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Abstract

This study explores spatial regimes variation and the impact of public sec-
tor water pricing for municipality aggregate residential water demand including
electricity price effects. I compare estimations from two cross-sections (1988.1
and 1993.1) on a French lattice sample, and propose a parametric spatial au-
toregressive regime switching model where water average price is approximated
by a linear spline based on nonparametric regressions. I find evidence of spatial
dependence. Consumers respond to both water and electricity average price.
Changes in electricity price induce modifications of water consumption distri-
bution according to patterns of water use. Public sector pricing results in shifts

of role in regimes between periods.
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Résumé

La présente étude s’intéresse a la modélisation statistique de la demande domestique
agrégée d’eau potable, ainsi qu’aux effets de la tarification de 1’eau dans le cadre
d’une spécification spatiale avec changement de régime. Les effets d’agrégation spa-
tiale sont en partie pris en compte au travers d’une régression non-paramétrique de la
consommation sur le prix moyen de I’eau. Le résultat de cette estimation suggére une
approximation de la variable «prix moyen» par un spline linéaire, qu’on introduit en-
suite dans un modéle paramétrique spatial auto-régressif avec changement de régime.
[’estimation est faite par la méthode du maximum de vraisemblance. Cette spécifi-
cation est utilisée pour mesurer les effets d’une réforme de la tarification de I'eau en
comparant les estimations issues d’un méme échantillon de données & deux périodes
différentes, 1988.1 et 1993.1. Les résultats d’estimation et les tests confirment 1’exis-
tence d’effets spatiaux dans les comportements de consommation d’eau. La prise en
compte d’effets croisés montre qu’une variation du prix moyen de 1’électricité induit
une modification de la distribution de la consommation d’eau selon différents usages.

On observe également que les régimes changent de réle entre 1988.1 et 1993.1.



1 Introduction

In many economic fields, it is often relevant to consider the spatial variation of some
phenomenon. As noticed by Anselin (1988), several factors could lead to this. The
first is a byproduct of measurement errors in observations for contiguous spatial
units; for instance the arbitrary delimitation of spatial units, spatial aggregation, and
most importantly, the problem of spatial externalities and spill-over effects across
the boundaries of the spatial units. Indeed, in many practical situations, data are
collected only at an aggregate level. Therefore, there may be little correspondence be-
tween the spatial scope of the phenomenon studied and the delineation of the spatial
units. As a result, measurement errors are likely. Thus, the errors for one observa-
tion are likely to be related to the errors in the neighboring observations. Examples
of this may rely on the use of data on population, employment and other economic
activity collected for administrative units such as states, provinces, counties etc. So,
any situation where the spatial organization and the spatial structure of phenomena
matter may be considered.

More fundamentally, the second factor of spatial dependence follows from the
importance of space as an element in structuring explanations of human behavior.
That is, location and distance result in various interdependences. Thus, what is
observed somewhere is partially determined by what happens elsewhere in the system.
Another type of spatial effect is spatial heterogeneity. It is related to the lack of
stability over space. As a result, in a regression framework, functional forms and
regression parameters may vary with location. This source of spatial variation is
likely to occur in econometric models estimated on cross-sectional data. In contrast
to the spatial dependence case, the lack of uniformity over space is due to several
factors such as unequal spatial units, different areas and shape. For example, urban
built-up areas have unequal population or unequal income levels, and regions have
various degrees of technological development.

If spatial heterogeneity can be handled through econometric specifications such
as varying parameters, random coefficients or various forms of structural change like
switching regressions, spatial dependence invalidates some methodological results and
has made the development of a specialized set of methodologies necessary, Anselin

(1988) and Cressie (1991). Estimation issues of spatial processes follow from the



multi-directional aspect of spatial data, in contrary to the uni-directional variation of
time series.

Various empirical studies are concerned with the spatial framework. Case (1991)
applied this methodology to the demand for rice purchased in Indonesian markets
using data on districts. It is shown that, when district-specific effects are uncorre-
lated with the right hand side variables of the regression function, there are clear
benefits to spatial modelling. It is also noticed that spatial modelling can be used in
public economics, for example to suggest the extent to which regions look to others
in determining the appropriate composition of taxes or pricing, levels of expenditure
and public good provision. LeSage (1995) has studied the spatial aspects of variation
in housing values and found evidence of spatial correlation between housing values
and home characteristics.

