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Abstract

This paper considers estimating panel data spatial autoregressive models

in the framework of minimum distance estimators. A spatial weighting ma-

trix based on the distance between points is constructed to relate observations

spatially. To overcome the computational di�culties that beset spatial pro-

cesses, the model is estimated in two stages. First, the data are treated as T

cross-sections, the parameters of which are consistently estimated by pseudo-

maximumlikelihood. A consistent asymptotic covariance matrix is computed as

the norm of a quadratic form for the second stage. Minimumdistance estimates

are then derived under the restrictions of common slopes and complete equality

of parameters. Finally, spatial elasticities are investigated. This framework is

applied to estimating empirically spatial patterns in the residential demand for

water using a lattice sample.
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1 Introduction

It is often of interest to consider the spatial distribution of phenomena such as di�u-

sion patterns in counties or states of a country, or as a map of points of occurrences.

This yields the spatial analysis of the so-called lattice data, i.e. observations for a

�xed and given set of locations. There are many varied applied econometric appli-

cations. LeSage and Dowd (1997) use this methodology to examine the in�uences

of spatial contiguity on state price level formation. A similar framework has been

used by Case (1991) to describe spatial patterns in household demand for rice in

some Indonesian districts. Recent examples of empirical work that explicitly in-

corporates spatial dependence includes, among others, the analysis of innovation

decisions, Hautsch and Klotz (1999), the forecasting of cigarette demand using panel

data, Baltagi and Li (1999), real wages variation to local and aggregate unemploy-

ment rates over time, Ziliak et al. (1999), and the estimation of a hedonic model for

residential sales transactions, Bell and Bockstael (2000).

In a regression framework, spatial autocorrelation (more generally, spatial de-

pendence) occurs when the dependent variable and/or the error term of a regression

function is correlated at each location with observations of the dependent variable

and/or values of the error term at other locations. As pointed out by Anselin (1988),

ignoring this structure when it actual exists results in mis-speci�cation and in estima-

tion bias. While most studies focus on cross-sectional speci�cations, spatial models

for panel data have not received much attention.

As outlined by Case (1991), �xed e�ect speci�cations can be used to control for

spatial components in panel data. In some cases, when there is no intra-regional

variation in variables of interest, a spatial modeling approach may be however more

appropriate. This would be the case when the variation in the variable depends

upon the distance between points. Then, there is a perfect correlation between

the variables of interest and the �xed e�ects. The same paper discusses the gains in

information and e�ciency which are achieved by modeling spatial random e�ects, and

shows that when speci�c e�ects are uncorrelated with the right hand side variables,

there are clear bene�ts to a spatial speci�cation. More generally, it can be argued

that the equicorrelated structure of individual dependence that is typically speci�ed

in error-component models for panel data does not allow for distance decay e�ects.

Moreover, this equicorrelation is associated with the time dimension and not the
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individual dimension of the data set. As a result, such a structure is not adequate

for estimating spatial patterns in panel data. This study provides both theoretical

and empirical advances on this topic.

We consider estimating panel data spatial autoregressivemodels within the frame-

work of minimum distance estimation. We specify a mixed regressive spatial autore-

gressive model which de�nes a class of random �elds, i.e. models derived from

processes indexed by space, time and cross-sectional dimensions. We work with a

row-standardized spatial weighting matrix, i.e. the spatial weighting matrix is nor-

malized so that the rows sum to unity. This standardization produces a spatial

lagged variable that represents a vector of average values from neighboring obser-

vations. The speci�cation is assumed to be the true data generating process which

relates observations with reference to points in space and time. The model is then

estimated in two stages.

In order to overcome the computational di�culties that beset spatial processes

(and assuming the errors to be normally distributed) the data are treated as T

cross-sections in the �rst stage, the parameters of which are estimated by a pseudo-

maximum likelihood procedure. Under suitable regularity conditions this stage pro-

vides both unrestricted consistent parameter estimates, including the spatial coe�-

cient, and elements of scores which are used to compute the consistent asymptotic

covariance matrix as a norm for a quadratic form for the second stage. The Mini-

mum distance method is then applied under the assumption of a linear relationship

between the auxiliary parameters and the parameters of interest in the estimating

equations. We consider two di�erent sets of restrictions to relate the time dimen-

sion of the panel: the common slopes (or �xed slopes) and the complete equality

of parameters (or all identical parameters). The minimum distance estimates are

computed for each case and are consistent and asymptotically e�cient. Finally, time

varying spatial elasticities based on the minimum distance estimates are investigated.

This speci�cation is used for an empirical analysis of the spatial variations of the

residential demand for water for the French department of "Moselle", including the

e�ects of energy (electricity) price. At this stage it is important to explain why the

price of electricity can be used as an additional regressor in the speci�cation of the

model and why the data at hand are appropriate to the spatial context.

As indicated by Hansen (1996), when estimating the determinant factors of resi-
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dential water demand, we may expect to observe the indirect e�ects of energy vari-

ables, according to water consumption between di�erent water-using tasks. Water is

consumed by households jointly with di�erent tasks involving in most cases sizable

amounts of energy and other goods (appliances, etc.). Table 10 in Appendix 6.1

reports the daily distribution of French residential consumption of water between

household tasks. We observe that about 50% of this distribution is concerned with

water heating (mainly by electricity). We combine this consideration with spatial

aspects for two reasons.

The �rst reason is an empirical concern. Several studies have pointed out the

existence of a regionalized behavior for the consumption of water by households

living the concerned municipalities. Such a behavior may also be linked to the

availability of water resources. See for example INSEE (1998) for more details on

this purpose.1 Furthermore, as will be seen later, these municipalities have been split

into spatial sectors for the purpose of water networkmanagement. In this context, the

speci�cation used may be viewed as a model of endogenously changing tastes, which

allows to check for social interdependence by testing the extent to which households

look to a reference group when making water consumption decisions. It may also

be thought of as indicating the magnitude and the direction of interactions between

consumers with respect to the availability of water resources. The second reason is

attached to the theoretical framework. As outlined earlier and as will be seen in

description of the data, there is no intra-regional variation in water prices, variations

in this variable depend on the distance between municipalities. As a result, a spatial

approach seems more appropriate and should be preferred to the pure �xed e�ect

modeling. Furthermore, in our panel the number of cross-sections is larger than the

number of waves. In this case, the framework such as the one suggested by Whittle

(1954) cannot be applied.2 All these reasons motivate the use of the spatial approach

adopted here.

