welch (1992) ont montré qu’en présence d’exter-
nalités informationnelles des comportements grégaires peuvent émerger. Nous
montrons qu’un tel phénomène, appelé ‘cascade informationnelle’, repose sur un
choix particulier d’une convention de ‘tie-break’. Le relâchement d’une telle hy-
pothèse génère une multiplicité d’équilibres, équilibres dans lesquels des cascades
informationnelles n’apparaissent pas nécessairement. Ce résultat permet une
nouvelle interprétation des données expérimentales. Par ailleurs, nous suggérons
l’utilisation d’autres protocoles expérimentaux.

Mots clés: Règles de ‘tie-break’, cascades informationnelles, économie expéri-
mentale.
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Willinger. Moreover, we are grateful to Lisa Anderson, Charles Holt, Angela Hung and Charles Plott
for sharing their experimental data with us.
†Corresponding author: sas@cournot.u-strasbg.fr

1



1 Introduction

In their seminal paper Anderson and Holt (1997) designed experiments, inspired by
a specific model taken from Bikhchandani, Hirshleifer, and Welch (1992) (henceforth
BHW), to study empirically the emergence of information cascades.1 Though Ander-
son and Holt claimed their data supported the theory pretty well, they also noted
that the incidence of observed cascades was lower than predicted due to inconsistent
Bayesian updating decisions.

This conclusion heavily depends on the tie-breaking rule assumed by BHW. In-
deed, in their specific model, BHW supposed that any agent, when indifferent between
two actions, randomizes with equal probability. This calls for two comments. First
this tie-breaking rule is only one among many other possible modelling assumptions.
Second they asserted that each agent is endowed with the same tie-breaking rule,
which amounts to saying that there is actually a tie-breaking convention.

In this note, we show that by relaxing BHW’s hypothesis of a tie-breaking con-
vention, we allow for other equilibria to exist, in which informational cascades are
not necessarily observed.2 More precisely, we consider a new tie-breaking rule: the
non-confident tie-breaking rule. Under this rule, an indifferent agent simply imitates
the action of his predecessor. Doing so, he takes an action that contradicts his private
information, hence the label ‘non-confident’. Considering a new tie-breaking rule also
has implications for the analysis of Anderson and Holt’s (1997) experimental data.
In this respect, we argue that further experiments on information cascades should be
based on other experimental designs.

Section 2 gives a general statement of the model. Section 3 discusses different
tie-breaking rules, and experimental results taken from Anderson and Holt (1997)
are reinterpreted in section 4. We conclude in Section 5.

2 The model

In BHW’s specific model, each agent is given an independent private signal —taking
a binary form— about the state of Nature. Agents are then arrayed in a randomly
determined order and sequentially make a publicly announced decision about the state
of Nature. Thus, at the time of his decision each agent has a private signal and also
knows the decisions of all preceding agents. Anderson and Holt (1997) implemented
this setup in the following way: balls tagged a or b were put in urns labeled A and B
and one of these urns was selected at random; subjects were then chosen in a random
order to observe a single draw from the selected urn; subjects were finally asked to
make a public prediction about the identity of the selected urn. In the following
sections, we proceed along the same line with an infinite ordered sequence of agents.

2.1 The game

We call player 1 the player who decides first, player 2 the player who decides second,
and so on. Each player i ∈ N = {1, 2, . . . } chooses an action si ∈ S = {A,B} where
A stands for ‘predicting urn A’ and B for ‘predicting urn B’. Let H = {∅}∪{(si)i≤l :

1The same experimental design was also used by Willinger and Ziegelmeyer (1998) and Hung and
Plott (2000) in order to find some evidence for herd behavior.

2A tie-breaking convention can be thought of as an equilibrium selection device.
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l ∈ N, si ∈ S} be the set of histories. Denote by hl ∈ Hl = {h ∈ H : |h| = l} a
history of length l, and write h0 = ∅. When agent i takes an action, he observes a
history hi−1, i.e., he observes the actions taken by agents 1, . . . , i− 1.