The purpose of this paper is two-fold. First, it is concerned with the spatial em-
pirical analysis of residential water demand in the French "Department of Moselle",
including electricity price effects." As indicated by Hansen (1996), when estimating
the determinant factors of residential water demand, we may expect to observe the
indirect effects of energy factors, according to water consumption between different
water-using tasks. Indeed, water is consumed by households in connection with differ-
ent goods which involve use of water and in most cases sizeable amounts of energy. As
noticed in a previous study, Azomahou (1999a), about 40% of the daily distribution
of French residential water consumption between different water uses is concerned
with water heating, mainly by electricity.

The second aspect of this work consists in evaluating the relevance of public water
pricing. Indeed, in France, water is a public good. As a result, water pricing pertains
to public sector policies. The data we used fell within an interesting time period:
before and after the so-called "laws on water", Guellec (1995). These laws have
strongly modified price structures, increasing water price in the same proportion for
all residential consumers. It has also modified the working order of water agencies.
As a result, several structural shifts may be expected.

Following the approach suggested by Quandt (1958) and Anselin (1990), I consider

modelling these issues in a regime switching framework. Both spatial dependence

IThe "Department of Moselle" is located in the north-cast of France. The municipalities selected

for this study are those for which we achived obtaining reliable informations.



and spatial heterogeneity are considered. In this context, the specification we will
describe may be viewed as a model of endogenously changing tastes, which allows to
check for social interdependence by testing the extent to which households look to a
reference group when making water consumption decisions. It may also be thought
of as indicating the magnitude and the direction of interactions between consumers
with respect to the availability of water resources.

The paper is organized as follows. Section 2 presents the main features of the
data. The aggregation issue is handled by separating data into proper regimes where
structural shifts occur only between regimes. Within regimes, consumption behavior
is assumed to be homogeneous according to the spatial specification. Section 3 is
dedicated to the empirical modelling and estimation. We proceed in two stages.
First, we use a nonparametric regression based on cubic splines to fit the functional
form between water consumption and water average price. The estimates suggest an
approximation of the average price variable by a linear spline. In the second stage, we
specify a parametric regime switching spatial autoregressive model, incorporating the
linear spline. Then, estimation is carried out by maximum likelihood.? The results

are discussed in Section 4. Section 5 concludes the study.

2 Data

The "Department of Moselle" is made of about 730 municipalities out of which 115
neighbouring municipalities have been selected for the empirical study of households
demand for drinking water. Households living in these municipalities are supplied
with drinking water by a private operator. The data considered here constitute the
first lattice collected from the French network of drinking water distribution, with
a biannual frequency (from 1988.1 to 1993.2). A general and detailed data analysis
(sample selection, descriptive statistics and several tests for spatial autocorrelation)
can be found in Azomahou (1999a). We refer the reader to that study for a complete
description and give here only the information necessary for interpretation of the
results.

The present study is only concerned with the two cross-sections 1988.1 and 1993.1.

2GAUSS procedures to implement the calculations of this paper are available from the author on

request.



Table 1: Description of variables (115 observations)

Variable period mean std. min. max.
Water consumption (in m3) 1988.1  69.68 27.75 1.11  153.15
Water average price (in FF) 1988.1  6.28  2.11 3.24  11.29
Electricity average price (in FF) 1988:1  0.94 0.02 0.93 1.00
Mean temperature (in Celsius) 1988.1 892  0.33 8 9.58
Disposable income (in 1000 of FF) 1988 57.51  8.28 3338 75.24
Water consumption (in m3) 1993.1 72.14 26.51 0.81 157.33
Water average price (in FF) 1993.1 997  3.97 4.09  19.46
Electricity average price (in FF) 1993.1  0.98 0.01 0.97 1.01
Mean temperature (in Celsius) 1993.1 8.82 0.22 8.32 9.47
Disposable income (in 1000 of FF) 1993 66.97 11.76 3433  97.68
Population:

Proportion of persons < 19 years 1990 0.28 0.04 0.13 0.31
Density of population 1990 1.10  2.60 0.0038 14.61
Employment:

Proportion of workers 1990 29.96  4.39 11.92  37.82
Proportion of unemployed 1990  9.78  4.03 2.70  23.62

These cross-sections correspond to the beginning and to the end of the data collection
period. The reasons for considering only these two time periods will become clear in
the sequel. For the moment note that it allows to measure the effects of water pricing
reform in France. This pricing reform pertains to public policies. Characteristics of
the variables used are reported in Table 1 (see also the Appendix for the definition of
variables and for data sources).

The organization and management of water utilities in France pertain to public
service liability. The water price results from a negociation between local authorities
and the water utilities which may be the local collectivity (municipality) itself or
a private company. The Municipalities concerned by this study are supplied with
drinking water by a private firm. These municipalities are organized into two sectors.
We denote each sector by a dummy variable (dummy 1 for sector 1 and zero for sector
2). Out of 115 municipalities, 65.2% belong to sector 1. The sectors correspond to two
distinct areas of water management. This spatial arrangement is mainly due to the

network management issues (water transportation and various treatments to make



water drinkable) and is closely linked to water price.? The water price is decomposed
into two parts: the marginal price and the fixed charges. The marginal price of water
is the same within a given sector but varies between sectors. Thus, we know that
there is no intra-sectoral variation in the marginal price. The fixed charges vary
both within and between sectors. Having incorporated the fixed charges, we obtain
an average price which varies from one municipality to another (see Appendix for
the computation of the average price). Then, the two sectors are used to define the
regimes.

Moreover, by the so-called "M-49 directive", the laws on water have strongly
modified the working orders of water agencies. Set up on November 1992, the "M-49
directive" imposes to water utilities (supply and cleaning up) the rule of budget bal-
ance. This forbids resorting to the general budget to support water related expenses
(building up and maintenance of network, equipments, cleaning up...). This modifi-
cation has been translated into a high increase of water price in the same proportion
for all residential consumers. The aim is to let customers pay for the effective price of
water. The use of two cross-sections on the same sample allows to measure the effect
on residential water demand of this change in water pricing; that is the efficiency of

the public sector water pricing.

3 The model

In this section we suggest a two-step empirical modelling of residential water demand
based on data. A parametric regime switching regressive spatial autoregressive model
is implemented using estimates from nonparametric regressions. The latter allow
to fit the regression functional which is obtained by regressing water consumption

(response variable) on water average price (predictor).

3.1 Nonparametric estimation

As pointed out in Section 2, the water average price is strongly spatially structured

which suggests a spatial non-linearity for this variable. Given this, it does not seem

3We have computed the correlation coefficient between the average price variable and the sector

dummy: (-0.33 for 1988.1 and -0.41 for 1993.1). There is evidence of correlation.



a priori tenable to assume a uniform slope for the average price variable. So, we
study the monotonicity of the demand function with respect to the average price
variable only, using nonparametric regressions based on cubic splines.* We assume

that consumption and average price values are related by an unkown functional form:

yi = f(z:) + e i=1,---,N (1)

where y; and z; denote respectively consumption and average price variables. ¢; is
the error term. We assume that F(e;) =0, V(e;) = o and F(ee;) =0, Vi # j.
Let us consider as an approximation of the true function f(z;), the cubic spline

S(A) that minimizes the modified sum of squares residuals:

S(A) =\ Z (yi — f2:)* + (1 = A)/Rf"(x)?dx, 0<A<1 (2)

where fR f”(I)QdX is the roughness penality which is used to quantify local variations.
A is the smoothing parameter. It defines the relative weighting of the residual sum of
squares and the integrated squared second derivative. It is known that A controls the
trade off between reducing variance and reducing the possible bias in the predicted
values. For A = 1, the relation (2) is reduced to the function which minimizes the
sum of squared residual errors (the linear regression of y on z). A A value of 0
gives the function which minimizes the roughness penality (the interpolating cubic
spline). Varying A between 0 and 1 will allow for more variation in the fitted curve
until it interpolates the data points. Here, we use the criterion of "generalized cross-
validation'" for the optimal choice of A. Details on this methodology can be found in
Silverman (1985) and Héardle (1990).