Section 2 presents the model. The proposed speci�cation combines elements of

spatial modeling and the panel data framework using a minimum distance approach.
1Tableaux de l'Economie Lorraine 1997/1998 (Tables of Lorraine Economics).
2Whittle (1954) suggests that if panel data are available and if the time dimension is su�ciently

large, T > N , one can consider e.g. a seemingly unrelated regression speci�cation, or an error com-

ponent model to permit for cross-sectional correlation, and estimate the cross-sectional correlations

through the time dimension of the panel.
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Section 3 is dedicated to the data. We describe the sample and basic descriptive

statistics. Spatial correlograms are computed to check for spatial patterns. We

also use a nonparametric density estimation to identify "spatial sector tendencies"

in the distribution of the average price of water. Estimation results involving both

parameter estimates and spatial elasticities are presented in Section 4. Concluding

remarks are given in Section 5.

2 Spatial model for panel data

Let us consider a spatial autoregressive model for panel data containing a spatial lag

of the response variable as an additional regressor. Such a model has the following

structure:

yit =
X
j 6=i

�!ijyjt +
K�1X
k=1

x
(k)
it �k + "it j�j < 1; (1)

i = 1; � � � ; N ; j = 1; � � � ; N ; t = 1; � � � ; T:

where yit is the i-th observation on the dependent variable at period t, x(k)it is the

i-th observation for the k-th explanatory variable, yjt is the j-th observation on the

dependent variable contiguous to i. � is a scalar, the spatial coe�cient, and the

�'s are k � 1 parameters of the remaining explanatory variables. � and � are the

parameters of primary interest to be estimated. !ij is an element of the spatial

weighting matrix, the computation of which is given in Appendix 6.3. Relation (1)

can be rewritten in a more convenient stacked vectors and matrices form.

For each time period, let y = (y1; � � � ; yi; � � � ; yN)0, X = (X1; � � � ; Xi; � � � ; XN)
0

and " = ("1; � � � ; "i; � � � ; "N)0. We organize the data as such due to the introduction

in the sequel of a spatial weighting matrix W which remains �xed over time. Fur-

thermore, this allows to take observations by cross-section. Hence, for each period,

y and " are of dimension (N � 1) and X is N � (K � 1). The structure of the

model implies that each cross-section follows a spatial autoregressive process. Then,

in stacked form the model is

y = [Wy;X ]� + "; � =
�
�; �0

�0
; (2)

whereW is a known (N�N) spatial weighting matrix, usually containing �rst-order

contiguity relations or functions of the distance between spatial units; again, see
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Appendix 6.3 for the computation of W . Here, we work with a row-standardized

version of W , i.e. W is normalized so that its rows sum to unity. This standard-

ization produces a spatial lagged variable Wy, (also termed "regionalized variable")

that represents an average of values from the neighbouring y. X is the matrix of

explanatory variables, � is a (K � 1) vector of unknown parameters. It is composed

of the spatial coe�cient � and the vector � of dimension (K � 1) of the other ex-

planatory variables. Relation (2) is analogous to the multivariate lagged dependent

variable model for time series regressions, with a spatial parameter � indicating the

extent to which variations in y are explained by the average of the values of its

neighbouring observations.

To simplify understanding of how the estimation procedure works, let us consider

G-variates yt for t = 1; � � � ; T , generated from yt = f(yt; Xt;W ; �0) + "t where

�0 2 � � RK, yt 2 RG, X 2 RP , "t 2 RG. Each wave t contains N cross-

sections. W is a given time invariant square matrix of dimension N � N which

relates observations spatially. Assume that the conditional distribution of "t given

Xt is equal to the product of the conditional distributions for t 6= s. Furthermore,

assume this distribution to be Gaussian with E("t) = 0 and E("t"0s) = �2t I , for t 6= s.

The assumption of normally distributed errors allows us to estimate, in a �rst

stage, the parameters of each cross-section separately by pseudo-maximum likeli-

hood. This �rst stage estimation procedure is termed "pseudo" as it does not ac-

count for the time dimension of the panel. That is, the conditional distributions in

this stage are assumed to be time invariant. In a second stage the minimum distance

method may be applied and the time dimension of the panel is taken into account.

Moreover this second stage provides e�cient estimates, since the quadratic form to

be minimized is optimally speci�ed in the sense of Hansen (1982).

Formally, let �̂ = (�̂; �̂0; �̂2)
0
denote the unrestricted pseudo-maximum likelihood

estimates for parameters � = (�; �0; �2)
0 for each cross-section. That is

�̂ = arg max
�2�

NX
i=1

TX
t=1

 (yit; Xit;W ; �) ; (3)

where  (�) denotes the log likelihood function computed as

 (y;X;W ; �; �; �2) = �N
2
ln(2�)� N

2
ln �2 + ln j�j � 1

2�2
�0�; (4)
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with � = �y � X�, � = IN � �W and j � j denotes the determinant. In a second

stage one may use the unrestricted maximum likelihood estimator of the �rst stage

to form the restricted minimum distance estimates by imposing several restrictions

of the form g(b̂(�); a) = 0. These restrictions link the set of parameters of interest

A = a(P) � RK, a0 = a(P0); 8P 2 P , where a0 denotes the true value of a, and the

set of auxiliary parameters: B = b(P) � RH et b0 = b(P0); 8P 2 P , where b0 = b(P0)

denotes the true value of b. The estimating equations are such that

g(b; a) = 0; with g(b(P ); a) = 0) a = a(P ); 8P 2 P: (5)

Expression (5) means that there exists a sequence b̂n = b̂n(y1; � � � ; yi; � � � ; yn) of

estimators for b such that: (i) b̂ converges towards b0 = b(P0), P0 a.s., (ii) the

asymptotic distribution of
p
N(b̂n � b0), with a covariance matrix �0 = �(P0), is

p
N(b̂n � b0) L�!

N!1
N (0;�0) :

Under these conditions, the minimum distance estimator is obtained by choosing ân

to minimize a quadratic form for the norm given by the inverse of the asymptotic

covariance matrix of g(b̂(�); a0). This leads to the minimization program

â = arg min
a2A

h
g(b̂(�); a0)

i0
Sn

h
g(b̂(�); a0

i
; (6)

where Sn
a.s.! S0 is a positive de�nite symmetric matrix. The optimal choice for S is

known to be the inverse of the covariance matrix of g(b̂(�); a0). See e.g. Gouriéroux

et al. (1985) and Kodde et al.(1991) for further details. Under usual regularity

conditions, the estimator â(Sn) exists and is consistent. Furthermore, the following

asymptotic distribution holds

p
N (an(Sn)� a0) L�!

N!1
N (0;
0 = 
(S0)) : (7)

In the case of spatial stochastic process, consistent estimation of S0 is not trivial. In-

deed, such a computation makes use of the spatial weighting matrix in the likelihood

function. In order to form a consistent estimation of S0, we propose the following

approximation.