Agents have a common prior belief p on a payoff relevant state space Ω = {α, β},
where α stands for ‘urn A has been selected’, β stands for ‘urn B has been selected’,
and p(α) = p(β) = 1/2. Each agent i has a set of possible signals Ti = {ai, bi}.
Conditionally to the realization of a state of Nature, the agents’ signals are i.i.d and
the conditional probabilities are given by p(ai | α) = p(bi | β) = q and p(ai | β) =
p(bi | α) = 1 − q, where q > 1/2. That is, signal ai is favorable to α and signal bi is
favorable to β.

Because players’ actions do not directly influence the utility of the others, we can
define the vNM utility function of each player on S×Ω. More precisely, for all i ∈ N ,
we assume ui(A,α) = ui(B, β) = g and ui(A, β) = ui(B,α) = g′, where g > g′.3

2.2 The equilibrium

A behavioral strategy of player i is given by a function σi : Ti × Hi−1 → ∆(S),
where ∆(S) is the set of probability distributions over S. A profile of behavioral
strategies is denoted by σ = (σ1, . . . , σN ). For a given signal ti and a given his-
tory hi−1, σi(si | ti, hi−1) is the probability that player i chooses action si ∈ S.
Let φi(si | α, hi−1) (respectively φi(si | β, hi−1)) be the probability that player i
chooses action si given history hi−1 and the realization of α (respectively β). Given
a behavioral strategy of player i, these probabilities are given by

φi(si | α, hi−1) = qσi(si | ai, hi−1) + (1− q)σi(si | bi, hi−1),
φi(si | β, hi−1) = qσi(si | bi, hi−1) + (1− q)σi(si | ai, hi−1).

Let µi : Ti ×Hi−1 → [0, 1] be player i’s belief (conditional probability given past
observed actions and his private signal) that the state of Nature is α. A system of
beliefs is denoted by µ = (µ1, . . . , µN ).4

Given a history hi−1, a signal ti and a belief µi(ti, hi−1), player i’s expected utility
is given by

EUi(A, ti, hi−1) = gµi(ti, hi−1) + g′(1− µi(ti, hi−1)),
EUi(B, ti, hi−1) = g(1− µi(ti, hi−1)) + g′µi(ti, hi−1).

Hence, predicting urn A is relevant for player i if he believes α with probability greater
than 1/2.

In a perfect Bayesian equilibrium, players rationally update their beliefs, by ob-
serving their signal and previously taken actions, and they act rationally given these
beliefs.

Definition 1 A perfect Bayesian equilibrium of the game G ≡ 〈N,H,Ω, p, (Ti), (ui)〉
is a profile of behavioral strategies σ and a system of beliefs µ such that the following
properties are satisfied for all i ∈ N , ti ∈ Ti and (si)i∈N ∈

∏
i∈N S:

3Payoffs are defined slightly differently in BHW’s specific model. Indeed, they posited that for
all i ∈ N , ui(A,α) = 1/2, ui(A, β) = −1/2 and ui(B,α) = ui(B, β) = 0. Our results are maintained
with this payoff function.

4To simplify the notations we write σ1(t1, ∅) = σ1(t1) and µ1(t1, ∅) = µ1(t1) for all t1 ∈ T1.
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(i) Bayes’ Rule. µ1(t1) = p(α | t1) and for all i ≥ 2,

µi(ti, hi−1) =
p(ti | α)

∏
j<i φj(sj | α, hj−1)

p(ti | α)
∏
j<i φj(sj | α, hj−1) + p(ti | β)

∏
j<i φj(sj | β, hj−1)

,

where hj = (sk)k≤j and sj ∈ supp(φj(· | α, hj−1)).5

(ii) Sequential rationality.

σi(A | ti, hi−1) =

{
1, if µi(ti, hi−1) > 1/2;
0, if µi(ti, hi−1) < 1/2.

Sequential rationality is inconclusive when a player’s belief equals 1/2. Thus each
player has to be endowed with a tie-breaking rule that specifies his behavior in case of
indifference. Obviously, different tie-breaking rules might yield different equilibrium
outcomes, which clearly shows that common knowledge of rationality is not sufficient
to determine a unique equilibrium outcome.