The results of smoothing for each period are reported in Figure 1. Scatterplots
of data are represented. The curves indicate the cubic splines and the corresponding
95% confidence limits estimates. The straight line denotes the linear approximation
of the regression function. We notice that the assumption of a decreasing residential

water demand function with respect to the average price values can not be rejected.

*Another way to proceed consists in using /N consistent semiparametric regression framework,

Robinson (1988).
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Figure 1: Nonparametric regressions. (Scatterplots of data, generalized cross-
validation cubic splines, lower and upper 95% confidence limits and linear regressions
fitted are reported. The fitted demand curves show non-linearity with respect to the

water average price.)



However, what is not tenable is the hypothesis of a linear relation. Note also that these
functions are not decreasing for some range of the predictor (around 6FF for 1988.1
and around 8FF for 1993.1). We obtain a significant and decreasing demand function
for the average price values from 3FF to 4.5FF and from 4FF to 6FF respectively for
1988.1 and 1993.1, and a non-significant decreasing demand function otherwise with
a weaker slope. Thus, we gained a new insight about water consumption behavior
with respect to prices, that is to say, for the sample concerned, residential consumers
are more responsive to lower price values. As a result, we can argue that a water
pricing policy consisting in raising the water price in the same proportion for all
households may not be optimal. This result cannot be observed from the linear
fitting and suggests the use of a linear spline approximation for the water average

price variable.® The proposed linear spline is specified as:
Bay + Blag — 2x) " (3)
with,
(xg — ;i’k)+ = Max(0,zy — T1) (4)

where x; denotes the average price variable, and z; denotes the break point of chang-
ing slope with 7 = 4.5 for 1988.1 and z; = 6 for 1993.1. The relation (3) defines two
slopes for the water average price predictor which will be included in a parametric

model as described in the following section.

3.2 Parametric spatial regime model

To relate observations spatially, we used a binary contiguity matrix W constructed
from the distance between these municipalities. First, a matrix of distances with
elements d;; based on latitude-longitude coordinates of the centroids from each mu-
nicipality is computed using the Fuclidean metric. Then, the information in the

distance matrix is used to create a row-standardized spatial weights matrix W whose

5May be, this form results from the omission of other explanatory variables in the nonparametric
regression. Note however that smoothing in higher dimension in our case is not relevant because of

the limited number of observations.
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elements are defined as follows:

1 if dij e A
Wi; =
0 otherwise

where A is a specified critical distance band. A is obtained from semivariograms
estimation.®
We consider a specification of known transition point which yields for two observ-

able regimes. Shifts between regimes are characterized by a dummy variable:

> 1 ifeeSi={i:0el,---, Ny} Regime 1

0 ifeeSy={i:0€ Ny +1,---, Ny} Regime 2
where 7 denotes a given municipality. The first Ny observations pertain to sector 1.
They define the first regime. The remaining observations Ny + 1 to Ny pertain to
sector 2, that is the second regime. The resulting spatial regime switching model has

the following structure:

yi =Y pwiiy;

J#i

+ D Z XY + e (5)

kESl

+(1-D) | D X587 + e

kESQ

where y; is the dependent variable and X;;, X;; are a set of explanatory variables,

each of them conditioned by a regime. Recall that one element of X;, say, XZ.((kl)Q)

SHere we do not have any prior notion of which distance ranges are meaningful for the munic-
ipalities concerned. Moreover, these municipalities are not all contiguous. As a result, we cannot
base the W matrix on municipalities "common border" criterion. Thereby, we use geostatistical
tools (semivariograms estimation) to compute the elements of the spatial contiguity matrix by the
so-called "Range". In variograms framework, the "range" is defined as the distance for which points
are spatially dependent, Cressie (1985). Details on this construction are presented in Azomahou

(1999b).
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denoting the water average price variable is given by the linear spline in relation (3).
In equation (5), each regime is characterized by a different value for the parameters
(1 and (3. The structural change is then confined to ﬁ((fé)' The spatial factor p is
assumed to be common to regimes. An element of the contiguity matrix W is given
by w;;. Here, we work with a row-standardization version of W so that E]- w;; = 1.
As a result, > w;;y; represents the mean consumption of neighboor municipalities for

J#1
a given municipality ¢. The total number of observations N consists of N; in subset

1 and N, in subset 2 such that N = N; + N,.