Let 
0 denote a consistent approximation of S0 such that


0 =
1

N

�
J�10 I0J

�1
0

�
; (8)
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where J0 = diagfJ1; � � � ; JTg is a block diagonal matrix with elements

J = E

�
�@

2 (y;X ;W;�0)

@�@�0

�
; (9)

and the elements of I0 are given by

I = E

�
@ 

@�
(y;X ;W;�0)

@ 

@�
(y;X ;W;�0)

0

�
: (10)

A consistent estimator 
̂ of 
 is obtained as follows. Let  i(y;X ;W;�; �; �2) denote

the log-likelihood for one observation. More formally we have

 i(y;X;W ; �; �; �2) =� 1

2
ln(2�)� 1

2
ln �2 +

1

N
ln j�j

� 1

2�2

2
4X
j2J

�
1[i=j] � �!ij

�
yj �

X
k

X
(k)
i �k

3
5
2

;

(11)

where j = 1; � � � ; J is the set of spatial units contiguous to a unit i and 1[i=j]

denotes an indicator function. Taking partial derivatives of (11) with respect to the

parameters yields

@

@�k
 i(�) = 1

�2

2
4X
j2J

�
1[i=j] � �!ij

�
yj �

X
h

X
(h)
i �h

3
5X(k)

i ; (12)

@

@�
 i(�) = 1

�2

2
4X
j2J

�
1[i=j] � �!ij

�
yj �

X
h

X
(h)
i �h

3
5X
j2J

!ijyj +N�1�; (13)

@

@�2
 i(�) = � 1

2�2
+

1

2�4

2
4X
j2J

�
1[i=j] � �!ij

�
yj �

X
k

X
(k)
i �k

3
5
2

; (14)

with

� =
@

@�
ln(I � �W ) = �tr

�
[I � �W ]�1W

�
:

Let v̂t =
h
@ i(�)
@�k

j @ i(�)
@�

j @ i(�)
@�2

i
�=�̂

be a block element of Î of dimensionN � (K + 2)

obtained by stacking the vector of derivatives evaluated at the parameter estimates

for a period t. The empirical variance matrix Î of individual scores is given by the

cross product of v̂t;s for t 6= s. The estimate 
̂ of 
 is computed as Ĵ�1Î Ĵ�1 by

replacing theoretical expectations by sample means.

8



3 Data

The department of "Moselle" consists of about 730 municipalities out of which 115

have been selected for the empirical study of households' demand for drinking wa-

ter.3 Households living in these municipalities are supplied with drinking water by a

private operator. The data considered here represent the �rst lattice collected from

the French network of drinking water distribution. The data is collected biannually

from 1988.1 to 1993.2, a balanced panel of 1380 spatial observations. Some variables

do not require important changes before being used. Others have been constituted

from information available in the last municipal inventory.4 This section describes

the sampling and relevant features of the variables. See Appendix 6.2 for an overview

on data sources.

3.1 Sampling and descriptive statistics

The �rst step of this study was the collection of data. Since this kind of data

had never been collected before, two important issues arose from a closer look of the

consumption values. The �rst was the identi�cation of households' consumption. The

network manager (a private operator) provides water services to the subscribers, i.e.

citizens living in individual houses or in collective blocks of �ats (for instance council

�ats), as well as industrial consumers and businesses. The households' demand

gathers together individual user consumption and collective user consumption. Most

of the households living in collective lodging do not yet have meters that indicate

accurately the amount of their consumption. Also, for these consumers the charge

for water is included in the rent. We can then suppose that the households concerned

are not aware of the necessity to control their budget with respect to water expenses.

Moreover, there are also blocks of �ats sheltering small businesses. In the case

when a household living in a collective lodging gets a business linked to his subscriber

regime, former's consumption of water cannot be distinguished from the latter's. A

similar issue occurs for some households living in individual houses. Indeed, for those
3The department of "Moselle" is located in the north-east of France. The selected municipalities

for the study are those for which we succeed in obtaining reliable information.
4All information related to the municipalities' characteristics come from the last municipal in-

ventory. The municipal inventory is a document which provides the characteristics of French mu-

nicipalities. The study is conducted by the "National Institute of Statistics and Economic Studies".

The last recording dates from 1988.
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among them who possess e.g. farms the identi�cation of purely domestic volumes

is di�cult. For all of these reasons, and in order to reduce the evaluation errors

as well as to be sure that the target sector corresponds to the residential one, we

have selected subscribers connected to the network of drinking water with a main

water capacity of 15mm in diameter, when this information was available. Despite

this choice, we cannot exclude that some marginal consumption values coming from

small businesses or other consumption di�erent from domestic consumption is still

in the collected data.

The second problem concerns the reconstruction of some consumption values,

either because they disappeared during �oods (it is the case of 1990's data), or

because they existed under a high level of aggregation. This concerns only very a

few unionized municipalities. The non-unionized municipalities display a half year

water volume. Unions result from the gathering of municipalities; we use union data

to estimate the volume consumed when municipalities' data is missing. The data

used to reconstruct consumption values, as far as municipalities are concerned, come

from a document termed "water products". The volumes looked for are semester

values. When semester data are missing, we face two possible cases: either only

some municipalities composing the union are considered or the details of the volume

consumed are not available. In the former case we suppose that the consumption

in the other municipalities varied in the same proportion. In the latter case, the

average weight of each municipality in the union is computed. As a result, the data

possess two characteristics which make their biannual use delicate.

On the one hand, the water reading frequency ran from at least a quarterly

period to an annual one whilst the pricing remains biannual. The accurate biannual

readings are available for 1988.1 for all the municipalities, as well as the readings

of 1993.1. From 1990.1 to 1992.2 some municipalities adopted an annual reading.

In this case, and to reduce the cost induced by meter readings, the volumes for one

semester are estimated from the consumption of a preceding year, where the duration

between two readings does not always equal 52 weeks. Moreover, the calendar year

is no longer taken into account, instead the period stretching from June to June is

considered. On the other hand, we face di�erences in the frequency of data collection.

The consumption reading frequency may vary from one year to another because

of climatic hazards or other unforseeable parameters. To correct these biases, the
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Figure 1: Distribution of the residential consumption for water, kernel density esti-

mates per time period. The �gure shows a mainly uni-modal distribution around 60

and 80 m3 for each period.

consumption values presented in this study are corrected to lead to a frequency of

52 weeks.

These two characteristics, estimated values and di�erences in the reading fre-

quency, are possible sources of measurement errors. Despite this, it is important

to note that the percentage of the initial sample that cannot be used because of

identi�cation problems is about 3.6% and the percentage of the data that had to be

reconstructed in order to obtain consumption values is about 5.8% . In light of these

issues, we compute a nonparametric density estimation to have a closer look at the

distribution of consumption values. Figure 1 shows the results. We notice mainly

a uni-modal distribution between 60 and 80 m3 for each period. These estimates

reinforce our recording target, i.e. the consumption of residential subscribers. This

means that the identi�cation issue we have faced for consumption values seems to

be well handled.

We have recorded the aggregate water consumption per municipality in cubic
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Table 1: Descriptive statistics of water consumption and the average price.

Consumption in m3 Average price in FF

Period mean std. min. max. mean std. min. max.