3 Tie-breaking rules

The specification of particular tie-breaking rules has an impact on information ag-
gregation and the occurrence of informational cascades. According to BHW, an
informational cascade occurs when it is optimal for a player, having observed his pre-
decessors’ actions, to follow the behavior of the preceding player without regard to
his own information. Unfortunately, such a definition is not appropriate if one con-
siders heterogeneity in terms of tie-breaking rules. In this respect, we alternatively
define an informational cascade in terms of beliefs. A cascade is said to occur when
public information (the sequence of past actions) overwhelms private information in
agents’ beliefs. This means that whatever his private signal, the only optimal ac-
tion of a player is to follow the established pattern. Let (σ, µ) be a perfect Bayesian
equilibrium, hi−1 = (sj)j<i and sj ∈ supp(φj(· | α, hj−1)), for all j ∈ N .

Definition 2 An informational cascade occurs in period k if and only if for each
player i ≥ k (but not for players i < k), whatever his signal ti, either µi(ti, hi−1) > 1

2
or µi(ti, hi−1) < 1

2 .

In this section we first consider two tie-breaking rules which are in favor of the
emergence of informational cascades. Second we introduce a third tie-breaking rule
which produces arbitrarily late informational cascades. We then show that if no
homogeneous tie-breaking rule is assumed, any sequence of actions might be observed.

3.1 Tie-breaking conventions favoring informational cascades

As a tie-breaking convention, BHW assumed that each player who is indifferent be-
tween the two actions predicts each urn with equal probability. Formally, if for a given
pair (ti, hi−1) we have µi(ti, hi−1) = 1/2, they posited that σi(A | ti, hi−1) = 1/2.
Another tie-breaking convention has been proposed by Anderson and Holt (1997)

5For all j ≥ 1, supp(φj(· | α, hj−1)) is the support of φj(· | α, hj−1).
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(hereafter denoted AH’s tie-breaking convention). They assumed that each player
who is indifferent between the two actions follows his private signal.6 Formally, if for
a given history hi−1 we have µi(ai, hi−1) = 1/2 then σi(A | ai, hi−1) = 1. Likewise if
for a given history hi−1 we have µi(bi, hi−1) = 1/2 then σi(A | bi, hi−1) = 0.

With either BHW’s or AH’s tie-breaking convention, equilibrium beliefs and be-
havioral strategies are unique and our definition of an informational cascade is equiv-
alent to the one given by BHW. Therefore, we have the following proposition (proofs
of the propositions are in appendix).

Proposition 1 With either BHW’s or AH’s tie-breaking convention, the probability
that an informational cascade eventually occurs approaches one as the number of
periods increases.

It should be noted that in BHW’s specific model, either with BHW’s or AH’s
tie-breaking convention assumption, it takes an imbalance of two decisions in one
direction to ensure uniformity of the ongoing sequence. For example, if the first
two agents make identical predictions then all subsequent agents have to follow the
established pattern.

3.2 Non-confident tie-breaking rule

In this section we introduce a new tie-breaking rule which induces a player who is
indifferent between the two actions to predict the same urn as his predecessor. We
call such a tie-breaking rule the non-confident tie-breaking rule. Formally, if for a
given pair (ti, hi−1) we have µi(ti, hi−1) = 1/2 then we posit that σi(A | ti, hi−1) = 1
if si−1 = A and σi(A | ti, hi−1) = 0 if si−1 = B. It should be noted that, in such
a case, a player’s prediction do not reveal any information. Therefore, we have the
following proposition.7

Proposition 2 If agents i ≤ n, where n ∈ N is an arbitrary integer, are endowed
with the non-confident tie-breaking rule, no informational cascade occurs before period
n.

Proposition 2 implies that if agent n + 1, endowed with AH’s tie-breaking rule,
observes a long sequence of identical actions he can rationally follow his private signal
and take a different action.

3.3 The general case

We now show that if no tie-breaking convention is assumed any sequence of actions
can be observed. For this to be true, we only need to guarantee that, for a particular
subset of agents N∗ ⊆ N , the labels of signals and actions coincide.8 For example, the
sequence of actions AAB is an outcome of a perfect Bayesian equilibrium if agent 1’s
signal is a1 and agent 3’s signal is b3. In addition, agent 2 has to be endowed with

6Anderson and Holt argued that “This assumption is reasonable when there is a positive prob-
ability that the [previous] person makes an error [ . . . ] This assumption is also supported by an
econometric analysis of the error rates” (Anderson and Holt, 1997 p. 849).