¢;1 and ¢;5 are errors terms in the respective subsets S; and S3. They are assumed
to be i.i.d. and normally distributed with E(e;1) = E(en) =0, V(en) = o7, V(i) =
o3 and cov(€;1, €;2) = 0. The resulting block variance-covariance matrix Q of errors

has the following structure:

a- af[Nl O (6)
O  dily,

with In, and Iy, as identity matrices of dimension corresponding to the number of
observations in each subset. The relation (6) is usually referred to as a groupwise
heteroskedastic specification. It means that the error variance is different according
to regimes but is constant within regimes. As a result, the variance parameters o}
and o7 may be estimated directly from the residuals for each regime, provided that
enough observations are available.

It is well known that spatial models of the form (5) cannot be estimated con-
sistently by least squares. The spatial dependence in various spatial autoregressive
models shows many similarities to the more familiar time-wise dependence. Therefore,
one would expect the properties of least squares estimation for models with lagged
dependent variables and/or serial correlation to hold with the spatial case. However,
this is not so. The lack of a direct analogy results from the complex multi-directional
characterization of dependence in space. This motivates the use of appropriate esti-
mation methods among which the maximum likelihood.

Indeed, in space, there are many directions in which shifts can take place. On a

regular lattice structure of one space lag, we obtain four directions for the "rook" and

"bishop" criteria. The number of possible locations increases to eight for a "queen"
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type of contiguity. The major estimation methods used to deal consistently with
the multi-directional nature of spatial dependence are: maximum likelihood, method
of moments and Bayesian analysis, Anselin (1988), Driscoll and Kraay (1998) and
Kelejian and Prucha (1997b). Recently, LeSage (1997) has shown that Gibbs sampling
provides a consistent alternative framework. For more details, see Anselin and Bera
(1998) and Kelejian and Prucha (1997a).

Let 0 = (p, 31,071, é,a%)/ denote the vector of parameters to be estimated. The

maximum likelihood estimation éML of 0 is obtained as:

N

éML = arg maXZ%‘ (y7 Wy7X70|D2) (7)
€0 i=1
1]

with the usual assumptions on parameters space and parameters distribution. The

log-likelihood function conditional on D; is given by:

N
Y (-,0/D;) =— 5111(2#) — [NMilno} 4+ (N = Np)In o]

2
L
T 92 2 [Z (Ljimg) — gy — > Xff)ﬁfk)]

51 jeJ keS:

1 N2 2 (8)

k k

D T SR

2 i=Ni+1 LjeJ kES,

1]

T

N

where 1;—; denotes an indicator function, I is the identity matrix, W is the matrix
of spatial influences and | - | denotes the determinant. This likelihood function is
useful for our specification because the switching between regimes is determined by
the dichotomous variable D;. Tests for structural stability are often associated with

regime swithching specifications. Details can be found in Anselin (1990).

4 Estimation results

Three sets of estimates are presented. We start with a non-regime model where spatial

dependence is included in the form of a spatial lag for the dependent variable. Then,
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we compare these estimates with those following from a spatial regime switching. So,
in a first step, we do not take into account the regime switching, ignoring the issues

related to structural stability. The results for the two cross-sections are reported in

Table 2.

Table 2: Maximum likelihood estimates of spatial non-regime model (Explained vari-

able: residential water consumption in m3 per municipality, per semester.)