1988.1 69.68 27.75 1.11 153.15 6.28 2.11 3.24 11.29

1988.2 70.13 23.56 1.04 148.74 6.37 2.14 3.27 11.38

1989.1 72.28 28.37 1.00 186.78 6.69 2.31 3.09 11.52

1989.2 74.55 27.11 0.88 175.28 6.79 2.35 3.09 11.64

1990.1 73.47 27.43 0.96 162.52 7.05 2.44 3.40 12.40

1990.2 72.67 26.33 0.86 163.37 7.22 2.53 3.41 12.54

1991.1 75.56 29.17 0.90 179.48 7.70 2.65 3.47 13.08

1991.2 75.04 28.90 0.86 187.81 7.95 2.91 3.56 16.19

1992.1 71.94 27.07 0.73 155.81 8.66 3.40 3.63 17.59

1992.2 72.75 27.68 0.87 170.37 9.01 3.51 3.67 18.10

1993.1 72.14 26.51 0.81 157.33 9.97 3.97 4.09 19.46

1993.2 71.24 29.26 0.83 176.19 10.58 3.50 4.77 19.50

meters per house. Since urban municipalities are larger than rural ones, each con-

sumption value has been divided by the total number of households per community

in 1990, the year of the last available inventory. This is also when the last general

population census was conducted by the o�ces of the National Institute of Statis-

tics and Economic Studies "(INSEE)". Descriptive statistics related to the variables

are shown in tables 1, 2, 3 and 4. See Appendix 6.2 for an overview of the list of

variables.

National statistics indicate an average water consumption tendency of about 120

m3 per house per year. These �gures vary somewhat: old houses consume less water

whereas high standing dwellings with gardens can consume around 180 m3. When

we compare these indicators with those computed from the sample, we notice that

the averages of recorded consumption are of the same magnitude. Minimum values

can be considered as the consumption of rural municipalities. These tendencies are

also indicative of the standard of living of the population considered. As a whole,

there are no outliers in consumption values. Note however some high values exist for

1989.2, 1991.1 and 1991.2 where we observe 74.55, 75.56 and 75.04 m3 respectively.

This may result from extra consumption in addition to purely domestic consumption.
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Table 2: Descriptive statistics of meteorological variables.

Rainfall in m Mean temperature in C0

Period mean std. min. max. mean std. min. max.

1988.1 8.76 0.65 7.38 11.10 8.91 0.33 8.00 9.58

1988.2 7.29 0.70 5.94 8.87 11.47 0.29 10.68 12.15

1989.1 6.17 0.56 5.12 7.69 8.78 0.32 8.21 9.50

1989.2 6.55 0.50 5.69 8.92 11.86 0.36 10.83 12.55

1990.1 6.94 0.66 5.84 8.24 9.33 0.26 8.66 10.00

1990.2 6.93 0.77 5.50 9.41 11.48 0.32 10.56 12.20

1991.1 4.65 0.40 3.72 6.80 7.02 0.28 6.25 7.65

1991.2 5.95 0.89 4.76 7.51 11.99 0.27 11.15 12.58

1992.1 5.46 0.67 4.14 7.51 8.70 0.28 8.10 9.28

1992.2 7.97 1.20 5.26 10.25 11.92 0.18 11.30 12.46

1993.1 4.50 0.81 2.77 5.77 8.81 0.22 8.31 9.46

1993.2 10.14 0.72 8.78 12.35 10.71 0.26 9.90 11.28

Table 3: Descriptive statistics of disposable income(*).

Period mean std. min. max.

1988 57.51 8.28 33.38 75.24

1989 59.07 8.65 37.47 79.23

1990 62.06 9.31 31.82 85.16

1991 63.82 10.31 33.66 92.14

1992 65.49 11.33 34.18 104.16

1993 66.97 11.76 34.33 97.68

(*): Values are expressed in thousands of FF.
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Table 4: Descriptive statistics of municipalities's characteristics(*).

Variable mean std. min. max.

Proportion of persons <19 years 0.28 0.04 0.13 0.31

Density of population 1.10 2.60 0.0038 14.61

Proportion of Workers 29.96 4.39 11.92 37.82

Proportion of Unemployed 9.78 4.03 2.70 23.62

Index of equipment 61.87 6.86 30.24 76.84

(*): Statistics are computed for 1990, the year of reference.

Again these statistics support, on average, our recording target sector: the water

consumption of residential subscribers.

Disposable income statistics are characterized by very low values. Consider for

example the year 1990 where the minimum values are the lowest, i.e. 31,820 FF per

taxed household. This gives a monthly disposable income of 2,651.66 FF. Supposing

that this household is made up of a single member, the latter roughly earns the

so-called "minimum insertion income" in France. This shows the di�culty usually

encountered in recording income data. Other reasons explain these low values. In-

deed, various studies conducted by the "National Institut of Statistics" show that

in the department of "Moselle", taxable incomes under-estimate actual household

incomes by 30% on average.5 This under-estimation is extremely high for the self-

employed (43%), even more so for self-employed farmers (57%). Moreover, even if

we know that the consequences of the economic crisis on the evolution of global

wages has been compensated by a strong increase in social bene�ts and only a slight

increase in taxes, the "Moselle" departement is below national indicators.

Average price values clearly indicate relevant patterns. The average price contin-

uously increases over the twelve biannual periods. From 1988.1 to 1989.2 the average

price is below 7 FF; from 1990.1 to 1991.2 it is below 8 FF and from 1992.1 onwards

the tendency is even higher. This last tendency indicates an important modi�cation

in the structure of water price. As a result, the price variable suggests a clustering

pattern. It also presents an increasing dispersion within clusters with stable mini-
5These �gures can be found e.g. in Tableaux de l'Economie Lorraine 1997/1998 (Tables of

Lorraine Economics), INSEE (1998).

14



mum values (around 3,5 FF). All these �gures are examined more carefully in the

next section.

Finally, note that the meteorological variables (rainfall and temperature) pre-

sented here are not dummy variables as is usually the case in the literature. The

values on these variables were recorded by the Regional Center of Meteorological

Studies. As we may expect, the �rst semester values are less than those of the

second semester.

3.2 Distribution of the average price of water

For various reasons that are described below, it seems relevant to study the distribu-

tion of the average price of water for the period under study. Indeed, the organization

and the management of water distribution in France pertains to public service lia-

bility. The price of water results from a negociation between local authorities and

the water distributor who may be the local collectivity itself or a private company.

Municipalities and households concerned by this study are supplied with drinking

water by a private �rm.