7If each player i ≤ n, where n ∈ N is an arbitrary integer, is endowed with the non-confident
tie-breaking rule then equilibrium beliefs and behavioral strategies of agents i ≤ n are unique.

8Of course, agents who are indifferent have to be endowed with a tie-breaking rule.
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the non-confident tie-breaking rule, whereas agent 3 has to be endowed with the
AH’s tie-breaking rule. It should be noted that this last requirement only ensures
that a perfect Bayesian equilibrium is completely defined, and should not be seen as a
weakness of our approach. As in proposition 3 we show that any observed sequence of
actions is the outcome of a particular perfect Bayesian equilibrium, endowing agents
who are indifferent with the appropriate tie-breaking rule is not demanding.

Proposition 3 Let (si)i∈N ∈
∏
i∈N S be an arbitrary sequence of actions. If each

agent i ∈ N∗ receives a signal which matches the label of his action, then (si)i∈N is
an outcome of a perfect Bayesian equilibrium.

Propositions 2 and 3 also apply when the set of agents is finite. Therefore, our
findings have implications for the analysis of experimental data on informational
cascades as shown more in details in the next section.

4 Reinterpretation of experimental data

In their first two experiments, Anderson and Holt (1997) considered a symmetric
design related to the framework described in section 2, in which q = 2/3, a correct
prediction yields $2, and a wrong prediction yields $0. Moreover, the game was
repeated fifteen times for each group of six subjects with a new die throw to select
the urn at the beginning of each repetition.9 Anderson and Holt (1997) concluded
that information cascades are not due to irrational behavior, or caused by a taste for
conformity, but are rather due to rational inference of previous choices. Nevertheless,
some inconsistencies with Bayesian updating were observed: “Individuals generally
used information efficiently and followed the decisions of others when it was rational.
There were, however, some errors, which tended to make subjects rely more on their
own private information” (Anderson and Holt, 1997 p. 859). Table 1 shows some of
Anderson and Holt’s first experiment data (session 2).

Urn decision (private draw)

Urn 1st 2nd 3rd 4th 5th 6th
Period used round round round round round round

7 B B A B B B B
(b) (a) (b) (b) (b) (a)

8 A A A B A A A
(a) (a) (b) (a) (b) (a)

Table 1: Example of Anderson and Holt’s experimental results.

Anderson and Holt interpreted the 6th decision in period 7 and the 5th decision in
period 8 as Bayesian decisions inconsistent with private information. In this respect,
they consider that cascade behavior was observed in these periods. On the contrary,
they interpret the 3rd decision in period 8 as a decision based on private information,
inconsistent with Bayesian updating. These interpretations are correct under either
BHW’s or AH’s tie-breaking convention. For example, in period 7, since the first
two predictions canceled each other out and the three following predictions create

9Public draws were introduced into the decision sequence in the second experiment.
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an imbalance that can dominate the information contained in a single private draw,
the last prediction is consistent with Bayes’ rule but inconsistent with the subject’s
private draw.

New interpretations can be drawn from Anderson and Holt’s data by considering
the non-confident tie-breaking rule. The 6th prediction observed in period 7 may be
due to the 6th subject’s belief that the 4th and 5th subjects used the non-confident
tie-breaking rule and the 6th subject’s use of the non-confident tie-breaking rule.
Similarly, the 3rd decision in period 8 should not be seen as inconsistent with Bayesian
updating and the 5th prediction does not necessarily mean the birth of a cascade.
More generally, any observed sequence of predictions including no decision which is
inconsistent with both Bayes’ rule and private information can be considered as an
outcome of a perfect Bayesian equilibrium.10 Nevertheless, decisions inconsistent with
private information should not necessarily be considered as part of an informational
cascade.

The reinterpretation of data taken from Anderson and Holt (1997) emphasizes
the importance of subjects’ beliefs on others’ tie-breaking rules in laboratory exper-
iments on informational cascades. Indeed, one can equally reinterpret Willinger and
Ziegelmeyer’s (1998) experimental data, and Hung and Plott’s (2000) experimental
data produced under the ‘individualistic institution’. The overconfidence of subjects
in their private information, due to, e.g., possible errors in previous decisions, has been
mentioned as a plausible source of inconsistencies with Bayesian updating. Needless
to say, such an explanation is unnecessary with the non-confident tie-breaking rule.