Cross section 1988.1 Cross section 1993.1
Variable coef. std.err t-value coef. std.err  t-value
Spatial lag -0.449  0.299 -1.503 | -0.754  0.333  -2.264
Water price -1.763 0.405 -4.351 | -2.678 0.740 -3.618
Spline price 1.875 0.495 3.786 2.466 0.742 3.321
Electricity price 0.296 0.052 5.592 0.249 0.076 3.257
Income 0.705  0.603 1.169 | -0.0002  0.378 -0.0004
Temperature 0.955 5.292 0.180 | 11.227 7.997 1.403
Density of popula- | -1.850 0.757 -2.443 | -1.845 0.709  -2.602
tion
Persons < 19 years -0.843 0.495 -1.701 | -0.264  0.460 -0.575
Workers -2.552  0.606 -4.207 | -1.384  0.563  -2.456
Unemployed -2.570 0.560 -4.590 | -2.209 0.546  -4.043
R? 0.50 0.48
o? estimate 363.19 331.91
Log likelihood -502.45 -497.78
Akaike 1024.91 1015.58
Schwartz 1052.36 1043.60

Both for 1988.1 and for 1993.1, most of the parameters for explanatory variables
are significant, except for disposable income, mean temperature and the coefficient
of the spatial lagged dependent variable. The latter is strongly significant for 1993.1.
The average price variables (water and electricity) are of particular interest. Recall
that our regressions include three average price variables. The first two follow from the
linear spline specification for the water average price as indicated by the relation (3).
Thus, for each cross-section, we have estimated two slopes for this predictor. Since
we are interested in the cross-effects of energy price on residential water demand, we
have also included electricity average price as additional regressor. The first slopes

(for 1988.1 and for 1993.1) of water average price are strongly negatively significant.

14



The second slopes are also significant, but they are of the opposite sign. This is an
expected result following from the linear spline characterization. Indeed, the slope of
the water average price variable is the coefficient of this variable up to zj, and the
sum of this predictor and the linear spline otherwise. Therefore, we obtained actually
an estimated sum of slopes close to zero and non significant. The electricity average
price influences water consumption positively. This is an unexpected and suprising
result we will discuss.

In a second step, we have estimated a non-spatial model for groupwise het-
eroskedastic error under regime switching, using feasible generalized least squares
(FGLS). The results are reported in Table 3. Several diagnostic tests are computed.
We test for structural stability. We also computed Lagrange multiplier tests to deter-
mine the proper spatial specification (spatially lag dependent or/and spatial error).
The groupwise heteroskedastic specification takes into account the possibility of not
only having different regression coefficients in each regime, but different error vari-
ances as well. For the two cross-sections, the heteroskedasticity coefficients estimates
are highly significant. These coefficients are the iterated FGLS estimates. The null
hypothesis of the joint equality of coefficients is rejected by the Chow-Wald test
(statistics are 24.75 and 15.97 respectively for 1988.1 and 1993.1).

The same indication is provided by a test on individual coefficients for electricity
average price, disposable income and mean temperature for 1988.1, and for mean tem-
perature and proportion of workers for 1993.1. For the sample concerned, these tests
support the analysis of residential water demand in term of spatial regime switching.
Tests for spatial lagged dependent variable and spatial error dependence are also car-
ried out. For 1988.1 the Lagrange multiplier test provides strong evidence for spatial
lagged dependent variable (statistic is 11.436 with a low p-value), whereas the spatial
error dependence specification is rejected (statistic is 0.041 with a p-value of 0.83).
The same indication is provided for 1993.1. As a result, the proper analysis of spatial
regimes should include a spatial lag for the response variable, and not a spatial error.
Based on these tests, we estimated a spatial lagged dependent model (relation 5)
with regime switching. The results are reported in Table 4. Diagnostic tests support
our modelling. The spatial lagged dependent variables coefficients are strongly neg-
atively significant. These parameters are more significant than those obtained from

the estimates of non-regimes specification.