According to the water supplier, the municipalities are split into two sectors,

however there is some doubt about the exact number of sectors. We denote each

sector by a dummy variable (dummy 1 for sector 1 and zero for sector 2). Out of the

115 municipalities, 65.2% belong to sector 1. The sectors correspond to two distinct

areas of water management. This spatial arrangement is mainly due to network

management issues (water transportation, treatment to make water drinkable, etc.)

and is closely linked to elements of water prices.6 The marginal price of water is the

same within a given sector but varies between sectors. Thus, we know that there is

no intra-regional variation in the marginal price. However, the average price of water

varies from one community to another when the �xed charges of water are included.

Moreover, the laws on water of November 1992, the so-called "M-49 directive", have

strongly modi�ed the working orders of water agencies.7 This modi�cation translated
6To make ideas clear, we computed the correlation coe�cient between the average price of water

and the sector dummy for the twelve time periods: -0.33, -0.32, -0.38, -0.38, -0.36, -0.39, -0.35,

-0.34, -0.35, -0.38, -0.35, -0.41. There is evidence of correlation.
7Set up on November 10th, 1992 (its implementation date) the "M-49 directive" imposes the

rule of budget balance to water services (supply and cleaning up). They are no longer allowed

to include expenditures on water spending (building up and maintenance of network, equipment,
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Figure 2: Distribution of the average price of water, kernel density estimates. We

observe three modes from 1988.1 to 1991.2. In 1991.1 and 1992.2, the central mode

starts disappearing. From 1992.1 on, only two modes remain.
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into high increases in water prices. The aim is to let customers pay for the e�ective

price of water, instead of for the water service.

To check for the persistency of sector design e�ects in the distribution of the

average price (having incorporating the �xed charges of water), we use nonparametric

estimation for data analysis and identi�cation purposes. See e.g. Silverman (1986)

and Wand and Jones (1995) for details. Figure 2 shows the kernel density estimate

of the average price of water for each time period. In the estimation procedure,

we use the Epanechnikov kernel and the cross-validation method for the choice of

the bandwidth. Two main conclusions can be stated. First, we notice that up to

1991.2, the distribution displays three modes. From 1992.1 on the central mode

starts disappearing and by 1993.2 there are only two modes left. This distribution

can mainly be explained by the modi�cations that occurred in water pricing in 1992.

These modi�cations may be due to the "M-49 directive" which resulted in a change in

water pricing. Not only did the price increase continuously as indicated by descriptive

statistics, but now, two sectors appear clearly from 1992. Second, the distribution

reveals also that there may be three sectors up to 1992.1. Thus, sector design e�ects

clearly appear in the average price of water. As a result, we may expect a within-

sector behavior regarding water consumption as well as a spatial e�ect. However, the

lack of information on the exact number of sectors at the beginning of data collection

period precludes the use of a switching regression framework.

3.3 Testing spatial autocorrelation

We introduce various analytic methods which are of value in assessing the spatial

scale of a process. The variables of interest are: the water consumption, the average

price of water and the disposable income. We use Gs-statistics which provide a mea-

sure of overall spatial association as well as observation-speci�c spatial association.

See Appendix 6.4 for a de�nition. These statistics are computed by de�ning a set

of neighbouring municipalities. For each location, neighbouring municipalities are

considered as those which fall within a distance band.

We test for a speci�c spatial association, i.e. the extent to which a location is

surrounded by a cluster of high or low values for the variables of interest for each

period. The results of the tests are reported in Table 5. We observe a signi�cant

cleaning up...) in their general budget.
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Table 5: G�(�)-test for speci�c spatial autocorrelation.

Consumption Water price Disposable income

Period G-stat. prob.(%) G-stat. prob.(%) G-stat. prob. (%)

1988.1 0.329 0.7 0.389 00 0.358 48

1988.2 0.337 3.0 0.387 00 0.358 48

1989.1 0.332 1.6 0.395 00 0.361 15

1989.2 0.335 2.3 0.395 00 0.361 15

1990.1 0.332 1.2 0.395 00 0.359 30

1990.2 0.331 0.6 0.397 00 0.359 30

1991.1 0.329 0.5 0.399 00 0.362 9.7

1991.2 0.328 0.4 0.399 00 0.362 9.7

1992.1 0.341 11 0.405 00 0.363 7.5

1992.2 0.332 1.1 0.405 00 0.363 7.5

1993.1 0.342 13 0.405 00 0.365 2.6

1993.2 0.328 0.6 0.393 00 0.365 2.6

value for consumption (except for 1992.1 and for 1993.1) which is indicative of a

spatial clustering of low values. The G-statistics for the average price of water are

all highly signi�cant. Then, a spatial dependence for high values occurs. Except for

1993, spatial autocorrelation for income values is rejected. The G-statistic test has

a "static aspect" and does not provide information on the spatial dynamics of the

process. This issue is handled using spatial correlograms. See Appendix 6.4 for a

de�nition.

Although the interaction between spatial units may be strong between immediate

neighbours, the strength of interaction will often vary in a complex way with distance.

We test for the di�erence of spatial autocorrelation for the consumption variable over

di�erent weighthing matrices using spatial correlograms. Higher order contiguity is

used to compute spatial correlograms. The contiguity matrices are obtained by

taking powers of the unstandardized form of the �rst order contiguity matrix and by

correcting for circularity. The spatial lag length is eight. It corresponds to the point

where the higher order contiguity results in unconnected spatial units, i.e. spatial

units for which the corresponding row in the contiguity matrix consists only in zeros.

For further technical details and discussions on spatial correlograms see Cli� and

Ord (1981) and Cressie (1991).
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Figure 3: Estimation of spatial correlograms for the residential consumption of water

from 1988.1 to 1990.2. Up to eight spatial lags on the X-axis and the t-value of the G-

statistics on the Y-axis. The �rst two lags of each correlogram are highly signi�cant,

indicating spatial dependence which decreases with spatial lags.
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Figure 4: Estimation of spatial correlograms for the residential consumption of water

from 1991.1 to 1993.2. Up to eight spatial lags on the X-axis and the t-value of the G-

statistics on the Y-axis. The �rst two lags of each correlogram are highly signi�cant,

indicating spatial dependence which decreases with spatial lags.
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The results of the estimated spatial correlograms for each time period are re-

ported in Figures 3 and 4. Spatial lags are reported on the X-axis (up to eight lags

are computed), and the t-statistics associated to the G-values are indicated on the

Y-axis. To ease presentation, other statistics related to spatial correlograms (ex-

pectation, standard deviation etc.) are not reported here. A signi�cant and strong

indication of spatial clustering for the �rst and second orders of contiguity is evident

(except for 1993:1). We notice a decreasing spatial autocorrelation with increasing

orders of contiguity, which is typical of many spatial autoregressive processes. The

signi�cant and negative spatial autocorrelations at lag 1 contrast with the signi�cant

and positive spatial autocorrelations at lag 2. Then, at lag 1, low values of water

consumption are likely to be spatially correlated, and at lag 2, it may be the case for

high values. This result clearly indicates potential spatial dependence in consump-

tion observations. Thus, it seems relevant to include the spatial dimension in the

model speci�cation.