5 Conclusion

In this note we have emphasized the need for a particular tie-breaking convention in
order to get informational cascades in the specific model taken from Bikhchandani,
Hirshleifer, and Welch (1992). Indeed, if no homogeneous tie-breaking rule is specified
any sequence of actions might be observed at equilibrium. Consequently, for many
sequences of subjects’ decisions observed in laboratory experiments on informational
cascades (e.g., Anderson and Holt (1997), Willinger and Ziegelmeyer (1998), and
Hung and Plott (2000)), no unequivocal interpretation can be given.

Anderson and Holt reported that, in their symmetric design, decisions were con-
sistent with private information in most of the cases in which the posterior probability
of each urn was equal to 1/2.11 This remark, which supports AH’s tie-breaking rule,
does in no way imply that such a rule is common knowledge.

Fortunately, indifference cases and the need for a particular tie-breaking conven-
tion in order to get a unique prediction and to interpret unequivocally experimental
data on informational cascades can be avoided. Indeed, breaking either the symmetry
of common priors, of signals’ precisions, or of payoffs functions rules out indifference

10Anderson and Holt reported that, in their symmetric design, only about 4 percent of such deci-
sions were observed.

11We computed the proportion of decisions in accordance with AH’s tie-breaking rule, by con-
sidering all indifference cases which did not rely on the specification of a particular tie-breaking
rule. The following results were obtained: 83%, 75%, and 86% of decisions were in accordance with
AH’s tie-breaking rule respectively in Anderson and Holt’s (1997) symmetric design, Willinger and
Ziegelmeyer’s (1998) experiments, and Hung and Plott’s (2000) ‘individualistic institution’ experi-
ment.
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cases. For example, Anderson and Holt (1997) reported six additional sessions using
an asymmetric design in which urns A and B contained different proportions of ‘type
a’ and ‘type b’ balls. In this asymmetric setup, no tie-breaking convention has to be
assumed because indifference situations cannot emerge. One can also rely on BHW’s
general model with more than two possible states and signals.12

Appendix: Proofs

Proof of proposition 1. The sequences AAB and BBA cannot be observed under
either the BHW or the AH tie-breaking convention. More generally, by denoting nA
(respectively nB) the number of A (respectively B) actions in a history hi−1, agent i
starts a cascade if |nA − nB| = 2. Consider an agent i ∈ N , i ≥ 2. Let hi−1 ∈ Hi−1

be a history of length i− 1 observed by agent i. From equilibrium conditions and the
AH’s tie-breaking convention, agent i’s belief verifies

µi(ai, hi−1) > 1/2, if nA − nB ≥ 0,
µi(ai, hi−1) = 1/2, if nA − nB = −1,
µi(ai, hi−1) < 1/2, if nA − nB ≤ −2,
µi(bi, hi−1) < 1/2, if nA − nB ≤ 0,
µi(bi, hi−1) = 1/2, if nA − nB = 1,
µi(bi, hi−1) > 1/2, if nA − nB ≥ 2.

Therefore, if |nA − nB| ≥ 2, then µi(ti, hi−1) > 1/2 for all ti ∈ Ti, which implies
that either an information cascade occurs in period i, or has already occurred. Thus,
three cases remain: either nA = nB, or |nA − nB| = 1.
(i) Suppose that ti = ai.

(ia) If nA = nB, then µi(ai, hi−1) > 1/2 and σi(A | ai, hi−1) = 1.
– If ti+1 = ai+1, an informational cascade occurs in period i+ 2.
– If ti+1 = bi+1, then we apply argument (iib) to player i+ 1.

(ib) If nA − nB = −1, then µi(ai, hi−1) = 1/2 and σi(A | ai, hi−1) = 1/2. If
si = A, then we apply argument (ia) if ti+1 = ai+1 and (iia) if ti+1 = bi+1 for agent
i+ 1. If si = B, then an informational cascade occurs in period i+ 1.

(ic) If nA − nB = 1 then µi(ai, hi−1) > 1/2, σi(A | ai, hi−1) = 1, and an informa-
tional cascade occurs in period i+ 1.
(ii) Suppose that ti = bi.