15



Table 3: FGLS Estimates of groupwise heteroskedastic error regime model

Cross section 1988.1 Cross section 1993.1
Variable coef. std.err  t-value coef. std.err  t-value
REGIME 1:
Water price -2.141  0.574  -3.724 -3.087  2.614  -1.180
Spline price 2.194  0.681 3.221 2.938  2.668 1.101
Electricity price 0.340 0.076 4.455 0.396 0.206 1.922
Income 1.332  0.875 1.522 -0.200  0.752 -0.266
Temperature -8.886 9.280 -0.957 | -11.691  23.206 -0.503
Density of population -1.728 0.831 -2.077 -2.391 0.904 -2.643
Persons < 19 years -0.619 0.646 -0.958 0.006 0.676 0.009
Workers -2.327  0.758 -3.068 -0.792  0.871 -0.908
Unemployed -2.387  0.759 -3.145 -2.067  0.868 -2.368
Skedastic coef. 345.178  56.367 6.123 | 428.189  69.923 6.123
REGIME 2:
Water price -0.864 0.498 -1.735 -2.972 0.645 -4.606
Spline price 1.260 0.698 1.805 2.590 0.623 4.152
Electricity price 0.080 0.074 1.086 0.051 0.079 0.645
Income -1.081 0.774  -1.397 -0.194  0.376 -0.515
Temperature 22.002 8.148 2.700 | 37.615 8.218 4.576
Density of population -2.104 1.732 -1.214 -1.531 1.180 -1.298
Persons < 19 years -1.706 0.775 -2.200 -1.163 0.537 -2.163
Workers -1.882  0.965 -1.948 -2.807  0.676 -4.149
Unemployed -3.760  0.802 -4.686 -2.598  0.637  -4.076
Skedastic coef. 247.658 55.378 4.472 | 120.561  26.958 4.472
R? 0.591 0.538
Log likelihood -492.57 -486.25
Akaike 1021.14 1022.64
Schwartz 1070.55 1074.79
Diagnostics tests:
Chow-Wald  (structural X%g) : 24.75 p-value: 0.003 X%g) 1 15.971 p-value: 0.067
stability)
Lagrange-M (spatial er- X%U : 0.041 p-value: 0.839 X(21) :0.000 p-value: 0.992
ror model)
Lagrange-M (spatial lag X%l) :11.436 p-value: 0.000 X%l) : 39.684 p-value: 0.000
model)
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Table 4: Maximum likelihood estimates of spatial regime model

Cross section 1988.1

Cross section 1993.1

Variable coef. std.err  t-value coef. std.err  t-value
Spatial lag -0.864  0.297 -2.908 | -0.990  0.320 -3.088
REGIME 1:

Water price -2.407  0.542 -4.439 | -3.604  2.219 -1.623
Spline price 2.362 0.631 3.740 3.442 2.262 1.521
Electricity price 0.433 0.076 5.691 0.481 0.175 2.740
Income 2.025  0.836 2.422 0.062  0.635 0.081
Temperature -13.013 8.558 -1.520 | -12.033 19.394 -0.620
Density of population -1.450  0.772 -1.878 | -2.173  0.763 -2.848
Persons <19 years -0.898 0.599 -1.497 | -0.036 0.565 -0.064
Workers -2.126  0.697 -3.060 | -0.584  0.730 -0.799
Unemployed -1.916 0.715 -2.680 | -1.757 0.736 -2.384
REGIME 2:

Water price -0.995 0.540 -1.842 | -2.955 1.016 -2.908
Spline price 1.356 0.756 1.793 2.527 0.982 2.572
Electricity price 0.144 0.084 1.707 0.115 0.128 0.897
Income -0.924  0.840 -1.100 | -0.287  0.593 -0.484
Temperature 20.899 8.840 2.364 | 37.022 12.963 2.855
Density of population -1.162 1.891 -0.614 | -1.164 1.872 -0.622
Persons < 19 years -1.411 0.839 -1.680 | -0.791 0.851 -0.929
Workers -1.905 1.044 -1.824 | -2.741 1.065 -2.572
Unemployed -3.718  0.868 -4.280 | -2.333 1.004 -2.322
R? 0.58 0.51

o2estimate 289.58 298.92

Log likelihood -490.18 -492.32

Akaike 1018.37 1008.51

Schwartz 1070.52 1057.92

Diagnostics tests:

Chow-Wald
stability)