4 Estimation results

We use the theoretical framework sketched above to carry out empirical estimation

on data described in the previous section.8 Tables 6 and 7 present the unrestricted

pseudo-maximum likelihood estimates for the twelve time periods. A Lagrange mul-

tiplier test rejects the alternative spatial error speci�cation for most cases except for

1988.2, 1991.1, 1992.1 and 1993.1. See e.g. Anselin (1988, p. 66-72) for a de�nition

of these tests.

For these cases, spatial dependence remains in the residuals and our speci�cation

is clearly rejected. Thus, a mixed autoregressive spatial moving average model, i.e.

a model with a spatial lag dependent variable as well as a spatial moving average

process in the error will be more appropriate. In the other cross-sections the spatial

dependence has been adequately dealt with. A spatial Breusch-Pagan test for spatial

heteroskedasticity clearly indicates that heteroskedasticity patterns remain in the

speci�cation.

We use the following characteristics variables: proportion of persons below 19

years, proportion of workers, proportion of unemployed, municipalities's equipment
8GAUSS procedures to implement the calculations in this paper are available from the author

on request.
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Table 6: Unrestricted pseudo-maximum likelihood estimates (continued).

Cross-section estimates (and standard errors)

Variable 1988.1 1988.2 1989.1 1989.2 1990.1 1990.2

Intercept 128.33 -157.20 -190.32 58.00 -653.15 -160.67

(157.10) (171.10) (267.64) (244.24) (310.40) (256.57)

Disposable Income 0.524 0.036 -0.564 -0.887 0.238 0.063

(0.665) (0.590) (0.717) (0.736) (0.605) (0.605)

Water price -1.346 -0.860 -1.508 -1.702 -2.093 -1.391

(1.275) (1.195) (1.082) (1.209) (1.116) (1.137)

Electricity price 0.194 0.189 0.483 0.125 0.599 0.349

(0.130) (0.108) (0.264) (0.235) (0.284) (0.240)

Rainfall -0.946 0.269 -1.220 -1.384 0.862 -0.552

(0.380) (0.406) (0.373) (0.426) (0.376) (0.318)

Temperature -1.138 16.087 3.419 8.371 25.220 2.924

(6.469) (8.481) (6.521) (6.257) (9.068) (6.989)

Persons < 19 years -1.396 -1.694 -1.028 -1.239 -0.576 -0.882

(0.575) (0.530) (0.596) (0.607) (0.600) (0.582)

Workers -2.662 -1.478 -2.194 -0.726 -2.724 -1.716

(0.651) (0.585) (0.700) (0.695) (0.647) (0.659)

Unemployed -2.977 -2.624 -3.321 -2.740 -3.477 -3.124

(0.603) (0.561) (0.603) (0.614) (0.621) (0.616)

Equipment -0.409 -0.678 -0.281 -0.211 -0.084 -0.078

(0.352) (0.330) (0.359) (0.366) (0.359) (0.359)

Density of population 0.166 0.123 0.225 0.004 0.316 0.081

(0.400) (0.374) (0.405) (0.415) (0.412) (0.410)

Spatial dep. var.(i) 0.273 0.119 0.281 0.323 -0.004 0.310

(0.282) (0.325) (0.288) (0.292) (0.335) (0.292)

Diagnostics tests(ii)

LM spatial error.(iii) 0.704 3.911 0.219 0.826 0.269 0.374

(0.401) (0.047) (0.639) (0.363) (0.603) (0.540)

Spatial B-P.(iv) 13.753 7.778 19.826 13.538 16.634 25.224

(0.131) (0.556) (0.019) (0.139) (0.054) (0.002)

Number of obs. 115

(i): "Spatial dep. var." means the spatial lagged dependent variable, computed as Wy.

(ii): p-values are in parenthesis.

(iii): Lagrange multiplier test for the spatial model.

(iv): Spatial Breusch-Pagan test for spatial heteroskedasticity.
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Table 7: Unrestricted pseudo-maximum likelihood estimates (end).

Cross-section estimates (and standard errors)

Variable 1991.1 1991.2 1992.1 1992.2 1993.1 1993.2

Intercept -248.72 -423.66 -72.88 -21.60 -50.34 -320.07

(348.13) (330.08) (346.51) (317.15) (322.76) (350.23)

Disposable Income 0.067 0.100 0.127 -0.225 0.147 -0.269

(0.612) (0.518) (0.457) (0.443) (0.439) (0.483)

Water price -1.212 -3.595 -2.177 -0.729 -1.949 -3.092

(1.167) (1.025) (0.898) (0.915) (0.689) (0.757)

Electricity price 0.443 0.500 0.166 0.215 0.147 0.482

(0.346) (0.297) (0.334) (0.276) (0.306) (0.281)

Rainfall -1.384 -0.127 0.011 -0.911 0.002 -0.356

(0.606) (0.306) (0.384) (0.264) (0.280) (0.319)

Temperature -9.589 10.831 10.025 3.240 13.723 7.660

(8.177) (8.561) (7.646) (12.058) (9.354) (8.216)

Persons < 19 years -0.829 -0.458 -0.697 -0.463 -1.138 -0.445

(0.651) (0.605) (0.566) (0.537) (0.550) (0.567)

Workers -2.533 -2.088 -2.209 -1.613 -1.796 -2.517

(0.719) (0.685) (0.689) (0.638) (0.646) (0.652)

Unemployed -3.088 -2.928 -3.067 -2.878 -2.479 -3.132

(0.690) (0.646) (0.623) (0.586) (0.606) (0.644)

Equipment -0.022 0.135 -0.166 0.015 -0.555 0.204

(0.402) (0.379) (0.364) (0.335) (0.345) (0.365)

Density of population -0.096 0.453 0.114 0.187 -0.004 0.523

(0.457) (0.435) (0.416) (0.392) (0.406) (0.421)

Spatial dep. var.(i) 0.386 0.134 0.484 0.260 0.233 0.287

(0.273) (0.299) (0.243) (0.285) (0.299) (0.284)

Diagnostics tests(ii)

LM spatial error.(iii) 6.386 0.074 7.863 1.194 9.798 1.093

(0.011) (0.785) (0.005) (0.274) (0.001) (0.295)

Spatial B-P.(iv) 13.458 20.644 21.721 15.658 19.717 42.132

(0.142) (0.014) (0.009) (0.074) (0.019) (0.000)

Number of obs. 115

(i): "Spatial dep. var." means the spatial lagged dependent variable, computed as Wy.

(ii): p-values are in parenthesis.

(iii): Lagrange multiplier test for the spatial model.

(iv): Spatial Breusch-Pagan test for spatial heteroskedasticity.
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Table 8: Minimum distance estimates.

Restriction 1 Restriction 2

(common slopes) (equality of parameters)

Variable coef. std.err t-stat. coef. std.err t-stat.