(iia) If nA = nB, then µi(bi, hi−1) < 1/2 and σi(B | ai, hi−1) = 1.
– If ti+1 = ai+1, then we apply argument (ib) to player i+ 1.
– If ti+1 = bi+1, an informational cascade occurs in period i+ 2.

(iib) If nA−nB = 1, then µi(bi, hi−1) = 1/2 and σi(B | ai, hi−1) = 1/2. If si = B,
then we apply argument (ia) if ti+1 = ai+1 and (iia) if ti+1 = bi+1 for agent i+ 1. If
si = A, then an informational cascade occurs in period i+ 1.

(iic) If nA − nB = −1 then µi(bi, hi−1) < 1/2, σi(B | ai, hi−1) = 1, and an
informational cascade occurs in period i+ 1.

12Though the general model of BHW generically has a unique pure-strategy equilibrium, some
indifference situations can still occur with particular parameters. For example, assume that there
are four states of the world (possible values of adoption) {v1, v2, v3, v4} = {7.5,−1.5,−3.5,−5.5}
with p(vi) = 1/4 for all i ∈ N and four signals {x1, x2, x3, x4} such that p(xi | vi) = 2/3 and
p(xi | vj) = 1/9 for all i 6= j. If the cost of adoption is equal to C = 1/2, then agent 2 is indifferent
between adoption and rejection given that he observed a first adoption and received signal x4.
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For each player i ≥ 2, there is a positive probability, independent of i, that an
informational cascade occurs in period i, i + 1 or i + 2. Thus, the probability that
an informational cascade eventually occurs approaches one as the number of periods
increases. A similar proof applies with BHW’s tie-breaking convention. �

Proof of proposition 2. If t1 = a1, then µ2(t2, A) ≥ 1/2 for any t2 ∈ T2. Thus,
σ2(A | t2, A) = 1 for any t2 ∈ T2, i.e., player 2 plays A whatever his signal. In the
same manner, we get µ3(t3, A,A) ≥ 1/2 and σ3(A | t3, A,A) = 1 for any t3 ∈ T3, and
so on. Therefore, for any i ≤ n, we have µi(bi, A,A, . . . ) = 1/2. Similarly, if t1 = b1,
we get µi(ai, B,B, . . . ) = 1/2 for all i ≤ n. This completes the proof. �

Proof of proposition 3. The proof, which is shown below, is constructive. For an
arbitrary sequence of actions (si)i∈N ∈

∏
i∈N S, let n1 be the number of consecutive

actions A after history h0, n2 the number of consecutive actions B after history hn1 ,
n3 the number of consecutive actions A after history hn1+n2 , and so on. Without
loss of generality, we assume that n1 6= 0. Let NAH = {1 + n1, 1 + n1 + n2, . . . } be
the set of agents who do not follow the action taken by the agent just before them
and NS = {1, 2 + n1, 2 + n1 + n2, . . . } be the first agent and all agents deciding just
after agents of NAH . We define N∗ = NAH ∪NS . Let N1 = {1, . . . , n1}, N2 = {1 +
n1, . . . , n1 +n2} = {1, . . . , n1 +n2}\N1, . . . , Nk = {1, . . . , n1 + . . .+nk}\(

⋃k−1
j=1 Nj)

for all k ∈ N , k ≥ 2. Let NA =
⋃
k≥0N2k+1 be the set of agents choosing action A

and NB =
⋃
k≥1N2k be the set of agents choosing action B. We impose that for all

i ∈ N∗, ti = ai if si = A and ti = bi if si = B.
By endowing each agent i ∈ NAH with AH’s tie-breaking rule and each agent

i ∈ N\N∗ with the non-confident tie-breaking rule, agents’ beliefs are the following
ones:13 if i ∈ (NA\N∗) ∪ (NB ∩ NAH\NS) then µi(ti, hi−1) > 1/2 if ti = ai and
µi(ti, hi−1) = 1/2 if ti = bi; if i ∈ (NB\N∗)∪ (NA ∩NAH\NS) then µi(ti, hi−1) = 1/2
if ti = ai and µi(ti, hi−1) < 1/2 if ti = bi; if i ∈ NS then µi(ti, hi−1) > 1/2 if ti = ai
and µi(ti, hi−1) < 1/2 if ti = bi.

One can easily verify that all agents act rationally and according to their tie-
breaking rules in case of indifference. This completes the proof. �
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