(structural

X%g) : 30.501 p-value: 0.000 X%

o) 20.091 p-value: 0.017
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Although complementarity between the two goods (water and electricity) may
be expected, the positive sign for the parameter of electricity average price variable
indicates that, for the sample concerned, water and electriciy display substituability
patterns. This means that an increase in electricity average price may result in
more water consumption by residential consumers. This a priori surprising result
is in contradiction with the study of Hansen (1996) where the energy cross-price
parameter is found to be negative. Our cross-effects estimates suggest that changes
in electricity average price may induce modifications in the distribution of residential
water consumption for different uses. That is to say, the share of residential water
consumed in connection with electricity may decrease with electricity price, whereas
the remainder (the share of residential water consumed without energy) does not.
We have noticed in section 1 that about 40% of daily residential water consumption
in France is concerned with heating. 60% would not be, which partly explains our
result.

The spatial coefficient is also highly significant, which confirms the spatial mod-
elling framework. Here, the spatial behavior may be viewed in two ways. First,
we can argue that municipalities are actually influencing their neighbours. The wa-
ter consumption behavior of other municipalities affects the consumption of a given
municipality through social proximity. The estimated spatial parameter can be inter-
preted as a measure of externality. The significant spatial pattern may also be thought
of as the reaction of households with respect to the availability of water resources.
Our results indicate also a shift in role between regimes from one cross-section to
another. This may be thought of partly as a consequence of the public sector water

pricing policies through the "M-49 directive" (cf. Section 2).

5 Summary and conclusion

In this paper, we have taken advantage of data availability to specify a spatial regime
switching approach for modelling residential water demand, including electricity price
effects. Recall that in France, water is a public good. The comparison of two cross-
sections allowed to evaluate the relevance and the structural instability induced by
public water pricing.

So, what can we learn through this study? First, the estimated spatial lagged
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parameter is strongly significant, which means that households living in the same
geographic area have approximately similar water consumption behaviors. The sec-
ond point concerns the consumption tendencies between the two periods (1988.1 and
1993.1). Indeed, on a same sample, we have noticed a shift of role in regimes between
1988.1 and 1993.1. That is, in 1988.1, consumers in the first regime behaved in 1993.1
as if they were in the second regime. Thus, by charging all residential consumers in
the same proportion, the "M49-directive" would induced structural instability. We
can then argue that public water pricing as defined seems not to be efficient. Finally,
some comments concerning price variables are in order. We find evidence that con-
sumers respond jointly to water and electricity average price, not to water average
price only. The use of electricity average price as additional regressor improved the
model specification. Moreover, when constructing water average price, we have cho-
sen a linear spline specification instead of a uniform slope. This raises the question
of the proper price variable specification to be used.

A crucial assumption behind the maximum likelihood method used is that the dis-
turbances are normally distributed. As pointed out by LeSage (1996), violation of this
can arise from outliers or spatial enclave effects where a small cluster of observations

display aberrant behavior. This aspect remains to be examined.

6 Appendix: variables used and related data source

The data were provided by "La Compagnie Générale des Eaux, Direction Régionale
Est" (General Company of Water(s)), "la Direction Générale des Imp6ts de la Moselle"
(Regional Tax Center), "le Centre Départemental de la Météorologie de la Moselle"
(Regional Center of Meteorological Studies), "I'Institut National de la Statistique et
des Etudes Economiques" (National Institute of Statistics and Economic Studies)
and "Electricité de Strasbourg" (Electricity of Strasbourg). The variables used in the

estimation are the following.

Dependent variable: aggregate residential water consumption per municipality ex-
pressed in m3 per house.
Explanatory variables:

e Water average price (wap) in "FF" per m3; it is computed as follows: wap =
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(consxmp)+fc
cons

, where (mp) denotes the marginal price, (fc) is the fixed charges and
(cons) is water consumption,

e Electricity average price in "FF" per kwh,

e Disposable income per household paying taxes,

e Mean temperature in degree Celsius,

e Proportion of persons below 19 years,

e Proportion of workers,

e Proportion of unemployed,

e Density of population,

e Spatial lagged dependent variable.
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