Intercept � � � 4.496 40.886 0.109

Disposable Income 0.092 0.145 0.637 0.205 0.170 1.201

Water price -1.998 0.253 -7.878 -2.385 0.264 -9.017

Electricity price 0.240 0.055 4.324 0.201 0.038 5.226

Rainfall -0.367 0.082 -4.474 -0.079 0.041 -1.901

Temperature 5.780 1.992 2.901 0.594 0.425 1.399

Persons < 19 years -0.991 0.155 -6.390 -0.959 0.183 -5.241

Workers -2.104 0.175 -11.965 -2.131 0.201 -10.584

Unemployed -2.931 0.167 -17.544 -2.800 0.196 -14.217

Equipment -0.223 0.097 -2.292 -0.271 0.115 -2.347

Density of population 0.149 0.111 1.341 0.175 0.130 1.338

Spatial dep. var.(*) 0.271 0.078 3.437 0.289 0.091 3.163

R2 0.692 0.603

�R2 0.656 0.565

�2(5%) 94.165 133.972

degree of freedom 143 121

Number of obs. (N � T ) 1380

(*): "Spatial dep. var." means the spatial lagged dependent variable, computed as Wy.

All estimates are carried out with a signi�cance level of 5% .

and the density of population. Some of them (proportion of persons below 19 years,

proportion of workers and proportion of unemployed) are highly signi�cant in the

unrestricted cross-sectional estimates. Note that the average price of water becomes

signi�cant only from 1990.1 on. The intercept varies widely but is not signi�cant.

The minimum distance procedure implemented in the second stage is based on

the hypothesis that

H0 : f�=9a 2 A � Rq : g(b(�; a) = 0g; (15)

where the function g(:) is valued in Rr. It is usually assumed that @g=@�0 and

@g=@a0 are respectively of rank r and q. For empirical estimation one needs to
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assume a functional form for the estimating equations g(b(�; a). Here, we assume

that g(b(�; a) is linear with respect to the parameters of interest, a. From this

speci�cation, minimum distance estimates are obtained by imposing two restrictions.

The �rst restriction is that of common slopes or �xed slopes, expressed as

g(b̂(�); a) =

0
BBBBB@

�̂1x � �x
�̂2x � �x

...

�̂Tx � �x

1
CCCCCA
; (16)

with �̂t = (�̂0t �̂
x
t )
0, t = 1; � � �T , where �0t and �̂xt denote respectively the parameters

vector of varying intercept and the parameters vector of �xed slopes for the period

t, and a = �x. The second restriction is that of complete equality of parameters or

all identical parameters, i.e.

g(b̂(�); a) =

0
BBBBB@

�̂1 � �

�̂2 � �
...

�̂T � �

1
CCCCCA
; (17)

with b̂ = (�̂1; � � � ; �̂T )0 and a = �. For each case, the minimum distance estimates

are computed by generalized least squares procedures associated with the estimation

of 
0 in relation (8) as 
̂�1 = [Ĵ�1Î Ĵ�1]�1. Table 8 reports the results from the

minimum distance estimates. To check for the validity of the speci�cation g(:) = 0

underlying the parameters of interests, we also computed a speci�cation test based on

the minimum distance estimates. Since we assumed that g(:) is linear in a, relation

(18) turns out to be

H0 : f9a : b(�) = H(�)ag; (18)

where b(�) is a vector of dimension r and H(�) is a matrix of one and zeros of

dimension r� q. The statistic test is written as Tn = NT [b(�̂n�H(�̂n)ân]
0
̂n[b(�̂n�

H(�̂n)ân] and the distribution of Tn is such that Tn � �21��(r � q).
For each restriction, the minimum distance tests computed in Table 8 are 94.165

and 133.972 respectively. Given the associated degree of freedom, there is no rejec-

tion of the adopted speci�cation both under �xed slopes and all identical parameters
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restrictions. For the �rst restriction, the estimated coe�cients appear to be signi�-

cant except for disposable income and the density of population variables. The other

coe�cients have the expected sign, except perhaps for the coe�cient of the electricity

price variable which is positive. This seems a priori, surprising.

Indeed, although complementarity between the two goods (water and electricity)

may be expected, the positive sign for the parameter of the average price of electricity

indicates that, for the sample concerned, water and electricity display substitutability

patterns. This means that an increase in the average price of electricity may result

in more water consumption by residential consumers. This a priori surprising result

is in contradiction with the study of Hansen (1996) where the energy cross-price

parameter is found to be negative. Our cross-e�ects estimates suggest that changes

in the average price of electricity may induce modi�cations in the distribution of

residential water consumption for di�erent uses. That is to say, the share of resi-

dential water consumed in connection with electricity may decrease with the price of

electricity, whereas the remainder (the share of residential water consumed without

energy) does not. We noticed in Section 1 that about 50% of daily residential water

consumption in France is concerned with heating. Hence, the remaining 50% may

explain our result partly. This may also indicate that consumers take into account

the electricity block pricing structure where water consumption occurs e�ectively.

For the second restriction, meteorological variables (rainfall and temperature) are no

longer signi�cant but are of the expected sign.

The spatial coe�cient is also highly signi�cant, which con�rms the modeling

framework. Here, the spatial behavior may be viewed in two ways. First, we can

argue that households are actually in�uencing their neighbours. The water con-

sumption behavior of other households a�ects the consumption of a given household

through social proximity. In this sense, the estimated spatial coe�cients represent

a direct measure of an externality. The signi�cant spatial pattern may also be in-

terpreted as the reaction of households with respect to the availability of water

resources.

Time varying spatial elasticity at means is computed as

Ekt = �̂k

� �Xkt

�Yt

�
; k = 1; � � � ; K; t = 1; � � � ; T:

The above relation is termed "spatial elasticity" as it makes use of the variation in

variables of interest between municipalities. Results of the elasticities for the dispos-
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Table 9: Spatial elasticities at means.

Restriction 1 Restriction 2

(common slopes) (equality of parameters)

Period Income Price Spatial(*) Income Price Spatial(*)

1988.1 0.038 -0.180 0.265 0.085 -0.215 0.282

1988.2 0.037 -0.181 0.264 0.084 -0.217 0.281

1989.1 0.036 -0.185 0.264 0.083 -0.221 0.282

1989.2 0.036 -0.181 0.265 0.081 -0.217 0.282

1990.1 0.038 -0.192 0.265 0.086 -0.229 0.283

1990.2 0.039 -0.198 0.264 0.087 -0.236 0.281

1991.1 0.038 -0.204 0.265 0.086 -0.243 0.282

1991.2 0.039 -0.212 0.266 0.087 -0.253 0.284

1992.1 0.042 -0.241 0.266 0.093 -0.287 0.284

1992.2 0.041 -0.247 0.267 0.092 -0.295 0.283

1993.1 0.042 -0.276 0.266 0.095 -0.330 0.284

1993.2 0.043 -0.297 0.267 0.096 -0.354 0.285

(*): "Spatial" means the spatial lagged dependent variable.

able income, the average price of water and the spatial lagged dependent variable

are reported in Table 9.

Although the coe�cients (from Table 8) used in computing the elasticities are

highly signi�cant, these elasticities are very weak. They do not exceed 1% in absolute

value. Elasticities related to the restriction of complete equality of parameters are

higher than those associated with the common slopes restriction. We also observe

that the values vary weakly over time.

5 Conclusion

The aim of this study was to theoretically and empirically specify panel data spatial

autoregressive models in the framework of a minimum distance. The methodological

twist of the paper is to separately estimate parameters of cross-sections for di�erent

time periods using pseudo-maximum likelihood procedures, and to use a minimum

distance procedure to impose restrictions across waves, such as common slopes and
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complete equality of parameters. For the proposed speci�cation we argue why the

minimum distance approach is attractive and may be preferable to pure �xed e�ects

framework or a restricted maximum likelihood method.

Empirically, we examine whether households look to a reference group when mak-

ing water consumption decisions. In order to answer this question, we make use of

spatial modeling in a panel data context. Moreover, the paper presents a consis-

tent and asymptotically e�cient minimum distance estimator that is applied in the

empirical investigation. In the end, from an empirical viewpoint, what do we learn

about the residential demand for water? The estimated spatial lagged parameter is

strongly signi�cant, which means that households living in the same geographic area

have approximately similar water consumption behaviors. This provides us with a

measure of exernality which is not usually observable. We also �nd evidence that

consumers respond jointly to the average price of water and electricity, not only to

the average price of water.

Finally, panel data for lattice samples provides the opportunity of improving

estimation e�ciency in spatial models. Future e�ort should be directed to spatial

�xed e�ects speci�cations where the error component term may also be spatially

autoregressive.

6 Appendix

6.1 Water using tasks

Table 10: Water-using tasks.

Water consuming tasks Proportion

Drink 1%

Cooking (heating) 6%

Dish washing (heating) 10%

Clothes washing (heating) 12%

Toilets 39%

Personal hygiene (heating) 20%

Outdoor use (including sprinkling) 6%

Other uses 6%

Source: "General Company of Waters"
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Table 10 provides the distribution of French daily residential water consumption

between household's tasks. It is observed that about 50% is concerned with heating.

6.2 Data sources and list of variables

The data comes from di�erent sources. They were provided by: "la Compagnie

Générale des Eaux, Direction Régionale Est" (General Company of Water), "la Di-

rection Générale des Impôts de la Moselle" (Regional Tax Center), "le Centre Dé-

partemental de la Météorologie de la Moselle" (Regional Center of Meteorological

Studies) and "l'Institut National de la Statistique et des Études Économiques" (Na-

tional Institute of Statistics and Economic Studies). Table 11 gives a complete list

of the variables used in the empirical analysis.

Table 11: Variables used in the empirical analysis.

Variables designation

* Residential water consumption, aggregate values by municipality.

* Average price of water, computed to include �xed charges.

* Average price of electricity, in FF per kwh .

* Disposable income, evaluated on households paying taxes.

* Mean rainfall, in m.

* Mean temperature, in degree Celsius.

Characteristics of municipalities:

* Proportion of persons < 19 years.

* Proportion of unemployed.

* Proportion of workers.

* Density of population.

* Index of equipment.

6.3 Computation of the spatial weighting matrix

The binary spatial weighting matrixW we have used is created from information on

the distance between municipalities. First, a matrix of distances D with elements dij

based upon latitude-longitude coordinates of the centroids from each municipality

is computed using the Euclidean metric. Characteristics of the distance matrix are
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summarized in Table 12. In a second step, the information in the distance matrix

is used to create a row-standardized spatial weighting matrix W whose elements !ij

are de�ned as follows.

!ij =

8><
>:
1 if dij 2 [�1; �2]

0 otherwise

where [�1; �2] is a speci�ed critical distance band. Here we do not have any prior

notion of which distance ranges are meaningful. Hence, we choose a statistically

meaningful one, i.e. the �rst and third quartiles: �1 = 13:317 km and �2 = 41:641

km. The reason for using such construction and not the usual common border

criterion is that the municipalities considered here are not all contiguous.

Table 12: Characteristics of the distance matrix.
Variables statistics

Dimension (number of points) 115

Average distance between points 28.665

Distance range 85.135

Minimum distance between points 1

Maximum distance between points 86.135

Quartiles:

First 13.317

Median 29.273

Third 41.641

Minimum allowable distance cuto� 5.362

6.4 De�nition of spatial statistics

For further technical details and discussions on the Gs-statistics and spatial correl-

ograms, see e.g. Cli� and Ord (1981), Cressie (1991) and Getis and Ord (1992).

6.4.1 The Gs-statistics

Formally, for a cuto� distance �, the G-statistic denoted G(�) is de�ned as

G(�) =

P
i

P
j wij(�)zizjP
i

P
j zizj

; i = 1; � � � ; N; j 2 J;
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where zi is the value observed at location i, wij(�) stands for an element of the

symmetric (unstandardized) spatial weighting matrix for distance � and J is the set

of j neighbours to i. Inferences on G(�) are typically based on a standardized t-

value. This is computed by substracting the theoretical expectation before dividing

the result by the theoretical standard deviation: tG = fG(�)� E[G(�)]g=SD[G(�)],

with the notation SD denoting the standard deviation. Based on asymptotic con-

siderations, the t-value follows a standard normal distribution and the signi�cance

of G(�) can be stated by comparing the computed t-value to it probability in the

usual normal Table.

For each observation i, the G�(�) statistic for a speci�c spatial association indi-

cates the extent to which that location is surrounded by high values or low values of

the variable of interest. Formally, for a given distance �

G�(�) =

P
j wij(�)zjP

j zj
:

For this statistic, j = i is included in the sum symbol. This means that G�(�)

provides a measure of spatial clustering that includes the observation under consid-

eration. Inference about the signi�cance of G�(�) is derived as for G(�).

6.4.2 Statistic for spatial correlograms

Consider a system of N sites with random variables x1; � � � ; xN and let the sites i

and j be �th-order neighbours. Then, the �th-order sample spatial autocorrelation

is given by

C(�) =
N

�(�)

z0Wz

z0z
;

where z0 = (z1; � � � ; zN), zi = xi � �x, i = 1; � � � ; N , and �(�) =
P

i

P
j wij(�).

Alternatively, this statistic may be rewritten as

C(�) =
N

�(�)

P
(i;j)wij(�)zizjP

i z
2
i

:

Observe that the symmetric form of W in the statistic means that each term

appears twice in the summation. Readers are referred to the literature mentioned
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above for the computation of the means and the variances of these measures. The

plot of C(�) against � yields the spatial correlogram.
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